2020中考数学 压轴专题 二次函数动点成特殊三角形问题(包含答案)

合集下载

2020年初三数学中考压轴题综合训练:《二次函数》含答案

2020年初三数学中考压轴题综合训练:《二次函数》含答案

2020年初三数学中考压轴题综合训练:《二次函数》1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣t+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.3.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,PQ=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a 1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点E (1,4);设点M 、N 的坐标为(x 1,y 1),(x 2,y 2),∴MN 2=(x 1﹣x 2)2+(y 1﹣y 2)2,ME 2=(x 1﹣1)2+(y 1﹣4)2,NE 2=(x 2﹣1)2+(y 2﹣4)2,∵ME 2+NE 2=(x 1﹣1)2+(y 1﹣4)2+(x 2﹣1)2+(y 2﹣4)2=x 12+x 22﹣2(x 1+x 2)+2+y 12+y 22﹣8(y 1+y 2)+32=x 12+x 22﹣2x 1x 2+2﹣4+y 12+y 22﹣2y 1•y 2+18﹣48+32 ═(x 1﹣x 2)2+(y 1﹣y 2)2, ∴MN 2=ME 2+NE 2, ∴∠MEN =90°, 故EM ⊥EN ,即:△EMN 恒为直角三角形.5.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4; (1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ =,点M 是y 轴上一个动点,求△AQM的最小周长.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.6.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.7.如图,抛物线y=﹣x2+bx+c过点x轴上的A(﹣1,0)和B点,交y轴于点C,点P是该抛物线上第一象限内的一动点,且CO=3AO.(1)抛物线的解析式为:y=﹣x2+2x+3 ;(2)过点P作PD∥y轴交直线BC于点D,求点P在运动的过程中线段PD长度的最大值;(3)若sin∠BCP=,在对称轴左侧的抛物线上是否存在点Q,使∠QBC=∠PBC?若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵A(﹣1,0),∴OA=1,又∵CO=3AO,∴OC=3,∴C(0,3),把A,C两点的坐标代入y=﹣x2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+2x+3,故答案为:y=﹣x2+2x+3.(2)由﹣x2+2x+3=0,得B(3,0),设直线BC的解析式为y=kx+b,将点B(3,0),C(0,3)代入得,,解得:,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则D(x,﹣x+3)(0<x<3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=.∴当时,PD有最大值.(3)存在.∵,点P在第一象限,∴∠BCP=45°,∵B(3,0),C(0,3),∴OC=OB,∴△BOC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠BCP=∠OCB=45°,∴CP∥OB,∴P(2,3),设BQ与y轴交于点G,在△CPB和△CGB中:2,∴△CPB≌△CGB(ASA),∴CG=CP=2,∴OG=1,∴点G(0,1),设直线BQ:y=kx+1,将点B(3,0)代入y=kx+1,∴,∴直线BQ:,联立直线BQ和二次函数解析式,解得:或(舍去),∴Q(,).8.如图,以D为顶点的抛物线y=ax2+2x+c交x轴于点A,B(6,0),交y轴于点C(0,6).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)将B(6,0),C(0,6)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(2)当y=0时,﹣x2+2x+6=0,解得:x1=﹣2,x2=6,∴点A的坐标为(﹣2,0).∵点B的坐标为(6,0),点C的坐标为(0,6),∴直线BC的解析式为y=﹣x+6.如图1,作O关于BC的对称点O′,则点O′的坐标为(6,6).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA的最小值=PO′+PA=AO′═=10.设直线AO′的解析式为y=kx+m,将A(﹣2,0),Q′(6,6)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).又∵点C的坐标为(0,6),点B的坐标为(6,0),∴CD=2,BC═=6,BD═=4,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴==2,.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴,即,∴AQ=20,∴点Q的坐标为(18,0).综上所述:当Q的坐标为(0,0)或(18,0)时,以A,C,Q为顶点的三角形与△BCD 相似.9.如图,抛物线L:y=ax2﹣2ax+a+k(a,k为常数且a>0)经过点C(﹣1,0),顶点为M,经过点P(0,a+4)的直线m与x轴平行,且m与L交于点A,B(B在A的右侧),与L的对称轴交于点F,直线n:y=ax+c经过点C.(1)用a表示k及点M的坐标;(2)BP﹣AP的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线n经过点B时,求a的值及点A,B的坐标;(4)当a=1时,设△ABC的外心为点N,则:①求点N的坐标;②若点Q在L的对称轴上,其纵坐标为b,且满足∠AQB<∠ACB,直接写出b的取值范围.解:(1)把点C(﹣1,0)代入L,得0=a×(1﹣)2﹣2a×(﹣1)+a+k,∴k=﹣4a.又L:y=ax2﹣2ax+a+k=a(x﹣1)2﹣4a,∴顶点M(1,﹣4a).(2)是定值.根据图象,由抛物线的轴对称性,可知BF=AF,又QL的对称轴为x=1,故PF=1,∴由图象可得,BP﹣AP=(BF+PF)﹣(AF﹣PF),=BF+PF﹣AF+PF=2PF=2.(3)当直线n经过点B时,有ax+a=a(x﹣1)2﹣4a,化简得,ax2﹣3ax﹣4a=0,∵a>0,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∵B在A的右侧,对称轴为x=1,∴B(4,a+4),A(﹣2,a+4),把点B代入直线n,得a+4=4a+a,解得a=1,∴A(﹣2,5),B(4,5).(4)①根据抛物线的轴对称性可知,L的对称轴x=1就是AB的垂直平分线,故△ABC的外心N就在直线x=1上,则有AN=CN.∴设N(1,c),由(3)可知A(﹣2,5),及C(﹣1,0),∴(﹣2﹣1)2+(5﹣c)2=(﹣1﹣1)2+(0﹣c)2,即32+(5﹣c)2=22+c2,解得c=3.∴N(1,3).②或b.如图,对于点Q(1,b),若∠AQB=∠ACB,根据同弧所对的圆周角相等,可得点Q为x=1与⊙N的交点,由(4)①得,⊙N的半径为r=NC=(﹣1﹣1)2+(0﹣3)2=,则b=﹣(r﹣c)=﹣(﹣3)=3﹣;设点Q关于直线AB的对称点为Q'(1,d),若∠AQ'B=∠ACB,则d=FQ'+5=FQ+5=(5+|3﹣|)+5=+7.综上,若点Q满足∠AQB<∠ACB,则有b或b.10.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)直接写出抛物线和直线AB的函数表达式.(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a <90°),连接D′A、D′B,求D′A+D′B的最小值.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.11.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC =6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).12.如图,直线y=x﹣4与x轴,y轴交于点B,C,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,抛物线经过B,C,与x轴交于另一点A.(1)求抛物线的解析式;(2)点E从A点出发,在线段AB上以每秒3个单位的速度向B点运动,同时点F从B 点出发,在线段BC上以每秒1个单位的速度向C点运动,当其中一个点到达终点时,另一个点将停止运动.设△EBF的面积为S,点E运动的时间为t.①求S与t的函数关系式,并求出S有最大值时点F的坐标;②点E,F在运动过程中,若△EBF为直角三角形,求t的值.解:(1)∵直线y=x﹣4与x轴,y轴交于点B,C,∴x=0时,y=﹣4,y=0时,x=4,∴B(4,0),C(0,﹣4).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴A点坐标为(﹣2,0),∴,解得:.∴抛物线的解析式为.(2)由题意得,BF=t,BE=6﹣3t,①作FH⊥x轴,如图,∵B(4,0),C(0,﹣4).∴OB=OC=4,∴,∵FH∥BC,∴△BHF∽△BOC,∴,∴.解得:HF=.∴=.当S有最大值时,t=1,此时点F的坐标为().②∵OB=OC,∴∠OBC=45°,若∠BEF=90°,则cos∠EBF=,解得:t=.若∠EFB=90°,则cos∠EFB=.解得:t=.综合以上可得,若△EBF 为直角三角形,t 的值为或.13.如图,在直角坐标系中,y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点(A 点在B 点左),与y 轴交于C 点.(1)若△ABC 的面积为,求抛物线的解析式;(2)已知点P 为B 点右侧抛物线上一点,连PC ,PB 交y 轴于D 点,若∠BCP =2∠ABC ,求的值;(3)若P 为对称轴右侧抛物线上的动点,PA 交y 轴于E 点,判断的值是否为定值,说明理由.解:(1)∵y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点,∴ax 2+4 ax +3a =0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),当x =0,y =3a ,∴OC =﹣3a ,∵S △ABC =, ∴, 解得a =﹣,∴抛物线的解析式为y =﹣;(2)如图,过B 点作BM ⊥x 轴交CP 于M ,过点C 作CF ⊥BM 于点F ,∵AB∥CF,∴∠ABC=∠BCF,∵∠BCP=2∠ABC,∴∠ABC=∠BCF=∠FCM,∵CF=CF,∴△CBF≌△CMF(ASA),∴BF=FM,∴M(3,6a),又∵C(0,3a),设CP解析式y=mx﹣3m,∴8a=m×2,∴m=4a,∴y=4ax﹣12a,∴,解得:x1=3,x2=5,∴P(5,8a),∴直线BP的解析式为y=4ax﹣12a,∴D(0,﹣12a),∵OC=|3a|,OD=|﹣12a|,∴;(3)∵A(1,0),∴设PA的解析式y=k1x﹣k1,∴∴ax2﹣(4a+k1)x+3a+k1=0,∴(ax﹣3a﹣k1)(x﹣1)=0,解得,x=1或x=,∴x p=3+,∵B(3,0),∴设PB的解析式y=k2x﹣3k2,∴,∴ax2﹣(4a+k2)x+3a+3k2=0,∴(ax﹣a﹣k2)(x﹣3)=0,∴x p=1+.又∵EC=﹣k1﹣3 a,DE=﹣3k2﹣3 a,∴==.14.如图,已知抛物线y=ax2﹣2x+c经过△ABC的三个顶点,其中点点A(0,1)、点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A (0,1),B (9,10)代入函数解析式,得, 解得,∴抛物线的解析式y =x 2﹣2x +1;(2)∵AC ∥x 轴,A (0,1), ∴x 2﹣2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1),∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,m 2﹣2m +1),∴E (m ,m +1),∴PE =m +1﹣(m 2﹣2m +1)=﹣m 2+3m .∵AC ⊥PE ,AC =6,∴S 四边形AECP =S △AEC +S △APC =AC •EF +AC •PF =AC •(EF +PF )=AC •EP =×6×(﹣m 2+3m )=﹣m 2+9m =﹣(m ﹣)2+,∵0<m <6,∴当m =时,四边形AECP 的面积最大,此时P (,﹣);(3)∵y =x 2﹣2x +1=(x ﹣3)2﹣2,∴P (3,﹣2).∴PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,即,解得t=4,∴Q(4,1);②当△CQP∽△ABC时,,即,解得t=﹣3,∴Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).15.已知抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点P为抛物线的对称轴上一点,连接BP,CP,当四边形BOCP的周长最小时,求点P的坐标;(3)如图2,点D为抛物线的顶点,在线段CD上是否存在点M(不与点C重合),使得△AMO与△ABC相似?若存在,请求出点M的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),∴,解得:,∴抛物线的解析式为y=x2﹣4x+3;(2)∵抛物线的解析式为y=x2﹣4x+3,∴令x=0,y=3,∴C(0,3).∴OC+OB=3+1=4,∴当四边形BOCP的周长最小时,则CP+BP最小,如图1,连接AC,与对称轴的交点即为所求的点P,设直线AC的解析式为y=kx+b,∴,解得:.∴直线AC的解析式为y=﹣x+3,∵抛物线的对称轴为x==2,∴x=2时,y=﹣2+3=1,∴P(2,1).(3)∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点D的坐标为(2,﹣1),又∵C(0,3),∴直线CD为y=﹣2x+3,OC=3,∵A(3,0),∴AB=2,∠BAC=∠OCA=45°,∴AC=3,∴.∵∠ABC=90°+∠OCB,∴∠ABC为钝角,若△AMO与△ABC相似,显然∠ABC=∠OMA,则在线段CD上存在点M使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,①若点M在x轴上方时,如图2,当∠AOM=∠CAB=45°时,△ABC∽△OMA,设M(a,﹣2a+3),∴a=﹣2a+3,解得a=1,∴M(1,1).此时OM=,OA=3,∴,∴.则△ABC∽△OMA.②若点M在x轴下方,如图3,∵M在线段CD上,∴∠AOM≠45°,∴∠OAM=∠BAC=45°,∴M(2,﹣1),此时点M与点D重合,AM=,OA=3,∴.则△ABC∽△AMO.综合以上可得,在线段CD上存在点M(不与点C重合),使得△AMO与△ABC相似,此时点M的坐标为(1,1)或(2,﹣1).16.如图,一次函数y=﹣x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求线段PG的长;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求S.△OBE解:(1)一次函数y=﹣x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图1,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),设直线PH的表达式为:y=kx+b,∴,解得:,∴直线PH的解析式为y=x+,联立抛物线的解析式和直线的解析式:,解得:x=2(舍去)或﹣,∴点E(﹣,﹣),∴==.②当PE在AP上方时,如图2,过点P作PM⊥y轴交于点M,交抛物线于点E,∵tan∠APM=.tan∠ABO=,∴∠APM=∠ABO,∵PE∥x轴,∴E点的纵坐标为3,将y=3代入抛物线解析式求得x=1,∴E(1,3),∴=6.综上可得△OBE的面积为或6.17.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM与△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.解:(1)∵A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得,解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图1,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图2,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM与△BQC相似有两种情况.当时,∴,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M(1,).1当时,∴,解得DM=3,∴QM=DQ﹣DM=4﹣3=1.∴M(1,1).2综上,点M的坐标为或(1,1).18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0)(点A在点B的左边),与y轴交于点C,过点C作CD∥x轴,交抛物线于点D,过点D作DE∥y轴,交直线BC 于点E,点P在抛物线上,过点P作PQ∥y轴交直线CE于点Q,连结PB,设点P的横坐标为m,PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时,求d关于m的函数关系式;(4)当△PQB是等腰三角形时,直接写出m的值.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0),∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C,∴点C(0,﹣3)设直线BC解析式为:y=kx﹣3,∴0=3k﹣3∴k=1,∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m,PQ∥y轴,∴点P(m,﹣m2+4m﹣3),点Q(m,m﹣3),当0<m<3时,PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m,当3≤m<4时,PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3,0),点C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,∵PQ∥OC,∴∠PQB=45°,若BP=PQ,∴∠PQB=∠PBQ=45°,∴∠BPQ=90°,即点P与点A重合,∴m=1,若BP=QB,∴∠BQP=∠BPQ=45°,∴∠QBP=90°,∴BP解析式为:y=﹣x+3,∴解得:,∴点P(2,1)∴m=2;若PQ=QB,∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2,或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2,∴m=±,综上所述:m=1或2或±.19.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S=3,请求出点P的坐标.△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).20.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.。

2020中考数学压轴专题:二次函数动点成特殊三角形问题(含答案)

2020中考数学压轴专题:二次函数动点成特殊三角形问题(含答案)

2020中考数学压轴专题二次函数动点成特殊三角形问题(含答案)1.如图,在平面直角坐标系中,二次函数y=-13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=________,c=________;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由.第1题图解:(1)134;【解法提示】∵二次函数y=-13x2+bx+c与x轴交于A(-3,0),B(4,0),∴b c=b c=--+⎧⎪⎨-++⎪⎩33016403,解得b=c=⎧⎪⎨⎪⎩134,(2)可能是,理由如下:∵点P在AC上以每秒1个单位的速度运动,∴AP=t,∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t,∴AQ=t+3,∵∠P AQ<90°,∠PQA<90°,∴若要使△APQ是直角三角形,则∠APQ=90°,在Rt△AOC中,OA=3,OC=4,∴AC=5,如解图①,设PQ与y轴交于点D,第1题解图①∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°,∴∠DQO=∠DCP,∴tan ∠DQO =AP PQ =tan ∠DCP =AO CO =34, ∵AP =t,∴PQ =43t , 由勾股定理得:AQ 2=AP 2+PQ 2,即(t +3)2=t 2+(43t )2, 解得t =92或t =- 98(舍去), 根据题意,点Q 在线段OB 上,∴0≤t ≤4,∴不存在这样的t 值满足题意,即△APQ 不可能是直角三角形;(3)假设存在点M 使得△PMQ 是以点P 为直角顶点的等腰直角三角形,如解图②,过P 作PE ⊥x 轴于E ,过M 作MN ⊥PE 交PE 的延长线于点N ,第1题解图②∵∠MPN +∠PMN =90°,∠MPN +∠QPE =90°,∴∠PMN =∠QPE ,在△PMN 和△QPE 中,∠∠⎧⎪∠∠⎨⎪⎩PMN=QPE PNM=PEQ MP=PQ ,∴△PMN ≌△QPE (AAS),∴PN =EQ ,MN =PE ,∵AP =t ,cos ∠CAO =AO AC =35, sin ∠CAO =OC AC =45, ∴AE =35t ,PE =45t , ∴MN =45t ,EN =EQ -PE =AQ -AE -PE =3+t -35t -45t =3- 25t , ∴x M =x E -MN =35t -3-45t =-15t -3, ∴点M 的坐标为(-15t -3,25t -3),在x 轴下方, ∵点M 在抛物线上,∴-13(-15t -3)2-13(15t +3)+4=25t -3, 整理得t 2+65t =225,解得t =-65+52052或t =-65-52052(舍), 综上,存在满足条件的点M ,此时运动时间t 为-65+52052秒.2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得⎩⎪⎨⎪⎧-b2a=-1a +b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0),∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得⎩⎪⎨⎪⎧-3m +n =0n =3,解得⎩⎪⎨⎪⎧m =1n =3, ∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第2题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172. 综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172). 3. 如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0).(1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△P AC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得⎩⎪⎨⎪⎧36+6b +c =0c =-6, 解得⎩⎪⎨⎪⎧b =-5c =-6, ∴抛物线的解析式为y =x 2-5x -6;(2)当y =0时,则有:x 2-5x -6=0,即(x +1)(x -6)=0,∴解得x 1=-1,x 2=6(舍),∴B (-1,0).由两点之间的距离公式可得:BC 2=2=49,AC 2=(6-0)2+2=72,AB 2=(-1-0)2+2=37,∵AB 2+BC 2>AC 2,∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△P AC 是以AC 为底的等腰三角形理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P ,∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC ,∴直线MP 过点O ,设直线MP 的解析式为y =kx ,将点M (3,-3)代入得,k =-1,即直线MP 的解析式为y =-x ,联立⎩⎪⎨⎪⎧y =-x y =x 2-5x -6, 解得⎩⎪⎨⎪⎧x 1=2-10y 1=10-2或⎩⎪⎨⎪⎧x 2=2+10y 2=-2-10, ∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,P A =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图 解:(1)∵直线y=-2x +10与x 轴、y 轴相交于A 、B 两点,∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0),把点A (5,0)和C (8,4)代入可得⎩⎪⎨⎪⎧25a +5b =064a +8b =4, 解得⎩⎨⎧a =16b =-56, ∴抛物线的解析式为y =16x 2-56x ; ∵A (5,0),B (0,10),C (8,4),∴AB 2=125,AC 2=25,BC 2=100,∵AB 2=AC 2+BC 2,∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt △AOP 和Rt △ACQ 中,⎩⎪⎨⎪⎧AC =OA P A =QA, ∴Rt △AOP ≌Rt △ACQ ,∴OP =CQ ,∴2t =10-t ,∴t =103, ∵t <5,∴当运动时间为103秒时,P A =QA ; (3)存在.由题可得,抛物线的对称轴直线为x =52, 设点M 的坐标为( 52,b ), 利用点的坐标可求得AB 2=102+52=125,MB 2=(52)2+(b -10)2, MA 2=(52)2+b 2, ∵△MAB 是等腰三角形,∴可分以下三种情况讨论:①当AB =MA 时,即125=(52)2+b 2, 解得b =±5192, 即点M 的坐标为(52,5192)或(52,-5192);②当AB =BM 时,即125=(52)2+(b -10)2,解得b =10±5192,即点M 的坐标为(52,10+5192)或(52,10-5192);③当MB =MA 时,即(52)2+(b -10)2=(52)2+b 2,解得b =5,此时点A 、M 、B 共线,故这样的点M 不存在.综上所述,存在点M ,使以点A 、B 、M 为顶点的三角形是等腰三角形,点M 的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192). 5. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3;(2)如解图①,过点P作PG∥CF交CB与点G,第5题解图①由题可知,直线BC的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,∵PG∥CF,∴△GPE为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<3), 则G(t,-t+3)PE=22PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2(t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D在C下方D2位置时,由勾股定理得BD22+BC2=CD22,即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1,综上所述,当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).6.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN的值最小,求出此时点K的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C (0,4),A (4,0),∴c=a a c=⎧⎨-+⎩41680,解得a=c=⎧-⎪⎨⎪⎩124, ∴抛物线的解析式为y =-12x 2+x +4;(2)由y =-12x 2+x +4=-12(x -1)2+92可得抛物线的顶点坐标为N (1,92),如解图①,作点C 关于x 轴的对称点C ′,则C ′(0,-4),连接C′N 交x 轴于点K ,则K 点即为所求点,第6题解图①设直线C′N 的解析式为y =kx +b (k ≠0),把N ,C′两点坐标代入可得:k b=b=⎧+⎪⎨⎪-⎩924,解得k=b=⎧⎪⎨⎪-⎩1724, ∴直线C′N 的解析式为y =172x -4, 令y =0,解得x =817,∴点K的坐标为(817,0);(3)存在.要使△ODF是等腰三角形,需分以下三种情况讨论:①DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DF A=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(2,2);由-12x2+x+4=2得,x1=1+5,x2=1- 5.此时,点P的坐标为(1+5,2)或(1-5,2);②FO=FD,如解图②,过点F作FM⊥x轴于点M.第6题解图②由等腰三角形的性质得:OM =12OD =1,∴AM =3,∴在等腰直角△AMF 中,MF =AM =3, ∴F (1,3).由-12x 2+x +4=3得,x 1=1+3,x 2=1- 3.此时,点P 的坐标为(1+3,3)或(1-3,3); ③OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =42,∴点O 到AC 的距离为2 2. 而OF =OD =2<22,∴在AC 上不存在点F 使得OF =OD =2.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或 (1-5,2)或(1+3,3)或(1-3,3).7. 如图①,抛物线y =-13x 2+bx +8与x 轴交于点A (-6,0),点B (点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE 、EC .(1)求抛物线的表达式及点C 的坐标;(2)连接AC 交直线l 于点D ,则在点P 运动过程中,当点D 为EP 中点时,求S △ADP ∶S △CDE ;(3)如图②,当EC ∥x 轴时,点P 停止运动,此时,在抛物线上是否存在点G ,使△AEG 是以AE 为直角边的直角三角形?若存在,请求出点G 的坐标;若不存在,说明理由.第7题图解:(1)∵点A (-6,0)在抛物线y =-13x 2+bx +8上,∴0=-13×(-6)2+(-6b )+8,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +8,令x =0,得y =8, ∴C (0,8);(2)设点E (t ,-13t 2-23t +8),∴P (t ,0),∵点D 为EP 的中点,∴DP =DE ,D (t ,-16t 2-13t +4),设直线AC 的解析式为y =kx +b (k ≠0),将A (-6,0),C (0,8),代入得:k b=b=-+⎧⎨⎩608,解得k=b=⎧⎪⎨⎪⎩438,∴直线AC 的解析式为y =43x +8,∵点D 在直线AC 上, ∴43t +8=-16t 2-13t +4, 解得t 1=-6(舍去),t 2=-4, ∴P (-4,0), ∴AP =2,OP =4,∴S △ADP S △CDE =1212g g DP APDE OP =AP OP =12; (3)存在.如解图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,第7题解图①∵EC ∥x 轴, ∴EP =CO =8,把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2, ∴P (-2,0), ∴AP =AO -PO =4,(ⅰ)如解图①,当∠AEG =90°时, ∵∠MEG +∠AEP =90°, ∠AEP +∠EAP =90°, ∴∠MEG =∠EAP , 又∵∠APE =∠EMG =90°, ∴△EMG ∽△APE , ∴EM AP =MG EP, 设点G (m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8,∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m ,MG =PN =PO +ON =2+m , ∴13m 2+23m 4=2+m 8,∴m =-2(舍去)或m =32,∴G (32,254);(ⅱ)如解图②,当∠EAG =90°时,第7题解图②∵∠NAG +∠EAP =90°, ∠AEP +∠EAP =90°, ∴∠NAG =∠AEP , ∵∠APE =∠GNA =90°, ∴△GNA ∽△APE , ∴GN AP =ANEP, 设点G (n ,-13n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n ,∴2128 334+-n n=68+n,∴n=-6(舍去)或n=112,∴G(112,-234),综上,符合条件的G点的坐标为(32,254)或(112,-234).8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE.已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式;(2)分别求出点B和点E的坐标;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m 为何值时,△OPQ是等腰三角形.第8题图解:(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴将A 、D 两点的坐标代入得⎩⎪⎨⎪⎧4a -2b -8=036a +6b -8=-8, 解得⎩⎪⎨⎪⎧a =12b =-3, ∴抛物线的函数表达式为y =12x 2-3x -8; (2)∵y =12x 2-3x -8=12(x -3)2-252, ∴抛物线的对称轴为直线x =3,又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0),∴点B 的坐标为(8,0).设直线l 的函数表达式为y =kx ,∵点D (6,-8)在直线l 上,代入得6k =-8,解得k =-43, ∴直线l 的函数表达式为y =-43x , ∵点E 为直线l 和抛物线对称轴的交点,∴点E 的横坐标为3,纵坐标为-43×3=-4,即点E 的坐标为(3,-4); (3)需分两种情况进行讨论:①当OP =OQ 时,△OPQ 是等腰三角形,如解图①,第8题解图①∵点E 的坐标为(3,-4),∴OE =32+42=5,过点E 作直线ME ∥PB ,交y 轴于点M ,交x 轴于点H ,则OM OP =OE OQ , ∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5,E (3,-4)在直线ME 上,∴3k 1-5=-4,解得k 1=13, ∴直线ME 的函数表达式为y =13x -5, 令y =0,解得x =15,∴点H 的坐标为(15,0).又∵MH ∥PB ,∴OP OM =OB OH ,即-m 5=815, ∴m =-83;②当QO =QP 时,△OPQ 是等腰三角形,如解图②,第8题解图②∵当x =0时,y =12x 2-3x -8=-8, ∴点C 的坐标为(0,-8),∴CE =32+(8-4)2=5,∴OE =CE ,∴∠1=∠2,又∵QO =QP ,∴∠1=∠3,∴∠2=∠3,∴CE ∥PB .设直线CE 交x 轴于点N ,其函数表达式为y =k 2x -8,E (3,-4)在直线CE 上,∴3k 2-8=-4,解得k 2=43, ∴直线CE 的函数表达式为y =43x -8,令y =0,得43x -8=0, ∴x =6,∴点N 的坐标为(6,0).∵CN ∥PB .∴OP OC =OB ON, ∴-m 8=86,解得m =-323. 综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形. 9. 如图,抛物线y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,过点B 作直线BC ⊥x 轴,交直线y =-2x 于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D 的坐标,并判断顶点D 是否在直线y =-2x 上;(3)点P 是抛物线上一动点,是否存在这样的点P (点A 除外),使△PBC 是以BC 为直角边的直角三角形?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.第9题图解:(1)∵y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,∴⎩⎨⎧13×32+3b +c =013×(-1)2-b +c =0, 解得⎩⎪⎨⎪⎧b =-23c =-1, ∴抛物线的解析式为y =13x 2-23x -1; (2)∵a =13,b =-23,c =-1, 抛物线的顶点D 的坐标为(-b 2a ,4ac -b 24a), ∴x D =--232×13=1, y D =4×13×(-1)-(-23)24×13=-43, ∴D (1,-43). 把x =1代入y =-2x 中得y =-2,∵-43≠-2, ∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如解图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.第9题解图∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得:y =-2×(-1)=2,∴C (-1,2).∴把y =2代入y =13x 2-23x -1中得13x 2-23x -1=2, 解得x 1=10+1,x 2=-10+1.∴P 1(10+1,2),P 2(-10+1,2).10. 如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D.(1)求抛物线的解析式;(2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第10题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得, ⎩⎪⎨⎪⎧-12-b +c =0c =2,解得⎩⎪⎨⎪⎧b =32c =2, ∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0, 解得x 1=-1,x 2=4,∴点B 的坐标为(4,0),在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55; (3)存在,点P 坐标为(32,52)或(32,-52)或(32,4). 【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32, ∴点D 的坐标为(32,0). ∴CD =OC 2+OD 2=22+(32)2=52. ∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形, ∴当点D 为顶点时,有DP =CD =52,此时点P 的坐标为(32,52)或(32,-52); 当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第10题解图∵DG =2,∴PG =2,PD =4,∴点P 的坐标为(32,4). 综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,52)或(32,-52)或(32,4).。

