冀教版数学七年级上册专训1 线段或角的计数问题.docx

合集下载

冀教版数学七年级上册专训1 线段或角的计数问题

冀教版数学七年级上册专训1 线段或角的计数问题

专训1 线段或角的计数问题名师点金:1.几何计数问题应用广泛,解决方法是“有序数数法”,数数时要做到不重复、不遗漏.2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.线段条数的计数问题1.先阅读文字,再解答问题.(第1题)如图①,在一条直线上取两点,可以得到1条线段,如图②,在一条直线上取三点可得到3条线段,其中以A1为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)如图③,在一条直线上取四个点,以A1为端点的向右的线段有条,以A2为端点的向右的线段有条,以A3为端点的向右的线段有条,共有++=(条);(2)如图④,在一条直线上取五个点,以A1为端点的向右的线段有条,以A2为端点的向右的线段有条,以A3为端点的向右的线段有条,以A4为端点的向右的线段有条,共有+++=(条);(3)如图⑤,在一条直线上取n个点(n≥2),共有条线段;(4)某学校七年级共有6个班进行辩论赛,规定进行单循环赛(每两个班赛一场),那么该校七年级的辩论赛共要进行多少场?平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部分,我们从最简单的情形入手,如图所示.(第2题)列表如下:直线条数最多交点个数把平面最多分成的部分数1 0 22 1 43 3 7………(1)当直线条数为5时,最多有个交点,可写成和的形式为;把平面最多分成部分,可写成和的形式为;(2)当直线条数为10时,最多有个交点,把平面最多分成部分;(3)当直线条数为n时,最多有多少个交点?把平面最多分成多少部分?【导学号:53482038】关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A:(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?(第3题)答案1.解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10(3)n (n -1)2(4)七年级有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级的辩论赛共要进行6×(6-1)2=15(场). 2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56(3)当直线条数为n 时,最多有1+2+3+…+(n -1)=n (n -1)2(个)交点; 把平面最多分成1+1+2+3+…+n =⎣⎢⎡⎦⎥⎤n (n +1)2+1部分. 3.解:(1)如题图①,已知∠BAC ,如果在其内部作一条射线,显然这条射线就会和∠BAC 的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中原来的三条射线再组成三个角,即题图②中共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中原来的四条射线再组成四个角,即题图③中共有1+2+3+4=10(个)角.(4)如果在一个角的内部作n 条射线,则图中共有1+2+3+…+n +(n +1)=(n +1)(n +2)2(个)角.初中数学试卷。

新冀教版七年级数学上册第2章 几何图形的初步认识 专训1 巧用线段中点的有关计算

新冀教版七年级数学上册第2章 几何图形的初步认识 专训1 巧用线段中点的有关计算

专训1 巧用线段中点的有关计算名师点金:利用线段的中点可以得到线段相等或有倍数关系的等式来辅助计算,由相等的线段去判断中点时,点必须在线段上才能成立.线段中点问题类型1 与线段中点有关的计算1.如图所示,延长线段AB 到C ,使BC =2AB ,取AC 的中点D ,已知BD =2,求线段AC 的长.(第1题)类型2 与线段中点有关的说明题2.画线段MN =3 cm ,在线段MN 上取一点Q ,使MQ =NQ ;延长线段MN 到点A ,使AN =12MN ;延长线段NM 到点B ,使BN =3BM. (1)求线段BM 的长;(2)求线段AN 的长;(3)试说明点Q 是哪些线段的中点.线段分点问题类型1与线段分点有关的计算(设参法)3.如图,B,C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6 cm,求线段MC的长.(第3题)类型2线段分点与方程的结合4.A,B两点在数轴上的位置如图所示,O为原点,现A,B两点分别以1个单位长度/秒、4个单位长度/秒的速度同时向左运动.【导学号:53482029】(1)几秒后,原点恰好在两点正中间?(2)几秒后,恰好有OA∶OB=1∶2?(第4题)答案1.解:由已知得AC =AB +BC =AB +2AB =3AB ,因为D 是线段AC 的中点,所以2AD =AC.所以2AD =3AB ,又AD =AB +BD ,所以2AB +2BD =3AB ,所以AB =2DB =4,所以AC =3AB =12.2.解:如图:(第2题)(1)因为BN =3BM ,所以BM =12MN. 因为MN =3 cm ,所以BM =12×3=1.5(cm ). (2)因为AN =12MN ,MN =3 cm ,所以AN =1.5 cm . (3)因为MN =3 cm ,MQ =NQ ,所以MQ =NQ =1.5 cm .所以BQ =BM +MQ =1.5+1.5=3(cm ),AQ =AN +NQ =1.5+1.5=3(cm ).所以BQ =QA.所以Q 是MN 的中点,也是AB 的中点.3.解:设AB =2k cm ,则BC =4k cm ,CD =3k cm ,AD =2k +4k +3k =9k(cm ).因为CD =6 cm ,即3k =6,所以k =2,则AD =18 cm .又因为M 是AD 的中点,所以MD =12AD =12×18=9(cm ).所以MC =MD -CD =9-6=3(cm ). 4.解:(1)设x 秒后,原点恰好在两点正中间.依题意得x +3=12-4x ,解得x =1.8. 答:1.8秒后,原点恰好在两点正中间.(2)设t 秒后,恰好有OA ∶OB =1∶2.①B 与A 相遇前:12-4t =2(t +3),即t =1;②B 与A 相遇后:4t -12=2(t +3),即t =9.答:1秒或9秒后,恰好有OA ∶OB =1∶2.。

翼教版七年级数学上册思想方法专题线段与角计算中的思想方法

翼教版七年级数学上册思想方法专题线段与角计算中的思想方法

翼教版七年级数学上册试题思想方法专题:线段与角计算中的思想方法◆类型一分类讨论思想1.已知∠AOB=90°,OC是它的一条三等分线,则∠AOC等于【方法9】()A.30°或60°B.45°或60°C.30°D.45°2.(岳池县期末)已知线段AB=6cm,在直线AB上画线段BC,使BC=11cm,则线段AC的长为()A.17cmB.5cmC.11cm或5cmD.5cm或17cm3.(安陆期末)已知点A,B,C在同一条直线上,且AC=5cm,BC=3cm,M,N分别是AC,BC的中点.(1)画出符合题意的图形;(2)依据(1)的图形,求线段MN的长.◆类型二整体思想及从特殊到一般的思想4.如图,线段上的点依次增加,请你填写图中相应的线段数:(1)请猜想:当线段AB上有6个、10个点时(含A,B两点),分别会有几条线段?(2)当线段AB上有n(n为正整数且n≥2)个点(含A,B两点)呢?5.★已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC =30°,求∠DOE 的度数;(2)在图①中,若∠AOC =α,直接写出∠DOE 的度数(用含α的式子表示);(3)将图①中的∠DOC 绕顶点O 顺时针旋转至图②的位置,探究∠AOC 和∠DOE 的度数之间的关系,写出你的结论,并说明理由.【方法8】参考答案与解析1.A 2.D3.解:(1)点B 在线段AC 上,如图①所示;图①点B 在线段AC 的延长线上,如图②所示;图②(2)当点B 在线段AC 上时,由AC =5cm ,BC =3cm ,M ,N 分别是AC ,BC 的中点,得MC =12AC =12×5=52(cm),NC =12BC =12×3=32(cm),由线段的和差,得MN =MC -NC=52-32=1(cm); 当点B 在线段AC 的延长线上时,由AC =5cm ,BC =3cm ,M ,N 分别是AC ,BC 的中点,得MC =12AC =12×5=52(cm),NC =12BC =12×3=32(cm),由线段的和差,得MN =MC +NC =52+32=4(cm).综上所述,线段MN 的长为1cm 或4cm. 4.解:6 10 (1)15条,45条; (2)12n (n -1)条. 5.解:(1)因为∠COD 是直角,∠AOC =30°,所以∠BOD =180°-90°-30°=60°,所以∠COB =90°+60°=150°.因为OE 平分∠BOC ,所以∠BOE =12∠BOC =75°,所以∠DOE=∠BOE -∠BOD =75°-60°=15°;(2)∠DOE =12α 解析:因为∠COD 是直角,∠AOC =α,所以∠BOD =180°-∠90°-α=90°-α,所以∠COB =90°+90°-α=180°-α.因为OE 平分∠BOC ,所以∠BOE =12∠BOC=90°-12α,所以∠DOE =∠BOE -∠BOD =90°-12α-(90°-α)=12α;(3)∠AOC =2∠DOE .理由如下:因为∠BOC =180°-∠AOC ,OE 平分∠BOC ,所以∠BOE =12∠BOC =12(180°-∠AOC )=90°-12∠AOC .因为∠COD 是直角,所以∠BOD =90°-∠BOC =90°-(180°-∠AOC )=∠AOC -90°,所以∠DOE =∠BOD +∠BOE =(∠AOC -90°)+⎝⎛⎭⎫90°-12∠AOC =12∠AOC ,即∠AOC =2∠DOE . 习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

