数列7

合集下载

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

高考数学专题复习 第7单元 数列课件 新人教A版

高考数学专题复习 第7单元 数列课件 新人教A版

第七单元 │ 使用建议
(2)突出数学思想方法在解题中的指导作用.数列问题 中蕴含着极为丰富的数学思想方法,如由前 n 项和求数列 通项、等比数列求和的分类整合思想,数列问题可以通过 函数方法求解的函数思想,等差数列和等比数列问题中求 解基本量的方程思想,把一般的数列转化为等差数列或者 等比数列的等价转化思想等,要引导学生通过具体题目的 解答体会数列问题中的数学思想方法,并逐步会用数学思 想指导解题.
第31讲 │ 要点探究
[点评] 在数列中根据数列前 n 项和的定义得到的关系式 an=SS1n,-nS=n-11,,n≥2 占有重要位置,很多数列试题就是以此为 出发点设计的.在使用这个关系式时,一定要注意分 n=1,n≥2 两种情况,在求出结果后,看看这两种情况能否整合在一起.在 根据数列的通项 an 与前 n 项和的关系求解数列的通项公式时, 要考虑两个方面,一个是根据 Sn+1-Sn=an+1 把数列中的和转 化为数列的通项之间的关系;一个是根据 an+1=Sn+1-Sn 把数 列中的通项转化为和的关系,先求 Sn 再求 an.如下面的变式.
第七单元 │ 使用建议
(3)强化数列求和:数列求和在高考的数列的解答题中占 有突出位置,除了等差数列、等比数列的求和外,还会涉及 裂项求和、错位相减求和等求和方法,在本单元的编写中专 门设置一讲强化数列求和.
(4)适度考虑数列和函数、不等式等知识的综合和数列的 实际应用:考虑到高考对数列的考查具有交汇性的特点,编 写中适度加入了数列和函数、数列和不等式的交汇等题目; 等差数列和等比数列的实际应用是考试大纲明确要求的,在 第 35 讲设置了探究点数列的实际应用.
第七单元 │ 命题趋势
第三个方向是以简单的数列递推式给出数列,通过转化把 数列转化为等差数列或者等比数列,求出这个数列的通项,然 后再涉及数列求和、不等式等综合问题;第四个方向是数列以 实际应用题的方式进行呈现,通过对实际问题的分析列出数列 模型,得出实际问题的答案.从考试大纲要求和近几年课标区 高考的实际情况看,数列解答题以前两个方向为主.

《数列的概念》课件7

《数列的概念》课件7



第三章


第三章


第三章




第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章
数列第三章 Nhomakorabea数

第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章
第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章


第三章

数列训练(7) 数列实际应用

数列训练(7) 数列实际应用

数列训练(7) 数列实际应用数列实际应用4.为了治理“沙尘暴”,西部某地区政府经过多年努力,到2006年底,将当地沙漠绿化了40%,从2007年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数). 解 设该地区总面积为1,2006年底绿化面积为a 1=52,经过n 年后绿洲面积为a n+1,设2006年底沙漠面积为b 1,经过n 年后沙漠面积为b n+1,则a 1+b 1=1,a n +b n =1.依题意a n+1由两部分组成:一部分是原有绿洲a n 减去被侵蚀的部分8%·a n 的剩余面积92%·a n ,另一部分是新绿化的12%·b n ,所以 a n+1=92%·a n +12%(1-a n )=54a n +253, 即a n+1-53=54(a n -53),∴⎭⎬⎫⎩⎨⎧-53n a 是以-51为首项,54为公比的等比数列, 则a n+1=53-51⎪⎭⎫ ⎝⎛54n, ∵a n+1>50%,∴53-51⎪⎭⎫ ⎝⎛54n >21, ∴⎪⎭⎫ ⎝⎛54n﹤21,n >log 5421=2lg 312lg -=3.则当n ≥4时,不等式⎪⎭⎫ ⎝⎛54n﹤21恒成立.所以至少需要4年才能使绿化面积超过50%.例3 假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47, 1.086≈1.59)解 (1)设中低价房的面积形成的数列为{a n }, 由题意可知{a n }是等差数列, 其中a 1=250,d=50,则a n =250+(n-1)·50=50n+200 S n =250n+2)1(-n n ×50=25n 2+225n, 令25n 2+225n ≥4 750,即n 2+9n-190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q=1.08,则b n =400·(1.08)n-1.由题意可知a n >0.85b n ,即50n+200>400·(1.08)n-1·0.85. 当n=5时,a 5﹤0.85b 5, 当n=6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.例4. 美国某公司给员工加工资有两个方案:一是每年年末加1000美元;二是每半年结束时加300美元.问:⑴ 从第几年开始,第二种方案比第一种方案总共加的工资多?⑵ 如果在该公司干10年,问选择第二种方案比选择第一种方案多加工资多少美元? ⑶ 如果第二种方案中每半年加300美元改为每半年加a 美元. 问a 取何值时,总是选择第二种方案比第一种方案多加工资?解:⑴ 设工作年数为n (n ∈N *),第一种方案总共加的工资为S 1,第二种方案总共加的工资为S 2.则:S 1=1000×1+1000×2+1000×3+…+1000n =500(n +1)nS 2=300×1+300×2+300×3+…+300×2n =300(2n +1)n由S 2>S 1,即:300(2n +1)n>500(n +1)n 解得:n>2∴ 从第3年开始,第二种方案比第一种方案总共加的工资多. ⑵ 当n =10时,由⑴得:S 1=500×10×11=55000 S 2=300×10×21=63000 ∴ S 2-S 1=8000∴ 在该公司干10年,选第二种方案比选第一种方案多加工资8000美元. ⑶ 若第二种方案中的300美元改成a 美元. 则12S =an(2n +1) n ∈N *∴ a >12)1(500++n n =250+12250+n ≥250+3250=31000变式训练4.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 解:(1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列, 其中a 1=250,d=50,则S n =250n+502)1(⨯-n n =25n 2+225n, 令25n 2+225n ≥4750,即n 2+9n-190≥0,而n 是正整数, ∴n ≥10.到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q=1.08,则b n =400·(1.08)n-1·0.85.由题意可知a n >0.85 b n ,有250+(n-1)·50>400·(1.08)n-1·0.85. 由计箅器解得满足上述不等式的最小正整数n=6.到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.3.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a 1,以后每年交纳的数目均比上一年增加d(d >0),因此,历年所交纳的储备金数目a 1,a 2,…是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r)n-1,第二年所交纳的储备金就变为a 2(1+r)n-2,…….以T n 表示到第n 年末所累计的储备金总额. (1)写出T n 与T n-1(n ≥2)的递推关系式;(2)求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列. (1)解 我们有T n =T n-1(1+r)+a n (n ≥2).(2)证明 T 1=a 1,对n ≥2反复使用上述关系式,得 T n =T n-1(1+r)+a n=T n-2(1+r)2+a n-1(1+r)+a n =…=a 1(1+r)n-1+a 2(1+r)n-2+…+a n-1(1+r)+a n . ①在①式两端同乘1+r ,得(1+r)T n =a 1(1+r)n +a 2(1+r )n-1+…+a n-1(1+r)2+a n (1+r). ②②-①,得rT n =a 1(1+r)n +d [(1+r)n-1+(1+r)n-2+…+(1+r)]-a n =rd [(1+r)n -1-r ]+a 1(1+r)n-a n , 即T n =21r d r a +(1+r)n-r dn-21rd r a +. 如果记 A n =21r d r a +(1+r)n,B n =-21r d r a +-rdn, 则 T n =A n +B n ,其中{A n }是以21r d r a +(1+r)为首项,以1+r (r >0)为公比的等比数列;{B n }是以-21r d r a +-rd为首项,-rd为公差的等差 数列.(2010·江门调研)⒛(本小题满分14分)某地在保民生促增长中拟投资某项目,据测算,第一个投资季度投入1000万元,将带动GDP 增长400万元。

