2020年高考数学总复习 5.1 三视图与几何体的体积、表面积习题课件 文

合集下载

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
设球的半径为 R,则 R2=AO22=AO2+OO22=13a2+14a2
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

空间几何体的三视图(基础型) [知识整合]
一个物体的三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主) 视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对 正、高平齐、宽相等”.
[考法全练] 1.一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是( )
面 ABCD 是正方形且和球心 O 在同一平面内,当此四棱锥的体积取得最大值时,
其表面积等于 8+8 3,则球 O 的体积等于( )
A.323π
B.32
2π 3
C.16π
16 2π D. 3
【解析】 (1)如图,由题意知圆柱的中心 O 为这个球的球心,于是, 球的半径 r=OB= OA2+AB2= 12+( 3)2=2.故这个球的表面 积 S=4π r2=16π .故选 D.
(2)求空间几何体体积的常用方法 ①公式法:直接根据相关的体积公式计算. ②等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容 易,或是求出一些体积比等. ③割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算 体积的几何体.
[对点训练] 1.(2019·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之 一圆弧),则该几何体的表面积为( )
第二部分 高考热点 分层突破
专题三 立体几何 第1讲 空间几何体的三视图、表面积及体积数学 Nhomakorabea01
做高考真题 明命题趋向
02
研考点考向 破重点难点
03
练典型习题 提数学素养
[做真题] 1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分 叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构 件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 ()

2020高考数学总复习空间几何体的表面积和体积PPT课件

2020高考数学总复习空间几何体的表面积和体积PPT课件
空间几何体的表面积和体积
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面 展开图
侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl
S = 圆台侧 π(r+r′)l
2.多面体的侧面积和表面积 因为多面体的各个面都是平面,所以多面体的侧面积就是侧 面展开图的面积,表面积是侧面积与底面积的和.
A.17 27
B.5 C.10 D.1
9
27
3
(2)若某几何体的三视图(单位:cm)如图所示,则此几何体的 体积等于________cm3.
(3)三棱锥 P-ABC 中,D,E 分别为 PB,PC 的中点,记三棱

D-ABE
的体积为
V 1,P-A B C
的体积为
V
2,则VV
1=________.
2
又∵长方体表面积重叠一部分, ∴几何体的表面积为232+152-2×6×2=360.
1.空间几何体的体积是每年高考的热点,题型为选择题和填 空题.
2.高考对空间几何体的体积的考查常有以下几个命题角度: (1)求简单几何体的体积; (2)求组合体的体积; (3)求以三视图为背景的几何体的体积.
[例 2] (1)如图,网格纸上正方形小格的边长为 1(表示 1 cm), 图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3 cm,高为 6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为( )
2.直角三角形两直角边 AB=3,AC=4,以 AB 为轴旋转一
周所得的几何体的体积为( )
A.12π
B.16π
C.9π
D.24π
解析:选 B 以 AB 为轴旋转一周所得到的几何体为圆

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版
返回导航
【教材导读】 1.平行投影和中心投影的区别和联系? 提示:中心投影与人们感官的视觉效果是一致的,它常用来进行绘 画;平行投影中,与投影面平行的平面图形留下的影子,与这个平面图 形的形状和大小完全相同.
返回导航
2.两面平行,其余各面都是平行四边形的几何体就 是棱柱吗?
提示:不是,其余各面中相邻两面的公共边不一定都平行,如图几何 体就不是棱柱.
返回导航
D 解析:A 错误,如图(1),由两个结构相同的三棱锥叠放在一起构 成的几何体,各面都是三角形,但它不是三棱锥.
返回导航
B 错误,如图(2)(3),若△ABC 不是直角三角形或是直角三角形,但 旋转轴不是直角边所在直线,所得的几何体都不是圆锥.
C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形. 由几何图形知,若以正六边形为底面,则侧棱长必然要大于底面边长. D 正确.
返回导航
2.一个正方体的展开图如图所示,A,B,C,D 为原正方体的顶点, 则在原来的正方体中( )
(A)AB∥CD (C)AB⊥CD 答案:D
返回导航
(B)AB 与 CD 相交 (D)AB 与 CD 所成的角为 60°
3.下图中的几何体是由下面哪个平面图形旋转得到的( )
答案:A
返回导航
4.(2018 全国Ⅰ卷)某圆柱的高为 2,底面周长为 16,其三视图如 右图.
返回导航
第 1 节 空间几何体的结构、三视图和直观图
最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描 述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的 三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们 的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形 的不同表示形式. 4.会画某些建筑物的三视图和直观图(在不影响图形特征的基础上,尺寸 线条等不作严格要求)