冀教版数学七年级上册角以及角的度量

冀教版数学七年级上册角以及角的度量

图形 范围
α
α
α
α
α
0<α<90° α=90 ° 0<α<180 ° α=180° α=360°
思考:“直线是一个平角,射线是一个周角”是否正确?
想一想
• 我们以前学习过时间单位、长度单位、面积单位等, 进率是多少?各度量单位分别是怎么样进行换算的?
• 1小时=___分钟___秒 • 1分钟=( ) 秒
∠O.

角的特征:

1、有公共端点
2、角的边是射线
顶点o

A
角还可以用2-5-2所示的方法表示。记作∠1或∠a。
用阿拉伯数字或希 腊字母表示角时一 定要在角的定点旁
画一个弧线
a 1
生活中的角:
想一想
判断正误,错误的加以改正
(1)有两条射线所组成的图形叫做角
试一试
用适当方法分别表示下图中的每个角
B
B
C
A⑴C
∠BAC 或 ∠A
A ⑵D
∠BAC , ∠CAD ,∠BAD
在不引起混淆的情况下,也可以用角的
顶点来表示这个角.
深入反思
C
这个有几个角? B
D
当有N条线时,
总共几个角?
A
E
你做对了吗?
同学们,一起 来做练习吧!
填表:
在初中阶段,我们研究的角,通 常都是在0 °-180 °之间。
名称 锐角 直角 钝角 平角 周角
2.5角以及角的度量
打开课本P75页,视察与思考,你能找到 图中的角吗?这些角又是怎样形成的?
从一点出发引出两条射线可以 行成角。
一条射线绕端点旋转到另一个位置可 以行成角。

