1 三角形中常用辅助线的作法 - 学生

合集下载

相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线 段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。

主要的辅助线有以下 几种: 一、添加平行线构造“ A “ X 型例1:如图,D 是厶ABC 的 BC 边上的点,BD DC=2 1,E 是AD 的中 BE EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P,贝U ••• PE=EF BP=2PF=4E 所以 BE=5EF : BE: EF=5 1.解法二:过点 D 作BF 的平行线交AC 于点Q, ••• BE EF=5: 1. E 作BC 的平行线交AC 于点S , E 作AC 的平行线交BC 于点T ,BCC 边上的点',,BD DC=2 1, E 是 AD 的中点,求AF: CF 的值.D 作CA 的平行线交 D 作BF 的平行线交E 作BC 的平行线交 E 作AC 的平行线交 ABC 的 AB 边和AC 边上各取一点D 和 使 AD= AE, DE 延长线与BC 延长线相交于F ,求证: (证明:过点C 作CG//FD 交AB 于G ) 例 3:女口图,△ ABC 中, ABvAC 在 AB AC 上分别截取 BD=CE DE, BC 长线相交于点F ,证明:AB- DF=AC EF. 分析:证明等积式问题常常化为比例式,再通过相似三角形对 比例来证明。

不相似,因而要通过两组三角形相似,运用中间 得到,为构造相似三角形,需添加平行线。

• 方法一:过E 作EM//AB,交BC 于点M 则厶EM OAABC (两角等,两三角形相似)•方法二:过D 作DN//EC 交BC 于 N.解法三:过点 解法四:过点 BE _BT ; 点,求: 变式:T 如'图,D 是厶ABC 的F, 过点 过点 过点 过点 解法一 解法二 解法三 解法四 例2:如图,在△ 和厶EFB 相似, ••• BE EF=5 1. 连结BE 并延长交AC 于BF 于点 AC 于点 AC 于点BC 于点 P, Q s,T ,应边成比代换 例4:在厶ABC 中, D 为AC 为CB 延长线上的一点, AB 于 F 。

2024八年级上《全等三角形》常见辅助线作法总结

2024八年级上《全等三角形》常见辅助线作法总结

全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。

常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。

下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。

一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。

2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。

3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。

根据中位线的性质,可以判断和证明两个三角形全等。

4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。

5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。

根据角高线和中线的性质,可以判断和证明两个三角形全等。

二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。

2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。

3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。

4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。

以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。

在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。

同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。

三角形中常用的辅助线

三角形中常用的辅助线

三角形问题的常用辅助线作法一、由角平分线想到的辅助线 (一)、截取构全等(二)、过角分线上的点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

(三)、作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中线的性质与等腰三角形的三线合一的性质。

(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

(四)、过角平分线上一点作角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

如图4-1和图4-2所示。

图4-2图4-1ABC BIG二、由中点想到的辅助线在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

(一)、中线把原三角形分成两个面积相等的小三角形(二)、由中线应想到延长中线(倍长中线)题目中如果出现了三角形的中线,常延长加倍此线段,再将端点连结,便可得到全等三角形。

(三)、由中点应想到利用三角形的中位线(四)、直角三角形斜边上的中线性质三、全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

常见辅助线的作法有以下几种:(一)、截长补短:具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.(二)、借助角平分线造全等:可自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(三)、倍长中线(线段)造全等:遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.(四)、平移变换:过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”(五)、旋转(六)、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.(七)、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)三角形问题的常用辅助线作法一、由角平分线想到的辅助线 (一)截取构全等例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.截长补短:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂D C BAED F CB A线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

三角形中常见辅助线的作法
1、延长中线构造全等三角形
例1 如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD 的取值范围.
提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.
求证:DF=EF.
提示:此题辅助线作法较多,如:
①作DG∥AE交BC于G;
②作EH∥BA交BC的延长线于H;
再通过证三角形全等得DF=EF.
3、作连线构造等腰三角形
例3 如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.
求证:BD=DE=CE.
提示:连结DC,证△ECD是等腰三角形.
4、利用翻折,构造全等三角形.
例4 如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.
提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D =B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.
5、作三角形的中位线
例5 如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.且OE=OF,故∠1=∠2,可得证.。

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用D C BAED F CB A的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

构造全等三角形常见辅助线法

构造全等三角形常见辅助线法

《构造全等三角形常见辅助线法》xx年xx月xx日contents •引言•构造全等三角形基本理论•构造全等三角形常见辅助线法分类•辅助线法的应用实例•结论与展望目录01引言构造全等三角形是几何证明中的重要问题,对于提高学生几何思维能力、解题能力具有重要意义。