2020年九年级数学中考三轮压轴专题:《二次函数动点与等腰、直角三角形综合》

2020年九年级数学中考三轮压轴专题:《二次函数动点与等腰、直角三角形综合》

三轮压轴专题:《二次函数动点与等腰、直角三角形综合》1.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)如图1,若抛物线的对称轴为直线x=﹣3,AB=4.①点A的坐标为(,),点B的坐标为(,);②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP 是等腰直角三角形,求点P的坐标.2.如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(﹣1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.4.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN =n,直接写出当n为何值时△BMN为等腰三角形.6.如图1,抛物线y=﹣x2﹣2x+3与x轴从左到右交于A、B两点,与y轴交于点C,顶点为D(1)求直线AC的解析式与点D的坐标;(2)在直线AC上方的抛物线上有一点E,作EF∥x轴,与抛物线交于点F,作EM⊥x 轴于M,作FN⊥x轴于N,长度为2的线段PQ在直线AC上运动(点P在点Q右侧),当四边形EMNF的周长取最大值求四边形DPQE的周长的最小值及对应的点Q 的坐标;(3)如图2,平移抛物线,使抛物线的顶点D在直线AD上移动,点D平移后的对应点为D′,点A平移后的对应点为A′,△A′D′C是否能为直角三角形?若能,请求出对应的线段DC的长;若不能,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C,D(1)求点A到直线CD的距离;(2)平移抛物线,使抛物线的顶点P至直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴上,当以G,P,Q三点为原点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.8.已知抛物线y=ax2+bx+c经过点A,点B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴为直线x=.(1)求抛物线的解析式;(2)在x轴上方有一点P(m,n),连接PA后满足∠PAB=∠CAB,记△PBC面积为S,求S与m的函数关系;(3)在(2)的条件下,当点P恰好落在抛物上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C',B'两点(C'在B'的左侧),若以点C'、B'、P为顶点三角形是直角三角形,求t的值.9.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣2,且抛物线经过A(2,0),C(0,6)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设N是抛物线的顶点,在直线BC上找一点M,使点M到点A的距离与到点N 的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣2上的一个动点,求点P的坐标,使△BPC是以BC 为底边的等腰三角形.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)求抛物线的顶点坐标(用含a的式子表示);(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.13.如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x =﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.14.如图①,已知抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C (0,3),直线l经过B、C两点.抛物线的顶点为D.(1)求抛物线和直线l的解析式;(2)判断△BCD的形状并说明理由.(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.15.一次函数y=﹣2x﹣2分别与x轴、y轴交于点A、B.顶点为(1,4)的抛物线经过点A.(1)求抛物线的解析式;(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m为何值时,S的值最大,并求S的最大值;(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.参考答案1.解:(1)①∵抛物线的对称轴为直线x=﹣3,AB=4,∴点A的坐标为(﹣5,0),点B的坐标为(﹣1,0),故答案为:﹣5;0﹣1;0;②∵抛物线经过(﹣5,0),(﹣1,0),∴,解得,,则抛物线的解析式为y=﹣x2﹣6x﹣5;(2)如图2,作PD⊥OC于D,∵△OCP是等腰直角三角形,∴PD=OC=OD,设点P的坐标为(a,a),设抛物线的解析式为y=﹣(x﹣a)2+a,∵抛物线经过原点,∴﹣(0﹣a)2+a=0,解得,a1=0(不合题意),a2=1,∴△OCP是等腰直角三角形时,点P的坐标为(1,1).2.解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)①对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0)、B(3m,0),C(0,﹣3am2),∵抛物线过点C,∴﹣3am2=﹣3,则am2=1,∵CD∥AB交抛物线于点D,∴∠ADC=∠BAD,∴点D与点C关于抛物线的对称轴x=m对称,∴D(2m,﹣3),∵∠EAB=∠ADC,∴∠EAB=∠BAD,∴x轴平分∠BAD,∴点D关于x轴的对称点D'(2m,3)一定在直线AE上,∴直线AD′的解析式为:y=x+1,联立,整理得x2﹣3mx﹣4m2=0,解得x1=4m,x2=﹣m(舍去),∴E点的横坐标为4m,∴y=.∴点E的纵坐标为5.②存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2=﹣4,∴F(m,﹣4),∵E(4m,5)、A(﹣m,0)、D(2m,﹣3),设P(b,0),∴PF2=(m﹣b)2+16,AD2=9m2+9,AE2=25m2+25,∴(m﹣b)2+16+9m2+9=25m2+25,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).3.解:(1)将点A的坐标代入y=﹣x2+bx+3得:0=﹣1﹣b+3,解得:b=2,将点A的坐标代入y=x+c并解得:c=1,故抛物线和直线的表达式分别为:y=﹣x2+2x+3,y=x+1;联立上述两式得:,解得:,故点D(2,3);(2)如图1,设直线CE交x轴于点H,设点E(m,﹣m2+2m+3),而点C(0,3),将点E、C坐标代入一次函数表达式y=sx+t得:,解得:,故直线CE的表达式为:y=(2﹣m)x+3,令y=0,则x=,故点H(,0),△CBE的面积=BH×(x C﹣y E)=×(3﹣)(3+m2﹣2m﹣3)=6,解得:m=﹣1(舍弃)或4,故点E(4,﹣5);(3)点C、E的纵坐标相同,故CD∥x轴,t秒时,AP=t,则点P在x轴和y轴方向移动的距离均为t,故点P(t﹣1,t),当x=t﹣1时,y=﹣x2+2x+3=﹣t2+4t,故点Q(t﹣1,﹣t2+4t),则PQ=﹣t2+4t﹣t=﹣t2+3t,∵﹣1<0,故PQ有最大值,此时,t=,则点P(,),故直线PQ表达式为:x=;设点M(,m),点N(n,0),而点D(2,3);①当∠DMN为直角时,(Ⅰ)当点M在x轴上方时,如图2,设直线PQ交x轴于点H,交CD于点G,∵∠DMG+∠GDM=90°,∠DMG+∠HMN=90°,∴∠HMN=∠GDM,MN=MD,∠DGM=∠MHN=90°,∴△DGM≌△MHN(AAS),∴GD=MH,NH=GM,即:,解得:,故点N(2,0);(Ⅱ)当点M在x轴下方时,如图3,过点M作x轴的平行线交过点与y轴的平行线于点H,交过点N与y轴的平行线于点E,同理可得:△MEN≌△DHM(AAS),故:NE=MH,EM=DH,即,解得:,故点N(﹣4,0);②当∠DNM为直角时,(Ⅰ)当点N在x轴左侧时,如图4,过点N作y轴的平行线交过点C与x轴的平行线于点H,交过点M与x轴的平行线于点R,同理可得:△DHN≌△NRM(AAS),∴RM=NH,即3=﹣n,解得:n=﹣2.5;(Ⅱ)当点N在x轴右侧时,如图5,过点N作y轴的平行线交过点M与x轴的平行线于点H,交过点D与x轴的平行线于点G,同理可得:△MHN≌△NGD(AAS),∴MH=GN,即n﹣=3,解得:n=3.5,综上,N的坐标为:(2,0)或(﹣4,0)或(﹣2.5,0)或(3.5,0).4.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).5.解:(1)把A(4,0)、B(﹣3,0)代入y=ax2+bx﹣4中,得解得∴这条抛物线所对应的函数表达式为;(2)点C(0,﹣4),当﹣3<m<0时,;当0<m<4时,;故:S=;(3)点C(0,﹣4),AB=5,BM=CN=n,则BN=5﹣n,①当BM=BN=CN时,则点N是BC的中点,故点N(﹣,﹣2),则CN==;②当BN=MN时,如图,过点N作NR⊥x轴于点R,则MN=BN=5﹣n,则BR=n,则cos∠OCB===,解得:n=;③当BM=MN=CN时,同理可得:n=;综上,或或.6.解:(1)抛物线y=﹣x2﹣2x+3与x轴从左到右交于A、B两点,与y轴交于点C,则点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,3);由点A、C的坐标得,直线AC的表达式为:y=x+3…①;(2)设点M(m,﹣m2﹣2m+3),抛物线的对称轴为:x=﹣1,则点A、D的坐标分别为:(﹣3,0)、(﹣1,4),EF=﹣2m﹣2,EMNF的周长l=2(EF+EM)=2(﹣m2﹣2m+3﹣2m﹣2)=2(﹣m2﹣4m+1),当m=﹣2时,l最大,此时点E(﹣2,3);PQ=2,则P、Q两点横纵坐标差均为2,作点E关于直线AC的对称点E′(0,1),将点E′沿AC方向平移2个单位得到E″(2,3),连接E″D交直线AC于点P,将点P向下平移2个单位得到Q,则点Q为所求点;四边形DPQE的周长k=ED+PQ+EQ+PD=ED+PQ+E′Q+PD=ED+PQ+E″P+PD=ED+PQ+E″D为最小;由点DE″坐标得,直线DE″的表达式为:y=﹣x+…②;联立①②并解得:x=,故点P(,),将点P向左向下平移2个单位得到点Q(﹣,);(3)直线AD的表达式为:y=2x+6,则设直线AD向右平移m个单位,则向上平移2m个单位,则点A′、D′的坐标分别为:(m﹣3,2m)、(m﹣1,2m+4),而点C(0,3),DC=;①当A′D′是斜边时,如图2,分别过点A′、D′作y轴的垂线交于点N、M,则∠D′CM=∠CA′N,则tan∠D′CM=tan∠CA′N,即,解得:m=0(舍去)或;②当A′C是斜边时,如图3,过点D′作x轴的平行线交y轴于点N,交过点A′作y轴的平行线于点M,同理可得:tan∠ND′C=tan∠MA′D′,则,即,解得:m=﹣1;③当CD′是斜边时,同理可得:=,解得:m=1,故m=1或﹣1或,则CD为3或3或.7.解:(1)直线y=2x﹣1与y轴交于点C,则点C(0,﹣1),抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B(1,0),则y=a(x+1)(x﹣1)=a(x2﹣1),则﹣a=﹣1,解得:a=1,故抛物线的表达式:y=x2﹣1,直线y=2x﹣1,则tan∠AEC=2=tanα,则sinα=,点E(,0),过点A作AH⊥CD于点H,则点A到直线CD的距离=AH=AE sinα=(1+)×=;(2)点P(m,2m﹣1),将直线表达式与抛物线的表达式联立并整理得:x2﹣(2m+2)x+(m2+2m)=0,则x+m=2m+2,解得:x=m+2,即点Q(m+2,2m+3),设点G(0,n),①当∠PQG=90°时(左侧图),则PQ=GQ,过点Q作y轴的平行线分别交过点P与x轴的平行线、过点G作x轴的平行线于点M、N,∵∠NQG+∠NGQ=90°,∠NQG+∠PQM=90°,∴∠PQM=∠NGQ,∠GNQ=∠QMP=90°,PQ=GQ,∴△GNQ≌△QMP(AAS),GN=QM,NQ=PM,即m+2=2m+3﹣(2m﹣1),n﹣(2m+3)=m+2﹣m,解得:m=2,n=9,故点G(0,9),同理当点G在x轴下方时,点G(0,﹣11);②当∠GPQ=90°时,点G的坐标同①;③当∠PGQ=90°时,同理可证:△GMP≌△QNG(AAS),∴GN=QM,PM=QN,即n﹣2m+1=m+2,m=2m+3﹣n,解得:m=1,n=4,故点G(0,4),当点G在x轴下方时,同理可得:点G(0,﹣6);综上,点G的坐标为:(0,9)或(0,﹣11)或(0,4)或(0,﹣6).8.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠PAB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S△PBC=OB•PF=×3(m+6)=m+9(m>﹣2);(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P(6,12),如图2,当∠C'PB'=90°时,取B'C'的中点E,连接PE,则B'C'=2PE,即:B'C'2=4PE2,设B'(x1,y1),C'(x2,y2),∵直线B'C'的解析式为y=x+t③,联立①③化简得,x2﹣3x﹣(2t+6)=0,∴x1+x2=3,x1x2=﹣(2t+6),∴点E(,+t),B'C'2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2] =2[9+4(2t+6)]=16t+66,而PE2=(6﹣)2+(12﹣﹣t)2=t2﹣21t+,∴16t+66=4(t2﹣21t+),∴t=6(此时,恰好过点P,舍去)或t=19,当∠PC'B'=90°时,延长C'P交BC于H,交x轴于G,则∠BHC=90°,∵OB=CO,∠BOC=90°,∴∠OBC=45°,∴∠PGO=45°,过点P作PQ⊥x轴于Q,则GQ=PQ=12,∴OG=OQ+GQ=18,∴点G(18,0),∴直线C''G的解析式为y=﹣x+18④,联立①④解得或∴C''的坐标为(﹣7,25),将点C''坐标代入y=x+t中,得25=﹣7+t,∴t=32,即:满足条件的t的值为19或32.9.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,∴PH最大=.(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠CBM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).10.解:(1)由题意得:解得:∴抛物线的解析式为y=﹣x2﹣2x+6;∵A,B关于x=﹣2对称,A(2,0)∴B(﹣6,0)把B(﹣6,0),C(0,6)分别代入直线y=mx+n得:解得∴直线BC的解析式为y=x+6;(2)由(1)知N(﹣2,8),设直线NA与直线BC的交点为M,则此时MA+MN 的值最小.如图所示:设NA的解析式是y=kx+d∵N(﹣2,8),A(2,0)∴解得∴NA的解析式是y=﹣2x+4与BC解析式联立得:解得∴M(﹣,)即点M的坐标为(﹣,).(3)设P(﹣2,t)又∵B(﹣6,0),C(0,6)∴PB2=(﹣2+6)2+t2=16+t2,PC2=(﹣2)2+(t﹣6)2=t2﹣12t+40 由已知△BPC是以BC为底边的等腰三角形,则PB2=PC2∴16+t2=t2﹣12t+40∴t=2∴P(﹣2,2)为所求点.11.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),函数的对称轴为:x=﹣1,故点D(﹣1,﹣4a);(2)无关,理由:由抛物线的表达式得,点C(0,﹣3a),将点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线CD的表达式为:y=ax﹣3a,令y=0,则x=3,故点E(3,0),即OE=3,OE的长与a值无关;(3)tanβ===﹣a,故﹣≤a≤﹣1;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE,则PD=PE,∠DPE=90°,而点D(﹣1,﹣4a),点E(3,0),过点P作y轴的平行线交过点D与x轴的平行线于点M,交x轴于点N,∵∠PDM+∠MPD=90°,∠MPD+∠EPN=90°,∴∠MPD=∠EPN,∠PMD=∠ENP=90°,PD=PE,∴△PMD≌△ENP(AAS),∴MD=PN,MP=NE,即n=﹣1﹣m,﹣4a﹣n=3﹣m,解得:n=﹣1﹣m,m=2a+1,∵a<0,故m=2a+1<1,故n=﹣m﹣1(m<1).12.解:(1)直线y=﹣x+3故点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,﹣),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2﹣,将点(6,6)代入y=a(x﹣1)2﹣,得6=a(6﹣1)2﹣,∴a=,∴抛物线的解析式为y=(x﹣1)2﹣;(2)①在y=(x﹣1)2﹣中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴=,∵<4,∴0≤t≤;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,当∠BPQ=90°时,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴=,即=,∴t=;当∠PQB=90°时,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴=,即=,∴t=,综上所述,t的值为或;③如右图,过点Q作QH⊥x轴于点H,则∠BHQ=∠BOC=90°,∴HQ∥OC,∴△BHQ∽△BOC,∴=,即=,∴HQ=,∴S四边形ACQP=S△ABC﹣S△BPQ=×6×3﹣(4﹣t)×t=(t﹣2)2+,∵>0,∴当t=2时,四边形ACQP的面积有最小值,最小值是.14.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),∴y=﹣x2+bx+3,将点B(3,0)代入y=﹣x2+bx+3,得0=﹣9+3b+3,∴b=2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B(3,0),C(0,3),∴可设直线l的解析式为y=kx+3,将点B(3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△BCD是直角三角形,理由如下:如图1,过点D作DH⊥y轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∵C(0,3),B(3,0),∴HD=HC=1,OC=OB=3,∴△DHC和△OCB是等腰直角三角形,∴∠HCD=∠OCB=45°,∴∠DCB=180°﹣∠HCD﹣∠OCB=90°,∴△BCD是直角三角形;(3)∵EF⊥x轴,∠OBC=45°,∴∠FGB=90°﹣∠OBC=45°,∴∠EGC=45°,∴若△ECG是直角三角形,只可能存在∠CEG=90°或∠ECG=90°,①如图2﹣1,当∠CEG=90°时,∵EF⊥x轴,∴EF∥y轴,∴∠ECO=∠COF=∠CEF=90°,∴四边形OFEC为矩形,∴y E=y C=3,在y=﹣x2+2x+3中,当y=3时,x1=0,x2=2,∴E(2,3);②如图2﹣2,当∠ECG=90°时,由(2)知,∠DCB=90°,∴此时点E与点D重合,∵D(1,4),∴E(1,4),综上所述,当△ECG是直角三角形时,点E的坐标为(2,3)或(1,4).15.解:(1)一次函数y=﹣2x﹣2与x轴交于点A,则A的坐标为(﹣1,0),∵抛物线的顶点为(1,4),∴设抛物线解析式为y=a(x﹣1)2+4,∵抛物线经过点A(﹣1,0),∴0=a(﹣1﹣1)2+4,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)连接OC,点C为第一象限抛物线上一动点,点C的横坐标为m,∴C(m,﹣m2+2m+3),一次函数y=﹣2x﹣2与y轴交于点B,则OB=2,∵A的坐标为(﹣1,0),∴OA=1,∴,,.∴,∴当m=2时,S的值最大,最大值为;(3)设M(0,n),∵A(﹣1,0),C(2,3),∴直线AC的解析式为y=x+1,①当AC⊥MC时,=﹣1,∴n=5,∴M(0,5);②当AC⊥AM时,n=﹣1,∴M(0,﹣1);③当AM⊥MC时,•n=﹣1,∴n=,∴M或M;综上所述:点M的坐标为(0,﹣1)、(0,5)、或.。