7数列通项和求和

7数列通项和求和

数列通项公式和求和(7)命题人:贾海霞一、选择题1.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( )A .16B .24C .36D .482.已知等差数列{}n a中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30B .45C .90D .1863 .在等差数列|,|,0,0,}{910109a a a a a n >><且中则在前n 项和S n 中最大的负数为 ( )A .S 16B .S 17C .S 18D .S 19 4.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 (A)122n +- (B) 3n (C) 2n (D)31n-5.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a = A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++6.已知等差数列{}n a 的前n 项和为n S ,若m>1,且38,012211==-+-+-m m m m S a a a ,则m 等于 ( )A .38B .20C .10D .97.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n nT S n n ,则55b a ( )A .32B .97C .3120D .1498.若正项等差数列{an}和正项等比数列{bn},且a1=b1,a2=b2,公差d >0,则an 与bn (n ≥3)的大小关系是 ( ) A .an >bn B .an ≥bn C .an <bn D .an ≤bn二、填空题9.设{a n }是首项是1的正项数列, 且2211(1)0n n n n n a na a a +++-+= (n =1.2,3) 则它的通项公式n a = ______________.10.已知等比数列}{n a 及等差数列}{n b ,其中01=b ,公差d ≠0.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为_________________.11.数列 ,43211,3211,211++++++的前n 项之和为 .三、解答题12.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.13.设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .14.已知函数f(x)=a1x+a2x2+…+anx n(n∈N*),且a1,a2,a3,…,an构成数列{an},又f(1)=n2.(1)求数列{an}的通项公式;(2)求证:1)31(f.数列通项与求和答案1.D2.C3.B4.B5.A6.C7.D8.C9.n 1, 10.978, 11.2+n n 12. (Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n = (Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnx x x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n综上可得当1=x 时,)1(+=n n S n ;当1≠x 时,.12)1()1(212xnx x x x S n nn ----=+13. 解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,.又37S =,可知2227q q++=, 即22520q q -+=, 解得12122q q ==,. 由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +== ,,,, 由(1)得3312n n a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 14.(1)由题意:f(1)=a 1+a 2+…+a n =n 2,(n ∈N *)n =1时,a 1=1n ≥2时,a n =(a 1+a 2+…+a n )-(a 1+a 2+…+a n -1)=n 2-(n -1)2=2n -1 ∴对n ∈N *总有a n =2n -1,即数列{a n }的通项公式为a n =2n -1.(2)n n f 31)12(313311)31(2-+++⋅= =)31(31f 1231)12(31)32(311+-+-++⋅n n n n 1311)31(,3223231)12(311311923131)12()313131(2311)31(32111132<+-=∴+-=----⋅+=--+++⋅=∴++-+n n n n n n n f n n n f.。