在数学竞赛、高考等各类考试中,构造全等三角形的相关题目常常出现,是考察学生几何知识的重要手段。

课题背景与重要性掌握构造全等三角形的常见辅助线方法,帮助学生解决涉及构造全等三角形的几何问题。

通过研究,提高学生构造全等三角形的思维能力,增强解题能力,为数学竞赛、高考等各类考试做好准备。

研究目的与意义研究方法归纳总结法、例题解析法、练习巩固法。

研究内容常见辅助线的作法、全等三角形的性质和判定、练习题解析。

研究方法与内容概述02构造全等三角形基本理论定义两个三角形形状相同,大小相等,称为全等三角形。

记法在全等三角形中,相等的边和角用实线表示,不等的边和角用虚线表示。

全等三角形的定义1全等三角形的性质23如果△ABC≌△DEF,那么△DEF≌△ABC。

传递性如果△ABC≌△DEF,那么△ABC和△DEF关于某条直线对称。

对称性如果△ABC≌△DEF,那么可以把△ABC平移、旋转、翻折得到△DEF。

运动性全等三角形的判定方法SAS(边角边)两边对应相等,且夹角相等的两个三角形全等。

SSS(边边边)三边对应相等的两个三角形全等。

AAS(角角边)两角对应相等,且夹边相等的两个三角形全等。

HL(斜边直角边)直角三角形的一条斜边和一条直角边对应相等的两个直角三角形全等。

ASA(角边角)两角对应相等,且夹边对应的两个三角形全等。

03构造全等三角形常见辅助线法分类总结词引入中点法是一种常见的构造全等三角形的方法,通过连接两个中点,利用中位线定理来构造两个全等三角形。

详细描述在构造全等三角形时,如果能够找到一个中点或能够利用中位线定理的条件,就可以通过连接两个中点构造两个全等三角形。

专题——三角形中常见的辅助线

专题——三角形中常见的辅助线

三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点 目的:找等量关系,或2倍(1/2)的关系。

结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC例2、如图,直角三角形ABC 中,∠C=90 ,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED例4如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少?例5如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?ADCMABDEC213N CE D B A MN CD BA MNMBCA等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点 二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC 边上的中点。

求证:ME=MD例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC例4 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T 求证:FG ∥AT4321C BAO 654321MGFE D CB A 4321FE D BA54321F EDCBA MK N L FE DA例5、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?三、三角形中位线模型构成:△ABC 中,D 为AB 边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE ∥BC,DE=12BC ②△ADE ∽△ABC例1 已知:在△ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AC 于E,F 为DE 中点 求证:AF ⊥BE例2 已知 BD 、CE 为△ABC 的角平分线,AF ⊥CE 于F,AG ⊥CE 于F,AG ⊥BD 于G求证:①FG ∥BC ② FG=12(AB+AC-BC)例3 已知 ,如图在ABCD 中,P 为CD 中点,AP 延长线交BC 延长线于E,PQ ∥CE 交DE 于Q求证:PQ=12BC例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DLA BCD E GFED HCB A4321G F N ME CD B AL MK HFEDCBAQ PED CBAOF DC BA108054321ECBAD例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME四“补长截短”模型(1) 截长法: 构成:线段a,b,c目的:确定一线段,找令一线段的等量关系结果:→ a-b '=c ⇒a=b+c , b=b ' (2)补短法: 构成:线段a,b,c目的:构造一等长线段,再找等量关系结果:c=c ',b+c '=a ⇒a=b+c例1 已知:△ABC 中,AD 平分∠BAC求:(1)若∠B=2∠C,则AB+BD=AC (2) 若AB+BD=AC,则∠B=2∠C例2:在ABC 中,∠C=2∠B ,AD ⊥BCY 于D ,求证BD=AC+CD例3如图所示,等腰直角ABC 中,∠BAC=90︒过点A 做直线DE ,BD ⊥DE 于D ,CE ⊥DE 于E ,求证:DE=BD+CE例4已知:等腰△ABC 中,AB=AC, ∠A=0108,BD 平分∠ABC求证:BC=AB+DC7654321MG F EDCBAc ab c4321E BDCACD B ACBEDA54321GMFE D CB A例6、已知如图所示,在ABC 中,AB=AC ∠A=100︒,BD 平分∠ABC 交AC 于D求证:BC=AD+BD例 7 已知:在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM求证:AE=BC+CE例 8已知:在正方形ABCD 中,E 为BC 上任一点,∠EAD 的平分线交DC 于F 求证:BE+DF=AE构造等边三角形、等腰三角形例9、如图,已知∠ABD=∠ACD=60︒∠ADB=90︒-12∠BDC 且∠BAC=20︒求:∠ACB 的度数。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