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8

.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。

即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。

由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。

2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。

四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。

点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。

高考数学总复习1三视图与几何体的体积表面积习题课件文

高考数学总复习1三视图与几何体的体积表面积习题课件文

D.66斛
2021/12/13
第三十页,共九十二页。
-31-
答案(dá àn):B
解析:设圆锥的底面半径为R,高为h.
∵米堆底部的弧长为8尺,
1
16
∴4·2πR=8,∴R= π .∵h=5,
1
1
1
∴米堆的体积 V=4 × 3πR h=12×π×
320
2
16 2
π
∴堆放的米约有9×1 62≈22(斛).
1.(2018全国Ⅰ·5)已知圆柱的上、下底面的中心(zhōngxīn)分别为O1,O2,过直线
O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
(
)
A.12 2π
B.12π
C.8 2π
D.10π
答案:B
解析:过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,
后得到的几何体如图②,则该几何体的侧视图为(
2021/12/13
第二十六页,共九十二页。
)
-27-
答案:A
解析:因为平面DEHG⊥平面EFD,所以(suǒyǐ)几何体的侧视图为直角梯形,且直
角腰在侧视图的左侧,故选A.
2021/12/13
第二十七页,共九十二页。
-28-
空间几何体的体积、表面积
高考真题体验·对方向
第十九页,共九十二页。
-20-
4.(2018江西赣州十四县(市)期中(qī zhōnɡ))某几何体的三视图如图所示,则此几何
体的各面中最大面的面积为(
A.2 2
B.2 3
)
C.3 2
2021/12/13
第二十页,共九十二页。
D.2

高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图
1 / 27
1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形

半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.

2020高考数学复习--专题三立体几何第1讲空间几何体的三视图、表面积与体积练典型习题提数学素养(含解析)

2020高考数学复习--专题三立体几何第1讲空间几何体的三视图、表面积与体积练典型习题提数学素养(含解析)