2020年陕西中考二次函数与三角形探究(含答案)

2020年陕西中考二次函数与三角形探究(含答案)

二次函数与三角形综合探究二次函数的综合探究是陕西中考的必考题型,每年以压轴题的形式在解答题第24题考查.这类题型考查的形式较多,常涉及最值问题、特殊图形的存在性问题、相似三角形的存在性问题等,将方程、函数、图形等融为一体进行考查,是数与形的完美结合.类型1 二次函数与特殊三角形的存在性问题1.二次函数与等腰三角形存在性问题(1)数形结合,注意使用等腰三角形的性质与判定.(2)函数问题离不开方程,注意方程与方程组的使用.(3)找动点,使之与已知两点构成等腰三角形.已知点A,B和直线l,在l上求点P,使△P AB为等腰三角形“两圆一垂”(1)直角三角形一般涉及勾股定理,注意勾股定理及其逆定理;同时注意直角三角形的特殊角的三角函数的运用.(2)直角三角形与二次函数属于代数与几何的结合,把几何问题数字化,这类问题要注意平面直角坐标系的作用.(3)综合问题注意对全等、相似、勾股定理、解直角三角形等知识的使用.(4)找动点,使之与已知两点构成直角三角形.问题作图求点坐标直角三角形已知点A,B和直线l,在l上求点P,使△P AB为直角三角形“两垂一圆”分别表示出点A,B,P的坐标,再表示出线段AB,BP,AP的长度,由△AB2=BP2+AP2,△BP2=AB2+AP2,△AP2=AB2+BP2列方程解出坐标作垂线,用勾股定理或相似建立等量关系抛物线的对称轴交x轴于点D.已知A(-1,0),C(0,3).(1)求抛物线的解析式;【解答】把A(-1,0),C(0,3)代入y=-x2+mx+n,得⎩⎪⎨⎪⎧-1-m+n=0,n=3,解得⎩⎪⎨⎪⎧m=2,n=3,△抛物线的解析式为y=-x2+2x+3.(2)判断△ACD的形状,并说明理由;【解答】△ACD是等腰三角形.理由如下:△由(1)知,抛物线的对称轴为直线x=-22×(-1)=1,△D(1,0).△A(-1,0),C(0,3),△AD=2,AC=12+32=10,CD=12+32=10.△AC=CD,△△ACD是等腰三角形.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?若存在,求出P点的坐标;若不存在,请说明理由.【解答】存在.如答图1,由(2)知CD=10.△△CDP是以CD为腰的等腰三角形,△CP1=DP2=DP3=CD,△P2(1,10),P3(1,-10).过点C作CM垂直对称轴于点M,△MP1=MD=3.△DP1=6,△P(1,6)综上所述,符合条件的点P的坐标为(1,6)或(1,10)或(1,-10).(4)点P是线段BC上的一动点,是否存在这样的点P,使△PCD是等腰三角形?若存在,求出P点的坐标;若不存在,请说明理由.【解答】存在.△B(3,0),C(0,3),△直线BC的解析式为y=-x+3.设点P(m,-m+3)(0<m<3).△C(0,3),D(1,0),△CP2=m2+(-m+3-3)2=2m2,DP2=(m-1)2+(-m+3)2,CD2=10,△PCD是等腰三角形分三种情况:△当CP=DP时,则CP2=DP2,△2m 2=(m -1)2+(-m +3)2,△m =54,△P 1(54,74);△当CP =CD 时,则CP 2=CD 2,△2m 2=10,△m =5或m =-5(舍去),△P 2(5,3-5); △当DP =CD 时,则DP 2=CD 2,△(m -1)2+(-m +3)2=10,△m =4(舍去)或m =0(舍去). 综上所述,符合条件的点P 的坐标为(54,74)或(5,3-5).(5)设抛物线的顶点为E ,在其对称轴右侧的抛物线上是否存在点P ,使得△PEC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【解答】存在.由(1)知,E 点坐标为(1,4),对称轴为直线x =1. 如答图2,分两种情况讨论:△若以CE 为底边,则PE =PC . 设点P 的坐标为(x ,y ), 则(x -1)2+(y -4)2=x 2+(y -3)2, 化简得y =4-x .又△点P (x ,y )在抛物线上, △4-x =-x 2+2x +3,解得x =3±52.△3-52<1,应舍去.△x =3+52,y =4-x =5-52.即点P 的坐标为(3+52,5-52).△若以CE 为腰,因为点P 在对称轴右侧的抛物线上,由抛物线的对称性可知,点P 与点C 关于直线x =1对称,此时P 点坐标为(2,3).综上所述,符合条件的点P 的坐标为(3+52,5-52)或(2,3).练习1.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD △x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =-1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积;(3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)△点A 的坐标是(2,0),抛物线的对称轴是直线x =-1, △点B 的坐标为(-4,0).设抛物线的函数表达式为y =a (x -2)(x +4) =a (x 2+2x -8),将C (0,-2)代入得-8a =-2,解得a =14,故抛物线的函数表达式为y =14x 2+12x -2.(2)设直线BC 的表达式为y =mx +n , 将点B ,C 的坐标代入得⎩⎪⎨⎪⎧0=-4m +n ,-2=n ,解得⎩⎪⎨⎪⎧m =-12,n =-2,故直线BC 的表达式为y =-12x -2.设点D (x ,0),则点P (x ,14x 2+12x -2),点E (x ,-12x -2).△PE =14OD ,△PE =14x 2+12x -2+12x +2=14(-x ),解得x =-5或0(舍去),即点D (-5,0), △PE =14OD =14×5=54,BD =-4-(-5)=1.△S △PBE =12PE ·BD =12×54×1=58.(3)存在.由(1)可知,tan△ABC =12,则sin△ABC =55.由题意得△BDM 是以BD 为腰的等腰三角形,且M 在x 轴上方. △当BD =BM =1时,y M =BM sin△ABC =1×55=55, 则x M =-20+255,则点M (-20+255,55);△如答图,当BD =DM ′=1时,设M ′(x ,-12x -2),过M ′作MF △x 轴于点F ,则DF 2+M ′F 2=DM ′2,故(-5-x )2+(-12x -2)2=1,解得x =-285或x =-4(舍去),则点M ′(-285,45).综上所述,符合条件的点M 的坐标为(-20+255,55)或(-285,45).2.如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y =a (x +1)(x -3), 即y =ax 2-2ax -3a , △-2a =2,解得a =-1,△抛物线的解析式为y =-x 2+2x +3.当x =0时,y =-x 2+2x +3=3,则C (0,3). 设直线AC 的解析式为y =px +q , 把A (-1,0),C (0,3)代入得⎩⎪⎨⎪⎧-p +q =0,q =3,解得⎩⎪⎨⎪⎧p =3,q =3, △直线AC 的解析式为y =3x +3. (2)△y =-x 2+2x +3=-(x -1)2+4, △顶点D 的坐标为(1,4).如答图1,作B 点关于y 轴的对称点B ′,连接DB ′交y 轴于点M ,连接BM ,则B ′(-3,0).△MB =MB ′,△MB +MD =MB ′+MD =DB ′,此时MB +MD 的值最小,而BD 的值不变, △此时△BDM 的周长最小, 易得直线DB ′的解析式为y =x +3, 当x =0时,y =x +3=3, △点M 的坐标为(0,3). (3)存在.如答图2,过点C 作AC 的垂线交抛物线于另一点P .△直线AC 的解析式为y =3x +3, △直线PC 的解析式可设为y =-13x +b ,把C (0,3)代入得b =3,△直线PC 的解析式为y =-13x +3.联立⎩⎪⎨⎪⎧y =-x 2+2x +3,y =-13x +3,解得⎩⎪⎨⎪⎧x =0,y =3或⎩⎨⎧x =73,y =209, 则此时P 点坐标为(73,209);如答图2,过点A 作AC 的垂线交抛物线于另一点P ′,直线P ′A 的解析式可设为y =-13x +b ′,把A (-1,0)代入得13+b ′=0,解得b ′=-13,△直线P ′A 的解析式为y =-13x -13.联立⎩⎪⎨⎪⎧y =-x 2+2x +3,y =-13x -13, 解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎨⎧x =103,y =-139,则此时P 点坐标为(103,-139).综上所述,符合条件的点P 的坐标为(73,209)或(103,-139).类型2 二次函数与相似三角形的存在性问题探究三角形相似的一般思路:解答三角形相似的存在性问题时,要运用分类讨论的思想及数形结合的思想,具体方法步骤如下:(1)假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现要证明两个三角形相似的题目),或者涉及动点问题,因动点问题中点位置的不确定,此时应考虑不同的对应关系,分情况讨论;(2)确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三对角对应来分类讨论;(3)建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.例题如图,已知抛物线y =-14x 2+bx +4与x 轴交于A ,B 两点,与y 轴交于点C .若已知B 点的坐标为(8,0).(1)求抛物线的解析式及其对称轴;【解答】△点B (8,0)在抛物线y =-14x 2+bx +4上,△-14×64+8b +4=0,解得b =32.△抛物线的解析式为y =-14x 2+32x +4.△-b2a =-322×(-14)=3, △其对称轴为直线x =3.(2)连接AC ,BC ,试判断△AOC ,△COB和△ABC 是否相似?并说明理由;【解答】△ABC △△ACO △△CBO . 理由:如答图1,由(1)可得,当x =0时,y =4,则C (0,4).当y =0时,则-14x 2+32x +4=0,解得x =8或-2.则A (-2,0).在Rt△AOC 中,tan△CAO =OC AO =42=2. 在Rt△BOC 中,tan△BCO =OB OC =84=2. △△CAO =△BCO . △△BCO +△OBC =90°, △△CAO +△OBC =90°,△△ACB =90°.△△ABC △△ACO △△CBO .(3)在(2)的条件下,抛物线上是否存在点M ,过点M 作MN △x 轴于点N ,使得以点A ,M ,N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】存在.理由如下:由(2)可知,△ABC △△ACO △△CBO .△M 点与C 点重合,即点M 坐标为(0,4)时,△MAN △△BAC .△根据抛物线的对称性,当点M 坐标为(6,4)时,△MAN △△ABC .△当点M 在第四象限时,设M (n ,-14n 2+32n +4),则N (n ,0). △MN =14n 2-32n -4,AN =n +2. AC =22+42=25,BC =82+42=4 5.当MN AN =AC BC =12时,MN =12AN , 即14n 2-32n -4=12(n +2), 整理得n 2-8n -20=0,解得n 1=10,n 2=-2(舍去),△M (10,-6).当MN AN =BC AC =21时,MN =2AN ,即14n 2-32n -4=2(n +2), 整理得n 2-14n -32=0,解得n 1=-2(舍去),n 2=16,△M (16,-36).综上所述,存在点M ,使得以点A ,M ,N 为顶点的三角形与△ABC 相似,点M 的坐标为(0,4)或(6,4)或(10,-6)或(16,-36).(4)在y 轴的正半轴上是否存在点P ,使以点P ,O ,B 为顶点的三角形与△AOC相似?若存在,求出点P 的坐标;若不存在,请说明理由.如答图2,由(1)可知,OA =2,OB =8,OC =4,设OP =y .若△POB △△AOC ,则OP OA =OB OC =2, △OP =4,△P (0,4).若△BOP △△AOC ,则OP OC =OB OA=4, △OP =16,△P (0,16).综上所述,在y 轴的正半轴上存在点P 1(0,4)和点P 2(0,16),使以点P ,O ,B 为顶点的三角形与△ABC 相似.(5)点D (m ,n )是线段BC 上的一个动点(点D 不与B ,C 重合),过点D 作x 轴的垂线与抛物线相交于点F ,垂足为E ,是否存在点D ,使△CDE △△CEB ?若存在,求出D 点的坐标;若不存在,请说明理由.【解答】存在.理由如下:如答图3,△△ECD =△BCE ,△当△CED =△CBE 时,△CDE △△CEB .△△COB =△DEB =90°,△DE △OC .△△OCE =△CED =△CBE .设E (m ,0),OC =4,OB =8.△tan△OCE =OE OC =m 4,tan△CBE =OC OB =12, △m 4=12,解得m =2. 设直线BC 的解析式为y =kx +b ,将B (8,0),C (0,4)代入得⎩⎪⎨⎪⎧8k +b =0,b =4,解得⎩⎪⎨⎪⎧k =-12,b =4,△y =-12x +4,△n =-12×2+4=3,△点D 坐标为(2,3).(6)点M 在线段OB 上运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .在抛物线上是否存在点P ,使得△MBQ 与△CPQ 相似?若存在,直接写出点P 的坐标;若不存在,说明理由.【解答】存在.P 点坐标为(6,4).【解法提示】如答图4,△MP △x 轴,设M (m ,0),△P (m ,-14m 2+32m +4). 由(5)可知,直线BC 的解析式为y =-12x +4,OB =8,OC =4. △在△MBQ 和△CPQ 中,△BQM =△CQP ,△BMQ =90°,△若使△CPQ 和△MBQ 相似,则需△PCQ =90°或△CPQ =90°.分以下两种情况讨论:△当△PCQ =90°时,过点P 作PE △y 轴于点E ,则△PCE +△CPE =90°,PE =m ,CE =-14m 2+32m +4-4= -14m 2+32m . △△PCQ =90°,△△PCE +△BCO =90°,△△BCO =△CPE ,△Rt△PEC △Rt△COB ,△PE CO =CE BO ,则m 4=-14m 2+32m 8. 解得m =0(舍去)或m =-2,当m =-2时,点P 位于第二象限,故不合题意,舍去.△当△CPQ =90°时,CP △PM ,△点P 的纵坐标为4,△-14m2+32m+4=4,解得m=0(舍去)或m=6,△P(6,4).综上所述,符合条件的点P的坐标为(6,4).。