数列求和的七种方法是什么

数列求和的七种方法是什么

数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

2、倒序相加法。

倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

3、分组求和法。

分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

4、错位相减法。

错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

5、裂项相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

6、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

7、公式法。

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

8、迭加法。

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

等差数列首尾项求和公式

等差数列首尾项求和公式

等差数列首尾项求和公式等差数列,这可是数学世界里一个挺有趣的家伙!咱们今天就来好好聊聊等差数列首尾项求和公式。

先来说说啥是等差数列。

比如说,1,3,5,7,9 这样的一组数,每相邻两个数的差值都一样,这就是等差数列啦。

那这个等差数列首尾项求和公式到底是啥呢?它就是“和 = (首项 + 末项)×项数÷ 2”。

就拿个简单的例子来说吧,有个等差数列 2,4,6,8,10。

首项是2,末项是 10,项数是 5。

那按照公式来算,和就是(2 + 10)× 5 ÷ 2 = 30 。

是不是挺简单?我记得之前有一次给学生们讲这个公式的时候,有个小家伙一脸迷茫地看着我,嘴里嘟囔着:“老师,这咋这么复杂呀?”我笑着跟他说:“别着急,咱们慢慢来。

” 我就带着他一步一步地分析,从最基础的等差数列概念,到这个求和公式的推导。

最后这小家伙恍然大悟,眼睛里闪着光,兴奋地说:“老师,我懂啦!” 那一刻,我心里别提多有成就感了。

再比如说,有这么一道题:一个等差数列,首项是 5,公差是 2,一共有 8 项,求它的和。

咱们先用通项公式算出末项,末项 = 首项 + (项数 - 1)×公差,也就是 5 + (8 - 1)× 2 = 19 。

然后再用求和公式,和 = (5 + 19)× 8 ÷ 2 = 88 。

其实啊,这个求和公式在生活中也能派上用场呢。

比如说,你要在书架上摆一排书,从第一本的1 厘米厚,每本依次增加1 厘米的厚度,一直到第 10 本,那这 10 本书的总厚度就可以用这个公式来算。

在学习等差数列首尾项求和公式的过程中,大家可别被它一开始的样子吓到。

多做几道题,多琢磨琢磨,你就会发现它其实就像一个乖巧的小宠物,只要你摸清了它的脾气,就能轻松驾驭。

而且,这个公式还能和其他数学知识结合起来,变得更有趣、更有挑战性。

比如和图形结合,计算一些有规律排列的图形的数量;和实际问题结合,计算一些物品的总价或者总量。

7 等比数列的前n项和公式及应用

7 等比数列的前n项和公式及应用

7 等比数列的前n项和公式及应用7-等比数列的前n项和公式及应用等比级数的前n项、公式及其应用讲义我今天说课的内容(或题目)是等比数列的前n项和公式及应用。

我将从教材分析、学情分析、教学方法、教学过程、教学反思五个方面来陈述我对本节课的设计方案。

一、教科书分析1。

教科书的地位与作用本章在学习集合、函数知识基础上研究数列,知识结构是:数列的基本概念――特殊数列―实际应用。

首先在理解了数列的基本概念及通项公式后,进一步认识两个特殊数列:等差、等比数列,通过对两个特殊数列的研究使学生对数列的认识得到深化,进而解决一些实际应用问题。

同时,教材注重了通过实例分析引入新知识,这符合从感性认识到理性认识的认知规律,因此说,教材的这种设计符合学生的认知结构。

本课程的内容是在掌握等比数列的概念和通项公式的基础上,进一步研究等比数列的前n项、公式和应用,从而进一步了解等比数列的定义及其在现实生活中的应用。

2.教学目标知识目标:通过学习,了解等比数列前n项和公式的推导过程和思路,掌握等比数列前n项和公式及其应用,能够计算等比数列前n项和公式;能力目标:灵活运用公式解决问题,通过解决实际问题提高学生应用数学知识解决实际问题的意识与能力;情感目标:在数学活动中获得成功的体验,建立自信,初步了解数学与人类生活的密切关系,体验充满探索和创造的数学活动,感受数学的严谨性,培养学生的数学思维。

激发学生学习和学习的积极性。

3.教学重难点:要点:1.等比序列的前n项和公式;2.等比级数前n项和公式的应用;难点:应用等比数列的前n项和公式解决实际问题二、学情分析职业学校中专生的特点:① 数学基础薄弱,对数学学习不感兴趣,学习自信心差;② 主动学习能力弱,学习习惯差;③ 一定的实践能力;④ 有一定的现实生活探索意识。

因此数学教育中培养人才所需的共性的东西,既不是数学知识,也不是解题能力,最重要的是数学的精神,思想和方法,而数学知识是第二位的。

数列常见数列公式(很全)

数列常见数列公式(很全)

”表示) 1-n a a mn a a -1)项和有最大值可由项和有最小值可由的值 +abq 1q 1333[ ))(()nnan n a 432nn n p3+++n n a a b b qq a q p q a n n n n 111++n )112)n)(33)1)3) 12-n 得:1-n)n2n11n n33)())))344344)n n n n 1-11-n n nn n n 1)n n )(1+n n n=11)31()31()31()31(232++-+-++-+---Λn n =1311)31(11++---n=11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n 说明:若本题中取1,31=-=h k ,则有n n n n a a a a 3131112+=++++即得即得}31{1n n a a ++为常数列,n n a a 311++ 131-+=n n a a 1231a a +==Λ 37312=+=故可转化为例13。