第1讲 空间几何体的三视图、表面积与体积一、选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 解析:选A.AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2, 在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以△ABC 是等边三角形. 2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选B.①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台是上、下底面相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A .12B .14C .16D .112解析:选C.VA ­BC 1M =VC 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.4.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( ) A .10 B .10 3 C .10 2D .5 3解析:选B.设圆锥的底面半径为r ,高为h .因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr =20π,所以r =10,所以h =202-102=10 3.5.(2019·湖北武汉5月模拟)已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( )A .4B .29C .223D .417解析:选B.设长方体的长、宽、高分别为x ,y ,z ,由已知得⎩⎪⎨⎪⎧4(x +y +z )=36,①2(xy +xz +yz )=52,②①的两边同时平方得x 2+y 2+z 2+2xy +2xz +2yz =81,把②代入得x 2+y 2+z 2=29,所以长方体的体对角线的长为29.故选B.6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .163πC .323πD .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.7.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =2,AA 1=1,则点B 到平面D 1AC 的距离等于( )A .33B .63C .1D .2解析:选B.如图,连接BD 1,易知D 1D 就是三棱锥D 1­ABC 的高,AD 1=CD 1=5,取AC 的中点O ,连接D 1O ,则D 1O ⊥AC ,所以D 1O =AD 21-AO2= 3.设点B 到平面D 1AC 的距离为h ,则由VB ­D 1AC =VD 1­ABC ,即13S △D 1AC ·h =13S △ABC ·D 1D ,又S △D 1AC =12D 1O ·AC =12×3×22=6,S △ABC =12AB ·BC =12×2×2=2,所以h =63.故选B. 8.在三棱锥S ­ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S ­ABC的体积为932,则该三棱锥的外接球半径是( )A .1B .2C .3D .4解析:选C.取SC 的中点O ,连接OA ,OB ,则OA =OB =OC =OS ,即O 为三棱锥的外接球球心,设半径为r ,则13×2r ×34r 2=932,所以r =3.9.(2019·安徽省江南十校3月检测)我国南北朝时期的科学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体在等高处的水平截面的面积恒等,那么这两个几何体的体积相等.利用此原理求以下几何体的体积:如图,曲线y =x 2(0≤y ≤L )和直线y =L 围成的封闭图形绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1(三棱柱ABC ­A 1B 1C 1),其中AC ⊥平面α,BB 1C 1C ∥α,EFPQ ∥α,AC =L ,AA 1⊂α,AA 1=π,Z 1与Z 在等高处的截面面积都相等,图中EFPQ 和BB 1C 1C 为矩形,且PQ =π,FP =l ,则几何体Z 1的体积为( )A .πL 2B .πL 3C .12πL 2D .12πL 3 解析:选C.由题意可知,在高为L 处,几何体Z 和Z 1的水平截面面积相等,为πL , 所以S 矩形BB 1C 1C =πL ,所以BC =L ,所以V 三棱柱ABC ­A 1B 1C 1=S △ABC ·π=12πL 2,故选C.10.(2019·重庆市七校联合考试)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .6 3D .4 3解析:选B.由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2,所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP 2-OF 2=2 3.因为△OPF ∽△DPE ,所以OF DE =PF PE ,得DE =23,AD =3DE =63,AB =23AD =12.故选B. 11.(多选)在正方体上任意选择4个顶点,它们可能是如下几种几何图形的4个顶点,这些几何图形可以是( )A .矩形B .有三个面为等腰直角三角形,有一个面为等边三角形的四面体C .每个面都是直角三角形的四面体D .每个面都是等边三角形的四面体解析:选ABCD.4个顶点连成矩形的情形显然成立;图(1)中四面体A 1­D 1B 1A 是B 中描述的情形;图(2)中四面体D ­A 1C 1B 是D 中描述的情形;图(3)中四面体A 1­D 1B 1D 是C 中描述的情形.12.(多选)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,则下列四个结论正确的是( )A .直线A 1C 1与AD 1为异面直线B .A 1C 1∥平面ACD 1 C .BD 1⊥ACD .三棱锥D 1­ADC 的体积为83解析:选ABC.对于A ,直线A 1C 1⊂平面A 1B 1C 1D 1,AD 1⊂平面ADD 1A 1,D 1∉直线A 1C 1,则易得直线A 1C 1与AD 1为异面直线,故A 正确;对于B ,因为A 1C 1∥AC ,A 1C 1⊄平面ACD 1,AC ⊂平面ACD 1, 所以A 1C 1∥平面ACD 1,故B 正确;对于C ,连接BD ,因为正方体ABCD ­A 1B 1C 1D 1中,AC ⊥BD ,AC ⊥DD 1,BD ∩DD 1=D ,所以AC ⊥平面BDD 1,所以BD 1⊥AC ,故C 正确;对于D ,三棱锥D 1­ADC 的体积V 三棱锥D 1­ADC =13×12×2×2×2=43,故D 错误.13.(多选)如图,AB 为圆O 的直径,点E ,F 在圆O 上,AB ∥EF ,矩形ABCD 所在平面和圆O 所在平面垂直,且AB =2,AD =EF =1.则( )A .平面BCF ⊥平面ADFB .EF ⊥平面DAFC .△EFC 为直角三角形D .V C ­BEF ∶V F ­ABCD =1∶4解析:选AD.因BF ⊥AF ,BF ⊥DA ,所以BF ⊥平面DAF , 所以平面BCF ⊥平面ADF ,由题意可知,平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为V 四棱锥F ­ABCD ,V 三棱锥F ­CBE .过点F 作FG ⊥AB 于点G ,因为平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,FG ⊂平面ABEF ,所以FG ⊥平面ABCD .所以V 四棱锥F ­ABCD =13×1×2×FG =23FG ,V 三棱锥F ­BCE =V 三棱锥C ­BEF =13×S △BEF×CB =13×12×FG ×1×1=16FG ,由此可得V 三棱锥C ­BEF ∶V 四棱锥F ­ABCD =1∶4.二、填空题14.(一题多解)(2019·淄博市第一次模拟测试)底面边长为6,侧面为等腰直角三角形的正三棱锥的高为________.解析:法一:由题意得,三棱锥的侧棱长为32,设正三棱锥的高为h ,则13×12×32×32×32=13×34×36h ,解得h = 6.法二:由题意得,三棱锥的侧棱长为32,底面正三角形的外接圆的半径为23,所以正三棱锥的高为18-12= 6.答案: 615.(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 答案:π416.(2019·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC 于点F .由题意知PE =PF = 3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为 2.答案: 217.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝ ⎛⎭⎪⎫13×32+12=233,则S 侧=3×12×2×233=23,S底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r=13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:3 3 4π81。