三角形常见辅助线的作法

三角形常见辅助线的作法

三角形中作辅助线的常用方法举例常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1)在△BDM 中,MB +MD >BD ; (2)在△CEN 中,CN +NE >CE ; (3)由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1)GF +FC >GE +CE (同上) (2)DG +GE >DE (同上) (3)AB C D E N M 11-图A B C D EF G 21-图由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形中常见的辅助线的作法

全等三角形中常见的辅助线的作法

全等三角形中常见的辅助线的作法全等三角形问题中最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等,本节来介绍下在全等三角形中常见的几种辅助线的作法:图中有角平分线,可向两边作垂线。

线段垂直平分线,常向两端把线连。

线段计算和与差,巧用截长补短法。

三角形里有中线,延长中线至两倍。

在作辅助线的时候要注意以下两点:①在原图形中作辅助线要用“虚线”;②在证明过程中要描述添加方法。

一、用角平分线的性质构造全等例1、如图,在四边形ABCD 中, ∠A= ∠D =90°, BE、CE 分别是∠B 和∠C 的角平分线。

求证:BC= AB + CD。

证明:过点E 作EF⊥BC ,垂足为点F∵BE 是∠B 的角平分线,∠EFB = ∠A = 90°∴EF = AE在△EFB 和△EAB 中∵∠EFB = ∠A = 90°,EF = AE ,EB = EB∴△EFB ≌△EAB (HL)∴BF = BA同理可证:CF = CD∴BC = CF + BF = AB + CD二、连接法例题2、如图,在五边形ABCDE中,点M 是CD 的中点,AB = AE , BC = ED ,AM⊥CD 。

求证:∠B = ∠E 。

连接AC ,AD∵点M 是CD 的中点,AM⊥CD∴AC = AD在△ABC 和△AED 中∵AB = AE , BC = ED,AC = AD∴△ABC ≌△AED (SSS)∴∠B = ∠E三、用“截长法”或“补短法”构造全等三角形例题3、如图,在△ABC中,AD是∠BAC的角平分线,∠C = 2∠B 。

求证:AB = AC + CD 。

证明:方法一、截长法在线段AB 上取点E ,使得AE = AC , 连接ED∵AD是∠BAC的角平分线∴∠EAD = ∠CAD在△EAD 和△CAD 中∵AE = AC , ∠EAD = ∠CAD ,AD = AD∴△EAD ≌△CAD∴ED = CD , ∠AED = ∠ACD又∵∠AED = ∠B + ∠EDB (三角形外角和定理),∠ACD = 2∠B∴∠B + ∠EDB = 2∠B (等量代换)∴∠B = ∠EDB∴BE = ED (等角对等边)又∵AB = AE + EB∴AB = AC + CD (等量代换)方法二、补短法延长线段AC 至点 F ,使CF = CD ,连接DF略证:由∠ACB = 2∠B = ∠CDF + ∠F ,∠CDF = ∠F可得∠B = ∠F在证△ABD ≌△AFD (AAS)可得AB = AF而AF = AC + CF = AC + CD即证AB = AC + CD注:遇到有二条线段长之和等于第三条线段的长,常用此方法。

相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。

主要的辅助线有以下几种:一、添加平行线构造“A”“X”型例1:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,求:BE:EF的值.解法一:过点D作CA的平行线交BF于点P,则∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE:EF=5:1.解法二:过点D作BF的平行线交AC于点Q,∴BE:EF=5:1.解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,∵BD=2DC ∴∴BE:EF=5:1.变式:如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,连结BE并延长交AC于F,求AF:CF的值.解法一:过点D作CA的平行线交BF于点P,解法二:过点D作BF的平行线交AC于点Q,解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,,1==AEDEFEPE,2==DCBDPFBP,则2==EADAEFDQ,3==DCBCDQBF,EFEFEFEFDQEFBFBE563=-=-=-=,则DCCTDT21==;TCBTEFBE=,DCBT25=例2:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:(证明:过点C 作CG//FD 交AB 于G )例3:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。

三角形中作辅助线的常用方法举例

三角形中作辅助线的常用方法举例

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B ,求证:AD =BC分析:欲证AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA ,CB ,它们的延长交于E点,∵AD ⊥ACBC ⊥BD (已知) ∴∠CAE =∠DBE =90°(垂直的定义)在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =ECEB =EA (全等三角形对应边相等) ∴ED -EA =EC -EBABCDE17-图O即:AD =BC 。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。

求证:BD =2CE分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长。

证明:分别延长BA ,CE 交于点F 。

∵BE ⊥CF (已知)∴∠BEF =∠BEC =90°(垂直的定义)在△BEF 与△BEC 中, ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等)19-图DCBAE F12∵∠BAC=90°BE ⊥CF (已知)∴∠BAC =∠CAF =90°∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等)∴BD =2CE四、取线段中点构造全等三有形。