七年级数学线段、角综合复习冀教版知识精讲

七年级数学线段、角综合复习冀教版知识精讲

七年级数学线段、角综合复习冀教版【本讲教育信息】一. 教学内容:1. 认识直线、射线、线段的概念和它们的联系与区别,掌握它们的表示方法;掌握关于直线和线段的基本性质;理解两点之间距离的意义;会比较线段的大小,理解线段的和、差及线段的中点概念,会画一条线段等于已知线段.2. 认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,认识度、分、秒,并会进行简单的换算,会计算角度的和与差;了解角平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质.二. 知识要点:1. 两个基本性质(1)经过两点有一条直线,并且只有一条直线.可简说成:两点确定一条直线.(2)两点之间的所有连线中,线段最短.可简说成:两点之间,线段最短.2. 两点的距离:连结两点间的线段的长度,叫做这两点的距离.注意:距离是一个长度,而不是这条线段本身,要把连结两点的线段与两点的距离区分开来.3.4. 角(1)角的概念①静态定义:由两条有公共端点的射线所组成的图形.②动态定义:看成是由一条射线绕着它的端点旋转而成的图形.(2)角的表示①用三个大写字母表示,如∠AOB,但中间的字母必须是角的顶点O,也可写成∠BOA.②当以某点为顶点的角只有一个时,那么可用该顶点的字母表示,如∠O.③用数字表示,如∠1,但需要在图形中作标注.④用希腊字母表示,如∠α,需要在图形中作标注.(3)角的度量单位是度、分、秒,它们是60进制.1周角=2平角=4直角=360°,1°=60′,1′=60″.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.若方向线与东、南、西、北相同,则依次称为正东、正南、正西、正北;若方向线刚好是相邻两个方向所成角的平分线,只要把这两个方向排在一起就可以了,如图所示.若方向线在其他位置时,则先说北或南,再说偏东或西多少度.西西(5)互余和互补同角或等角的余角相等,同角或等角的补角相等.5. 线段的比较方法和角的比较方法都可以采用:一、叠合法,二、数值法.6.三. 重点难点:重点:一是对直线、射线、线段、角等这些基本概念的理解;二是两个基本性质:“两点确定一条直线”和“两点之间,线段最短”.三是线段和角的度量.难点:一是如何区分一些相近的概念;二是对图形的表示和画图、作图,对几何语言的学习、运用等.四. 考点分析:从近几年中考试题来看,对线段、角的考查命题难度不大,多以填空题、选择题的形式出现,有时也会融合在证明题或是实践操作题中出现,有时也会加入到有理数的计算中,综合来看本章内容在全卷中占3%左右的分值.【典型例题】例1. 选择题:(1)下列语句正确的是( )A .画直线AB =10厘米B .画直线l 的平分线C .画射线OB =3厘米D .延长线段AB 到点C ,使得BC =AB(2)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中正确的有( )A .4个B .3个C .2个D .1个(3)下列说法正确的是( ) A .画出A 、B 两点之间的距离B .连结两点之间的直线长度,叫做这两点之间的距离C .线段的大小关系,与它们的长度关系是一致的D .若AC =BC ,则点C 必是线段AC 的中点分析:(1)直线没有长度,当然也不能把它平分,所以选项A 和B 都是错误的;射线也没有长度,所以选项C 也错.(2)如果∠α与∠β互补,那么∠α+∠β=180°,∠β=180°-∠α,所以∠β的余角是90°-∠β=90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α-12∠β=12(∠α-∠β).共有三个式子正确,故选B .(3)A 错在将两点之间的距离看成是线段本身,距离是指线段的长度而不是线段本身,所以是画不出来的;B 应为连结两点之间线段的长度;D 错在忽略线段中点必须首先在线段上这一条件.解:(1)D (2)B (3)C例2. 如图所示,O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,则∠DOE =__________.ABOCDE分析:由题意知∠AOB 是平角,等于180°,OD 平分∠AOC ,OE 平分∠COB ,所以∠DOC =12∠AOC ,∠COE =12∠COB ,由此得∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12×180°=90°.解:90°评析:本题主要考查角的平分线的理解与应用,解题关键是找出∠DOE =∠DOC +∠COE 这一关系式.例3. 如图所示,已知线段AB =80cm ,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且NB =14cm ,求PA 的长.ABMPN分析:从图形可以看出,线段AP 等于线段AM 与MP 的和,也等于线段AB 与PB 的差,所以,要求线段PA 的长,只要能求出线段AM 与MP 或求出线段PB 即可.解:解法一:因为N 是PB 的中点 所以PB =2NB ,而NB =14cm 所以PB =2×14=28cm又因为M 是AB 的中点,所以AM =MB =12AB所以AM =MB =40cm又因为MP =MB -PB =40-28=12(cm ) 所以AP =AM +MP =40+12=52(cm ) 解法二:因为N 是PB 的中点,所以PB =2NB 所以PB =2×14=28(cm ) 又因为AP =AB -PB ,AB =80cm ∴AP =80-28=52(cm )评析:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要步步有根据.另一方面要培养一题多解的思维能力,注意体会比较简捷的解题方法.求某条线段的长,通常是用转化思想将其转化为已知线段的和或差.例4. 已知∠1和∠2互余,∠2与∠3互补,若∠1=63°,则∠3=__________. 分析:∠2=90°-∠1=27°,∠3=180°-27°=153°. 解:153°评析:一定要理解透互余、互补的概念,并正确地进行角的计算.例5. 已知线段AB =8cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.分析:题中只是说明A 、B 、C 三点在一直线上,无法判断点C 在线段AB 上,因为也可能在线段AB 的延长线上,所以分两种情况来求AM 的长.解:(1)当C 在线段AB 上时,如图(1)所示, 因为AC =AB -BC ,AB =8cm ,BC =4cm , 所以AC =4cm .又因为M 是AC 的中点,所以AM =12AC .所以AM =12×4cm =2cm .ABCM (2)ABC M(1)(2)当C 在线段AB 的延长线上时,如图(2)所示,因为M 是AC 的中点,所以AM =12AC .又因为AC =AB +BC ,且AB =8cm ,BC =4cm ,所以AM =12AC =12(AB +BC )=12(8+4)cm =6cm .所以AM 的长度为2cm 或6cm .评析:(1)本题注意分两种情况.因为题中没有明确点C 的位置,所以要对所有可能的情况进行考虑.(2)在解无图的几何题目的过程中,我们必须具备根据条件作图的能力,要注意图形的完整性和各种可能性.例6. 如图所示,上北下南,左西右东,指出射线OA 、OB 、OC 、OD 的方位.A分析:说一个点所在的方位角时可以先看这个点在起始点的南北方向,再说它的东西方向.解:(1)OA 在北偏东60°;(2)OB 在北偏西27°;(3)OC 在南偏西35°;(4)OD 在东南方向.评析:方位角的表示通常是以南、北方向为起始方向,常说成“北偏东多少度、北偏西多少度、南偏东、南偏西”等,北偏东45°、北偏西45°、南偏东45°、南偏西45°分别称为东北方向、西北方向、东南方向、西南方向.【方法总结】1. 点和线都是最基本的几何图形,常用点来表示物体的位置,射线和直线可以看做是由线段向一方或两方无限延伸得到的;另一方面,射线和线段也可以看做直线的一部分.2. 估测、度量和叠合,都是比较线段长短和角的大小的重要方法,应根据情况和需要来选用.3. 角的运算包括两种情况:一种是对两个(或几个)角的度数进行加、减运算,注意其度量制是以60为进率的;另一种是位置关系,即从位置上将某一个角表示为另外两个角的和或差.两角互余、两角互补是两角之间的特殊数量关系.【模拟试题】(答题时间:60分钟)一. 选择题1. 要把一根木条固定在墙上,至少要钉( )个钉子. A .1B .2C .3D .42. 下列说法中错误的有( ) (1)线段有两个端点,直线有一个端点 (2)角的大小与我们画出的角的两边的长短无关 (3)线段上有无数个点 (4)同角或等角的补角相等 (5)两个锐角的和一定大于直角 A .1个B .2个C .3个D .4个3. 图中共有的角的个数是( ) A .5B .6C .7D .84. 如图所示,O 在直线m 上,∠1与∠2互余,∠α=134°,则∠β的度数是( ) A .134°B .136°C .154°D .156°12mO αβ5. 如图中,下列表示不正确的是( ) A .AB +BC =ACB .∠C =45°C .∠B +∠B =180°D .∠1+∠2=∠ADCABCD 1245°6. 如图所示,M是AB上一点,AM=8cm,BM=2cm,N是AB的中点,则MN的长为()A.1cm B.2cm C.3cm D.4cmA BNM二. 填空题1. 如图所示,射线AD上有三个点B、C、D,则共有__________条射线,图中共有__________条线段.A2. 按照图形填空:∠AOD=__________+__________+__________;∠BOC=__________-∠COD=∠AOC-__________;∠AOB=__________-∠BOC;∠AOC+∠BOD-∠BOC=__________.A BCOD3. 计算:(1)78°32′-51°47°=_______.(2)23°45′+24°20′=_______.*4. 已知线段AB,在BA的延长线上取一点C,使CA=3AB,则CB=_______AB,CA =_______CB.5. 已知∠A与∠B互余,若∠A=70°,则∠B的度数为__________.*6. 时针指示6点45分,它的时针和分针所成的锐角的度数是_______.7. 已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是_______.8. 已知∠A=50°,则∠A的补角是__________度.9. 如果∠1=140°,∠2=89°,∠3=91°6′,则它们的大小关系是__________.(用“<”连接)10. 如图所示,射线OA表示的方向是_______,射线OB表示的方向是_______.三. 解答题1. 如图,直线m 表示一条河,在河两侧有两个村庄A 、B ,要在河边建一个供水站,使供水站到两个村庄的距离之和最小,请找出C 点位置,并说明理由.ABm2. 将下列各题化成度、分、秒的形式: °°°.*3. 已知线段AB 上两点C 、D ,其中AB =acm ,CD =bcm ,E 、F 分别是AC 、DB 的中点.(1)求AC +DB 的长度;(2)E 、F 两点间的距离.*4. 如图,O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线. (1)求∠DOE 的度数;(2)若∠DOE =90°,OD 平分∠AOC ,问OE 是否平分∠BOC ?ABCDEO**5. 如图所示,任意画一个四边形ABCD ,四边形的四边中点分别为E 、F 、G 、H ,连接EF 、FG 、GH 、HE ,并量出它们的长,你发现了什么?量出图中∠1、∠2、∠3、∠4的度数,你又发现了什么?多画几个四边形试试,你能得到什么猜想?试题答案一. 选择题1.B2.B3.D4.B5.C6.C二. 填空题1. 4,62. ∠AOB ,∠BOC ,∠COD ;∠BOD ,∠AOB ;∠AOC ;∠AOD3. 26°45′ 48°5′4. 4 345. 20°°7. 20° 8. 130 9. ∠2<∠3<∠1 10. 北偏东50°,南偏西75°三. 解答题1. 连结AB 交直线m 于点C ,点C 就是所求.根据是两点之间线段最短2. (1)45°36′;(2)78°25′48″;(3)≈35°33′50″3. (1)a -b (2)a +b 24. (1)∠DOE =90° (2)OE 平分∠BOC5. (1)EF =HG ,EH =FG ;(2)∠1+∠2+∠3+∠4=360°,∠1=∠3,∠2=∠4.猜想:顺次连接四边形各边的中点所得到的四边形一定是平行四边形.。