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题1.如图,在平面直角坐标系中,二次函数y=-13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=________,c=________;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由.第1题图解:(1)13,4;【解法提示】∵二次函数y=-13x2+bx+c与x轴交于A(-3,0),B(4,0),∴b c=b c=--+⎧⎪⎨-++⎪⎩33016403,解得b=c=⎧⎪⎨⎪⎩134,1(2)可能是,理由如下:∵点P在AC上以每秒1个单位的速度运动,∴AP=t,∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t,∴AQ=t+3,∵∠PAQ<90°,∠PQA<90°,∴若要使△APQ是直角三角形,则∠APQ=90°,在Rt△AOC中,OA=3,OC=4,∴AC=5,如解图①,设PQ与y轴交于点D,第1题解图①∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°,2∴∠DQO=∠DCP,∴tan∠DQO=APPQ=tan∠DCP=AOCO=34,∵AP=t,∴PQ=43 t,由勾股定理得:AQ2=AP2+PQ2,即(t+3)2=t2+(43t)2,解得t=92或t=-98(舍去),根据题意,点Q在线段OB上,∴0≤t≤4,∴不存在这样的t值满足题意,即△APQ不可能是直角三角形;(3)假设存在点M使得△PMQ是以点P为直角顶点的等腰直角三角形,如解图②,过P作PE⊥x轴于E,过M作MN⊥PE交PE的延长线于点N,34第1题解图②∵∠MPN +∠PMN =90°, ∠MPN +∠QPE =90°, ∴∠PMN =∠QPE , 在△PMN 和△QPE 中,∠∠⎧⎪∠∠⎨⎪⎩PMN=QPE PNM=PEQ MP=PQ , ∴△PMN ≌△QPE (AAS), ∴PN =EQ ,MN =PE ,∵AP =t ,cos∠CAO =AO AC =35, sin∠CAO =OC AC =45,5∴AE =35t ,PE =45t ,∴MN =45t ,EN =EQ -PE =AQ -AE -PE =3+t -35t -45t =3-25t , ∴x M =x E -MN =35t -3-45t =-15t -3,∴点M 的坐标为(-15t -3,25t -3),在x 轴下方,∵点M 在抛物线上,∴-13(-15t -3)2-13(15t +3)+4=25t -3,整理得t 2+65t =225,解得t =-65+52052或t =-65-52052(舍),综上,存在满足条件的点M ,此时运动时间t 为-65+52052秒.2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B . (1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最6小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得⎩⎪⎨⎪⎧-b 2a=-1a +b +c =0c =3,解得⎩⎨⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0), ∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得 ⎩⎨⎧-3m +n =0n =3,解得⎩⎨⎧m =1n =3, ∴直线BC 的解析式为y =x +3;7(2)如解图,连接MA ,第2题解图∵MA =MB , ∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172. 综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).83. 如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0). (1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△PAC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得⎩⎨⎧36+6b +c =0c =-6,解得⎩⎨⎧b =-5c =-6,∴抛物线的解析式为y =x 2-5x -6; (2)当y =0时,则有:x 2-5x -6=0, 即(x +1)(x -6)=0, ∴解得x 1=-1,x 2=6(舍), ∴B (-1,0).由两点之间的距离公式可得:BC 2=2=49,AC 2=(6-0)2+2=72, AB 2=(-1-0)2+2=37,9∵AB 2+BC 2>AC 2, ∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△PAC 是以AC 为底的等腰三角形 理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P , ∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC , ∴直线MP 过点O ,设直线MP 的解析式为y =kx , 将点M (3,-3)代入得,k =-1, 即直线MP 的解析式为y =-x , 联立⎩⎨⎧y =-x y =x 2-5x -6, 解得⎩⎪⎨⎪⎧x 1=2-10y 1=10-2或⎩⎪⎨⎪⎧x 2=2+10y 2=-2-10,∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC . (1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;10(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,PA =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图解:(1)∵直线y =-2x +10与x 轴、y 轴相交于A 、B 两点, ∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0), 把点A (5,0)和C (8,4)代入可得⎩⎨⎧25a +5b =064a +8b =4,解得⎩⎪⎨⎪⎧a =16b =-56,∴抛物线的解析式为y =16x 2-56x ;∵A (5,0),B (0,10),C (8,4), ∴AB 2=125,AC 2=25,BC 2=100, ∵AB 2=AC 2+BC 2,11∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt△AOP 和Rt△ACQ 中, ⎩⎨⎧AC =OA PA =QA, ∴Rt△AOP ≌Rt△ACQ , ∴OP =CQ , ∴2t =10-t ,∴t =103, ∵t <5,∴当运动时间为103秒时,PA =QA ;(3)存在.由题可得,抛物线的对称轴直线为x =52,设点M的坐标为( 52,b),利用点的坐标可求得AB2=102+52=125,MB2=(52)2+(b-10)2,MA2=(52)2+b2,∵△MAB是等腰三角形,∴可分以下三种情况讨论:①当AB=MA时,即125=(52)2+b2,解得b=±519 2,即点M的坐标为(52,5192)或(52,-5192);②当AB=BM时,即125=(52)2+(b-10)2,解得b=10±519 2,即点M的坐标为(52,10+5192)或(52,10-5192);12③当MB=MA时,即(52)2+(b-10)2=(52)2+b2,解得b=5,此时点A、M、B共线,故这样的点M不存在.综上所述,存在点M,使以点A、B、M为顶点的三角形是等腰三角形,点M的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192).5.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标.解:(1)由题意得⎩⎨⎧32+3b+c=0c=3,解得⎩⎨⎧b=-4c=3,∴抛物线的解析式为y=x2-4x+3;13(2)如解图①,过点P作PG∥CF交CB与点G,第5题解图①由题可知,直线BC的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,∵PG∥CF,∴△GPE为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<3), 则G(t,-t+3)PE=22PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,14∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2 (t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D在C下方D2位置时,由勾股定理得BD22+BC2=CD22,即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1,综上所述,当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).6.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;15(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN的值最小,求出此时点K的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C(0,4),A(4,0),∴c=a a c=⎧⎨-+⎩41680,解得a=c=⎧-⎪⎨⎪⎩124,∴抛物线的解析式为y=-12x2+x+4;(2)由y=-12x2+x+4=-12(x-1)2+92可得抛物线的顶点坐标为N(1,92),如解图①,作点C关于x轴的对称点C′,则C′(0,-4),连接C′N交x轴于点K,则K点即为所求点,1617第6题解图①设直线C′N 的解析式为y =kx +b (k ≠0),把N ,C′两点坐标代入可得:k b=b=⎧+⎪⎨⎪-⎩924,解得k=b=⎧⎪⎨⎪-⎩1724,∴直线C′N 的解析式为y =172x -4, 令y =0,解得x =817, ∴点K 的坐标为(817,0); (3)存在.要使△ODF 是等腰三角形,需分以下三种情况讨论: ①DO =DF ,∵A (4,0),D (2,0), ∴AD =OD =DF =2,18在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC =45°, ∴∠ADF =90°.此时,点F 的坐标为(2,2); 由-12x2+x +4=2得,x 1=1+5,x 2=1- 5.此时,点P 的坐标为(1+5,2)或(1-5,2); ②FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M .第6题解图②由等腰三角形的性质得:OM =12OD =1,∴AM =3,∴在等腰直角△AMF 中,MF =AM =3,19∴F (1,3).由-12x 2+x +4=3得,x 1=1+3,x 2=1- 3.此时,点P 的坐标为(1+3,3)或(1-3,3); ③OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =42,∴点O 到AC 的距离为2 2.而OF =OD =2<22,∴在AC 上不存在点F 使得OF =OD =2.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).7. 如图①,抛物线y =-13x 2+bx +8与x 轴交于点A (-6,0),点B (点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE 、EC .(1)求抛物线的表达式及点C 的坐标;(2)连接AC 交直线l 于点D ,则在点P 运动过程中,当点D 为EP 中点时,求S △ADP ∶S △CDE ;(3)如图②,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使△AEG 是以AE为直角边的直角三角形?若存在,请求出点G的坐标;若不存在,说明理由.第7题图解:(1)∵点A(-6,0)在抛物线y=-13x2+bx+8上,∴0=-13×(-6)2+(-6b)+8,解得b=-2 3,∴抛物线的表达式为y=-13x2-23x+8,令x=0,得y=8,∴C(0,8);(2)设点E(t,-13t2-23t+8),∴P(t,0),∵点D为EP的中点,2021∴DP =DE ,D (t ,-16t 2-13t +4),设直线AC 的解析式为y =kx +b (k ≠0),将A (-6,0),C (0,8),代入得:k b=b=-+⎧⎨⎩608,解得k=b=⎧⎪⎨⎪⎩438,∴直线AC 的解析式为y =43x +8,∵点D 在直线AC 上, ∴43t +8=-16t 2-13t +4, 解得t 1=-6(舍去),t 2=-4, ∴P (-4,0), ∴AP =2,OP =4,∴S △ADP S △CDE =1212g g DP AP DE OP =AP OP =12; (3)存在.如解图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,第7题解图①∵EC∥x轴,∴EP=CO=8,把y=8代入y=-13x2-23x+8,则8=-13x2-23x+8,解得x=0(舍去)或x=-2,∴P(-2,0),∴AP=AO-PO=4,(ⅰ)如解图①,当∠AEG=90°时,∵∠MEG+∠AEP=90°,∠AEP+∠EAP=90°,∴∠MEG=∠EAP,又∵∠APE=∠EMG=90°,∴△EMG∽△APE,22∴EMAP=MGEP,设点G(m,-13m2-23m+8)(m>0),则GN=MP=-13m2-23m+8,∴EM=EP-MP=8-(-13m2-23m+8)=13m2+23m,MG=PN=PO+ON=2+m,∴13m2+23m4=2+m8,∴m=-2(舍去)或m=3 2,∴G(32,254);(ⅱ)如解图②,当∠EAG=90°时,23第7题解图②∵∠NAG+∠EAP=90°,∠AEP+∠EAP=90°,∴∠NAG=∠AEP,∵∠APE=∠GNA=90°,∴△GNA∽△APE,∴GNAP=ANEP,设点G(n,-13n2-23n+8)(n>4),∴GN=13n2+23n-8,AN=AO+ON=6+n,∴2128334+-n n=68+n,∴n=-6(舍去)或n=11 2,∴G(112,-234),综上,符合条件的G点的坐标为(32,254)或(112,-234).24258. 如图,在平面直角坐标系中,已知抛物线y =ax 2+bx -8与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE .已知点A ,D 的坐标分别为(-2,0),(6,-8). (1)求抛物线的函数表达式; (2)分别求出点B 和点E 的坐标;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,△OPQ 是等腰三角形.第8题图解:(1)∵抛物线y =ax 2+bx -8经过点A (-2,0),D (6,-8), ∴将A 、D 两点的坐标代入得⎩⎨⎧4a -2b -8=036a +6b -8=-8,解得⎩⎨⎧a =12b =-3,∴抛物线的函数表达式为y =12x 2-3x -8;(2)∵y =12x 2-3x -8=12(x -3)2-252,∴抛物线的对称轴为直线x=3,又∵抛物线与x轴交于A,B两点,点A的坐标为(-2,0),∴点B的坐标为(8,0).设直线l的函数表达式为y=kx,∵点D(6,-8)在直线l上,代入得6k=-8,解得k=-4 3,∴直线l的函数表达式为y=-43x,∵点E为直线l和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-43×3=-4,即点E的坐标为(3,-4);(3)需分两种情况进行讨论:①当OP=OQ时,△OPQ是等腰三角形,如解图①,第8题解图①∵点E的坐标为(3,-4),26∴OE=32+42=5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H,则OMOP=OEOQ,∴OM=OE=5,∴点M的坐标为(0,-5),设直线ME的函数表达式为y=k1x-5,E(3,-4)在直线ME上,∴3k1-5=-4,解得k1=1 3,∴直线ME的函数表达式为y=13x-5,令y=0,解得x=15,∴点H的坐标为(15,0).又∵MH∥PB,∴OPOM=OBOH,即-m5=815,∴m=-8 3;②当QO=QP时,△OPQ是等腰三角形,如解图②,27第8题解图②∵当x=0时,y=12x2-3x-8=-8,∴点C的坐标为(0,-8),∴CE=32+(8-4)2=5,∴OE=CE,∴∠1=∠2,又∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB.设直线CE交x轴于点N,其函数表达式为y=k2x-8,E(3,-4)在直线CE上,∴3k2-8=-4,解得k2=43,28∴直线CE的函数表达式为y=43x-8,令y=0,得43x-8=0,∴x=6,∴点N的坐标为(6,0).∵CN∥PB.∴OPOC=OBON,∴-m8=86,解得m=-323.综上所述,当m的值为-83或-323时,△OPQ是等腰三角形.9.如图,抛物线y=13x2+bx+c与x轴交于A(3,0),B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.2930第9题图解:(1)∵y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,∴⎩⎪⎨⎪⎧13×32+3b +c =013×(-1)2-b +c =0,解得⎩⎨⎧b =-23c =-1, ∴抛物线的解析式为y =13x 2-23x -1;(2)∵a =13,b =-23,c =-1,抛物线的顶点D 的坐标为(-b 2a ,4ac -b 24a),∴x D =--232×13=1,y D =4×13×(-1)-(-23)24×13=-43,∴D(1,-43).把x=1代入y=-2x中得y=-2,∵-43≠-2,∴顶点D不在直线y=-2x上;(3)存在.理由如下:如解图,过点C作x轴的平行线,与该抛物线交于点P1,P2,连接BP1,BP2.第9题解图∵直线BC⊥x轴,∴△P1BC、△P2BC都是直角三角形.把x=-1代入y=-2x中得:y=-2×(-1)=2,∴C(-1,2).31∴把y=2代入y=13x2-23x-1中得13x2-23x-1=2,解得x1=10+1,x2=-10+1.∴P1(10+1,2),P2(-10+1,2).10.如图,抛物线y=-12x2+bx+c与x轴交于A(-1,0)、B两点,与y轴交于点C(0,2),抛物线的对称轴交x轴于点D.(1)求抛物线的解析式;(2)求sin∠ABC的值;(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形,如果存在,直接写出点P的坐标;如果不存在,请说明理由.第10题图解:(1)将点A(-1,0),C(0,2)代入抛物线y=-12x2+bx+c中得,⎩⎨⎧-12-b+c=0c=2,解得⎩⎨⎧b=32c=2,32∴抛物线的解析式为y=-12x2+32x+2;(2)令y=-12x2+32x+2=0,解得x1=-1,x2=4,∴点B的坐标为(4,0),在Rt△BOC中,BC=OC2+OB2=22+42=25,∴sin∠ABC=OCBC=225=55;(3)存在,点P坐标为(32,52)或(32,-52)或(32,4).【解法提示】由抛物线y=-12x2+32x+2得对称轴为直线x=32,∴点D的坐标为(32,0).∴CD=OC2+OD2=22+(32)2=52.∵点P在对称轴x=32上,且△PCD是以CD为腰的等腰三角形,∴当点D为顶点时,有DP=CD=52,33此时点P的坐标为(32,52)或(32,-52);当点C为顶点时,如解图,连接CP,则CP=CD,过点C作CG⊥DP于点G,则DG=PG,第10题解图∵DG=2,∴PG=2,PD=4,∴点P的坐标为(32,4).综上,存在点P使△PCD是以CD为腰的等腰三角形,点P的坐标为(32,52)或(32,-52)或(32,4).34。

2020年九年级数学备战中考:二次函数压轴题(含答案)

2020年九年级数学备战中考:二次函数压轴题(含答案)

二次函数压轴题中考真题集合1.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(−1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1S2=23,求a的值.2.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).(1)求抛物线的解析式.(2)若△AOC与△FEB相似,求a的值.(3)当PH=2时,求点P的坐标.3.如图1,在平面直角坐标系中,一次函数y=﹣34x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.4.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒√2个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当MQNQ =12时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.5.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值. (3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx−3与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON=√2,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出ΔPCE与ΔACD全等时点P的坐标.x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y 7.如图,在平面直角坐标系中,抛物线y=﹣12=﹣1x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交2于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.时,求点F的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤ √5),请直接写出S与t的函数关系式.8.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=−2x2+ bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.BF时,求(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=12sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.9.在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ 时,求点P的坐标.(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.x2+bx+c与x轴交于A(−1,0),B(5,0)两点,顶点为C,对称轴交10.抛物线y=−29x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB 的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2 √2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.12.如图,在平面直角坐标系中,RtΔABC的边BC在x轴上,∠ABC=90∘,以A为顶点的抛物线y=−x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,ΔACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.13.如图,直线y=x-3与坐标轴交于A、B两点,抛物线y=14x2+bx+c经过点B,与直线y=x-3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.14.在平面直角坐标系中,直线y=12x−2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过点B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.15.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.答案解析部分1.【答案】(1)解:抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3),即c=−3a,则点C(0,−3a)(2)解:过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,∵∠CDP+∠PDC=90°,∠PDC+∠Q DB=90°,∴∠QDB=∠DCP,设:D(1,n),点C(0,−3a),∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴CPDQ =PDBQ=CDBD,其中:CP=n+3a,DQ=3−1=2,PD=1,BQ=n,CD=−3a,BD=3,将以上数值代入比例式并解得:a=±√55,∵a<0,故a=−√55,故抛物线的表达式为:y=−√55x2+2√55x+3√55(3)解:如图2,当点C在x轴上方时,连接OD交BC于点H,则DO⊥BC,过点H、D分别作x轴的垂线交于点N、M,设:OC=m=−3a,S1=SΔOBD=12×OB×DM=32DM,S2=SΔOAC=12×1×m,而S1S2=23,则DM=2m9,HN=12DM=m9=19OC,∴BN=19BO=13,则ON=3−13=83,则DO⊥BC,HN⊥OB,则∠BHN=∠HON,则tan∠BHN=tan∠HON,则HN2=ON×BN=89=(m9)2,解得:m=±6√2(舍去负值),CO=|−3a|=6√2,解得:a=−2√2(不合题意值已舍去),故:a=−2√2.当点C在x轴下方时,同理可得:a=2√2;故:a=−2√2或a=2√2 2.【答案】(1)解:点C(0,4),则c=4,二次函数表达式为:y=﹣x2+bx+4,将点A的坐标代入上式得:0=﹣1﹣b+4,解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4(2)解:tan∠ACO=AOCO =14,△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FEB=14或4,∵四边形OEFG为正方形,则FE=OE=a,EB=4﹣a,则a4−a =14或a4−a=4,解得:a=165或45(3)解:令y=﹣x2+3x+4=0,解得:x=4或﹣1,故点B(4,0);分别延长CF、HP交于点N,∵∠PFN +∠BFN =90°,∠FPN +∠PFN =90°, ∴∠FPN =∠NFB ,∵GN ∥x 轴,∴∠FPN =∠NFB =∠FBE , ∵∠PNF =∠BEF =90°,FP =FB , ∴△PNF ≌△BEF (AAS ), ∴FN =FE =a ,PN =EB =4﹣a ,∴点P (2a ,4),点H (2a ,﹣4a 2+6a +4), ∵PH =2,即:﹣4a 2+6a +4﹣4=|2|, 解得:a =1或12或3+√174或3−√174(舍去),故:点P 的坐标为(2,4)或(1,4)或(3+√172,4).3.【答案】 (1)解:在 y =−34x +3 中,令 x =0 ,得 y =3 ,令 y =0 ,得 x =4 ,∴A(4,0) , B(0,3) ,将 A(4,0) , B(0,3) 分别代入抛物线 y =−x 2+bx +c 中,得: {−42+4b +c =0c =3,解得:{b =134c =3, ∴ 抛物线的函数表达式为: y =−x 2+134x +3(2)解:存在.如图1,过点 B 作 BH ⊥CD 于 H ,设 C(t,0) ,则 D(t,−t 2+134t +3) ,E(t,−34t +3) , H(t,3) ;∴EC=−34t+3,AC=4−t,BH=t,DH=−t2+134t,DE=−t2+4t∵ΔBDE和ΔACE相似,∠BED=∠AEC∴ΔBDE∽ΔACE或ΔDBE∽ΔACE①当ΔBDE∽ΔACE时,∠BDE=∠ACE=90°,∴BDDE =ACCE,即:BD·CE=AC·DE∴t(−34t+3)=(4−t)×(−t2+4t),解得:t1=0(舍去),t2=4(舍去),t3=134,∴D(134,3)②当ΔDBE∽ΔACE时,∠BDE=∠CAE ∵BH⊥CD∴∠BHD=90°,∴BHDH =tan∠BDE=tan∠CAE=CEAC,即:BH·AC=CE·DH∴t(4−t)=(−34t+3)(−t2+134t),解得:t1=0(舍),t2=4(舍),t3=2312,∴D(2312,509);综上所述,点D的坐标为(134,3)或(2312,509)(3)解:如图3,∵四边形DEGF是平行四边形∴DE//FG,DE=FG设D(m,−m2+134m+3),E(m,−34m+3),F(n,−n2+134n+3),G(n,−34n+3),则:DE=−m2+4m,FG=−n2+4n,∴−m2+4m=−n2+4n,即:(m−n)(m+n−4)=0,∵m−n≠0∴m+n−4=0,即:m+n=4过点G作GK⊥CD于K,则GK//AC∴∠EGK=∠BAO∴GKEG =cos∠EGK=cos∠BAO=AOAB,即:GK·AB=AO·EG∴5(n−m)=4EG,即:EG=54(n−m)∴DEGF周长=2(DE+EG)=2[(−m2+4m)+54(n−m)]=−2(m−34)2+898∵−2<0,∴当m=34时,∴▱DEGF周长最大值=898,∴G(134,916).4.【答案】(1)解:直线y=﹣x+4中,当x=0时,y=4 ∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴{−16+4b+c=00+0+c=4解得:{b=3c=4∴抛物线解析式为y=﹣x2+3x+4(2)解:∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=√2t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=PEPB =√22∴BE=PE=√22PB=t,∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t ∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t,∴MP=y M﹣y P=﹣t2+4t,∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴MPNC =MQNQ=12∴−t 2+4t4−t =12解得:t1=12,t2=4(点P不与点C重合,故舍去)∴t的值为12(3)解:∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m∴{−a+m=0a(4−t)+m=−t2+5t解得:{a=tm=t,∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=4−tt+1,∴DG=x D==4−tt+1,∵∠CGD=90°,∠DCG=45°∴CD=√2DG=√2(4−t)t+1,∴4﹣t=√2(4−t) t+1解得:t=√2﹣1综上所述,当△PDM是等腰三角形时,t=1或t=√2﹣1.5.【答案】(1)解:抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=- 23,故抛物线的表达式为:y=- 23x2- 43x+2,则点C(0,2),函数的对称轴为:x=1(2)解:连接OP,设点P(x,- 23x2- 43x+2),则S=S四边形ADCP=S△APO+S△CPO-S△ODC= 12×AO×y P+ 12×OC×|x P|- 12×CO×OD= 12×3×(- 23x2- 43x+2) +12×2×(-x)- 12×2×1=-x2-3x+2,∵-1<0,故S有最大值,当x=- 32时,S的最大值为174(3)解:存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,- 23x2- 43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,∠M1N1E=∠N1OF=90°,ON1=M1N1,∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,即:x+1=- 23x2- 43x+2,解得:x=−7±√734(舍去负值),则点N1( −7+√734,−3+√734);N2的情况(△M2N2O):同理可得:点N2( −1−√734,−3+√734);②当点N在x轴下方时,点N的位置为N3、N4,同理可得:点N3、N4的坐标分别为:( −7−√734,−3−√734)、(−1+√734,−3−√734);综上,点N的坐标为:( −7+√734,−3+√734)或(−1−√734,−3+√734)或(−7−√734,−3−√734)或(−1+√734,−3−√734).6.【答案】(1)解:∵抛物线y=ax2+bx−3经过A(−1,0),B(3,0)两点,∴{a−b−3=09a+3b−3=0,解得:{a=1b=−2,∴抛物线的解析式为:y=x2−2x−3(2)解:如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM//ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM =ON =√2 .在 Rt ΔOHM 中, ∠OHM =90° , OH =1 .∴ HM =√OM 2−OH 2=√(√2)2−1=1 , ∴M 1(1,1) ; M 2(1,−1) .①当 M 1(1,1) 时,直线 OM 解析式为: y =x , 依题意得: x =x 2−2x −3 . 解得: x 1=3+√212, x 2=3−√212,∵ 点 Q 在对称轴右侧的抛物线上运动, ∴Q 点纵坐标 y =x 1=3+√212.∴ Q 1(3+√212,3+√212) ,②当 M 2(1,−1) 时,直线 OM 解析式为: y =−x , 同理可求: Q 2(1+√132,−1+√132) ,综上所述:点 Q 的坐标为: Q 1(3+√212,3+√212) , Q 2(1+√132,−1+√132)(3)解:由题意可知: A(−1,0) , C(0,−3) , D (1,−4) ,∴AC =√(−1−0)2+(0+3)2=√10 , AD =√(−1−1)2+(0+4)2=2√5 , CD =√(0−1)2+(−3+4)2=√2 , ∵ 直线 BC 经过 B(3,0) , C(0,−3) , ∴ 直线 BC 解析式为 y =x −3 ,∵ 抛物线对称轴为 x =1 ,而直线 BC 交对称轴于点 E , ∴E 坐标为 (1,−2) ;∴CE =√(0−1)2+(−2+3)2=√2 ,设 P 点坐标为 (x,y) ,则CP2=(x−0)2+(y+3)2,则EP2=(x−1)2+(y+2)2,∵CE=CD,若ΔPCE与ΔACD全等,有两种情况,Ⅰ. PC=AC,PE=AD,即ΔPCE≅ΔACD.∴{(x−0)2+(y+3)2=10 (x−1)2+(y+2)2=20,解得:{x1=−3y1=−4,{x2=−1y2=−6,即P点坐标为P1(−3,−4),P2(−1,−6).Ⅱ. PC=AD,PE=AC,即ΔPCE≅ΔACD.∴{(x−0)2+(y+3)2=20 (x−1)2+(y+2)2=10,解得:{x3=2y3=1,{x4=4y4=−1,即P点坐标为P3(2,1),P4(4,−1).故若ΔPCE与ΔACD全等,P点有四个,坐标为P1(−3,−4),P2(−1,−6),P3(2,1),P4(4,−1).7.【答案】(1)解:直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+ 32x+2…①(2)解:抛物线的对称轴为:x=32,点N的横坐标为:32+72=5,故点N的坐标为(5,3)(3)解:∵tan∠ACO=AOCO =24=12=tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:{n=232m+n=0,解得:{m=−43n=2,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(173,﹣509)(4)解:如图2,设∠ACO=α,则tanα=AOCO =12,则sinα=√5,cosα=√5;①当0≤t≤ 3√55时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α, 则DT =LT cosα=HH′cosα=t√5=√52t ,DS = DTtanα ,S =S △DST = 12× DT ×DS = 52t 2 ;②当3√55<t ≤ √5 时(右侧图),同理可得:S = S 梯形DGS′T′ = 12× DG ×(GS ′+DT ′)= 12× 3+(√52t +√52t ﹣ 32 )=3√52t −94 ;综上,S = {52t 2,(0≤t ≤3√55)3√52t −94,(3√55<t ≤√5).8.【答案】 (1)解:在 y =2x +6 中,当 x =0 时 y =6 ,当 y =0 时 x =−3 , ∴ C(0,6) 、 A(−3,0) ,∵抛物线 y =−2x 2+bx +c 的图象经过A 、C 两点, ∴ {−18−3b +c =0c =6,解得 {b =−4c =6,∴抛物线的解析式为 y =−2x 2−4x +6(2)解:令 −2x 2−4x +6=0 ,解得 x 1=−3 , x 2=1 ,∴ B(1,0) , 设点E 的横坐标为t ,则 E(t,−2t 2−4t +6) ,如图,过点E 作 EH ⊥x 轴于点H ,过点F 作 FG ⊥x 轴于点G ,则 EH ∥FG ,∴△BFG ∽△BEH ,∵EF=12BF,∴BFBE =BGBH=FGEH=23,∵BH=1−t,∴BG=23BH=23−23t,∴点F的横坐标为13+23t,∴F(13+23t,203+43t),∴−2t2−4t+6=32(203+43t),∴t2+3t+2=0,解得t1=−2,t2=−1,当t1=−2时,−2t2−4t+6=6,当t2=−1时,−2t2−4t+6=8,∴E1(−2,6),E2(−1,8),当点E的坐标为(−2,6)时,在Rt△EBH中,EH=6,BH=3,∴BE=√EH2+BH2=√62+32=3√5,∴sin∠EBA=EHBE =3√5=2√55;同理,当点E的坐标为(−1,8)时,sin∠EBA=EHBE =4√1717,∴sin∠EBA的值为2√55或4√1717(3)解:∵点N在对称轴上,∴x N=−3+12=−1,∵点E 位于对称轴左侧,∴ E(−2,6) . ①当EB 为平行四边形的边时,分两种情况: (Ⅰ)点M 在对称轴右侧时,BN 为对角线,∵ E(−2,6) , x N =−1 , −1−(−2)=1 , B(1,0) ,∴ x M =1+1=2 ,当 x =2 时, y =−2×22−4×2+6=−10 , ∴ M(2,−10) ;(Ⅱ)点M 在对称轴左侧时,BM 为对角线,∵ x N =−1 , B(1,0) , 1−(−1)=2 , E(−2,6) , ∴ x M =−2−2=−4 ,当 x =−4 时, y =−2×(−4)2−4×(−4)+6=−10 , ∴ M(−4,−10) ;②当EB 为平行四边形的对角线时, ∵ B(1,0) , E(−2,6) , x N =−1 , ∴ 1+(−2)=−1+x M , ∴ x M =0 ,当 x =0 时, y =6 , ∴ M(0,6) ;综上所述,M 的坐标为 (2,−10) 或 (−4,−10) 或 (0,6) .9.【答案】 (1)解:将点A (3,4),B (﹣1,0)代入y =ax 2+bx +4,得: {9a +3b +4=4a −b +1=0 ,解得 {a =−1b =3,∴y =﹣x 2+3x +4(2)解:如图1,过点P 作PE ∥x 轴,交AB 于点E ,∵A (3,4),AD ⊥x 轴,∴D(3,0),∵B(﹣1,0),∴BD=3﹣(﹣1)=4,∵S△AQD=2S△APQ,△AQD与△APQ是等高的两个三角形,∴PQDQ =12,∵PE∥x轴,∴△PQE∽△DQB,∴PEDB =PQDQ=12,∴PE4=12,∴PE=2,∴可求得直线AB的解析式为y=x+1,设E(x,x+1),则P(x﹣2,x+1),将点P坐标代入y=﹣x2+3x+4,得:﹣(x-2)2+3(x-2)+4=x+1,解得x1=3+ √2,x2=3﹣√2,当x=3+ √2时,x﹣2=3+ √2﹣2=1+ √2,x+1=3+ √2+1=4+ √2,∴点P(1+ √2,4+ √2);当x=3﹣√2时,x﹣2=3﹣√2﹣2=1﹣√2,x+1=3﹣√2+1=4﹣√2,∴P(1﹣√2,4﹣√2),∵点P是直线AB上方抛物线上的一个动点,∴﹣1<x﹣2<3,∴点P的坐标为(1+ √2,4+ √2)或(1﹣√2,4﹣√2)(3)解:由(1)得,抛物线的解析式为y=﹣x2+3x+4,∴C(0,4),∵A(3,4),∴AC∥x轴,∴∠OCA=90°,∴GH⊥MN,∴∠GHM=90°,在四边形CGHM中,∠GCM+∠GHM=180°,∴点C、G、H、M共圆,如图2,连接CH,则∠GCH=∠GMH=60°,∴点H在与y轴夹角为60°的定直线上,∴当BH⊥CH时,BH最小,过点H作HP⊥x轴于点P,并延长PH交AC于点Q,∵∠GCH=60°,∴∠HCM=30°,又BH⊥CH,∴∠BHC=90°,∴∠BHP=∠HCM=30°,设OP=a,则CQ=a,∴QH=√33a,∵B(﹣1,0),∴OB=1,∴BP=1+a,在Rt△BPH中,HP=BPtan30°=√3(a+1),BH=BPsin30°=2(1+a),∵QH+HP=AD=4,∴√33a+ √3(a+1)=4,解得a=4√3−34,∴BH最小=2(1+a)=4√3+12.10.【答案】(1)解:将抛物线化为交点式:y=−29x2+bx+c=−29(x+h)(x+k)将 A (−1,0),B (5,0) 代入可得y =−29(x +1)(x -5) =−29(x 2−4x −5)=−29x 2+89x +109.故抛物线解析式为 y =−29x 2+89x +109(2)解:抛物线的对称轴为 x =2 ,则点 C (2,2), 设点 P (2,m ),将点 P,B 的坐标代入一次函数表达式: y =sx +t 并解得: 函数 PB 的表达式为: y =−13mx +5m3…①, ∵CE ⊥PE , 故直线 CE 表达式中的 k 值为 3m ,将点 C 的坐标代入一次函数表达式, 同理可得直线 CE 的表达式为: y =3mx +(2−6m )⋅⋅⋅②联立①②并解得: x =2−2m3故点 F(2−2m3,0) S △PCF =12×PC ×DF =12(2−m)(2−2m 3−2)=5,解得: m =5 或 −3 (舍去 5 ), 故点 P (2,−3);(3)解:由 (2) 确定的点 F 的坐标得:CP 2=(2−m )2,CF2=(2m3)2+4,PF2=(2m3)2+m 2,①当 CP =CF 时,即: (2−m)=(2m 3)2+4 ,解得 m =0 :或365(均舍去),②当 CP =PF 时, (2−m)2=(2m 3)2+m 2 ,解得: m =32或 3 (舍去 3 ),③当 CF =PF 时,同理可得: m =±2 (舍去 2 ), 故点 P(2,32) 或 (2,−2)11.【答案】 (1)将点D 、E 的坐标代入函数表达式得: {−3=4a −2b +29a +3b +2=2 ,解得:{a =−12b =32,故抛物线的表达式为:y = −12 x 2+ 32 x +2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=−14x+1,设点P(x,−12x2+32x+2),则点H(x,−14x+1),S四边形OBPF=S△OBF+S△PFB=12×4×1+ 12×PH×BO=2+2(−12x2+32x+2+14x−1)=7,解得:x=2或32,故点P(2,3)或(32,258);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2 √2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线AP ″的表达式为:y =﹣3x +9…③, 联立①③并解得:x = 52,即点M ( 52, 32), 点M 沿BD 向下平移2 √2 个单位得:N ( 12, −12).12.【答案】 (1)解:将点 C,E 的坐标代入二次函数表达式得: {−9+3b +c =0c =3 ,解得: {b =2c =3,故抛物线的表达式为: y =−x 2+2x +3 , 则点 A(1,4)(2)解:将点 A,C 的坐标代入一次函数表达式并解得: 直线 AC 的表达式为: y =−2x +6 , 点 P(1,t) ,则点D(6−t2,t),设点Q(6−t 2,−t 2+20t−244),S △ACQ =12×DQ ×BC =−t 2+20t−244−t =−14t 2+4t −6 ,∵ −14<0 ,故 S ΔACQ 有最大值,当 t =8 时,其最大值为10(3)解:设点 P(1,m) ,点 M(x,y) , ①当 EC 是菱形一条边时, 当点 M 在 x 轴下方时,点 E 向右平移3个单位、向下平移3个单位得到 C , 则点 P 平移3个单位、向下平移3个单位得到 M , 则 1+3=x , m −3=y ,而 MP =EP 得: 1+(m −3)2=(x −1)2+(y −m)2 , 解得: y =m −3=√17 , 故点 M(4,√17) ; 当点 M 在 x 轴上方时, 同理可得:点 M(−2,3+√14) ; ②当 EC 是菱形一对角线时, 则 EC 中点即为 PM 中点, 则 x +1=3 , y +m =3 ,而 PE =PC ,即 1+(m −3)2=4+(m −2)2 ,解得:m=1,故x=2,y=3−m=3−1=2,故点M(2,2);综上,点M(4,√17)或M(−2,3+√14)或M(2,2)13.【答案】(1)解:直线y=x-3与坐标轴交于A、B两点,则A(3,0)B(0,-3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y= 14x2-x-3…①,则:C(6,0);(2)解:符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为- √3,所在的直线方程为:y=- √3x-3…②,联立方程①、②可求得:x=4-4 √3,即:点M的横坐标4-4 √3;当∠M′BE=75°时,∠OBM′=120°,直线MB的k值为- √33,其方程为y=-√33x-3,将MB所在的方程与抛物线表达式联立,解得:x= 12−4√33,故:即:点M的横坐标4-4 √3或12−4√33.(3)解:存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=- 14m2-m-3…③,P′C所在直线的k1= nm−6,P′B所在的直线k2= n+3m,则:k1•k2=-1…④,③、④联立解得:m=2 √6,则P′(2 √6,3-2 √6),则Q′(6-2 √6,2 √6-3);②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y= 12x-3,则:直线BP的k为-2,所在的方程为y=-2x-3…⑤,联立①⑤解得点P(-4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其指标为:(-10,32)..故:存在矩形,点Q的坐标为:(6-2 √6,2 √6-3)或(2,8)或(-10,32).14.【答案】(1)解:直线y=12x−2,当x=0时,y=−2;当y=0时,x=4,∴B(4,0),C(0,−2).∵二次函数y=12x2+bx+c的图象经过B,C两点,∴{c=−2,12×42+4b+c=0.解得{b=−32,c=−2.∴二次函数的表达式为:y=12x2−32x−2(2)解:过点D作DE⊥x轴于点E,交BC于点F,过点C作CG⊥DE于点G,依题意设D(a,12a2−32a−2),则F(a,12a−2).其中0<a<4,∴FD=12a−2−(12a2−32a−2)=12a2+2a,∴S=SΔBFD+SΔFCD=12FD⋅BE+12FD⋅CG =12FD⋅(BE+CG)=12FD⋅OB=12×4(−12a2+2a) =−a2+4a=−(a−2)2+4∵−1<0,∴抛物线开口向下.又∵0<a<4,∴当a=2时,S有最大值,S最大值=4(3)解:2或2911在x轴上取点K,使CK=BK,则∠OKC=2∠ABC.过点B作BQ∥MD交CD延长线于点Q,过点Q作QH⊥x轴于点H,设点K的坐标为(m,0),则OK=m,CK=BK=4−m.在RtΔOKC中,(4−m)2=m2+22,解得m=32.∴CK=52.当∠DCM=∠QCB=2∠ABC=∠OKC时,∴tan∠QCB=BQBC =2√5=MDCM=OCOK=43.∴BQ=8√5 3.易证ΔQHB∽ΔBOC.∴BHOC =BQBC.∴BH=83, HQ=163.∴Q(203,16 3).∵C(0,−2),∴直线QC的函数表达式为:y=−12x−2.由12x2−32x−2=−12x−2,解得:x1=2,x2=0(舍).∴D点的横坐标为2.②当∠CDM=∠CQB=2∠ABC时,方法同①,可确定点D的横坐标为2911 15.【答案】(1)解:设y=a(x+1)(x−3),把C(0,3)代入,得a=−1,∴抛物线的解析式为:y=−x 2+2x+3,顶点D的坐标为(1,4)(2)解:设直线BD解析式为:y=kx+b(k≠0),把B、D两点坐标代入,得{3k+b=0,k+b=4.解得k=−2,b=6,∴直线AD解析式为y=−2x+6,s=12PE·OE=12xy=12x(−2x+6)=−x2+3x,∴s=−x 2+3x(1<x<3),s=−(x 2−3x+94)+94=−(x−32)2+94,∴当x=32时,s取得最大值,最大值为94(3)解:当s取得最大值,x=32,y=3,∴P(32,3),∴四边形PEOF是矩形,作点P关于直线EF的对称点P ',连接P 'E、P 'F,法一:过P '作P 'H⊥y轴于H,P 'F交y轴于点M,设MC=m,则MF=m,P 'M=3−m,P 'E=32,在Rt△P 'MC中,由勾股定理,(32)2+(3−m)2=m2,解得m=158,∵CM·P 'H=P 'M·P 'E,∴P 'H=910,由△EHP '∽△EP 'M,可得EHEP '=EP 'EM,EH=65,∴OH=3−65=95,∴P '坐标(−910,95);法二:连接PP ',交CF于点H,分别过点H、P '作PC的垂线,垂足为M、N,易证△CMH∽△HMP,∴CMMH =MHPM=12,设CM=k,则MH=2k,PM=4k,∴PC=5k=32,k=310,由三角形中位线定理,PN=8k=125,P 'N=4k=65,∴CN=PN−PC=125−32=910,即x=−910,y=PF−P 'N=3−65=95,∴P '坐标(−910,95).把P '坐标(−910,95)代入抛物线解析式,不成立,所以P '不在抛物线上.。