例18.已知数列{}n a 满足11=a ,22=a,n n n a a a 313212+=++求n a . 解:设)(112n n n n sa a t sa a -=-+++⇒n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 则条件可以化为)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a .问题转化为利用累加法求数列的通项的问题,解得1)31(4347---=n n a .点评:递推式为nn n qa pa a +=++12(p 、q 为常数)时,可以设)(112nn n n sa a t sa a -=-+++,其待定常数s 、t由p t s =+,q st -=求出,从而化归为上述已知题型.求出,从而化归为上述已知题型.五、特征根法1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

7、斐波那契数列

7、斐波那契数列
un 到该连分数的第n 次近似值,记作 vn
26
对照
x 1 1
1 1 1 1 1 1
可算得
u1 1 u2 1 1 u3 1 2 u4 1 3 , , , 1 v1 1 v2 1 1 2 v3 1 1 3 v4 1 5 1 1 1 1 1 1 1 1 1
14
解答
可以将结果以列表形式给出:
1月 1 7月 13
2月 1 8月 21
3月 2 9月 34
4月 3
5月 5
6月 8
10月 11月 12月 55 89 144
因此,斐波那契问题的答案是 144对。 以上数列, 即“斐波那契数列”
15
规律
兔子问题的另外一种提法: 第一个月是一对大兔子,类似繁殖;到第十二 个月时,共有多少对兔子?
月 份 Ⅰ Ⅱ Ⅲ Ⅳ ⅤⅥ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ 大兔对数 1 1 2 3 5 8 13 21 34 55 89 144 小兔对数 0 1 1 2 3 5 8 13 21 34 55 89
到十二月时有大兔子144对,小兔子89对, 共有兔子144+89=233对。
16
2. 斐波那契数列
1) 公式 用 Fn 表示第 n 个月大兔子的对数,则有二 阶递推公式
10
解答
1 2 3 4 月 月 月 月 1 1 2 3 对 对 对 对
11
解答
1 2 3 4 5 月 月 月 月 月 1 1 2 3 5 对 对 对 对 对
12
解答
1 2 3 4 5 6 月 月 月 月 月 月 1 1 2 3 5 8 对 对 对 对 对 对
13
解答
1 2 3 4 5 6 7 月 1 月 1 月 2 月 3 月 5 月 8 月 13 对 对 对 对 对 对 对

数列求和7种方法(方法全_例子多)

数列求和7种方法(方法全_例子多)

数列求与得基本方法与技巧(配以相应得练习)一、总论:数列求与7种方法: 利用等差、等比数列求与公式错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法,三、逆序相加法、错位相减法就是数列求与得二个基本方法。

一、利用常用求与公式求与利用下列常用求与公式求与就是数列求与得最基本最重要得方法、 1、 等差数列求与公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求与公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知21=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32得前n 项与、 解:由等比数列求与公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 得最大值、解:由等差数列求与公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当nn 8=,即n =8时,501)(max =n f二、错位相减法求与这种方法就是在推导等比数列得前n 项与公式时所用得方法,这种方法主要用于求数列{a n · b n }得前n 项与,其中{ a n }、{ b n }分别就是等差数列与等比数列、[例3] 求与:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }得通项就是等差数列{2n -1}得通项与等比数列{1-n x}得通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………、 ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列得求与公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项得与、 解:由题可知,{n n 22}得通项就是等差数列{2n}得通项与等比数列{n 21}得通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }得前n 项与S n 、答案:练习题 得前n 项与为____答案:三、逆序相加法求与这就是推导等差数列得前n 项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +、[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=…………………………、、 ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………、、……、、 ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=题1 已知函数(1)证明:;(2)求得值、解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知,两式相加得:所以、四、分组法求与有一类数列,既不就是等差数列,也不就是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见得数列,然后分别求与,再将其合并即可、 [例7] 求数列得前n 项与:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求与)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}得前n 项与、解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求与) =2)2()1(2++n n n五、裂项法求与这就是分解与组合思想在数列求与中得具体应用、 裂项法得实质就是将数列中得每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求与得目得、 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a == [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 得前n 项与、解:设n n n n a n -+=++=111 (裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求与)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }得前n 项得与、 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }得前n 项与)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求与) =)111(8+-n = 18+n n (2009年广东文)20、(本小题满分14分)已知点(1,31)就是函数,0()(>=a a x f x且1≠a )得图象上一点,等比数列}{n a 得前n 项与为c n f -)(,数列}{n b )0(>n b 得首项为c,且前n 项与n S 满足n S -1-n S =n S +1+n S (n ≥2)、(1)求数列}{n a 与}{n b 得通项公式;(2)若数列{}11+n n b b 前n 项与为n T ,问n T >20091000得最小正整数n 就是多少? 0、【解析】(1)()113f a ==,()13xf x ⎛⎫∴= ⎪⎝⎭()1113a f c c =-=- ,()()221a f c f c =---⎡⎤⎡⎤⎣⎦⎣⎦29=-, ()()323227a f c f c =---=-⎡⎤⎡⎤⎣⎦⎣⎦ 、 又数列{}n a 成等比数列,22134218123327a a c a ===-=-- ,所以 1c =;又公比2113a q a ==,所以12112333n nn a -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭*n N ∈ ;()()1111n n n n n n n n S S S S S S S S -----=-+=+ ()2n ≥又0n b >,0n S >, 11n n S S -∴-=; 数列{}nS 构成一个首相为1公差为1得等差数列,()111n S n n =+-⨯= , 2n S n =当2n ≥, ()221121n n n b S S n n n -=-=--=- ;21n b n ∴=-(*n N ∈);(2)12233411111n n n T b b b b b b b b +=++++()1111133557(21)21n n =++++⨯⨯⨯-⨯+1111111111112323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭ 11122121n n n ⎛⎫=-= ⎪++⎝⎭; 由1000212009n n T n =>+得10009n >,满足10002009n T >得最小正整数为112、练习题1、、练习题2。