冀教版数学七年级上册专训1巧用运算的特殊规律进行有理数计算.docx

冀教版数学七年级上册专训1巧用运算的特殊规律进行有理数计算.docx

专训1 巧用运算的特殊规律进行有理数计算名师点金:进行有理数的运算时,我们可以根据题目的特征,采用相应的运算技巧,这样不但能化繁为简,而且会妙趣横生,新颖别致.归类——将同类数(如正负数、整数、分数)归类计算1.计算:(-100)+70+(-23)+50+(-6).2.计算:-23-35+5-13-25+4.凑整——将和为整数的数结合计算3.计算:278+⎝⎛⎭⎫-2712+535+⎝⎛⎭⎫-178+225+ ⎝⎛⎭⎫-3512.对消——将相加得零的数结合计算4.计算:350+(-26)+700+26+(-1 050).变序——运用运算律改变运算顺序5.计算:⎝⎛⎭⎫23-56+112-78×(-24).换位——将被除数与除数颠倒位置6.计算:⎝⎛⎭⎫-130÷⎝⎛⎭⎫13+16-25-12.分解——将一个数拆分成两个或几个数之和的形式,或分解为它的因数相乘的形式7.计算:-214+512-413+316.8.计算:12+16+112+120+130+142+156+172.答案1.解:原式=[(-100)+(-23)+(-6)]+(70+50)=-129+120=-9.2.解:原式=⎝⎛⎭⎫-23-13-35-25+(5+4) =-2+9=7.3.解:原式=[278+⎝⎛⎭⎫-178]+[⎝⎛⎭⎫-2712+⎝⎛⎭⎫-3512]+⎝⎛⎭⎫535+225 =1+(-6)+8=3.4.解:原式=[350+700+(-1 050)]+[(-26)+26]=0.5.解:原式=23×(-24)-56×(-24)+112×(-24)-78×(-24) =-16+20-2+21=23.6.解:因为(13+16-25-12)÷(-130) =⎝⎛⎭⎫13+16-25-12×(-30)=-10+(-5)+12+15=12,所以⎝⎛⎭⎫-130÷(13+16-25-12)=112.7.解:原式=(-2+5-4+3)+(-14+12-13+16) =2+⎝⎛⎭⎫-312+612-412+212 =2+112=2112. 8.解:原式=11×2+12×3+13×4+…+18×9=1-12+12-13+13-14+…+18-19=1-19=89.初中数学试卷桑水出品。

冀教版数学七年级上册章节专项训练试题及答案(全册)

冀教版数学七年级上册章节专项训练试题及答案(全册)

冀教版数学七年级上册第一章专训1绝对值的七种常见的应用题型名师点金:绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须明确绝对值的意义和性质.对于数X而言,它的绝对值表示为|x|.送<1已知一个数求这个数的绝对值1.化简:(1)|—(+7)1;⑵一|一8|;,4(3)—+];(4)—|—a|(a<0).i表饕2:已知一个数的绝对值求这个数2.若|a|=2,则a=.3.若|x|=|y|,且x=—3,贝。