2020中考数学压轴题二次函数动点问题一

2020中考数学压轴题二次函数动点问题一

二次函数压轴题(中考高分必备)1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点.(1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.3.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

⑴求抛物线的解析式;⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。

4.已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标;(2)求此抛物线的表达式;(3)求△ABC 的面积;(4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.5.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.6、如图,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OA =OB .(1)求b +c 的值;(2)若点C 在抛物线上,且四边形OABC 是平行四边形,求抛物线的解析式;(3)在(2)条件下,点P (不与A 、C 重合)是抛物线上的一点,点M 是y 轴上一点,当△BPM 是等腰直角三角形时,求点M 的坐标.7、如图,已知抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于点A (-2,0)和点B ,与y 轴相交于点C ,顶点D (1,- 92). (1)求抛物线对应的函数关系式;(2)求四边形ACDB 的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴...仅有两个交点,请直接写出一个平移后的抛物线的关系式.] 8、如图a ,在平面直角坐标系中,A (0,6),B (4,0).(1)按要求画图:在图a 中,以原点O 为位似中心,按比例尺1:2,将△AOB 缩小,得到△DOC ,使△AOB 与△DOC 在原点O 的两侧;并写出点A 的对应点D 的坐标为 ,点B 的对应点C 的坐标为 ;(2)已知某抛物线经过B 、C 、D 三点,求该抛物线的函数关系式,并画出大致图象;(3)连接DB ,若点P 在CB 上,从点C 向点B 以每秒1个单位运动,点Q 在BD 上,从点B 向点D 以每秒1个单位运动,若P 、Q 两点同时分别从点C 、点B 点出发,经过t 秒,当t 为何值时,△BPQ 是等腰三角形?9、(2013江苏扬州弘扬中学二模)如图所示,已知抛物线k x x y +-=241的图象与y 轴相交于点B (0,1),点C (m ,n )在该抛物线图象上,且以BC 为直径的⊙M 恰好经过顶点A .(1)求k 的值;(2)求点C 的坐标;(3)若点P 的纵坐标为t ,且点P 在该抛物线的对称轴l 上运动,试探索:①当S 1<S <S 2时,求t 的取值范围(其中:S 为△PAB 的面积,S 1为△OAB 的面积,S 2为四边形OACB 的面积);②当t 取何值时,点P 在⊙M 上.(写出t 的值即可)10 如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.y x O D C B A 备用图图a A BO x y 6446yx O B A11 如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.12 如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.13 .如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.14. 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,。

2020中考数学 二次函数培优专题:动点成特殊三角形问题(含答案)

2020中考数学 二次函数培优专题:动点成特殊三角形问题(含答案)