数列极限的7个等价性质

数列极限的7个等价性质

0
距离小
x ,x ) . 开区间 ( 0 0
聚点
设集合 A , a . 若对于任意正数
, a 的 邻域中都含有 A 中无穷多个点, 则称 a 是A 的一个聚点.
( x ,x ) , A 中每个点都是A 的 例如, A 0 0
聚点,
x , x 0 0
记a是 A的
记作 x n . 一个聚点. 任取 x n 的一项, 1 1 令 in ( ,| ax |) . 在 a 的 邻域中取 2 m n 1 2 2 x n 中标号大于n1的一项, 记作 x n .
2
1 3 邻域中取 令 in ( ,| ax |) . 在 a 的 3 m n 2 3 x n 中标号大于 n2 的一项, 记作 x n 3 .
b 存在收敛子列 {ank }, { nk }.

lim ank c, 则 lim bn c, 且 k k k
k
c b . 有 a 因为 n n k k
c [a, b],
所以
. 使得 c
因为

是开集,
i m ( b a ) 0 , 且 l n n k k
|k 1 , 2 , , n , 覆盖, [ 1, 1] 被闭区间系 k
但不能被其任意一个有限子系覆盖.
1. 非空实数集若有上(下)界则必有上(下)确界. 2. 单调有界数列必收敛.
3. 区间套定理. 4.有界数列必有收敛子列. 5. 数列收敛当且仅当它是Cauchy列. 6. 有限覆盖定理.
开区间都不能覆盖 [ a , b ] , 至少有一个不能被 记作 [ a 1 , b 1 ] . 不能被

数字推理

数字推理

数字推理2011年国考没有数字推理,可能安徽也会跟着中央走,更何况安徽的数字推理是有名的弱智,完全可以随便看看。

所以我这部分也就没整理太多。

数字敏感记熟常用的幂次数3,多次方因数分解法有的数列,必须要把每项拆成2个数字的积,这2个数字分别构成数列。

这种数列,还是有迹可循的。

注意看所给的数字是不是很明显地某个数的倍数。

这是华图弄得数推思维过程,新手可以看看,一般的题基本这么就可以了。

难题其实顶多也就1个,为这1分花大工夫我觉得挺不值的~~真要全对,那就多接触接触各种题目,开阔思路。

一,等差数列及其变式这个是最基本的了,一般数字变化不大的都是此类。

不过现在为了增加难度,一般都是二级,三级,而且最后一级可能不只是等差数列二,等比数列及其变式观察数列各项间有大致的倍数关系,则易解,顶多是多了个修正数列三,平方,立方数列及其变式1,这个要求对基本的平方,立方非常熟悉,然后要有一定的数字敏感性——比如说26,就得想到26=25+1=27-1等等。

2,这种数列一般跳跃较大,而且前后没什么明显关系。

这可能是解题突破口。

3,可以在数列的中后部找到一数字,因为此时未修正数很大,修正数列已经无法掩盖其原貌。

4,一般不会直接考,会加个修正数列(注意修正数列特别大的情况,比如09年国考)或者是前面2项之差的平方等于第三项这类的规律5,有可能会与项数相联系,形成有通项公式的数列。

如:-2,-8,0,64,(250)为n*n*n*(n-5)四,做和数列(同理有可能是积数列,就不单列了)1,这种数列需要两项(甚至三项)做和,得到的和构成一个新数列2,如果数字彼此差距不大,而且不是等差,有的会“高低起伏”,那么可以尝试做和3,这种数列的难点就在于如何想到这是做和数列4,这种数列有的数字都很小,而且参差不齐,这或许可以作为突破口5,有的含有负数,不大6,在最开始的做差如果发现差跳来跳去,那么可以从这方面考虑五,递推和数列及其变式1,前2项和等于第三项,这是最普通的,可能会加个修正数列,如+1,-1。

第1章 数列(单元复习课件)高二数学(湘教版2019选择性必修第一册)

第1章 数列(单元复习课件)高二数学(湘教版2019选择性必修第一册)

(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和, 求Tn.
由(1)可得an=4n-1,an+1=4n, 所以bn=log4an+1=n,cn=4n-1+n, 那么Tn=c1+c2+…+cn =(40+1)+(41+2)+…+(4n-1+n) =(40+41+…+4n-1)+(1+2+…+n) =4n-3 1+nn2+1.
⑧(-1)nlog3[n(n+1)]=(-1)n[log3n+log3(n+1)];
⑨(-1)n2n-14n2n+1=(-1)n2n1-1+2n1+1.
【例7】已知数列{an}的前n项和为Sn,满足S2=2,S4=16,{an+1}是等比数列.
(1)求数列{an}的通项公式;
设等比数列{an+1}的公比为q,其前n项和为Tn,
A.4
B.5
C.6
D.7
设等差数列的公差为d,则a=1+d,b=19-d,从而a+b=20,
由题意知,d>0,故a>0,b>0, 所以(a+b)1a+1b6=1+16+ba+1b6a≥17+2 ba·1b6a=25, 即1a+1b6≥2250=54,当且仅当ba=1b6a, 即b=4a时取“=”,又a=1+d,b=19-d,解得d=3,所以19=1
题型突破
题型一:等差数列的有关计算
等差数列的计算技巧 (1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,公差为 d,利用已知条件建立方程(组)求出a1和d,即可解决等差数列的有关问题.另外 亦可用等差中项及性质找到项与项之间的关系进行解题,此种解法计算量较小. (2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.若有5项、7 项、…时,可同理设出. (3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公差为2d.若 有6项、8项、…时,可同理设出.