y=.4.绝对值不大于3的所有整数为5.右|一x|——(—8),则x=,右|一x|=|—2|,则x=.i遴室,绝对值在求字母的取值范围中的应用6.如果|-2a|=-2a,则a的取值范围是()A.a>0B.aNOC.asSOD.a<07.若|x|=-x,则x的取值范围是.8.若|x-2|=2-x,则x的取值范围是差.壑1绝对值在比较大小中的应用249.把—(―1),一§——5,0用"〉"连接正确的是()42A.0>-(-1)>------->-324B.0>—(—1)>—歹〉一一厅24C.一(―1)>0>—3>——§42D.—(―l)>0>—一§>—^绝对值非负性在求字母值中的应用10.(1)已知|a|=5,|b|=8,且a<b,KO a=,b=;(2)有理数a,b在数轴上的位置如图所示,若|a|=4,|b|=2,求a,b的值.b a>(第10题)11.若a—2+b—3+c—=0,求a+b—c的值.羔夷互绝对值非负性在求最值中的应用12.根据|a|NO这条性质,解答下列问题:(1)当2=时,|a-4|有最小值,此时最小值为:(2)当a取何值时,|a—1|+3有最小值?这个最小值是多少?(3)当a取何值时,4-|a|有最大值?这个最大值是多少?【导学号:11972006】奏方绝对值在实际中的应用13.某工厂生产一批零件,零件质量要求为“零件的长度可以有0.2cm的误差”.现抽查5个零件,超过规定长度的厘米数记为正,不足规定长度的厘米数记为负,检查结果如下表:零件号数①②③④⑤数据+0.13-0.25+0.09-0.11+0.23(1)指出哪些零件是合格产品(即在规定误差范围内);(2)在合格产品中,几号产品的质量最好?为什么?试用绝对值的知识说明.答案1.解:⑴原式=7.(2)原式=-8.-4(3)原式=,.(4)原式=a.2.±23.±34.0,±1,±2,±35.±8;±26.C7.xWO8.xW29.C10.解:(1)±5;8(2)a=4,b=±2.11.解:由题意得a=;,b=?,c=*1117所以a+b—c=a+厂彳=正.12.解:(1)4;0(2)因为|a—1|NO,所以当a=l时,|a—1|+3有最小值.这个最小值是3.(3)因为|a|NO,所以一|a|WO,所以当a=0时,4—|a|有最大值,这个最大值是4.13.解:(1)因为|+0.13|=0.13<0.2,|—0.25|=0.25>0.2,|+0.09|=0.09<0.2,|~0.11| =0.11<0.2,|+0.23|=0.23>0.2,所以①③④号零件是合格产品.(2)在合格产品中,③号产品的质量最好.因为|+0.09|<|—0.11|<|+0.13|.所以质量最好的产品是③号零件.专训2数轴在有理数中五种常见应用名师点金:数轴在有理数这章中有着广泛的应用,引进了数轴后,我们把数和点对应起来,也就是把“数”与“形”结合起来,常常可以使复杂的问题简单化,抽象的问题直观化.用数轴表示有理数1.如图,在数轴上表示数一2的点是()A.PB.QC.MD.NQ P(N M-2-10123,(第]题),手,-2-10123*(第2题)2.如图,数轴上点M表示的数是.3.如图,在没有标出原点的数轴上每相邻两刻度之间的距离为1个单位长度,A,B, C,D四点表示的有理数都是整数,若A,B表示的有理数a,b满足2b+a=4,那么数轴的原点只能是A,B,C,D四点中的哪个点?为什么?-4----1-----1----A——I-----1_A_I_>e*C AD B(第3题):麦室..z用数轴表示相反数4.数轴上的点A到原点的距离为9,则点A表示的数是()A.9B.-9C.9或一9D. 4.5或一4.55.己知有理数a,-3,b在数轴上对应的点的位置如图所示,在数轴上标出a,—3, b的相反数对应的点.-3―a―1—0—b—'—(第5题)谈壑3.用数轴表示绝对值6.如图,数轴的单位长度为1,如果点B表示的数的绝对值是点A表示的数的绝对值的3倍,那么点A表示的数是.A B(第6题)7.已知x是整数,且3W|x|<5,则x:如壑生用数轴比较有理数的大小8.如图,点A,B,C,D在数轴上表示的数分别是a,b,c,d,则这四个数中最大的一个是()A.aB.bC.cD.dC tD A t B-2,-l0?23*(第8题)-2-10*123*(第9题)9.如图,数轴上A,B两点分别表示数a,b,贝加与|b|的大小关系是()A.|a|>|b|B.|a|=|b|C.|a|<|b|D.无法确定10.将下列各数在数轴上表示出来,并用将它们连接起来.一5.5,4,-2, 3.25,0,-1.用数轴说明覆盖整点问题11.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有多少个?【导学号:11972007】答案1.B2.13.解:D点.理由如下:若点C为原点,则A表示1,B表示6,则2b+a=13,不符合题意;若A为原点,则A表示0,B表示5,则2b+a=10,不符合题意;若D为原点,则A表示一2,B表示3,则2b+a=4,符合题意;若B为原点,则A表示一5,B表示0,则2b+a=—5,不符合题意.故D点为原点.4.C5.解:如图所示.-=3_a-b~~0"""b-a~~3^(第5题)6.—1或27.—4或一3或3或4点拨:首先在数轴上找到符合条件的所有有理数的范围,再从其中选出整数.如图,阴影部分就是绝对值小于5,而不小于3的所有有理数的范围,观察可知,其中包含的整数有一4,-3,3, 4..........,-5-4-3-2-1012345(第7题)8.B9A10.解:如图所示.75.5-2-10 3.254-6-5-4-3-2-10123*45*(第]0题)所以一5.5<-2<-1<0<3.25<4,11.分析:线段的长端点为整点端点不为整点1cm盖住2个整点盖住1个整点2cm盖住3个整点盖住2个整点,・・,・・,・・n cm盖住(n+1)个整点盖住n个整点解:⑴当长度为2016cm的线段AB的两端点A与B均为整点时,线段AB盖住的整点有2016+1=2017(个).(2)若A点不是整点,则B点也不是整点,即当长度为2016cm的线段AB的两端点A 与B均不为整点时,线段AB盖住的整点有2016个.综上所述,线段AB盖住的整点有2017个或2016个.专训1巧用运算的特殊规律进行有理数计算名师点金:进行有理数的运算时,我们可以根据题目的特征,采用相应的运算技巧,这样不但能化繁为简,而且会妙趣横生,新颖别致.*5;:归类一将同类数(如正负数、整数、分数)归类计算1.计算:(一100)+70+(—23)+50+(—6).23122.计算:一厂§+5一汶+4.:戒捋Z凑整——将和为整数的数结合计算3•计算:2^+(—2%)+5|+(—《)+2|+"3奇)15*:对消将相加得零的数结合计算4.计算:350+(—26)+700+26+(—1050). 5殳:变序一运用运算律改变运算顺序5.计算:2_5J__7X(-24).5S;换位一将被除数与除数颠倒位置6.计算:1,121)我丢捋丘分解—将一个数拆分成两个或几个数之和的形式,或分解为它的因数相乘的形式7.计算:一2才+5§—4§+3§8.计算:1.1.1,1,1,1,1.1 2+6+12+20+30+42+56+72-答案1.解:原式=[(—100)+(—23)+(—6)]+(70+50)=-129+120=-9.2.解:原式=(一:—:一|'一旦+(5+4)=—2+9=7.3.解:原式=[2§+(—1$]+[(—2习+(—3习]+(5|+2§)=1+(—6)+8=3.4.解:原式=[350+700+(—1050)]+[(—26)+26]=0.一25175.解:原式=^X(—24)—gX(—24)+正X(—24)—§X(—24)=—16+20—2+21=23.6.解:因为(\,121、=lj+s亏一刃X(-30)=—10+(—5)+12+15=12,7.解:原式=(一2+5—4+3)+(—=2+=2+志=212-18・解:^^=1X2+2X3+3X41 8X9,1,11,11,,111_2+2-3+3_4+"-+8_91-989'专训2有理数中六种易错类型'、矣.鬓^对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.—a是负数C.符号不同的两个数互为相反数£).—a的相反数是a2.已知|a|=7,则a W.遴塑.2:误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零£>.正数4.巳知a=8,|a|=|b|,则b的值等于()A.8B.-8GO D.±8[轰壑普:对括号使用不当导致错误5.计算:一7—5.6.计算:2-(-§+?-£)•〔美忽略或不清楚运算顺序947.计算:—81个*X"(—16).(-5) 8.计算:(-5)-(-5)X~~~-X1010i,.鎏5;乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆9.计算:(-2^)x(—10.计算:_36乂仕_¥_1).孩如除法没有分配律11.计算:24』|—孑一3【导学号:"972016】答案1.D2+7 3.C4.D点拨:因为|a|=|b|=8,所以b=±8.5.解:原式=—7+(—5)=—12.111Q6.解:原式=2+厅一孑+万=2药.7.解:原式=一81X言X音X(—*)=l.点拨:本题易出现“原式=—81小(一16)=盖'的错误.8.解:原式=(一5)—(―5)X法X10X(—5)=(-5)-25=一30.9.解:原式=(-3)x(-孕)171~20'点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(―2»X(—3§)=—(:乂号)=—坍.7510.解:原式=—36X正一(一36)Xg—(―36)X1=-21+30+36=45.11.解:原式=24;24令=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24马一24土2^=72-192-144=-264”这样的错误.专训1有理数混合运算的四种解题思路名师点金:对于有理数的混合运算,根据题目特征,理清解题思路,是正确解题的关键,有理数混合运算中常见的解题思路有:弄清运算顺序,再计算;先转化,再计算;确定运算符号,再计算;找准方法,再计算.厩路1弄清运算顺序,再计算1.计算:_^x5 8'53'2.计算:—23—12:(-2+12-3).:最蹬Z 先转化,再计算3.计算:274.计算:—4X (—1参( — 1.4).:惑悠3;确定运算符号,再计算5 .计算:〔2 017—1 —2_r 3-2X (—6).6.计算:一32—(—2—5)2———X(—2)4,透殴¥:找准方法,再计算7.计算:(一§+*一习X(-24).8.计算:1—2—3+4+5—6—7+8+…+97—98—99+100.【导学号:11972020】答案3 5 5 251. 解:原式=一灵X r X r =一元.o J □ Z42. 解:原式=—8 —124-2= —14.1- 7-2- 9-4-7+- 4-9 +- 2-7原 刀牛 角 3.4板4- 7 2-72-9 +- 1-7-_23-63*4. 解:原式=_4X(—*)X(—沪一5.5. 解:原式=—1一gX(—6)=0.6. 解:原式=一9一49—4=—62.7. 解:原式=(一|)X(—24)+%X(—24)+(一£)X(—24)= 18-20+14= 12.8. 解:原式= (1—2—3+4)+(5—6—7+8)----(97—98—99+100) = 0.专训2有理数的比较大小的八种方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.诲1利用作差法比较大小17521.比较抬啧的大小.打/淑鼻利用作商法比较大小17342.