2020中考数学 二次函数培优专题:动点成特殊三角形问题(含答案)1. 在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(3,0)A -,(1,0)B 两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)在平面直角坐标系中,是否存在点Q ,使BCQ △是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;(1)由抛物线22y ax bx =++过点(3,0)A -,(1,0)B , 则0932,0 2.a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩.∴二次函数的关系表达式为224233y x x =--+.(2)点1(2,1)Q -,2(1,1)Q --,3(2,3)Q ,4(3,1)Q .2. 在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点(0,2)A ,点(1,0)C -,如图所示,抛物线22y ax ax =+-经过点B .(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ACP △仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.(1)过点作轴,垂足为,∵ ; ∴;又∵;,∴ ∴,; ∴点的坐标为(3,1)-;(2)抛物线经过点(3,1)B -,则得到,解得, ∴抛物线解析式为; (3)方法一:①若以为直角边,点为直角顶点;则可以设直线交抛物线于点,由题意,直线的解析式为:1122y x =--,解得舍 ∴1(1,1)P -. 过点作轴于点,在中,∴,∴为等腰直角三角形.②若以AC 为直角边,点A 为直角顶点;则过点A 作,交抛物线于点,由题意,直线AF 的解析式为212,2.11222y x y x x ⎧=-+⎪⎪⎨⎪=++⎪⎩解得114,4.x y =-⎧⎨=⎩(舍)222,1.x y =⎧⎨=⎩ 过点2P 作2P N y ⊥轴于点N ,在2Rt AP △中,2AP =yxA (0,2)C (-1,0)BOB BD x ⊥D 90,BCD ACO ∠+∠=︒90ACO OAC ∠+∠=︒BCD CAO ∠=∠90BDC COA ∠=∠=︒CB AC =BCD CAO △≌△1BD OC ==2CD OA ==B 22y ax ax =+-1932a a =--12a =211222y x x =+-AC C BC 211222y x x =+-1P BC 211,2211 2.22y x y x x ⎧=--⎪⎪∴⎨⎪=+-⎪⎩113,1.x y =-⎧⎨=⎩221,1x y =⎧⎨=-⎩1P 1PM x ⊥M 1Rt PMC △1CP =1CP AC =1ACP △AF BC ∥211222y x x =+-2P 12,2y x =-+2AP AC ∴=. 2ACP ∴△为等腰直角三角形.综上所述,在抛物线上存在点使是以为直角边的等腰直角三角形.方法二:①若以AC 为直角边,点C 为直角顶点;则延长至点,使得,得到等腰直角三角形1ACP △,过点作,∵1=,,;∴1MPC DBC △≌△ ∴==2,∴==1,可求得点1(1,1)P -;经检验点1(1,1)P -在抛物线使得1ACP △是等腰直角三角形;②若以AC 为直角边,点A 为直角顶点;则过点A 作,且使得,得到等腰直角三角形2A C P △,过点作,同理可证2AP N △≌CAO △;∴==2,==1,可求得点(2, 1)经检验点(2, 1)也在抛物线上,使得2ACP △也是等腰直角三角形.3. 抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B 在点A的左侧),设J 为y 轴正半轴上的一个动点,请在抛物线223y x x =--+上求一点K ,使得OKJ △为等腰直角三角形.(1)当OJ 为直角边时,90KJO ∠=︒或90KOJ ∠=︒.若90KOJ ∠=︒,则K 与A 或B 重合, ∴1(3,0)K -,2(1,0)K .若90KJO ∠=︒,则45KOJ ∠=︒, 分别作COB ∠与COA ∠的角平分线交抛物线于两点,即为3K ,4K ,直线3OK 与直线4OK 解析式分别为y x =-、y x =分别与抛物线解析式联立,12(1,1)(2,1).P P -ACP △AC BC 1P 1PC BC =1P 1PM x ⊥轴CP BC 1MCP BCD ∠=∠190PMC BDC ∠=∠=︒CM CD 1PM BD 211222y x x =+-2AP CA ⊥2AP AC =2P 2P N y ⊥轴2NP OA AN OC 2P 2P 211222y x x =+-可得3K坐标为⎝⎭,4K坐标为⎝⎭. (2)当OJ 为斜边时,45KOJ ∠=︒,K 点坐标同上34K K ,. 综上所述,所求的点K 坐标为1(3,0)K -,2(1,0)K ,3K ⎝⎭,4K ⎝⎭. 线段OJ 可以充当“斜边”和“直角边”的角色.当OJ 为直角边时,又存在两种情况:90KJO ∠=︒或90KOJ ∠=︒.因此,共有6种情况.4. 在平面直角坐标系中,已知抛物线212y x bx c =-++(b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . 若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标.NN备用图(1)21212y x x =-+-;(2)M的坐标是(12)-、(12)+、(4,1)-、(2,3)-、(2,7)--.5. 已知:抛物线2(2)2y x a x a =+--(a 为常数,且0a >).(1)求证:抛物线与x 轴有两个交点;(2)设抛物线与x 轴的两个交点分别为A 、B (A 在B 左侧),与y 轴的交点为C .①当AC =②将①中的抛物线沿x 轴正方向平移t 个单位(0t >),同时将直线:3l y x =沿y 轴正方向平移t 个单位.平移后的直线为'l ,移动后A 、B 的对应点分别为'A 、'B .当t 为何值时,在直线'l 上存在点P ,使得''A B P △为以''A B 为直角边的等腰直角三角形?(1)证明:令,则.22=(2)8(2)a a a -+=+△. ∵,∴.∴>0△. ∴方程有两个不相等的实数根.∴抛物线与x 轴有两个交点.(2)①令,则,解方程,得. ∵A 在B 左侧,且,∴抛物线与x 轴的两个交点为(,0)A a -,(2,0)B .∵抛物线与y 轴的交点为,∴(0,2)C a -. ∴.在中,,.可得.∵,∴. ∴抛物线的解析式为.②依题意,可得直线的解析式为,'(2,0)A t -,'(2,0)B t +,.∵为以为直角边的等腰直角三角形,∴当时,点的坐标为(2,4)t -或(2,4)t --.∴.解得或.当时,点的坐标为(2,4)t +或(2,4)t +-.∴.解得或(不合题意,舍去).综上所述,或.0y =2(2)20x a x a +--=0a >20a +>2(2)20x a x a +--=0y =2(2)20x a x a +--=122x x a ==-,0a >C 2AO a CO a ==,Rt AOC△222AO CO +=22(2)20a a +=2a =±0a >2a =24y x =-l '3y x t =+4A B AB ''==A B P ''△A B ''90PA B ''∠=°P 3(2)4t t -+=52t =12t =90PB A ''∠=°P 3(2)4t t ++=52t =-12t =-52t =12t =6. 如图,抛物线2424455y x x =-+-与x 轴相交于点A 、B ,与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点M .P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上).分别过点A 、B 作直线CP 的垂线,垂足分别为D 、E ,连接点MD 、ME . (1)求点A ,B 的坐标(直接写出结果),并证明MDE △是等腰三角形;(2)MDE △能否为等腰直角三角形?若能,求此时点P 的坐标;若不能,说明理由; (3)若将“P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上)”改为“P 是抛物线在x 轴下方的一个动点”,其他条件不变,MDE △能否为等腰直角三角形?若能,求此时点P 的坐标(直接写出结果);若不能,说明理由.(1)抛物线解析式为2424455y x x =-+-,令0y =,即24244055x x -+-=,解得1x =或5x =,∴A (1, 0),B (5, 0).如答图1所示,分别延长AD 与EM ,交于点F . ∵AD ⊥PC ,BE ⊥PC ,∴AD ∥BE , ∴∠MAF =∠MBE .在AMF △与BME △中, MAF MBE MA MB AMF BME ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)AMF BME △≌△,备用图∴ME MF =,即点M 为Rt EDF △斜边EF 的中点, ∴MD ME =,即MDE △是等腰三角形. (2)答:能.抛物线解析式为224244164(3)5555y x x x =-+-=--+,∴对称轴是直线3x =,M (3, 0); 令0x =,得4y =-,∴(0,4)C -.MDE △为等腰直角三角形,有3种可能的情形: ①若DE ⊥EM ,由DE ⊥BE ,可知点E 、M 、B 在一条直线上, 而点B 、M 在x 轴上,因此点E 必然在x 轴上,由DE ⊥BE ,可知点E 只能与点O 重合,即直线PC 与y 轴重合, 不符合题意,故此种情况不存在;②若DE ⊥DM ,与①同理可知,此种情况不存在; ③若EM ⊥DM ,如答图2所示: 设直线PC 与对称轴交于点N ,∵EM ⊥DM ,MN ⊥AM ,∴∠EMN =∠DMA . 在ADM △与NEM △中,135EMN DMA EM DM ADM NEM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴(ASA)ADM NEM △≌△, ∴MN MA =.抛物线解析式为224244164(3)5555y x x x =-+-=--+,故对称轴是直线3x =,∴M (3, 0),2MN MA ==,∴N (3, 2).设直线PC 解析式为y kx b =+,∵点N (3, 2),(0,4)C -在抛物线上, ∴324k b b +=⎧⎨=-⎩,解得2k =,4b =-,∴24y x =-.将24y x =-代入抛物线解析式得:242424455x x x -=-+-,解得:0x =或72x =,当0x =时,交点为点C ;当72x =时,243y x =-=.∴7,32P ⎛⎫ ⎪⎝⎭.综上所述,MDE △能成为等腰直角三角形,此时点P 坐标为7,32⎛⎫⎪⎝⎭.(3)答:能.如答题3所示,设对称轴与直线PC 交于点N .与(2)同理,可知若MDE △为等腰直角三角形,直角顶点只能是点M . ∵MD ⊥ME ,MA ⊥MN ,∴∠DMN =∠EMB . 在DMN △与EMB △中, 45DMN EMB MD MB MDN MEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴(ASA)DMN EMB △≌△, ∴MN MB =. ∴(3,2)N -.设直线PC 解析式为y kx b =+,∵点(3,2)N -,(0,4)C -在抛物线上,∴324k b b +=-⎧⎨=-⎩,解得23k =,4b =-,∴243y x =-.将243y x =-代入抛物线解析式得:2242444355x x x -=-+-,解得:0x =或316x =,当0x =时,交点为点C ;当316x =时,25439y x =-=-,∴315,69P ⎛⎫- ⎪⎝⎭.综上所述,MDE △能成为等腰直角三角形,此时点P 坐标为315,69⎛⎫- ⎪⎝⎭.7. 在如图的直角坐标系中,已知点(1,0)A ,(0,2)B -,将线段AB 绕点A 按逆时针方向旋转90︒至AC . (1)求点C 的坐标;(2)若抛物线2122y x ax =-++经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外),使ABP △是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(1)过点C 作CD x ⊥轴,垂足为D ,在ACD △和BAO △中,由已知有90CAD BAO ∠+∠=︒, 而90ABO BAO ∠+∠=︒,∴CAD ABO ∠=∠,又∵90CDA AOB ∠=∠=︒,且由已知有CA AB =,∴ACD BAO △≌△,∴1CD OA ==,2AD BO ==,∴点C 的坐标为(3,1)-(2)①∵抛物线2122y x ax =-++经过点(3,1)C -,∴2113322a -=-⨯++,解得12a =∴抛物线的解析式为211222y x x =-++.②i )当A 为直角顶点时,延长CA 至点1P ,使1AP AC AB ==, 则1ABP △是以AB 为直角边的等腰直角三角形,如果点1P 在抛物线上,则1P 满足条件,过点1P 作1PE x ⊥轴, ∵1AP AC =,1EAP DAC ∠=∠,190PEA CDA ∠=∠=︒ ∴1EP A DCA △≌△,∴2AE AD ==,11EP CD ==,∴可求得1P 的坐标为(1,1)-,经检验1P 点在抛物线上,因此存在点1P 满足条件;ii )当B 点为直角顶点时,过点B 作直线L BA ⊥,在直线L 上分别取23BP BP AB ==,得到以AB 为直角边的等腰直角2ABP △和等腰直角3ABP △,作2P F y ⊥轴于点F ,同理可证2BP F ABO △≌△ ∴22P F BO ==,1BF OA ==,可得点2P 的坐标为(2,1)--,经检验2P 点在抛物线上,因此存在点2P 满足条件. 同理可得点3P 的坐标为(2,3)-,经检验3P 点不在抛物线上.综上:抛物线上存在点1(1,1)P -,2(2,1)P --两点,使得1ABP △和2ABP △是以AB 为直角边的等腰直角三角形.8. 如图,一次函数44y x =--的图象与x 轴、y 轴分别交于A 、C 两点,抛物线243y x bx c =++的图象经过A 、C 两点,且与x 轴交于点B .(1)求抛物线的函数表达式;(2)作直线MN 平行于x 轴,分别交线段AC 、BC 于点M 、N .问在x 轴上是否存在点P ,使得PMN △是等腰直角三角形?如果存在,求出所有满足条件的P 点的坐标;如果不存在,请说明理由.(1)∵一次函数44y x =--的图象与x 轴、y 轴分别交于A 、C 两点, ∴(1,0)A -、(0,4)C -把(1,0)A -、(0,4)C -代入243y x bx c =++得∴,解得 xyCAB O4034b c c ⎧-=⎪⎨⎪=⎩834b c ⎧=⎪⎨⎪=⎩∴ (2)设M 、N 的纵坐标为a ,由B 和C 点的坐标可知BC 所在直线的解析式为:443y x =-,则4,4a M a --⎛⎫⎪⎝⎭,312,4a N a +⎛⎫⎪⎝⎭, ①当90PMN ∠=︒,4MN a =+,PM a =-,因为PMN △是等腰直角三角形,则4a a -=+,则2a =-,即P 点坐标为1,02⎛⎫- ⎪⎝⎭;②当90PNM ∠=︒,PN MN =,同上,2a =-,即P 点坐标为3,02⎛⎫⎪⎝⎭;③当90MPN ∠=︒,作MN 的中点Q ,连接PQ ,则PQ a =-,又PM PN =, ∴PQ MN ⊥,则2MN PQ =,即:42a a +=-,解得:34a =-,即P 点的坐标为(23, 0).248433y x x =--9. 如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么,我们称抛物线1C 与2C 关联. (1)已知抛物线①221y x x =+-,判断下列抛物线②221y x x =-++;③221y x x =++与已知抛物线①是否关联,并说明理由.(2)A 为抛物线211:(1)28C y x =+-的顶点,B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC △,使其顶点C 在y 轴上?若存在,求出C 点的坐标;若不存在,请说明理由.(1)∵抛物线2221(1)2y x x x =+-=+-的顶点坐标为(1,2)M --,∴②当1x =-时,2211212y x x =-++=--+=-, ∴点M 在抛物线②上;∵③当1x =时,2211212y x x =-++=-++=, ∴点M 不在抛物线③上;∴抛物线①与抛物线②有关联;∵抛物线②2221(1)2y x x x =-++=--+,其顶点坐标为(1,2),经验算:(1,2)在抛物线①上,∴抛物线①、②有关联; (2)点C 是y 轴上的一动点,以AC 为腰作等腰直角ABC △,令C 的坐标为(0,)c ,则点B 的坐标分两类:①当A ,B ,C 逆时针分布时,如图中的B 点,过点A ,B 作y 轴的垂线,垂足分别为H ,F ,则BCF CAH △≌△,∴,,点的坐标为(2,1c c +-,当点在抛物线211:(1)28C yx =+-上时,211(21)28c c -=++-,解得:.②当A ,B ,C 顺时针分布时,如图中点,过点作轴的垂线,垂足为,同理可得:点的坐标为(2,1)c c --+,当点在抛物线211:(1)28C y x =+-上Oyx1CF AH ==2BF CH c ==+B B 1c ='B 'B y D 'B 'B时,211(21)28c c +=--+-,解得:.综上所述,存在三个符合条件的等腰直角三角形,其中点的坐标分别为:1(0,1)C,2(0,3C +,3(0,3C -.10. 如图,抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B在点A 的左侧),抛物线223y x x =--+的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP △为等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.存在符合条件的P 点,由(0,3)C ,(1,0)M -,∴CM①当CM CP =时,1(1,6)P -;②当MC MP =时,2(P-,4(1,P -;③当PC PM =时,连接3CP ,过C 作对称轴的垂线,由勾股定理可得3513P ⎛⎫- ⎪⎝⎭,.综上所述,符合条件的点P 的坐标为1(1,6)P -,2(1,P -,3513P ⎛⎫- ⎪⎝⎭,,4(1,P -.11. 已知:Rt ABC △的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA OB <),直角顶点C 落在y 轴正半轴上.(1)请直接写出A 、B 的坐标:A 、B ;并求经过A 、B 、C 三点的抛物线解析式; (2)如图,点D 的坐标为(2,0),点(,)P mn 是该抛物线上的一个动点(其中0m >,0n >),连接DP 交BC 于点E . 3c =+3c =-C①当BDE △是等腰三角形时,直接写出此时点E 的坐标.②又连接CD 、CP ,CDP △是否有最大面积?若有,求出CDP △的最大面的最大面积和此时点P 的坐标;若没有,请说明理由.()由,易知,2()CO OA OB OA AB OA =⋅=⋅-, 2()OC OA AB OA =-,可求, ∴(1,0)A -,(4,0)B ,(0,2)C可设解析式为(1)(4)y a x x =+-,将点(00)C ,代入,可求. ∴.(2)①,, 提示:直线的解析式为设(,)E x y ,利用勾股定理和点(,)E x y 在直线BC 上,可得两个方程组分别可求和. ②过作x 轴的垂线,交于,易求的解析式为,且,故故,当时,,.x1OA =4OB =12a =-213222y x x =-++1132E ⎛⎫ ⎪⎝⎭,24855E ⎛⎫ ⎪⎝⎭,34E ⎛-⎝BC 122y x =-+()22212222y x x y ⎧=-+⎪⎨⎪-+=⎩()22212242y x x y ⎧=-+⎪⎨⎪-+=⎩2E 3E D PC M PC 22n y x m -=+2422n M m -⎛⎫+ ⎪⎝⎭,()()12CDP CDM DMP P C M D S S S x x y y =+=--△△△11242222P M n x y m m n m -⎛⎫=⋅=+=+- ⎪⎝⎭2132222m m m ⎛⎫=+-++- ⎪⎝⎭21522m m =-+52m =25=8CDP S 最大值△52128P ⎛⎫⎪⎝⎭,12. 已知抛物线2()y a x m n =-+与y 轴交于点A ,它的顶点为B ,点A 、B 关于原点O 的对称点分别是点C 、D . 若点A 、B 、C 、D 中任何三点都不在一直线上,则称四边形ABCD 为抛物线的伴随四边形,直线AB 为抛物线的伴随直线. 如图,若抛物线2()y a x m n =-+的伴随直线是2(0)y x b b =-+>,且伴随四边形ABCD 是矩形.(1)用含b 的代数式表示m ,n 的值;(2)在抛物线的对称轴上是否存在点P ,使得PBD △是一个等腰三角形?若存在,请直接写出点P 的坐标(用含b 的代数式);若不存在,请说明理由.(1)如图,作BE x ⊥轴,由题意可得(0,)A b ,,)(0b C - ∵抛物线的顶点(,)B m n 在2(0)y x b b =-+>上, ∴2n m b =-+,(,2)B m m b -+在矩形ABCD 中,OC OB =,∴22OC OB = 即:222(2)b m m b =+-+ ∴(54)0m m b -=∴10m =(舍去),245m b =∴325n m b b =-+=-∴45m b =,35n b =-;(2)存在,有4个点:47,55b b ⎛⎫ ⎪⎝⎭,49,55b b ⎛⎫ ⎪⎝⎭,416,515b b ⎛⎫ ⎪⎝⎭,413,55b b ⎛⎫- ⎪⎝⎭.13. 抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B 在点A的左侧),在抛物线223y x x =--+上是否存在一点Q ,使得BCQ △为直角三角形?存在符合条件的Q 点,所有符合条件的点Q 如图所示: 由(1,4)D -,(0,3)C 可知,DC CB ⊥, ∴1Q 坐标为(1,4)-由(3,0)B -,(0,3)C 易得,2BQ 的解析式为3y x =--,联立可得 2233y x x y x ⎧=--+⎨=--⎩解得25x y =⎧⎨=-⎩或30x y =-⎧⎨=⎩(舍) 可得2Q 坐标为(2,5)-;设23(,23)Q a a a --+,所以22(1)(2)1BQ CQ k k a a ⋅=-+--=-,解得3Q,4Q 综上所述,Q 的坐标为1Q (1,4)-,2Q (2,5)-3Q ,4Q .14. 抛物线333842y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A 、B 的坐标;(2)当直线l 过点(4,0)E ,M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.y CABxO(1)由23333(4)(2)848y x x x x =--+=-+-,得抛物线与x 轴的交点坐标为(4,0)20A B -、(,). (2)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即两个点M ;以AB 为直径的圆如果与直线l 相交,那么就有两个点M ; 如果圆与直线l 相切,就只有1个点M 了. 连结GM ,那么GM ⊥l , 在Rt EGM △中,3GM =,3GE =,∴4EM = 在1Rt EM A △中,AE =8,113tan 4M A M EA AE ∠==,∴16M A =∴点1M 的坐标为(4,6)-,过1M 、E 的直线l 为334y x =-+根据对称性,直线l 还可以为334y x =+.15. 如图,经过x 轴上(1,0)A -、(3,0)B 两点的抛物线2(0)y ax bx c a =++≠交y轴的正半轴于点C ,设抛物线的顶点为D .(1)用含a 的代数式表示出点C 、D 的坐标;(2)若90BCD =︒,请确定抛物线的解析式; (3)在(2)的条件下,能否在抛物线上找到另外的点Q ,使BDQ △为直角三角形?如果能,请求出Q 点坐标;如果不能,请说明理由.(1)设抛物线的解析式为(1)(3)y a x x =+-. 则2223)(1)4(x a x a y a x --=--=.则点D 的坐标为(1,4)D a -,点C 的坐标为(0,3)C a -.(2)过点D 作轴于,如图1所示,则有.∴.∴. ∴,(舍去).∴.抛物线的解析式为.DE y ⊥E DEC COB △∽△DE ECCO OB=1|||3|3a a =-21a =1a =±1a =1a =-223y x x =-++(3)①如图2,若为,作轴于,轴于.可证. 有, 点坐标2(,23)k k k -++,. 化简得,即(3)(23)0k k -+=.解之得或.检验略.舍去.由得点坐标:. ②如图3,若为.延长交轴于,可证明.即. 则. 得,点的坐标为. DM 所在的直线方程为.则与的解为(舍),,得交点的坐标为.③若90BQD ∠=︒,容易证明此种情况不成立所以满足题意的点另有两个:.图2图2图1DBQ ∠90︒QF x ⊥F DH x ⊥H Rt Rt DHB BFQ △∽△DH HBBF FQ =Q 242323k k k =---22390k k --=3k =32k =-3k =32k =-Q 3924Q ⎛⎫-- ⎪⎝⎭,BDQ ∠90︒DQ y M DEM DHB △∽△DE EM DH HB =142EM =12EM =M 702⎛⎫ ⎪⎝⎭,1722y x =+1722y x =+223y x x =-++1x =12x =Q 11524⎛⎫⎪⎝⎭,Q 391152424⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,,。