数列的概念及表示方法

数列的概念及表示方法

数列的概念与简单表示法一:数列的概念(1)定义:按照一定顺序排列的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.a 1称为数列{a n }的第1项(或称为首项),a 2称为第2项,…,a n 称为第n 项.(3)数列的表示:数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为{a n }. [点睛] (1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,…. 二:数列的分类【例1】下列数列中,既是无穷数列又是递增数列的是( )A .1,13,132,133,…B .sin π13,sin 2π13,sin 3π13,sin 4π13,…C .-1,-12,-13,-14,… D .1,2,3,4,…,30[解析] 数列1,13,132,133,…是无穷数列,但它不是递增数列,而是递减数列;数列sin π13,sin2π13,sin 3π13,sin 4π13,…是无穷数列,但它既不是递增数列,又不是递减数列;数列-1,-12,-13,-14,…是无穷数列,也是递增数列;数列1,2,3,4,…,30是递增数列,但不是无穷数列. [答案] C跟踪训练 给出以下数列:①1,-1,1,-1,…; ②2,4,6,8,…,1 000;③8,8,8,8,…; ④0.8,0.82,0.83,0.84,…,0.810.其中,有穷数列为________;无穷数列为________;递增数列为________;递减数列为________;摆动数列为________;常数列为________.(填序号)解析:有穷数列为②④;无穷数列为①③;递增数列为②;递减数列为④;摆动数列为①;常数列为③.答案:②④ ①③ ② ④ ① ③ 三:数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[点睛] (1)数列的通项公式实际上是一个以正整数集N *或它的有限子集{1,2,3,…,n }为定义域的函数解析式.(2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 【例2】 (1)数列35,12,511,37,…的一个通项公式是________.(2)根据以下数列的前4项写出数列的一个通项公式. ①12×4,13×5,14×6,15×7,…; ②-3,7,-15,31,…; ③2,6,2,6,….[解析] (1)数列可写为:35,48,511,614,…,分子满足:3=1+2,4=2+2,5=3+2,6=4+2,…,分母满足:5=3×1+2,8=3×2+2,11=3×3+2,14=3×4+2,…, 故通项公式为a n =n +23n +2.[答案] a n =n +23n +2(2)解:①均是分式且分子均为1,分母均是两因数的积,第一个因数是项数加上1,第二个因数比第一个因数大2, ∴a n =1(n +1)(n +3).②正负相间,且负号在奇数项,故可用(-1)n 来表示符号,各项的绝对值恰是2的整数次幂减1,∴a n =(-1)n (2n +1-1).③为摆动数列,一般求两数的平均数2+62=4,而2=4-2,6=4+2,中间符号用(-1)n 来表示.a n =4+(-1)n·2或a n =⎩⎪⎨⎪⎧2,n 是奇数,6,n 是偶数.跟踪训练 写出下列数列的一个通项公式: (1)0,3,8,15,24,…; (2)1,-3,5,-7,9,…; (3)112,223,334,445,…;(4)1,11,111,1 111,….解:(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…,所以它的一个通项公式是a n =n 2-1.(2)数列各项的绝对值为1,3,5,7,9,…,是连续的正奇数,并且数列的奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(2n -1).(3)此数列的整数部分1,2,3,4,…恰好是序号n ,分数部分与序号n 的关系为n n +1,故所求的数列的一个通项公式为a n =n +nn +1=n 2+2n n +1.(4)原数列的各项可变为19×9,19×99,19×999,19×9 999,…,易知数列9,99,999,9 999,…的一个通项公式为a n =10n -1.所以原数列的一个通项公式为a n =19(10n -1).【例3】已知数列{a n }的每一项是它的序号的算术平方根加上序号的2倍. (1)求这个数列的第4项与第25项;(2)253和153是不是这个数列中的项?如果是,是第几项? [解] (1)由题设条件,知a n =n +2n . ∴a 4=4+2×4=10,a 25=25+2×25=55.(2)假设253是这个数列中的项,则253=n +2n ,解得n =121.∴253是这个数列的第121项.假设153是这个数列中的项,则153=n +2n ,解得n =7214,这与n 是正整数矛盾,∴153不是这个数列中的项.跟踪训练 数列1,12,21,13,22,31,14,23,32,41,…,则89是该数列的( )A .第127项B .第128项C .第129项D .第130项 解析:选B 把该数列的第一项1写成11,再将该数列分组,第一组一项:11;第二组两项:12,21;第三组三项:13,22,31;第四组四项:14,23,32,41;…容易发现:每组中每个分数的分子、分母之和均为该组序号加1,且每组的分子从1开始逐一增加,因此89应位于第十六组中第八位.由1+2+…+15+8=128,得89是该数列的第128项.四:数列的递推公式定义:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项 a n 与它的前一项 a n -1(或前几项)(n ≥2)间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式.[点睛] (1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,用符合要求的正整数依次去替换n ,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.【例4】 数列{a n }中,a 1=1,a 2=3,a 2n +1-a n a n +2=(-1)n,求{a n }的前5项.[解] 由a 2n +1-a n a n +2=(-1)n ,得a n +2=a 2n +1-(-1)n a n ,又∵a 1=1,a 2=3,∴a 3=a 22-(-1)1a 1=32+11=10,a 4=a 23-(-1)2a 2=102-13=33,a 5=a 24-(-1)3a 3=332+110=109.∴数列{a n }的前5项为1,3,10,33,109.跟踪训练 已知数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=67,则a 2 018=________.解析:计算得a 2=2a 1-1=57,a 3=2a 2-1=37,a 4=2a 3=67.故数列{a n }是以3为周期的周期数列,又因为2 018=672×3+2,所以a 2 018=a 2=57.答案:57【例5】已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,求数列的通项公式a n .解:∵a n +1-a n =1n (n +1),∴a 2-a 1=11×2;a 3-a 2=12×3;a 4-a 3=13×4;…a n -a n -1=1(n -1)n ;以上各式累加得,a n -a 1=11×2+12×3+…+1(n -1)n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n .∴a n +1=1-1n ,∴a n =-1n (n ≥2). 又∵n =1时,a 1=-1,符合上式,∴a n =-1n.跟踪训练.设数列{a n }中,a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),求数列的通项公式a n .解:∵a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),∴a n a n -1=n -1n ,a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1 =n -1n ×n -2n -1×n -3n -2×…×23×12×1=1n .又∵n =1时,a 1=1,符合上式,∴a n =1n.【例6】已知数列{a n }的通项公式是a n =()n +1·⎝⎛⎭⎫1011n ,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由. [解] 法一:a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =(9-n )⎝⎛⎭⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ;当n >9时,a n +1-a n <0,即a n +1<a n .则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×91110⎪⎭⎫⎝⎛法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,(n >1)即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,(n >1)解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }最大项,第9项和第10项,且a 9=a 10=10×91110⎪⎭⎫⎝⎛跟踪训练 数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项 D .