全等三角形常用辅助线做法

全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:CD=AD+BC。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:证明:在CD上截取CF=BC,如图乙∴△FCE≌△BCE(SAS),∴∠2=∠1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 三角形中常用辅助线的作法
【三角形辅助线做法】
图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

【常见辅助线的作法有以下几种】
1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

一、倍长中线(线段)造全等 (一)例题讲解
例1、(“希望杯”试题)已知,如图ABC ∆中,5=AB ,3=AC ,求中线AD 的取值范围。

例2、如图,ABC ∆中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与
EF 的大小。

F
E
C
A
B
D
N
A
D
N
E
A
D
例3、如图,ABC ∆中,AC DC BD ==,E 是DC 的中点,求证:AD 平分BAE ∠.
变式题:
(二)实际应用:
1、以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,︒=∠=∠90CAE BAD ,连接DE ,M 、N 分别是BC 、DE 的中点。

探究:AM 与DE 的位置关系及
数量关系。

(1)如图1 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;
(2)将图1中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(︒︒︒900 θ)后,如图2所示,(
1
)问中得到的两个结论是否发生改变?并说明理由。

E
C
A
B
D
二、截长补短 (一)例题讲解
例1、如图,ABC ∆中,AC AB 2=,AD 平分BAC ∠,且BD AD =,求证:AC CD ⊥
例2、如图,BD AC //,EA ,EB 分别平分CAB ∠,DBA ∠,CD 过点E ,求证:BD AC AB +=
M
C
A
B
D
A C
例3、如图,已知在ABC ∆内,︒=∠60BAC ,︒=∠40C ,P ,Q 分别在BC ,CA 上,并且AP ,
BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BP AB AQ BQ +=+
例4、如图,在四边形ABCD 中,BA BC ,CD AD =,BD 平分ABC ∠.求证:︒=∠+∠180C A
4 5 2 3D
Q
P
C
A B
1
例5、如图,在ABC ∆中,AC AB ,CAD BAD ∠=∠,P 为AD 上任意一点。

求证:PC PB AC AB -->
(二)实际应用
如图,在四边形ABCD 中,BC AD //,点E 是AB 上一个动点,若︒=∠60B ,BC AB =,且︒=∠60DEC ,判断AE AD +与BC 的关系并证明你的结论。

D
E A E
F D
C
A
B E
D A
P
C
B
三、平移变换 (一)例题讲解
例1、AD 为ABC ∆的角平分线,直线AD MN ⊥于A .E 为MN 上一点,ABC ∆周长记为A P ,
EBC ∆周长记为B P .求证:A B
P P >.
四、借助角平分线造全等
F
E
A
F
N
M
D E
A
C
B
(一)例题讲解
例1、如图,已知在ABC
∆中,︒
=
∠60
B,ABC
∆的角平分线AD,CE相交于点O.
求证:OD
OE=
例2、如图,ABC
∆中,AD平分BAC
∠,BC
DG⊥且平分BC,AB
DE⊥于E,AC
DF⊥于F. (1)说明CF
BE=的理由;(2)如果a
AB=,b
AC=,求AE、BE的长。

五、旋转(一)例题讲解
G
F
D
E
A
C B
例1、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,EF DF BE =+,求EAF
∠的度数。

例2、D 为等腰ABC Rt ∆斜边AB 的中点,DN DM ⊥,DM ,DN 分别交BC ,CA 于点E ,F 。

(1)当MDN ∠绕点D 转动时,求证:DF DE =; (2)若2=AB ,求四边形DECF 的面积。

例3、 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且︒=∠120BDC ,
以D 为顶点做一个︒60角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN ∆的周长。

G
F
D E A C
B
N
M
F D
E
A
C
B
A
N
M
图 1
A
B C
D
E
F
M
N A
B
C
D
E F
M
N
图 2
F
E
A
N
D
C
B
图 3
(二)实际应用
1、已知四边形ABCD 中,AD AB ⊥,CD BC ⊥,BC AB =,︒=∠120ABC ,︒=∠60MBN ,MBN ∠绕B 点旋转,它的两边分别交AD 、DC (或它们的延长线)于E 、F .
(1)当MBN ∠绕B 点旋转到CF AE =时(如图1),易证EF CF AE =+.
(2)当MBN ∠绕B 点旋转到CF AE ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明。

2、已知: 2=PA ,4=PB ,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧。

(1)如图,当︒=∠45APB 时,求AB 及PD 的长;
(2)当APB ∠变化,且其它条件不变时,求PD 的最大值,及相应APB ∠的大小。

3.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称,;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.。

相关文档
最新文档