比较一2016和—4071的大小•遂痿3利用找中间量法比较大小,007.1009,,,.3.比较床与而的大小.【遂.淑生:利用倒数法比较大小4.比较日,和土岩的大小.佥虻:利用变形法比较大小~y201414201515,.,.5.比较一2015,―任,-2016'—16的大小•,一[[/、64312,A I.6.比较一赤,—育,—yy,一石的大小.遂知:利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,—a,b,—b的大小.【导学号:11972021】[拿淑芬利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a—b|,|a|+|b|的大小关系为遂碌&利用分类讨论法比较大小9.比较a与飘勺大小.答案1.解:因为普一导=普一H=尚>0,所以!1>芫・点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方 法.C 切 E 、J . 1734 17、,4 071 1 357、, 『 1734 17 ,2-解:因为 2 016^4 071-2 016 X 34 -1 344>1,所以 2 016>4 07T 所以 2016<344 071'点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时, 作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值, 再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3. 解:因为芸普<§,滞>§,所以器滞.点拨:对于类似的两数的大小比 较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4. 解:若%的倒数是lOy%, 土号■的倒数是lO^.因为1高>i 总,所以吾1<浩¥点拨:利用创邈迭比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小, 从而确定这两个数的大小.5. 解:每个分数都加1,分别得云东,%,2016' 土,因为击<赤4<%'所以—辿v —辿< _15 _14所以 2 016 2015 16 15-点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.•"中* 6 12 4 12 3 12 12 一 12 一 12 一 12 而 e 6-解:因为—23=-46' —17=一氟,—TT=一苞’一荫〈一话〈一行〈―豆,所以计算量太大,可以把分子变为相同的,再进行比较.一b 在数轴上表示出来,如图所示,根据数轴可得一a<b<-b ~b ~~0 -b ~~a * 第 7 题)点拨:本题运用了爨级性比较有理数的大小,在数轴上找出这几个数对应的点的大致位 置,即可作出判断.8. |a+b|<|a-b| = |a| + |b|3 右 6 12 ±一TT<一有<一节<一讦点拨:此题如果通分,7.解:把 a, —a, b,<a.点拨:已知a,b异号,不妨取a=2,b=—1或a=—1,b=2.当a=2,b=—1时,|a +b|=|2+(—1)|=1,|a—b|=|2—(—1)|=3,|a|+|b|=|2|+|一l|=3;当a=~l,b=2时,|a +b|=|—1+2|=1,|a—b|=|—1—2|=3,|a|+|b|=|一1|+|2|=3.所以|a+b|<|a—b|=|a|+|b|.方法总结:本题运用及好迭解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a正、b负和a负、b正两种情况.9.解:分三种情况讨论:①当a>0时,a>p②当a=0时,a=|;a a③当a<0时,|a|>3-贝'J a<3-专训3数轴、相反数、绝对值的综合应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.盏成I点、数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.-12.2^7.309.:9?^6.2(第]题)2.在数轴上任取一条长为2016?个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点表示的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别表示的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数./冬取.求值问题题型1利用数轴求值4.如图,巳知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B 两点间的距离为*,求a,b的值.A Ba0b(第4题)题型2绝对值非负性的应用5.已矢口|15—a|+|b—12|=0,求2a_b+7的值.6.当a为何值时,|1—a|+2有最小值?并求这个最小值.7.当a为何值时,2—14—a|有最大值?并求这个最大值.[应星3:化简问题8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:a c b(第8题)(1)判断a,b,c的正负性;(2)化简|a—b|+2a+|b|..•成••祖••实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,—3,+12,—11,—13,+3,—12, -18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?【导学号:11972022]答案1.12点拨:被墨水污染部分对应的整数有一12,—11,—10,~9,-8,10,11, 12,13,14,15,16,共12个.2.A3.解:(1)A点表示的数为一8,B点表示的数为24.(2)由已知得,当点C在原点左边时,点C到原点的距离为12个单位长度;当点C在原点右边时,点C到原点的距离为6个单位长度.综上所述,点C表示的数为6或一12.4.解:因为a与b互为相反数,所以|a|=|b|=4;:2=2§.又因为a<b,所以a=—2^,b =2I5.解:由|15—a|+|b—12|=0,得15—a=0,b—12=0,所以a=15,b=12,所以2a一b+7=2X15—12+7=25.6.解:当a=l时,|1—a|+2有最小值,这个最小值为2.7.解:当a=4时,2—14—a|有最大值,这个最大值为2.8.解:(l)a<0,b>0,c<0.(2)因为a,b互为相反数,所以b=—a.又因为a<0,b>0,所以|a—b|+2a+|b|=|2a|+2a+|b|=—2a+2a+b=b.点拨:本题中虽没有标出数轴上原点的位置,但由已知条件a,b互为相反数,即可确定出原点位置在表示数c和数b的两点之间,从而可以确定出a,b,c的正负性.(2)题化简时,既用到了a,b的正负性,同时还利用了a,b互为相反数这一条件.9.解:1+151+1—3|+|+12|+|—11|+|—13|+|+3|+|—12|+|—18|=15+3+12+11+ 13+3+12+18=87(千米).答:一共行驶了87千米.点拨:利用绝对值求距离、路程问题中,当出现用“+”“一”号表示带方向的路程时,求一共行驶的路程时,实际上是求绝对值的和.冀教版数学七年级上册第二章专训1线段或角的计数问题名师点金:1.几何计数问题应用广泛,解决方法是“有序数数法",数数时要做到不重复、不遗漏.2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.羽房鱼魂线段条数的计数问题1.先阅读文字,再解答问题.I I_1______I________-1---------------------—Ai Ai Ai A2Aa A i A2As At①②③Al血A3A a A5二;―i―二一④⑤(第1题)如图①,在一条直线上取两点,可以得到1条线段,如图②,在一条直线上取三点可得到3条线段,其中以Ai为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)如图③,在一条直线上取四个点,以Ai为端点的向右的线段有—条,以A2为端点的向右的线段有—条,以A3为端点的向右的线段有条,共有++ =(条);(2)如图④,在一条直线上取五个点,以Ai为端点的向右的线段有条,以A?为端点的向右的线段有条,以A3为端点的向右的线段有条,以A4为端点的向右的线段有条,共有+++=(条);(3)如图⑤,在一条直线上取n个点(nN2),共有条线段;(4)某学校七年级共有6个班进行辩论赛,规定进行单循环赛(每两个班赛一场),那么该校七年级的辩论赛共要进行多少场?研房鱼魂2:平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部 分,我们从最简单的情形入手,如图所示.1 2(第2题)列表如下:(1)当直线条数为5时,最多有 个交点,可写成和的形式为;把平直线条数最多交点个数把平面最多分成的部分数102214337,・・,・・,・・面最多分成 部分,可写成和的形式为;(2) 当直线条数为10时,最多有 个交点,把平面最多分成 部分;(3) 当直线条数为n 时,最多有多少个交点?把平面最多分成多少部分?【导学号:53482038]•溯痍顶度壬关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A:(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?①②③(第3题)答案1.解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10n(n—1)⑶(4)七年级有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级的辩论赛共要进行&乂(厂1)=15(场).2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56⑶当直线条数为n时,最多有l+2+3+.“+(n_l)=n(丁)(个)交点;把平面最多分成1+1+2+3——n=n (n+1)2""卜1部分.3.解:(1)如题图①,已知ZBAC,如果在其内部作一条射线,显然这条射线就会和ZBAC 的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中原来的三条射线再组成三个角,即题图②中共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中原来的四条射线再组成四个角,即题图③中共有1+2+3+4=10(个)角.(4)如果在一个角的内部作n条射线,则图中共有1+2+3+•••+n+(n+l)=(n+1)(n+2)•(个)角.2专训2分类讨论思想在线段和角的计算中的应用名师点金:解答有关点和线的位置关系、线段条数或长度、角的个数或大小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.汐;费遗度1分类讨论思想在线段的计算中的应用1.已知线段AB=12,在AB上有C,D,M,N四点,且AC:CD:DB=1:2:3,AM =§AC,DN=|d B,求线段MN的长.2.如图,点O为原点,点A对应的数为1,点B对应的数为一3.(1)若点P在数轴上,且PA+PB=6,求点P对应的数;(2)若点M在数轴上,且MA:MB=1:3,求点M对应的数;(3)若点A的速度为5个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,A,B,O同时向右运动,几秒后,点。