2020年初三数学中考压轴题综合训练:《二次函数》含答案

2020年初三数学中考压轴题综合训练:《二次函数》含答案

2020年初三数学中考压轴题综合训练:《二次函数》1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣t+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.3.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,PQ=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a 1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点E (1,4);设点M 、N 的坐标为(x 1,y 1),(x 2,y 2),∴MN 2=(x 1﹣x 2)2+(y 1﹣y 2)2,ME 2=(x 1﹣1)2+(y 1﹣4)2,NE 2=(x 2﹣1)2+(y 2﹣4)2,∵ME 2+NE 2=(x 1﹣1)2+(y 1﹣4)2+(x 2﹣1)2+(y 2﹣4)2=x 12+x 22﹣2(x 1+x 2)+2+y 12+y 22﹣8(y 1+y 2)+32=x 12+x 22﹣2x 1x 2+2﹣4+y 12+y 22﹣2y 1•y 2+18﹣48+32 ═(x 1﹣x 2)2+(y 1﹣y 2)2, ∴MN 2=ME 2+NE 2, ∴∠MEN =90°, 故EM ⊥EN ,即:△EMN 恒为直角三角形.5.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4; (1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ =,点M 是y 轴上一个动点,求△AQM的最小周长.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.6.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.7.如图,抛物线y=﹣x2+bx+c过点x轴上的A(﹣1,0)和B点,交y轴于点C,点P是该抛物线上第一象限内的一动点,且CO=3AO.(1)抛物线的解析式为:y=﹣x2+2x+3 ;(2)过点P作PD∥y轴交直线BC于点D,求点P在运动的过程中线段PD长度的最大值;(3)若sin∠BCP=,在对称轴左侧的抛物线上是否存在点Q,使∠QBC=∠PBC?若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵A(﹣1,0),∴OA=1,又∵CO=3AO,∴OC=3,∴C(0,3),把A,C两点的坐标代入y=﹣x2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+2x+3,故答案为:y=﹣x2+2x+3.(2)由﹣x2+2x+3=0,得B(3,0),设直线BC的解析式为y=kx+b,将点B(3,0),C(0,3)代入得,,解得:,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则D(x,﹣x+3)(0<x<3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=.∴当时,PD有最大值.(3)存在.∵,点P在第一象限,∴∠BCP=45°,∵B(3,0),C(0,3),∴OC=OB,∴△BOC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠BCP=∠OCB=45°,∴CP∥OB,∴P(2,3),设BQ与y轴交于点G,在△CPB和△CGB中:2,∴△CPB≌△CGB(ASA),∴CG=CP=2,∴OG=1,∴点G(0,1),设直线BQ:y=kx+1,将点B(3,0)代入y=kx+1,∴,∴直线BQ:,联立直线BQ和二次函数解析式,解得:或(舍去),∴Q(,).8.如图,以D为顶点的抛物线y=ax2+2x+c交x轴于点A,B(6,0),交y轴于点C(0,6).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)将B(6,0),C(0,6)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(2)当y=0时,﹣x2+2x+6=0,解得:x1=﹣2,x2=6,∴点A的坐标为(﹣2,0).∵点B的坐标为(6,0),点C的坐标为(0,6),∴直线BC的解析式为y=﹣x+6.如图1,作O关于BC的对称点O′,则点O′的坐标为(6,6).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA的最小值=PO′+PA=AO′═=10.设直线AO′的解析式为y=kx+m,将A(﹣2,0),Q′(6,6)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).又∵点C的坐标为(0,6),点B的坐标为(6,0),∴CD=2,BC═=6,BD═=4,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴==2,.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴,即,∴AQ=20,∴点Q的坐标为(18,0).综上所述:当Q的坐标为(0,0)或(18,0)时,以A,C,Q为顶点的三角形与△BCD 相似.9.如图,抛物线L:y=ax2﹣2ax+a+k(a,k为常数且a>0)经过点C(﹣1,0),顶点为M,经过点P(0,a+4)的直线m与x轴平行,且m与L交于点A,B(B在A的右侧),与L的对称轴交于点F,直线n:y=ax+c经过点C.(1)用a表示k及点M的坐标;(2)BP﹣AP的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线n经过点B时,求a的值及点A,B的坐标;(4)当a=1时,设△ABC的外心为点N,则:①求点N的坐标;②若点Q在L的对称轴上,其纵坐标为b,且满足∠AQB<∠ACB,直接写出b的取值范围.解:(1)把点C(﹣1,0)代入L,得0=a×(1﹣)2﹣2a×(﹣1)+a+k,∴k=﹣4a.又L:y=ax2﹣2ax+a+k=a(x﹣1)2﹣4a,∴顶点M(1,﹣4a).(2)是定值.根据图象,由抛物线的轴对称性,可知BF=AF,又QL的对称轴为x=1,故PF=1,∴由图象可得,BP﹣AP=(BF+PF)﹣(AF﹣PF),=BF+PF﹣AF+PF=2PF=2.(3)当直线n经过点B时,有ax+a=a(x﹣1)2﹣4a,化简得,ax2﹣3ax﹣4a=0,∵a>0,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∵B在A的右侧,对称轴为x=1,∴B(4,a+4),A(﹣2,a+4),把点B代入直线n,得a+4=4a+a,解得a=1,∴A(﹣2,5),B(4,5).(4)①根据抛物线的轴对称性可知,L的对称轴x=1就是AB的垂直平分线,故△ABC的外心N就在直线x=1上,则有AN=CN.∴设N(1,c),由(3)可知A(﹣2,5),及C(﹣1,0),∴(﹣2﹣1)2+(5﹣c)2=(﹣1﹣1)2+(0﹣c)2,即32+(5﹣c)2=22+c2,解得c=3.∴N(1,3).②或b.如图,对于点Q(1,b),若∠AQB=∠ACB,根据同弧所对的圆周角相等,可得点Q为x=1与⊙N的交点,由(4)①得,⊙N的半径为r=NC=(﹣1﹣1)2+(0﹣3)2=,则b=﹣(r﹣c)=﹣(﹣3)=3﹣;设点Q关于直线AB的对称点为Q'(1,d),若∠AQ'B=∠ACB,则d=FQ'+5=FQ+5=(5+|3﹣|)+5=+7.综上,若点Q满足∠AQB<∠ACB,则有b或b.10.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)直接写出抛物线和直线AB的函数表达式.(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a <90°),连接D′A、D′B,求D′A+D′B的最小值.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.11.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC =6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).12.如图,直线y=x﹣4与x轴,y轴交于点B,C,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,抛物线经过B,C,与x轴交于另一点A.(1)求抛物线的解析式;(2)点E从A点出发,在线段AB上以每秒3个单位的速度向B点运动,同时点F从B 点出发,在线段BC上以每秒1个单位的速度向C点运动,当其中一个点到达终点时,另一个点将停止运动.设△EBF的面积为S,点E运动的时间为t.①求S与t的函数关系式,并求出S有最大值时点F的坐标;②点E,F在运动过程中,若△EBF为直角三角形,求t的值.解:(1)∵直线y=x﹣4与x轴,y轴交于点B,C,∴x=0时,y=﹣4,y=0时,x=4,∴B(4,0),C(0,﹣4).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴A点坐标为(﹣2,0),∴,解得:.∴抛物线的解析式为.(2)由题意得,BF=t,BE=6﹣3t,①作FH⊥x轴,如图,∵B(4,0),C(0,﹣4).∴OB=OC=4,∴,∵FH∥BC,∴△BHF∽△BOC,∴,∴.解得:HF=.∴=.当S有最大值时,t=1,此时点F的坐标为().②∵OB=OC,∴∠OBC=45°,若∠BEF=90°,则cos∠EBF=,解得:t=.若∠EFB=90°,则cos∠EFB=.解得:t=.综合以上可得,若△EBF 为直角三角形,t 的值为或.13.如图,在直角坐标系中,y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点(A 点在B 点左),与y 轴交于C 点.(1)若△ABC 的面积为,求抛物线的解析式;(2)已知点P 为B 点右侧抛物线上一点,连PC ,PB 交y 轴于D 点,若∠BCP =2∠ABC ,求的值;(3)若P 为对称轴右侧抛物线上的动点,PA 交y 轴于E 点,判断的值是否为定值,说明理由.解:(1)∵y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点,∴ax 2+4 ax +3a =0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),当x =0,y =3a ,∴OC =﹣3a ,∵S △ABC =, ∴, 解得a =﹣,∴抛物线的解析式为y =﹣;(2)如图,过B 点作BM ⊥x 轴交CP 于M ,过点C 作CF ⊥BM 于点F ,∵AB∥CF,∴∠ABC=∠BCF,∵∠BCP=2∠ABC,∴∠ABC=∠BCF=∠FCM,∵CF=CF,∴△CBF≌△CMF(ASA),∴BF=FM,∴M(3,6a),又∵C(0,3a),设CP解析式y=mx﹣3m,∴8a=m×2,∴m=4a,∴y=4ax﹣12a,∴,解得:x1=3,x2=5,∴P(5,8a),∴直线BP的解析式为y=4ax﹣12a,∴D(0,﹣12a),∵OC=|3a|,OD=|﹣12a|,∴;(3)∵A(1,0),∴设PA的解析式y=k1x﹣k1,∴∴ax2﹣(4a+k1)x+3a+k1=0,∴(ax﹣3a﹣k1)(x﹣1)=0,解得,x=1或x=,∴x p=3+,∵B(3,0),∴设PB的解析式y=k2x﹣3k2,∴,∴ax2﹣(4a+k2)x+3a+3k2=0,∴(ax﹣a﹣k2)(x﹣3)=0,∴x p=1+.又∵EC=﹣k1﹣3 a,DE=﹣3k2﹣3 a,∴==.14.如图,已知抛物线y=ax2﹣2x+c经过△ABC的三个顶点,其中点点A(0,1)、点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A (0,1),B (9,10)代入函数解析式,得, 解得,∴抛物线的解析式y =x 2﹣2x +1;(2)∵AC ∥x 轴,A (0,1), ∴x 2﹣2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1),∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,m 2﹣2m +1),∴E (m ,m +1),∴PE =m +1﹣(m 2﹣2m +1)=﹣m 2+3m .∵AC ⊥PE ,AC =6,∴S 四边形AECP =S △AEC +S △APC =AC •EF +AC •PF =AC •(EF +PF )=AC •EP =×6×(﹣m 2+3m )=﹣m 2+9m =﹣(m ﹣)2+,∵0<m <6,∴当m =时,四边形AECP 的面积最大,此时P (,﹣);(3)∵y =x 2﹣2x +1=(x ﹣3)2﹣2,∴P (3,﹣2).∴PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,即,解得t=4,∴Q(4,1);②当△CQP∽△ABC时,,即,解得t=﹣3,∴Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).15.已知抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点P为抛物线的对称轴上一点,连接BP,CP,当四边形BOCP的周长最小时,求点P的坐标;(3)如图2,点D为抛物线的顶点,在线段CD上是否存在点M(不与点C重合),使得△AMO与△ABC相似?若存在,请求出点M的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),∴,解得:,∴抛物线的解析式为y=x2﹣4x+3;(2)∵抛物线的解析式为y=x2﹣4x+3,∴令x=0,y=3,∴C(0,3).∴OC+OB=3+1=4,∴当四边形BOCP的周长最小时,则CP+BP最小,如图1,连接AC,与对称轴的交点即为所求的点P,设直线AC的解析式为y=kx+b,∴,解得:.∴直线AC的解析式为y=﹣x+3,∵抛物线的对称轴为x==2,∴x=2时,y=﹣2+3=1,∴P(2,1).(3)∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点D的坐标为(2,﹣1),又∵C(0,3),∴直线CD为y=﹣2x+3,OC=3,∵A(3,0),∴AB=2,∠BAC=∠OCA=45°,∴AC=3,∴.∵∠ABC=90°+∠OCB,∴∠ABC为钝角,若△AMO与△ABC相似,显然∠ABC=∠OMA,则在线段CD上存在点M使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,①若点M在x轴上方时,如图2,当∠AOM=∠CAB=45°时,△ABC∽△OMA,设M(a,﹣2a+3),∴a=﹣2a+3,解得a=1,∴M(1,1).此时OM=,OA=3,∴,∴.则△ABC∽△OMA.②若点M在x轴下方,如图3,∵M在线段CD上,∴∠AOM≠45°,∴∠OAM=∠BAC=45°,∴M(2,﹣1),此时点M与点D重合,AM=,OA=3,∴.则△ABC∽△AMO.综合以上可得,在线段CD上存在点M(不与点C重合),使得△AMO与△ABC相似,此时点M的坐标为(1,1)或(2,﹣1).16.如图,一次函数y=﹣x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求线段PG的长;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求S.△OBE解:(1)一次函数y=﹣x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图1,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),设直线PH的表达式为:y=kx+b,∴,解得:,∴直线PH的解析式为y=x+,联立抛物线的解析式和直线的解析式:,解得:x=2(舍去)或﹣,∴点E(﹣,﹣),∴==.②当PE在AP上方时,如图2,过点P作PM⊥y轴交于点M,交抛物线于点E,∵tan∠APM=.tan∠ABO=,∴∠APM=∠ABO,∵PE∥x轴,∴E点的纵坐标为3,将y=3代入抛物线解析式求得x=1,∴E(1,3),∴=6.综上可得△OBE的面积为或6.17.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM与△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.解:(1)∵A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得,解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图1,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图2,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM与△BQC相似有两种情况.当时,∴,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M(1,).1当时,∴,解得DM=3,∴QM=DQ﹣DM=4﹣3=1.(1,1).∴M2综上,点M的坐标为或(1,1).18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0)(点A在点B的左边),与y轴交于点C,过点C作CD∥x轴,交抛物线于点D,过点D作DE∥y轴,交直线BC 于点E,点P在抛物线上,过点P作PQ∥y轴交直线CE于点Q,连结PB,设点P的横坐标为m,PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时,求d关于m的函数关系式;(4)当△PQB是等腰三角形时,直接写出m的值.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0),∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C,∴点C(0,﹣3)设直线BC解析式为:y=kx﹣3,∴0=3k﹣3∴k=1,∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m,PQ∥y轴,∴点P(m,﹣m2+4m﹣3),点Q(m,m﹣3),当0<m<3时,PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m,当3≤m<4时,PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3,0),点C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,∵PQ∥OC,∴∠PQB=45°,若BP=PQ,∴∠PQB=∠PBQ=45°,∴∠BPQ=90°,即点P与点A重合,∴m=1,若BP=QB,∴∠BQP=∠BPQ=45°,∴∠QBP=90°,∴BP解析式为:y=﹣x+3,∴解得:,∴点P(2,1)∴m=2;若PQ=QB,∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2,或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2,∴m=±,综上所述:m=1或2或±.19.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).20.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.。

2020年中考数学二次函数压轴题专题复习 (含答案)

2020年中考数学二次函数压轴题专题复习 (含答案)

2020年中考数学二次函数压轴题专题复习1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.3.如图,二次函数错误!未找到引用源。

的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.4.综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA上一个动点,过点M垂直于x轴直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.5.已知抛物线y=0.5x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.7.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒错误!未找到引用源。

2020年-2020年全国中考二次函数压轴题集锦(附详细答案)

2020年-2020年全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.7.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO 并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).8.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D 的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M 为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.10.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.11.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c 经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.12.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.13.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.14.如图,四边形ABCD是边长为4的正方形,动点P、Q同时从A点出发,点P沿AB以每秒1个单位长度的速度向终点B运动.点Q沿折线ADC以每秒2个单位长度的速度向终点C 运动,设运动时间为t秒.(1)当t=2秒时,求证:PQ=CP;(2)当2<t≤4时,等式“PQ=CP”仍成立吗?试说明其理由;(3)设△CPQ的面积为S,那么S与t之间的函数关系如何?并问S的值能否大于正方形ABCD 面积的一半?为什么?15.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点D是线段BC中点,点E是BC上方抛物线上一动点,连接CE,DE.当△CDE的面积最大时,过点E作y轴垂线,垂足为F,点P为线段EF上一动点,将△CEF绕点C沿顺时针方向旋转90°,点F,P,E的对应点分别是F′,P′,E′,点Q从点P出发,先沿适当的路径运动到点F′处,再沿F′C运动到点C处,最后沿适当的路径运动到点P′处停止.求△CDE面积的最大值及点Q经过的最短路径的长;(3)如图2,直线BH经过点B与y轴交于点H(0,3)动点M从O出发沿OB方向以每秒1个单位长度向点B运动,同时动点N从B点沿BH方向以每秒2个单位长度的速度向点H 运动,当点N运动到H点时,点M,点N同时停止运动,设运动时间为t.运动过程中,过点N作OB的平行线交y轴于点I,连接MI,MN,将△MNI沿NI翻折得△M′NI,连接HM′,当△M′HN为等腰三角形时,求t的值.16.如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR 为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.17.已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P 从O出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A、B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;(3)在图2中以A为圆心,OA长为半径作⊙A,当0≤t≤20时,过点P作PQ⊥x轴(Q在P的上方),且线段PQ=t+12:①当t在什么范围内,线段PQ与⊙A只有一个公共点?当t在什么范围内,线段PQ与⊙A 有两个公共点?②请将①中求得的t的范围作为条件,证明:当t取该范围内任何值时,线段PQ与⊙A总有两个公共点.18.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为,线段OB的长=;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.19.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.20.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E 的坐标是多少时,点M在整个运动中用时最少?21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A (0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x 轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF ;(4)连接PE ,在x 轴上点Q 的右侧是否存在一点M ,使△CQM 与△CPE 全等?若存在,试求出点M 的坐标;若不存在,请说明理由.[注:3+2=(+1)2].22.阅读理解抛物线y=x 2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx +1与y 轴交于C 点,与函数y=x 2的图象交于A ,B 两点,分别过A ,B 两点作直线y=﹣1的垂线,交于E ,F 两点.(1)写出点C 的坐标,并说明∠ECF=90°;(2)在△PEF 中,M 为EF 中点,P 为动点.①求证:PE 2+PF 2=2(PM 2+EM 2);②已知PE=PF=3,以EF 为一条对角线作平行四边形CEDF ,若1<PD <2,试求CP 的取值范围.23.已知抛物线经过A (﹣3,0),B (1,0),C (2,)三点,其对称轴交x 轴于点H ,一次函数y=kx +b (k ≠0)的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)如图1,当S △EOC =S △EAB 时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k 的取值范围.24.如图1,已知直线EA 与x 轴、y 轴分别交于点E 和点A (0,2),过直线EA 上的两点F 、G 分别作x 轴的垂线段,垂足分别为M (m ,0)和N (n ,0),其中m <0,n >0.(1)如果m=﹣4,n=1,试判断△AMN 的形状;(2)如果mn=﹣4,(1)中有关△AMN 的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M 、A 、N 三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l 与线段AN 交于点P ,点Q 是对称轴上一动点,以点P 、Q 、N 为顶点的三角形和以点M 、A 、N 为顶点的三角形相似,求符合条件的点Q 的坐标.25.如图,二次函数与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动.设PQ 交直线AC 于点G .(1)求直线AC 的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形.直接写出所有满足条件的M 点的坐标;(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由.26.如图,在平面直角坐标系xOy 中,二次函数的图象与x 轴交于A (﹣1,0)、B (3,0)两点,顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :交BD 于点E ,过点B 作直线BK∥AD交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD 四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK和的最小值.27.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.28.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在直线CD的上方,y轴及y轴的右侧的平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的点G的坐标;(3)如图,抛物线的对称轴与x轴的交点M,过点M作一条直线交∠ADB于T,N两点,①当∠DNT=90°时,直接写出的值;②当直线TN绕点M旋转时,=DN•DT;试说明:△DNT的面积S△DNT并猜想:的值是否是定值?说明理由.29.如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D (0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.30.如图,已知直线l:y=x+2与y轴交于点D,过直线l上一点E作EC丄y轴于点C,且C 点坐标为(0,4),过C、E两点的抛物线y=﹣x2+bx+c交x轴于A、B两点(点A在点B的左侧).(1)求抛物线的解析式:(2)动点Q从点C出发沿线段CE以1单位/秒的速度向终点E运动,过点Q作QF⊥ED于点F,交BD于点H,设点Q运动时间为t秒,△DFH的面积为S,求出S与t的函数关系式(并直接写出自变量t的取值范围);(3)若动点P为直线CE上方抛物线上一点,连接PE,过点E作EM⊥PE交线段BD于点M,当△PEM是等腰直角三角形时,求四边形PMBE的面积.31.已知在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0,且a,b,c为常数)的对称轴为:直线x=,与x轴分别交于点A、点B,与y轴交于点C(0,﹣),且过点(3,﹣5),D为x轴正半轴上的动点,E为y轴负半轴上的动点.(1)求该抛物线的表达式;(2)如图1,当点D为(3,0)时,DE交该抛物线于点M,若∠ADC=∠CDM,求点M的坐标;(3)如图2,把(1)中抛物线平移使其顶点与原点重合,若直线ED与新抛物线仅有唯一交点Q时,y轴上是否存在一个定点P使PE=PQ?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共31小题)1.(2017秋•上杭县期中)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】151:代数综合题;32 :分类讨论.【分析】(1)根据AC=BC,求出BC的长,进而得到点A,B的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB的解析式,用含m的式表示出E,F的坐标,求出EF的长度最大时m的值,即可求得E,F的坐标;(3)分两种情况:∠E﹣90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,∴BC=5,∴A(﹣1,0),B(4,5),抛物线y=x2+bx+c经过A,B两点,∴,解得:,∴y=x2﹣2x﹣3;(2)设直线AB解析式为:y=kx+b,直线经过点A,B两点,∴,解得:,∴直线AB的解析式为:y=x+1,设点E的坐标为(m,m+1),则点F(m,m2﹣2m﹣3),∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,∴当EF最大时,m=,∴点E(,),F(,);(3)存在.①当∠FEP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=,∴点P1(,),P2(,),②当∠EFP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=(舍去),∴点P3(,),综上所述,P1(,),P2(,),P3(,).【点评】本题主要考查二次函数的综合题,其中第(3)小题要注意分类讨论,分∠E=90°和∠F=90°两种情况.2.(2017秋•鄂城区期中)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N 在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.【点评】本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.3.(2017•泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(4﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出D点的位置是解题的关键,在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.4.(2017•南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O (0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.5.(2017•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限。

点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。

当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒。

1) 求正方形ABCD的边长。

解:作BF⊥y轴于F。

则FB=8,FA=6,AB=10.2) 当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分。

求P,Q两点的运动速度。

解:由图可知,点P从点A运动到点B用了10秒。

又AB=10,故P,Q两点的运动速度均为每秒1个单位。

3) 求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标。

解:方法一:作PG⊥y轴于G,则PG∥BF。

由相似三角形可得:GA/AP=FA/AB,即6/10=t/AP,故GA=3/5t。

又OG=10-3/5t,OQ=4+t。

则S=1/2×OQ×OG=1/2×(t+4)×(10-3/5t)=-3/10t²+19/5t+20.对XXX求导得:S'=(-6/5)t+19/5,令其为0,解得t=19/3.此时S有最大值。

此时GP=76/15,OG=31/5,P的坐标为(76/15,31/5)。

方法二:当t=5时,OG=7,OQ=9,S=63/2.设所求函数关系式为S=at²+bt+20.抛物线过点(5,63/2),则a=-3/10,b=19/2.代入可得S=-3/10t²+19/2t+20.同样可得最大值时t=19/3,P的坐标为(76/15,31/5)。

4) 若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠XXX的大小随着时间t的增大而增大;沿着BC边运动时,∠XXX的大小随着时间t的增大而减小。

最新九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)含答案

最新九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)含答案

2023年九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)1.如图,直线y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣43x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求点B的坐标和抛物线的解析式;(2)在运动过程中,若点P为线段MN的中点,求m的值;(3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;2.如图△,已知抛物线y=ax2﹣4amx+3am2(a、m为参数,且a>0,m>0)与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求点B的坐标(结果可以含参数m);(2)连接CA、CB,若C(0,3m),求tan△ACB的值;(3)如图△,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.3.如图,已知二次函数的图象经过点A (4,4)、B (5,0)和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.4.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B .(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.△当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹.并直接写出直线CD 的解析式;△点()(),0P m n m >是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR ∆.在△的条件下,记PQR ∆与COD ∆的公共部分的面积为S .求S 关于m 的函数关系式,并求S 的最大值.5.已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C作CB△x 轴交抛物线于点B,过点B作直线l△x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣1时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出求a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.6.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且△DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.7.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y 轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围.8.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.9.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN△x 轴于点N ,交抛物线于点M ,当△BCM 面积最大时,求△BPN 的周长. (3)在(2)的条件下,当△BCM 面积最大时,在抛物线的对称轴上是否存在点Q ,使△CNQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.10.如图1,抛物线243y x x =++与x 轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 抛物线的顶点.(1)求直线BD 的解析式;(2)抛物线对称轴交x 轴于点E ,P 为直线BD 上方的抛物线上一动点,过点P 作PF BD ⊥于点F ,当线段PF 的长最大时,连接PE ,过点E 作射线EM ,且EM EP ⊥,点G 为射线EM 上一动点(点G 不与点E 重合),连接PG ,H 为PG 中点,连接AH ,求AH 的最小值;(3)如图2,平移抛物线,使抛物线的顶点D 在射线BD 上移动,点B ,D 平移后的对应点分别为点'B ,'D ,y 轴上有一动点M ,连接'MB ,'MD ,''MB D ∆是否能为等腰直角三角形?若能,请求出所有符合条件的M 点的坐标;若不能,请说明理由.11.如图1,抛物线()230y ax bx a =++≠与x 轴交于()1,0A -、()30B ,两点,与y 轴交于点C ,顶点为点M .(1)求这条抛物线的解析式及直线BM 的解析式;(2)P 段BM 上一动点(点P 不与点B 、M 重合),过点P 向x 轴引垂线,垂足为Q ,设OQ 的长为t ,四边形PQAC 的面积为S .求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在线段BM 上是否存在点N ,使NMC ∆为等腰三角形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图,已知抛物线与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C(0,3).(1)该抛物线的对称轴是直线___________, (2)求抛物线的解析式;(3)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:13.在平面直角坐标系中,将二次函数()20y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.14.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.△是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;△若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.15.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且△MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.16.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.17.已知:直线122y x =+与y 轴交于A ,与x 轴交于D ,抛物线y =12x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)点P 是直线AE 上一动点,当△PBC 周长最小时,求点P 坐标; (3)动点Q 在x 轴上移动,当△QAE 是直角三角形时,求点Q 的坐标;(4)在y 轴上是否存在一点M ,使得点M 到C 点的距离与到直线AD 的距离恰好相等?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D 为抛物线的顶点,连接DA 、DB ,试判断△ABD 的形状,并说明理由; (3)设P 为对称轴上一动点,要使PC ﹣PB 的值最大,求出P 点的坐标.19.如图,抛物线2y ax bx c =++ 经过点()2,5A -,与x 轴相交于()1,0B -,()3,0C 两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将BCD ∆沿沿直线BD 翻折得到BC D '∆,若点D '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当CPQ ∆为等边三角形时,求直线BP 的函数表达式.20.如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到Rt COD ∆,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. △若2PMN S ∆=,求k 的值;△证明:无论k 为何值,PMN ∆恒为直角三角形;△当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.参考答案:1.(1)B (0,2),抛物线解析式为y=﹣43x 2+103x+2;(2)m 的值为12;(3)当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0). 2.(1)B (3m ,0);(2)tan△ACB =12;(3)点P 的坐标是:)或). 3.(1)y =﹣x 2+5x ;(2)当点P 在直线OA 的上方时,线段PC 的最大值是4;(3)存在,P 的坐标是(4,2﹣)或(6,﹣6)或(5,0). 4.(1)()21154y x =--+;(2);4y x =-+;△S 27448x x =-+-;S 的最大值为47.5.(1)5;(2)a =﹣1(3)m =3n 2+2 6.(1)y =﹣x 2+3x +4;(2)P (﹣25,6625);(3)点M 的坐标为(32,298)或(32,﹣58)或(32,52)或(32,32).7.(1)y=x 2-5x+4, A(1,0);(2)(6,10)或(2,-2);m <6或 3m <28.(1)y =﹣x 2+4x ﹣3;(2)在y 轴上存在点M ,点M 的坐标为(0,3),(0,3-或(0,3-,(3)P (4,﹣3).9.(1)y =﹣x 2+2x+3 (2)310.(1)43y x =-+(2(3)(0,,,.11.(1)2y x 2x 3=-++,26y x =-+;(2)四边形ACPQ S 29322t t =-++,t 的取值范围是13t <<;(3)716,55N ⎛⎫⎪⎝⎭或14N ⎛ ⎝⎭或()2,2N 12.(1)1x = (2)2y x 2x 3=-++;(3)存在,⎝⎭或(2.3)13.(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3.14.(1)211384y x x =--+;(2)△存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;△点3,02M ⎛⎫⎪⎝⎭15.(1)y=-23x 2-43x+2;(2)S 的最大值为174;(3)存在,点N或)或)或).16.(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 17.(1)215222y x x =-+;(2)P (1213,3213);(3)Q 点坐标为(1,0)或(172,0);(4)存在;M 点坐标为M (0,﹣8).18.(1)抛物线的函数表达式为y =x 2﹣4x +3;(2)△ADB 是等腰直角三角形;理由见解析;(3)P (2,﹣3).19.(1)223y x x =--;(2)点'C 坐标为(点D 的坐标为⎛ ⎝⎭;(3)直线BP 的函数表达式为y =y x =20.(1)2y x 2x 3=-++,()1,4P ;(2)△k =±△2241y x x =-++.。