第7项 解析:选B a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963, 当n =143时,a n 最小,又n ∈N *,故n =5时,a n =3n 2-28n 最小.课后练习1.数列{a n }中,a n =3n -1,则a 2等于( )A .2B .3C .9D .32 解析:选B 因为a n =3n -1,所以a 2=32-1=3. 2.数列0,33,22,155,63,…的一个通项公式是( ) A .a n =n -2nB .a n = n -1n C .a n = n -1n +1D .a n = n -2n +2解析:选C 已知数列可化为:0,13,24,35,46,…,故a n = n -1n +1. 3.已知数列12,23,34,…,nn +1,则0.96是该数列的( )A .第20项B .第22项C .第24项D .第26项 解析:选C 由nn +1=0.96,解得n =24.4.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34 D.58解析:选B 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.5.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.3115 解析:选C 由题意a 1a 2a 3=32,a 1a 2=22, a 1a 2a 3a 4a 5=52,a 1a 2a 3a 4=42,则a 3=3222=94,a 5=5242=2516.故a 3+a 5=6116.6.已知数列{a n }的通项公式a n =nn +1,则a n ·a n +1·a n +2等于( )A.n n +2B.nn +3 C.n +1n +2 D.n +1n +3 解析:选B a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=nn +3.故选B. 7.已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列 解析:选A a n =n -1n +1=1-2n +1,∴当n 越大,2n +1越小,则a n 越大,故该数列是递增数列.8.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,3]B .(-∞,4]C .(-∞,5)D .(-∞,6) 解析:选D 依题意,a n +1-a n =-2(2n +1)+λ<0,即λ<2(2n +1)对任意的n ∈N *恒成立.注意到当n ∈N *时,2(2n +1)的最小值是6,因此λ<6,即λ的取值范围是(-∞,6). 9.已知数列{a n }满足a 1=23,a n +1=n n +1a n ,得a n =________.解析:由条件知a n +1a n =n n +1,分别令n =1,2,3,…,n -1,代入上式得n -1个等式,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n . 答案:23n10.数列{a n }的通项公式为a n =n 2-6n ,则它最小项的值是________. 解析:a n =n 2-6n =(n -3)2-9,∴当n =3时,a n 取得最小值-9. 答案:-911.已知数列{a n }的通项公式a n =nn +1,则a n ·a n +1·a n +2等于________.解析: a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=nn +3. 12.已知数列{a n },a n =b n +m (b <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.解析:∵⎩⎪⎨⎪⎧ 2=b +m ,4=b 2+m ,∴⎩⎪⎨⎪⎧b =-1,m =3.∴a n =(-1)n +3,∴a 3=(-1)3+3=2. 答案:2数列的概念与简单表示法一:数列的概念(1)定义:按照一定顺序排列的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.a 1称为数列{a n }的第1项(或称为首项),a 2称为第2项,…,a n 称为第n 项.(3)数列的表示:数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为{a n }. [点睛] (1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,…. 二:数列的分类【例1】下列数列中,既是无穷数列又是递增数列的是( )A .1,13,132,133,…B .sin π13,sin 2π13,sin 3π13,sin 4π13,…C .-1,-12,-13,-14,… D .1,2,3,4,…,30跟踪训练 给出以下数列:①1,-1,1,-1,…; ②2,4,6,8,…,1 000;③8,8,8,8,…; ④0.8,0.82,0.83,0.84,…,0.810.其中,有穷数列为________;无穷数列为________;递增数列为________;递减数列为________;摆动数列为________;常数列为________.(填序号)三:数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[点睛] (1)数列的通项公式实际上是一个以正整数集N *或它的有限子集{1,2,3,…,n }为定义域的函数解析式.(2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 【例2】(1)数列35,12,511,37,…的一个通项公式是________.(2)根据以下数列的前4项写出数列的一个通项公式. ①12×4,13×5,14×6,15×7,…; ②-3,7,-15,31,…; ③2,6,2,6,….跟踪训练 写出下列数列的一个通项公式: (1)0,3,8,15,24,…; (2)1,-3,5,-7,9,…; (3)112,223,334,445,…;(4)1,11,111,1 111,….【例3】 已知数列{a n }的每一项是它的序号的算术平方根加上序号的2倍. (1)求这个数列的第4项与第25项;(2)253和153是不是这个数列中的项?如果是,是第几项?跟踪训练 数列1,12,21,13,22,31,14,23,32,41,…,则89是该数列的( )A .第127项B .第128项C .第129项D .第130项四:数列的递推公式定义:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项 a n 与它的前一项 a n -1(或前几项)(n ≥2)间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式.[点睛] (1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,用符合要求的正整数依次去替换n ,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.【例4】 数列{a n }中,a 1=1,a 2=3,a 2n +1-a n a n +2=(-1)n,求{a n }的前5项跟踪训练 已知数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=67,则a 2 018=________.【例5】 已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,求数列的通项公式a n .跟踪训练 设数列{a n }中,a 1=1,a n =⎪⎭⎫⎝⎛n 1-1a n -1(n ≥2),求数列的通项公式a n .【例6】已知数列{a n }的通项公式是a n =()n +1·n⎪⎭⎫⎝⎛1110,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.跟踪训练 数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项 D .第7项课后练习1.数列{a n }中,a n =3n -1,则a 2等于( )A .2B .3C .9D .322.数列0,33,22,155,63,…的一个通项公式是( ) A .a n = n -2nB .a n = n -1nC .a n = n -1n +1D .a n = n -2n +2 3.已知数列12,23,34,…,n n +1,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项4.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( ) A .1 B.12 C.34 D.585.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.31156.已知数列{a n }的通项公式a n =n n +1,则a n ·a n +1·a n +2等于( ) A.n n +2 B.n n +3 C.n +1n +2 D.n +1n +37.已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列8.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )9.已知数列{a n }满足a 1=23,a n +1=n n +1a n,得a n =________. 10.数列{a n }的通项公式为a n =n 2-6n ,则它最小项的值是________.11.已知数列{a n }的通项公式a n =n n +1,则a n ·a n +1·a n +2等于________. 12.已知数列{a n },a n =b n +m (b <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.。