完整七年级期末复习专题训练系列线段与角的计算及解题方法归纳

完整七年级期末复习专题训练系列线段与角的计算及解题方法归纳

线段与角的计算及解题方法七年级期末复习专题训练系列3:一、求线段长度的几种常用方法:1.利用几何的直观性,寻找所求量与已知量的关系例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

图1分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又因为CD=10cm,所以AB=96cm2.利用线段中点性质,进行线段长度变换例2. 如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。

图2分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3.根据图形及已知条件,利用解方程的方法求解例3. 如图,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB 的多少倍?的中点,ADC为的一个方程,又、分析:题中已给出线段BCAB、AD即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以1,即因为又3AB=、<2>BC可得:即由<1>的中点,、DE、EB分别是P、Q、NAC、CD四部分,分成,. 如图4C、D、E将线段AB2:3:4:5M、4例 21,求PQ的长。

且MN=的代数式表示。

观察AB上每一条短线段都可以用x分析:根据比例关系及中点性质,若设AC=2x,则 PQ。

七年级数学上册专题训练 线段或角的计算

七年级数学上册专题训练  线段或角的计算

专题训练 线段或角的计算一、线段的和或差的计算1.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长度为( )A.2 cmB.3 cmC.4 cmD.6 cm 2.平坦的草地上有A ,B ,C 三个球,A 球距B 球3 m ,A 球距C 球1 m ,则B 球与C 球相距( )A.4 mB.3 mC.2 mD.无法确定3.如图已知线段AD =16 cm ,线段AC =BD =10 cm ,E ,F 分别是AB ,CD 的中点,则EF 长为 cm .4.如图,C ,D 是线段AB 上的两点,已知BC =14AB ,AD =13AB ,AB =12 cm ,则DC = cm.5.过点P 作直线l 的垂线PO ,垂足为O ,连接PA ,PB ;比较线段PO ,PA ,PB 的长短,并按从小到大的顺序排列 .6.如图,已知线段AB =6 cm ,延长AB 至点C ,使BC =13AB ,若点D 为线段AC 的中点,求线段BD 的长.7.已知线段AB =6 cm ,在直线AB 上画点C ,使BC =4 cm ,若M ,N 分别是AB ,BC 的中点.(1)求点M ,N 之间的距离;(2)若AB =a cm ,BC =b cm ,其他条件不变,此时M ,N 间的距离是多少? (3)分析(1)(2)的解答过程,从中你发现了什么规律?二、角的和或差的计算8.已知∠α=75°,则∠α的补角的度数是( )A.15°B.25°C.105°D.125° 9.上午10:00时,钟表上分针与时针所夹角的度数为( )A.45°B.60°C.75°D.90° 10.一个角的余角比它的补角的12少20°,则这个角为( )A.30°B.40°C.60°D.75°11.如图,已知∠AOC =90°,∠COB =50°,OD 平分∠AOB ,则∠COD 的度数为______.第11题图 第12题图12.如图,∠AOB =160°,OC 平分∠AOB ,OD 为∠BOC 内任一射线,OE 平分∠BOD ,且∠BOE =30°,则∠COD = .13.如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度.14.如图,OC 为∠AOB 的内部任一条射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线.若∠AOB =80°,求∠DOE 的度数.15.如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2.如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?16.如图,已知小明家(A )在商场(O )的南偏东60°方向,小华家(B )在商场的东北方向.(1)若王亮家(C)在商场的北偏西19°20′的方向,试问:∠AOB和∠AOC的度数分别是多少?(2)若∠BOC=67°20′,试说明王亮家(C)在商场的什么方向上?17.把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?18.将一张长方形纸片按如图所示方式折叠,若∠AEM′=120°,则∠BCN′的度数为多少?。

冀教版七年级上册数学第2章 几何图形的初步认识 阶段核心归类 线段、角的计算的常见应用

冀教版七年级上册数学第2章 几何图形的初步认识 阶段核心归类 线段、角的计算的常见应用
11 12°或24°. 12 45°.
答案显示
1.如图,已知线段 AB 的长为 a,延长线段 AB 至 点 C,使 BC=12AB.
(1)求线段AC的长(用含a的式子表示);
解:因为 AB=a,BC=12AB,所以 BC=12a, 因为 AC=AB+BC,所以 AC=a+12a=32a.
(2)取线段AC的中点D,若DB=2,求a的值.
(2)根据(1)中计算过程和结果,设AB=a,BC=b, 且a>b,其他条件都不变,你能猜出MN的长度 吗?(直接写出结果)
解:MN=12(a+b)或 MN=12(a-b).
10.如图,已知OE是∠AOC的平分线,∠AOE= 59°35′,∠AOB=∠COD=16°17′22″. (1)求∠BOC的度数;
JJ版七年级上
第二章几何图形的初步认识
阶段核心归类 线段、角的计算的常见应用
提示:点击 进入习题
3 1 (1)2a.(2)8.
2
(1)50°或170°. (2)30°或105°.
3 19.
4 112.5°.
5 见习题
6 见习题 7 见习题 8 5cm. 9 见习题 10 见习题
答案显示
提示:点击 进入习题
由 y+35y+80=360,解得 y=175. 所以∠AOC=105°. 综上,∠AOC 的度数为 30°或 105°.
3.已知A,M,N,B为一条直线上顺次的4个点, 若AM:MN=5:2,NB-AM=12,AB=24, 求BM的长.
解:设AM=5x,则MN=2x,因为NB-AM=12, 所以NB=12+5x. 因为AB=24,所以AM+MN+NB=24,即5x+2x +12+5x=24. 解得x=1,所以BM=MN+BN=2x+12+5x=19.

新冀教版七年级数学上册第2章 几何图形的初步认识 专训2 分类讨论思想在线段和角的计算中的应用

新冀教版七年级数学上册第2章 几何图形的初步认识 专训2 分类讨论思想在线段和角的计算中的应用

专训2 分类讨论思想在线段和角的计算中的应用名师点金:解答有关点和线的位置关系、线段条数或长度、角的个数或大小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.分类讨论思想在线段的计算中的应用1.已知线段AB =12,在AB 上有C ,D ,M ,N 四点,且AC ∶CD ∶DB =1∶2∶3,AM =12AC ,DN =14DB ,求线段MN 的长.2.如图,点O 为原点,点A 对应的数为1,点B 对应的数为-3.(1)若点P 在数轴上,且PA +PB =6,求点P 对应的数;(2)若点M 在数轴上,且MA ∶MB =1∶3,求点M 对应的数;(3)若点A 的速度为5个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,A ,B ,O 同时向右运动,几秒后,点O 恰为线段AB 的中点?【导学号:53482039】(第2题)分类讨论思想在角的计算中的应用3.如图,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOB的度数;(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(第3题)4.已知OM和ON分别平分∠AOC和∠BOC.(1)如图,若OC在∠AOB内,探究∠MON与∠AOB的数量关系;(2)若OC在∠AOB外,且OC不与OA,OB重合,请你画出图形,并探究∠MON 与∠AOB的数量关系.(提示:分三种情况讨论)(第4题)答案1.解:因为AB =12,AC ∶CD ∶DB =1∶2∶3,所以AC =16AB =12×16=2,CD =13AB =12×13=4,DB =12AB =12×12=6. 因为AM =12AC ,DN =14DB , 所以MC =12AC =2×12=1, DN =14DB =6×14=32. ①当点N 在点D 右侧时,如图①,MN =MC +CD +DN =1+4+32=132; ②当点N 在点D 左侧时,如图②,MN =MC +CD -DN =1+4-32=72. 综上所述,线段MN 的长为132或72.(第1题)点拨:首先要根据题意,画出图形.由于点N 的位置不确定,故要考虑分类讨论.2.解:(1)①当点P 在A ,B 之间时,不合题意,舍去;②当点P 在A 点右边时,点P 对应的数为2;③当点P 在B 点左边时,点P 对应的数为-4.(2)①M 在线段AB 上时,M 对应的数为0;②M 在线段BA 的延长线上时,M 对应的数为3;③M 在线段AB 的延长线上时,不合题意,舍去.(3)设运动x 秒时,点B 运动到点B′,点A 运动到点A′,点O 运动到点O′,此时O′A′=O′B′,点A′,B′在点O′两侧,则BB′=2x ,OO′=x ,AA′=5x ,所以点B′对应的数为2x -3,点O′对应的数为x ,点A′对应的数为5x +1,所以O′A′=5x +1-x =4x +1,O′B′=x -(2x -3)=3-x ,所以 4x +1=3-x ,解得x =0.4.即0.4秒后,点O 恰为线段AB 的中点.3.解:(1)设∠BOC =x ,则∠AOC =2x ,由题意得90°-2x +30°=x ,解得x =40°.因为∠AOC =2∠BOC ,所以∠AOB =∠BOC =40°.(2)情况一:当OD 在∠AOC 内部时,如图①,由(1)得∠AOC =80°.因为∠AOC =4∠AOD ,所以∠AOD =20°,所以∠COD =∠AOC -∠AOD =80°-20°=60°.(第3题)情况二:当OD 在∠AOC 外部时,如图②,由(1)得∠AOC =80°.因为∠AOC =4∠AOD ,所以∠AOD =20°,所以∠COD =∠AOD +∠AOC =20°+80°=100°.综上所述,∠COD 的度数为60°或100°.4.解:(1)因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠MOC =12∠AOC ,∠NOC =12∠BOC. 所以∠MON =∠MOC +∠NOC =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB. (2)情况一:如图①,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠MOC =12∠AOC =12(∠AOB +∠BOC),∠NOB =12∠BOC. 所以∠MON =∠MOB +∠NOB =∠MOC -∠BOC +12∠BOC =∠MOC -12∠BOC =12(∠AOB +∠BOC)-12∠BOC =12∠AOB. 情况二:如图②,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠AOM =12∠AOC ,∠NOC =12∠BOC =12(∠AOB +∠AOC)=12∠AOB +12∠AOC. 所以∠MON =∠AOM +∠AON =12∠AOC +(∠NOC -∠AOC)=∠NOC -12∠AOC =12∠AOB +12∠AOC -12∠AOC =12∠AOB. 情况三:如图③,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠MOC =12∠AOC ,∠NOC =12∠BOC. 所以∠MON =∠MOC +∠NOC =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12(360°-∠AOB)=180°-12∠AOB. 综上所述,∠MON 与∠AOB 的数量关系是∠MON =12∠AOB 或∠MON =180°-12∠AOB.(第4题)。