2020年高考数学(理)总复习:空间几何体的三视图、表面积与体积(原卷版)

2020年高考数学(理)总复习:空间几何体的三视图、表面积与体积(原卷版)

2020年高考数学(理)总复习: 空间几何体的三视图、表面积与体积题型一 空间几何体的三视图与直观图【题型要点】 三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.由三视图还原几何体的步骤(1)根据俯视图确定几何体的底面;(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置;(3)确定几何体的形状,即可得到结果.【例1】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16【例2】.已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )题组训练一 空间几何体的三视图与直观图1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18C.24 D.30题型二空间几何体的表面积与体积【题型要点】(1)求解几何体的表面积及体积的技巧①求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.②求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.(2)根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状.第二步:由三视图中的大小标示确定该几何体的各个度量.第三步:套用相应的面积公式与体积公式计算求解.【例3】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63πC.42π D.36π【例4】.某几何体的三视图如图所示,若该几何体的体积为12π+8,则该几何体的表面积为()A.18π+82+4 B.20π+8 2C.10π+4 2 D.45π+272+9题组训练二空间几何体的表面积与体积1.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该“阳马”的外接球的体积为()A .100π cm 3B.500π3 cm 3C .400π cm 3D.4 000π3cm 32.由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为________.3.一个四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该几何体的体积为( )A.223B.43 C. 2D .4题型三 多面体与球 【题型要点】(1)解决球与几何体的切、接问题的关键在于确定球的半径与几何体的度量之间的关系,这就需要灵活利用球的截面性持以及组合体的截面特征来确定.对于旋转体与球的组合体,主要利用它们的轴截面性质建立相关数据之间的关系;而对于多面体,应抓住多面体的结构特征灵活选择过球心的截面,把多面体的相关数据和球的半径在截面图形中体现出来.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.【例5】某几何体的三视图如图所示,则该几何体的外接球的体积为( )A.43πB.32327πC.28327πD.282127π【例6】.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π4题组训练三 多面体与球1.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱锥B -ACD 的外接球的表面积为( )A .5π B.203π C .10πD .34π 2.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3cm 3D.2 048π3cm 3题型四 转化思想在三视图与直观图中的应用空间几何体的三视图还原为直观图求其表面积与体积能让学生经历由三视图到实物图,再到直观图的过程,能较好地考查学生的空间想象能力,命题涉及几何体的结构特征、表面积和体积问题是课标区高考的热点之一.(1)根据三视图判断空间几何体的形状,应特别注意三个视图中的实线与虚线,知道为什么是实线或虚线,为什么有这些线或没有某些线,对于正视图、侧视图中的直角,更要弄清楚它们是直角的原因.(2)要弄清三视图的有关数据与空间几何体的哪些数据相当,只需搞清由空间几何体如何得到三视图即可,平时应多加练习,总结规律.【例7】 已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________cm 3.题组训练四 转化思想在三视图与直观图中的应用1.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱与最短的棱所成角的余弦值是( )A.22B.32 C.12D.33【专题训练】 一、选择题1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π3.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A.163πB.643C.16π+643D .16π+644.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为()5.如图,在正方体ABCD-A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P-BCD 的俯视图与正视图面积之比的最大值为()A.1 B. 2C. 3 D.26.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为()A.24 B.48C.72 D.967.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A.64π B.68πC.72π D.100π8.下图中,是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为()A.32π B.48πC.50π D.64π9.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A′­BCD,使平面A′BD⊥平面BCD,若四面体A′­BCD的顶点在同一个球面上,则该球的体积为()A.32π B.3πC.23π D.2π10.一光源P在桌面A的正上方,半径为2的球与桌面相切,且P A与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△P AB,其中P A=6,则该椭圆的短轴长为()A.6 B.8C.4 3 D.311.已知在三棱锥P—ABC中,P A⊥平面ABC,AB=AC=P A=2,且在△ABC中,∠BAC=120°,则三棱锥P —ABC 的外接球的体积为________.12.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 二、填空题13.如图所示,三棱锥P -ABC 中, △ABC 是边长为3的等边三角形, D 是线段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°, P A =32, PB =332,则三棱锥P -ABC 的外接球的表面积为________.14.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.15.已知三棱锥A -BCD 中,AB =AC =BC =2,BD =CD =2,点E 是BC 的中点,点A 在平面BCD 上的射影恰好为DE 的中点,则该三棱锥外接球的表面积为________.16.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,平面P AD ⊥平面ABCD .若∠BPC =90°,PB =2,PC =2,则四棱锥P -ABCD 的体积最大值为________.11。