数列求和7种方法(方法全,例子多)

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

数列

数列
项数有限的数列叫做有穷数列
项数无限的数列叫做无穷数列
如数列(4)是有穷数列
如数列(1)、(2)、(3)、(5)、(6) 都是无穷数列。
an
数列(4) 10
用图象表
9
示:
8
7
6
5
4
哇!图象也
3
可以是一些
2
点呀!
1
O 12 3456 7 n
an
1
数列(2)
用图象表
1 2

1 4 1 8
O 12345 67n
数,序号从1开始依次增加时,对 应的函数值按次序排出就是数列, 这就是数列的实质。
数列的一般形式可以写成:
a1, a2, a3, an , ,
其中an是数列的第n项,上面的数列又可简记为 an
如数列(1)
n 1,2,3,4,5,··· ···可简记为 n
如数列(2)
1, 1 , 1 , , 1 ,
一数 列
1,2,3,4,5,···n, ···.(1)
1,1 ,1 ,1 ,1 ,···1 ,···. (2)
2 34 5 n
1,1.4,1.41,1.414, ···. (3)
2 1.41421 4,5,6,7,8,9,10. (4)
-1,1,-1,1, ···. (5)
1,1,1,1, ···.
例1 根据下面数列an的
通项公式,写出它的前5项:
(1)
an
n n 1
(2) an 1n n
解:(1)在通项公式中依次取 n =1,2,
3,4,5,得到数列an 的前5项为
1,2, 3,4,5. 23456
(2)在通项公式中依次取n=1,2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提示:由双项关系式:3a +7a =25a , 4a +6a =25a 及3a +4a +5a +6a +7a =450, 得55a =450, 易得2a +8a =25a =180.
9S =(1a +9a )+(2a +8a )+(3a +7a )+(4a +6a )+5a =95a =810.
例7已知a 、b 、c 的倒数成等差数列,那么,a 2(b+c), b 2(c+a), c 2(a+b) 是否成等差数列。

分析:将a 、b 、c 的成等差数列转化为a+c=2b ,再探索a 2(b+c)+b 2(c+a)=c 2(a+b), 即a 2(b+c)+b 2(c+a) - c 2(a+b) = 0 是否成立.
例8已知两个等差数列5,8,11,…和3,7,11…都有100项,问它们有多少公共项. 分析:两个等差数列的相同的项按原来的前后次序组成一个等差数列,且公差为原来两个公差的最小公倍数.(答案:25个公共项)
课堂小结:
课后作业:
1.根据前几项写出数列的通项:
(1)3,5,9,17,33,… (4)0,1,0,1,0,1,…
(2)2,4,6,8,10,… (5)1,3,3,5,5,7,7,9,9,…
(3)3,15,35,63,99,… (6)2,-6,12,-20,30,-42,…
2根据{a n }的首项和递推公式,写出数列的前5项及通项公式:a 1=0, a n+1=a n +2n-1
.
3.已知下列数列的前n 项和S n 求通项公式a n .
(1) S n =2n 2-3n (2) S n =2n
+3
4.已知数列的通项公式a n = kn-3,且a 8=-7,则a 14=__________.。

相关文档
最新文档