七年级数学上册《线段角》同步练习1 冀教版.doc

七年级数学上册《线段角》同步练习1 冀教版.doc

第四章“线段、角”能力练习A1. 判断题:(每小题2分,共16分)(1)A 、B 、C 是直线l 三个点,那么直线AB 、直线BC 和直线CA 表示的都是直线l ; ( ) (2)O 、A 、B 三点顺次在同一条直线上,那么射线OA 和射线AB 是相同的射线; ( ) (3)线段AD 是A 、D 两点的距离; ( ) (4)一条直线是一个平角;( )(5)若C 为线段AB 延长上一点,则AC>AB ;(6)小于钝角的角都是锐角; ( ) (7)如果α和β两角互补,α和γ两角互余,那么α=βγ2-; ( ) (8)互补的两个角中一定有一个角是锐角。

( ) 2. 填空题:(每小题3分,共18分)(1) 点A 在直线l 上,我们也说直线______点A ,我们说连结AB ,就是画出_______。

(2) 延长线段AB 到C ,使AC 的长是AB 的4倍,则AB 与BC 的长度的比是_______。

(3) 如图,已知M 、N 是线段AB 上的两点,且MN=NB ,则点N 是线段______的中点,AM=AB-____MN ,NB=21(____- ____)。

(4) 如图,图中总共有角____个。

(5) 填写适当的分数:ο45=____直角=____平角=____周角。

(6) 计算:547290512380'''+'''οο=____;258136100'''-οο=____。

3. 选择题:(每小题4分,共24分)(1)下面的语句中,正确的是( )(A ) 线段AB 和线段BA 是不同的线段; (B )∠AOB 和∠BOA 是不同的角;(C )“延长线段AB 到C ”与“延长线段BA 到C ”意义不同; (D )“连接AB ”与“联接AB ”意义不同(2)线段AB 上有点C ,点C 使AC:CB=2:3,点M 和点N 分别是线段AC 和线段CB 的中点,若MN=4,则AB 的长是( )(A )6; (B )8; (C )10; (D )12 (3)已知线段AB ,反向延长AB 到C ,使AC=31BC ,D 为AC 中点,若CD=2cm ,则AB 等于( )(A )4cm (B )6cm (C )8cm (D )10cm(4)钟表上的时间指示为两点半,这时时针和分针之间所形的成的(小于平角)角的度数是( )(A )ο120 (B )ο105 (C )ο100 (D )ο90(5)一个锐角的余角加上ο90,就等于( )(A )这个锐角的两倍数 (B )这个锐角的余角 (C )这个锐角的补角 (D )这个锐角加上ο90(6)如图,∠AOC=ο90,ON 是锐角∠COD∠MON=( )(A )∠21COD+ο45 (B ) ο90 (C )∠21AOD (D ) ο454. 画出下列语句所表示的图形:(每小题3分,共9分)(1) 直线a 和直线b 相交于点A (2) 直线a 经过线段AB 的中点 (3) 线段AB 和线段CD 互相平分于点E5. 画图:(每小题4分,共8分)(1) 已知线段a 、b (a >b ),用直尺和圆规画线段等于a+b (2) 已知∠1和∠2,用量角器画一个角,使它等于∠1-∠2 6. 计算:(每小题5分,共10分)已知∠α=0357'ο,它的余角是多少?7. 已知点B 在点A 的正南,点M 在点B 的北偏西ο60方向距点A100米,同时,点M 在B 的北偏西ο60方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专训1线段或角的计数问题
名师点金:
1.几何计数问题应用广泛,解决方法是“有序数数法”,数数时要做到不重复、不遗漏.
2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.
3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.
线段条数的计数问题
1.先阅读文字,再解答问题.
(第1题)
如图①,在一条直线上取两点,可以得到1条线段,如图②,在一条直线上取三点可得到3条线段,其中以A1为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).
(1)如图③,在一条直线上取四个点,以A1为端点的向右的线段有条,以A2为端点的向右的线段有条,以A3为端点的向右的线段有条,共有++=(条);
(2)如图④,在一条直线上取五个点,以A1为端点的向右的线段有条,以A2为端点的向右的线段有条,以A3为端点的向右的线段有条,以A4为端点的向右的线段有条,共有+++=(条);
(3)如图⑤,在一条直线上取n个点(n≥2),共有条线段;
(4)某学校七年级共有6个班进行辩论赛,规定进行单循环赛(每两个班赛一场),那么该校七年级的辩论赛共要进行多少场?
平面内直线相交所得交点与平面的计数问题
2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部分,我们从最简单的情形入手,如图所示.
(第2题)
列表如下:
直线条数最多交点个数把平面最多分成的部分数
1 0 2
2 1 4
3 3 7
………
(1)当直线条数为5时,最多有个交点,可写成和的形式为;把平面最多分成部分,可写成和的形式为;
(2)当直线条数为10时,最多有个交点,把平面最多分成部分;
(3)当直线条数为n时,最多有多少个交点?把平面最多分成多少部分?【导学号:53482038】
关于角的个数的计数问题
3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A:
(1)在角的内部作一条射线,那么图中一共有几个角?
(2)在角的内部作两条射线,那么图中一共有几个角?
(3)在角的内部作三条射线,那么图中一共有几个角?
(4)在角的内部作n条射线,那么图中一共有几个角?
(第3题)
答案
1.解:(1)3;2;1;3;2;1;6
(2)4;3;2;1;4;3;2;1;10
(3)n (n -1)2
(4)七年级有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间
有一条线段,那么七年级的辩论赛共要进行6×(6-1)2
=15(场). 2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5
(2)45;56
(3)当直线条数为n 时,
最多有1+2+3+…+(n -1)=n (n -1)2
(个)交点; 把平面最多分成1+1+2+3+…+n =⎣⎡⎦
⎤n (n +1)2+1部分. 3.解:(1)如题图①,已知∠BAC ,如果在其内部作一条射线,显然这条射线就会和∠BAC 的两条边都组成一个角,这样一共就有1+2=3(个)角.
(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中原来的三条射线再组成三个角,即题图②中共有1+2+3=6(个)角.
(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中原来的四条射线再组成四个角,即题图③中共有1+2+3+4=10(个)角.
(4)如果在一个角的内部作n 条射线,则图中共有1+2+3+…+n +(n +1)=
(n +1)(n +2)2(个)角.
初中数学试卷
鼎尚图文**整理制作。

相关文档
最新文档