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

2020高考数学二轮复习专题四立体几何第1讲空间几何体的三视图表面积及体积课件文20201205342-

2020高考数学二轮复习专题四立体几何第1讲空间几何体的三视图表面积及体积课件文20201205342-

切,若球与三个侧面相切,设底面△ABC 的内切圆的半
径为 r.
则12×6×8=12×(6+8+10)·r, 所以 r=2. 2r=4>3,不合题意. 球与三棱柱的上、下底面相切时,球的半径 R 最大. 由 2R=3,即 R=32.
故球的最大体积 V=43πR3=92π. 答案:B
[迁移探究] 若本例中的条件变为“直三棱柱 ABC-A1B1C1 的 6 个顶点都在球 O 的球面上”,若 AB=3, AC=4,AB⊥AC,AA1=12,求球 O 的表面积.
( )(导学号 55410044)
A.36π C.144π
所以该几何体的体积 V=3·π×12-13·π×12×3=2π. (2)由三视图知可把三棱锥放在一个长方体内部,则 三棱锥 A1­BCD,VA1­BCD=13×12×3×5×4=10.
答案:(1)B (2)D
热点 3 多面体与球的切、接问题(互动迁移) 与球有关的组合体问题,一种是内切,一种是外 接.解题时要认真分析图形,明确切点和接点的位置, 确定有关元素间的数量关系,并作出合适的截面图,如 球内切于正方体,切点为正方体各个面的中心,正方体 的棱长等于球的直径;球外接于正方体,正方体的顶点 均在球面上,正方体的体对角线长等于球的直径.
专题四 立体几何
第 1 讲 空间几何体的三
视图、表面积及体积
1.(2016·全国卷Ⅰ)如图,某几何体的
三视图是三个半径相等的圆及每个圆中两 条互相垂直的半径.若该几何体的体积是
283π,则它的表面积是( )
A.17π
B.18π
C.20π
D.28π
解析:由题知,该几何体的直观图如图所示,它是
一个球(被过球心 O 且互相垂直的三个平面) 切掉左上角的18后得到的组合体,其表面积是 球面面积的78和三个14圆面积之和,易得球的半径为 2,则 得 S=78×4π×22+3×14π×22=17π.

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版
(2)该几何体为一个半圆柱中间挖去一个四面体, ∴体积 V=12π×22×4-13×12×2×4×4=8π-136. 答案 (1)C (2)A
考点三 多面体与球的切、接问题
典例迁移
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V
的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
故S球=4πR2=169π.
【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几 何体外接球的表面积.
解 设外接球的半径为 R,由三视图可知该几何体是两个正四棱锥的组合体(底面重
合),上、下两顶点之间的距离为 2R,正四棱锥的底面是边长为 2R 的正方形,由
R2+

22R2=32 解得
解析 由三视图可知,该几何体是一个底面为直角梯形的直 四棱柱,所以该几何体的体积 V=12×(1+2)×2×2=6. 答案 6
考点一 简单几何体的表面积
【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其主视图如 图所示,则该四棱锥的侧面积是( )
A.4 3
B.4 5
C.4( 5+1)
答案 A
角度2 简单几何体的体积 【例2-2】 (一题多解)(2018·天津卷)如图,已知正方体ABCD-A1B1C1D1的棱长为1,
则四棱锥A1-BB1D1D的体积为________.
解析 法一 连接 A1C1 交 B1D1 于点 E,则 A1E⊥B1D1,A1E⊥BB1,则 A1E⊥平面
BB1D1D,所以 A1E 为四棱锥 A1-BB1D1D 的高,且 A1E= 22,矩形 BB1D1D 的长和宽
【训练3】 (2019·广州模拟)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA= PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档