2020中考数学 二次函数中动点问题专题练习(含答案)

2020中考数学 二次函数中动点问题专题练习(含答案)

2020中考数学 二次函数中动点问题专题练习(含答案)1. 在平面直角坐标系xOy 中,已知抛物线24(2)9y x c =--+与x 轴交于A 、B 两点(点A在点B 的左侧),交y 轴的正半轴于点C ,其顶点为M ,MH x ⊥轴于点H ,MA 交y 轴于点N ,25sin 5MOH ∠=.(1)求此抛物线的函数表达式;(2)将(1)中的抛物线沿y 轴折叠,使点A 落在点D 处,连接MD ,Q 为(1)中的抛物线上的一动点,直线NQ 交x 轴于点G ,当Q 点在抛物线上运动时,是否存在点Q ,使以A 、N 、G 为顶点的三角形与ADM △相似?若存在,求出所有符合条件的直线QG 的解析式;若不存在,请说明理由.(1)∵M 为抛物线24(2)9y x c =--+的顶点,∴(2,)M c .∴2OH =,||MH c = . ∵0a <,且抛物线与x 轴有交点, ∴0c >,∴MH c =,∵25sin 5MOH ∠=,∴255MH OM =. ∴52OM c =,∵222OM OH MH =+,∴4MH c ==, ∴(2,4)M ,∴22441620(2)49999y x x x =--+=-++; (2)∵(1,0)A -,∴D (1, 0),∵M (2, 4),D (1, 0), ∴直线MD 解析式:44y x =-,∵ON//MH ,∴AON AHM △∽△, ∴13AN ON AO AM MH AH ===, ∴53AN =,43ON =,40,3N ⎛⎫⎪⎝⎭.如图,若ANG AMD △∽△,可得NG//MD ,∴直线QG 解析式:443y x =+,如图,若ANG ADM △∽△,可得AN AGAD AM=∴256AG =,∴19(,0)6G ,∴84:193QG y x =-+,综上所述,符合条件的所有直线QG 的解析式为:443y x =+或84193y x =-+. 2. 如图,已知点(2,4)A -和点(1,0)B 都在抛物线22y mx mx n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ',点B 的对应点为B ',若四边形AA B B ''为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB '的交点为C ,试在x 轴上找一个点D ,使得以点B '、C 、D 为顶点的三角形与ABC △相似.(1)因为点(2,4)A -和点(1,0)B 都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图,由点(2,4)A -和点(1,0)B ,可得5AB =.因为四边形AA B B ''为菱形,所以5AA B B AB '='==.因为248433y x x =--+2416(1)33x =-++,所以原抛物线的对称轴1x =-向右平移5个单位后,对应的直线为4x =.因此平移后的抛物线的解析式为,2416(4)33y x =--+.(3)由点(2,4)A -和点(6,0)B ',可得AB '=.如图,由//AM CN ,可得B N B CB M B A''='',即28.解得B C 'AC =.又BAC CB D '∠=∠. ①如图,当AB B C AC B D '='=3B D '=.此时3OD =,点D 的坐标为(3,0). ②如图,当AB B D AC B C '='时,=,解得53B D '=.此时133OD =,点D 的坐标为13,03⎛⎫ ⎪⎝⎭.综上所述,1(3,0)D ,213,03D ⎛⎫⎪⎝⎭满足条件.3. 如图,已知抛物线C 1:1(2)()(0)y x x m m m=-+->与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点()2,2M ,求实数m 的值;(2)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH EH +最小,并求出点H 的坐标;xyABO(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与BCE △相似?若存在,求m 的值;若不存在,请说明理由.(1)∵抛物线C 1过点()2,2M ,∴12(22)(2)m m=-+-,解得4m =. (2)由(1)可得1(2)(4)4y x x =-+-的对称轴为1x =.连接CE ,交对称轴于点H ,由轴对称的性质和两点之间线段最短的性质,知此时BH EH +最小.设直线CE 的解析式为+y kx b =,则4+02k b b =⎧⎨=⎩,解得122k b ⎧=-⎪⎨⎪=⎩.∴直线CE 的解析式为1+22y x =-.当1x =时,32y =.∴31,2H ⎛⎫⎪⎝⎭.(3)存在.分两种情形讨论:①当BEC BCF △∽△时,如图所示. 则BE BC BC BF=,∴2BC BE BF =⋅.由(2)知(2,0)B -,(0,2)E ,即OB OE =, ∴45EBC ∠=︒,∴45CBF ∠=︒.作FT x ⊥轴于点F ,则.BT TF =∴令(,2)F x x --(x >0),又点F 在抛物线上,∴2x --=1(2)()x x m m-+-,∵20x +>(∵x >0),∴2x m =,2,22)F m m --(.此时22(22)(22)22(1)222BF m m m BE BC m =++--=+==+,, 又2BC BE BF =⋅,∴(m +2)2=2222(1)m ⋅+,解得222m =±.0m >Q ,222m ∴=+.②当BEC FCB △∽△时,如图所示.则BC ECBF BC=,2BC EC BF ∴=⋅.同①,=EBC CFB ∠∠Q ,BTF COE △∽△,2TF OE BT OC m∴==.∴令2,(2)F x x m ⎛⎫-+ ⎪⎝⎭(0)x >,又点F 在抛物线上,21(2)|2|()x x x m m m∴-+=-+-.20(0)x x +>>Q ,2x m ∴=+.2(2,(4)F m m m∴+-+,EC =2BC m =+.又2BC EC BF =⋅,2(2)m ∴+=综合①②得,在第四象限内,抛物线上存在点F ,使得以点B 、C 、F 为顶点的三角形2m =.4. 如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线3y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式; (2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值.(1)83k =;(2)452k =或.5.如图5-1,已知抛物线2(0)y ax bx a =+≠经过(3,0A )、(4,4)B 两点.(1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3)如图5-2,若点N 在抛物线上,且NBO ABO ∠=∠,则在(2)的条件下,求出所有满足POD NOB △∽△的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).图5-2(1)∵抛物线2(0)y ax bx a =+≠经过点(3,0)A 、(4,4)B . ∴,解得.∴抛物线的解析式是.(2)设直线OB 的解析式为1y k x =,由点(4,4)B , 得:,解得:.∴直线OB 的解析式是.∴直线OB 向下平移m 个单位长度后的解析式为:. ∵点D 在抛物线上. ∴可设2(,3)D x x x -.又点D 在直线y x m =-上,∴,即. ∵抛物线与直线只有一个公共点, ∴,解得:. 此时,, ∴D 点坐标为(2,2)-.(3)∵直线OB 的解析式为y x =,且(3,0)A ,点A 关于直线OB 的对称点'A 的坐标是(0, 3).设直线'A B 的解析式为,过点(4,4)B ,∴,解得:.∴直线'A B 的解析式是.∵,∴点N 在直线上,∴设点,又点N 在抛物线上,图②图①9301644a b a b +=⎧⎨+=⎩13a b =⎧⎨=-⎩23y x x =-144k =11k =y x =y x m =-23y x x =-23x x x m -=-240x x m -+=1640m ∆=-=4m =122x x ==232y x x =-=-23y k x =+2434k +=214k =134y x =+NBO ABO ∠=∠A B '134N n n ⎛⎫+ ⎪⎝⎭,23y x x =-∴, 解得:,(不合题意,舍去),∴点N 的坐标为.方法一:如图1,将沿x 轴翻折,得到, 则,,∴O 、D 、都在直线上. ∵, ∴, ∴, 点的坐标为. 将沿直线翻折,可得另一个满足条件的点. 综上所述,点P 的坐标是或.方法二:如图2,将绕原点顺时针旋转90︒,得到,则,, ∴O 、D 、B 2都在直线y x =-上.∵, ∴, ∴, ∴点的坐标为. 将沿直线翻折,可得另一个满足条件的点. 综上所述,点的坐标是或.21334n n n +=-134n =-24n =345416⎛⎫- ⎪⎝⎭,NOB △11N OB △1345416N ⎛⎫-- ⎪⎝⎭,()144B -,1B y x =-1POD NOB △∽△111POD N OB △∽△11112OP OD ON OB ==1P 345832⎛⎫-- ⎪⎝⎭,1OPD △y x =-2453328P ⎛⎫⎪⎝⎭,345832⎛⎫-- ⎪⎝⎭,453328⎛⎫ ⎪⎝⎭,NOB △22N OB △2453164N ⎛⎫ ⎪⎝⎭,()244B -,1POD NOB △∽△122POD N OB △∽△12212OP OD ON OB ==1P 453328⎛⎫⎪⎝⎭,1OPD △y x =-2345832P ⎛⎫-- ⎪⎝⎭,P 345832⎛⎫-- ⎪⎝⎭,453328⎛⎫ ⎪⎝⎭,6. 如图,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且PBC △是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得QCO △,QOA △和QAB △中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.(1)令0y =,即211(1)0444by x b x =-++=,解得:1x =或b , ∵b 是实数且2b >,点A 位于点B 的左侧,∴点B 的坐标为(b , 0),令0x =,解得:4by =,∴点C 的坐标为0,4b ⎛⎫ ⎪⎝⎭,故答案为:(b , 0),0,4b ⎛⎫⎪⎝⎭;(2)存在,假设存在这样的点P ,使得四边形PCOB 的面积等于2b ,且PBC △是以点P 为直角顶点的等腰直角三角形.设点P 的坐标为(x , y ),连接OP .则S 四边形112242PCO POB b PCOB S S x b y b =+=⋅⋅=⋅⋅=△△,∴416x y +=.过P 作PD x ⊥轴,PE y ⊥轴,垂足分别为D 、E , ∴90PEO EOD ODP ∠=∠=∠=︒.∴四边形PEOD 是矩形. ∴90EPD ∠=︒.∴EPC DPB ∠=∠. ∴PEC PDB △≌△, ∴PE PD =,即x y =.由416x y x y =⎧⎨+=⎩解得165165x y ⎧=⎪⎪⎨⎪=⎪⎩由PEC PDB △≌△得EC DB =, 即1616545b b -=-, 解得128225b =>符合题意.∴P 的坐标为1616,55⎛⎫⎪⎝⎭;(3)假设存在这样的点Q ,使得QCO △,QOA △和QAB △中的任意两个三角形均相似.∵QAB AOQ AQO ∠=∠+∠,∴QAB AOQ ∠∠>,QAB AQO ∠∠>.∴要使QOA △与QAB △相似,只能90QAO BAQ ∠=∠=︒,即QA x ⊥轴. ∵2b >,∴AB OA >,∴QOA ABQ ∠∠>. ∴只能AOQ AQB ∠=∠.此时90OQB ∠=︒, 由QA x ⊥轴知QA ∥y 轴.∴COQ OQA ∠=∠.∴要使QOA △与OQC △相似,只能90QCO ∠=︒或90OQC ∠=︒. (I )当90OCQ ∠=︒时,CQO QOA △≌△.∴4bAQ CO ==.由2AQ OA AB =⋅得:214b b ⎛⎫=- ⎪⎝⎭.解得:843b =±.∵2b >,∴843b =+. ∴点Q 的坐标是(1,23)+.(II )当90OQC ∠=︒时,OCQ QCA △∽△,∴OQ AQ CO QO =,即2OQ OC AQ =⋅.又2OQ OA OB =⋅,∴OC AQ OA OB ⋅=⋅.即14bAQ b ⋅=⨯.解得:AQ =4,此时b =17>2符合题意,∴点Q 的坐标是(1, 4). ∴综上可知,存在点(1,23)Q +或Q (1, 4),使得QCO △,QOA △和QAB △中的任意两个三角形均相似.7. 如图,已知ABC △中,90ACB ∠=︒,以AB 所在直线为x 轴,过C 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(1,0)-,B 点坐标为(4, 0). (1)试求点C 的坐标;(2)若抛物线2y ax bx c =++过ABC △的三个顶点,求抛物线的解析式;(3)点(1,)D m 在抛物线上,过点A 的直线1y x =--交(2)中的抛物线于点E ,那么在x 轴上点B 的左侧是否存在点P ,使以P 、B 、D 为顶点的三角形与ABE △相似?若存在,求出P 点坐标;若不存在,说明理由.(1)在中,,,由射影定理,得:,即,∴(0,2)C ; (2)∵抛物线经过(1,0)A -,(4,0)B ,(0,2)C , 可设抛物线的解析式为(1)(4)(0)y a x x a =+-≠,则有:2(01)(04)a =+-,,∴2113(1)(4)2222y x x x x =-+-=++(3)存在符合条件的点,且或.根据抛物线的解析式易知:(1,3)D ,联立直线和抛物线的解析式有:, 解得,,∴(6,7)E -,∴,即, ,即,∴,若以、、为顶点的三角形与相似,则有两种情况:①;②. 易知,,Rt ABC △90ACB ∠=︒OC AB ⊥24OC OA OB =⋅=2OC =12a =-P 1307P ⎛⎫ ⎪⎝⎭,2205⎛⎫- ⎪⎝⎭,AE 2132221y x x y x ⎧=++⎪⎨⎪=--⎩10x y =-⎧⎨=⎩67x y =⎧⎨=-⎩30tan 141DBO -∠==-45DBO ∠=︒()()07tan 161EAB --∠==--45EAB ∠=︒DBA EAB ∠=∠P B D ABE △PBD BAE △∽△PBD EAB △∽△BD =EA =5AB =由①得:,即, 即,,由②得:即,,∴或.PB BD AB AE =5PB =157PB =137OP OB PB =-=BP BD AE AB '==425P B '=225OP OB BP ''=-=-1307P ⎛⎫ ⎪⎝⎭,2205⎛⎫- ⎪⎝⎭,8. 已知抛物线(3)(1)(0)y a x x a =+-≠,与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线3y x b =-+与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与ABC △相似,求点P 的坐标;(3)在(1)的条件下,设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒23个单位的速度运动到点D 后停止,问当点E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?(1)∵(3)(1)y a x x =+-,∴点A 的坐标为(3,0)-、点B 两的坐标为(1,0), ∵直线3y x b =-+经过点A ,∴33b =-, ∴333y x =--,当2x =时,53y =-,则点D 的坐标为(2,53)-, ∴(23)(21)53a +-=-,解得,3a =-, 则抛物线的解析式为23(3)(1)32333y x x x x =-+-=--+; (2)如图1中,作PH x ⊥轴于H ,设点P 坐标(,)m n ,当BPA ABC △∽△时,BAC PBA ∠=∠,∴tan tan BAC PBA ∠=∠,即OC PHOA HB=,∴331a nm --=-+,即(1)n a m =--, ∴(1)(3)(1)n a m n m m =--⎧⎨=+-⎩解得4m =-或1(舍弃),当4m =-时,5n a =, ∵BPA ABC △∽△,∴AC ABAB PB=, ∴2AB AC PB =⋅,∴2242992525a a =+⋅+,解得15a =或15-(舍弃),则155n a ==-,∴点P 坐标154,⎛⎫-- ⎪ ⎪⎝⎭. 当PBA ABC △∽△时,CBA PBA ∠=∠,∴tan tan CBA PBA ∠=∠,即OC PHOB HB=,∴311a nm --=-+,∴3(1)n a m =--,∴3(1)(3)(1)n a m n a m m =--⎧⎨=+-⎩, 解得6m =-或1(舍弃),当6m =-时,21n a =,∵PBA ABC △∽△,∴BC ABBA PB=,即2AB BC PB =⋅, ∴2224242197(21)a a ==+⋅+-,解得7a =-或7(不合题意舍弃),则点P 坐标76,⎛⎫-- ⎪ ⎪⎝⎭,综上所述,符合条件的点P 的坐标154,⎛⎫-- ⎪ ⎪⎝⎭和76,⎛⎫-- ⎪ ⎪⎝⎭. (3)如图2中,作DM//x 轴交抛物线于M ,作DN x ⊥轴于N ,作EF DM ⊥于F ,则53tan 3DN DAN AN ∠===,∴60DAN ∠=︒,∴60EDF ∠=︒,∴23sin EF DE EF EDF ==∠,∴Q 的运动时间123BE t BE EF =+=+,∴当BE 和EF 共线时,t 最小, 则BE DM ⊥,此时点E 坐标(1,43)-.9. 如图,平面直角坐标系xOy 中,点A 的坐标为(2,2)-,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点E . (1)求点E 的坐标;(2)求抛物线的函数解析式;(3)点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求BON △面积的最大值,并求出此时点N 的坐标;(4)连结AN ,当BON △面积最大时,在坐标平面内求使得BOP △与OAN △相似(点B 、O 、P 分别与点O 、A 、N 对应)的点P 的坐标.(1)设 将点(2,2)A -,(6,6)B 代入得 得,.∴ 当时,.∴ (2)设抛物线的函数解析式为, ∴,解得,.∴抛物线的解析式为.(3)过点作轴的垂线NG ,垂足为G ,交OB 于点Q ,过B 作轴于H ,设,则则∴当时,面积最大,最大值为,此时点的坐标为.(4)解:过点作于S∵(2,2)A -,(6,6)B ,∴,,,, 在和中,∴∴ ∴ ∴.∴的延长线上存在一点,使.∵,,在中, y mx n =+2266m n m n -+=⎧⎨+=⎩12m =3n =132y x =+0x =3y =(03)E ,2y ax bx =+4223666a b a b -=⎧⎨+=⎩14a =12b =-21142y x x =-N x BH x ⊥21142N x x x ⎛⎫- ⎪⎝⎭,()Q x x ,BON QON BQN S S S ∆∆∆=+1122QN OG QN GH =⨯⨯+⨯⨯1()2QN OG GH =⨯⨯+12QN OH =⨯⨯21116242x x x ⎡⎤⎛⎫=--⨯ ⎪⎢⎥⎝⎭⎣⎦23942x x =-+2327(3)44x =--+(06)x <<3x =BON △274N 334⎛⎫ ⎪⎝⎭,A AS GQ ⊥334N ⎛⎫ ⎪⎝⎭, 45AOE OAS BOH ∠=∠=∠=︒3OG =34NG =54NS =5AS =Rt SAN △Rt NOG △1tan tan 4SAN NOG ∠=∠=SAN NOG ∠=∠OAS SAN BOG NOG ∠-∠=∠-∠OAN BON ∠=∠ON P BOP OAN △∽△()22A -,334N ⎛⎫ ⎪⎝⎭,Rt ASN △22517AN AS SN =+=当时,得 过点P 作轴于点T ,∴. ∴,设P (4t , t ), ∴ ,(舍).∴点的坐标为.将沿直线OB 翻折,可得出另一个满足条件的点 由以上推理可知,当点P 的坐标为或时,与相BOP OAN △∽△OB OP OA AN ==OP =PT x ⊥OPT ONG △∽△14PT NG OT OG ==22(4)t t +=2⎝⎭1154t =2154t=-P 15154⎛⎫ ⎪⎝⎭,OPT △15154P ⎛⎫' ⎪⎝⎭,15154⎛⎫ ⎪⎝⎭,15154⎛⎫⎪⎝⎭,BOP △OAN △。

2020中考数学二次函数压轴题专项训练(含答案)

2020中考数学二次函数压轴题专项训练(含答案)

2020中考数学二次函数压轴题专项训练1、如图9(1),在平面直角坐标系中,抛物线经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F 为顶点的四边形是平行四边形,求点F的坐标;(3)如图9(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.解:(1)∵抛物线经过A(-1,0)、B(0,3)两点,∴解得:抛物线的解析式为:∵由,解得:∴∵由∴D(1,4)(2)∵四边形AEBF是平行四边形,∴BF=AE.设直线BD 的解析式为:,则∵B (0,3),D (1,4) ∴解得:∴直线BD 的解析式为:当y=0时,x=-3 ∴E (-3,0), ∴OE=3, ∵A (-1,0)∴OA=1, ∴AE=2 ∴BF=2,∴F 的横坐标为2, ∴y=3, ∴F (2,3); (3)如图,设Q ,作PS ⊥x 轴,QR ⊥x 轴于点S 、R ,且P (2,3), ∴AR=+1,QR=,PS=3,RS=2-a ,AS=3∴S △PQA =S 四边形PSRQ +S △QRA -S △PSA==∴S △PQA =∴当时,S △PQA 的最大面积为,此时Q2、某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y 件.(1)写出y 与x 的函数关系式(标明x 的取值范围);(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售例如达到8000元,销售单价应定为多少?解:(1)=(2)当时,利润随着单价的增大而增大.(3)当时,成本=不符合要求,舍去.当时,成本=符合要求.销售单价应定为80元,才能使得一周销售利润达到8000元的同时,投入不超过10000元.3、如图,在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.(1)求边的长;(2)当为何值时,与相互平分;(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?解:(1)作于点,如图所示,则四边形为矩形.又在中,由勾股定理得:(2)假设与相互平分.由则是平行四边形(此时在上).即解得即秒时,与相互平分.(3)①当在上,即时,作于,则即=当秒时,有最大值为②当在上,即时,=易知随的增大而减小.故当秒时,有最大值为综上,当时,有最大值为4、为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为(元),年销售量为(万件),年获利为(万元).(年获利=年销售额-生产成本-节电投资)(1)直接写出与之间的函数关系式;(2)求第一年的年获利与间的函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?解:(1)当时,.(略解:)当时,(略解:把代入,得,∴)(2)当时,,当时,当时,∴对称轴是直线.∴∴投资的第一年该“用电大户”是亏损的,最少亏损为78万元.(3)依题意可知,当时,第二年与之间的函数关系为当总利润刚好为1842万元时,依题意可得……8分整理,得,解得,∴要使两年的总盈利为1842万元,销售单价可定为190元或200元.对随的增大而减小,∴使销售量最大的销售单价应定为190元.5、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:每件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1),每件商品的成本Q(元)与时间t(月)的关系可用一条抛物线的一部分上的点来表示(如图2)。

2020年九年级数学典型中考压轴题综合专项训练:二次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:二次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:二次函数1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)求抛物线的顶点坐标(用含a的式子表示);(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),函数的对称轴为:x=﹣1,故点D(﹣1,﹣4a);(2)无关,理由:由抛物线的表达式得,点C(0,﹣3a),将点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线CD的表达式为:y=ax﹣3a,令y=0,则x=3,故点E(3,0),即OE=3,OE的长与a值无关;(3)tanβ===﹣a,故﹣≤a≤﹣1;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE,则PD=PE,∠DPE=90°,而点D(﹣1,﹣4a),点E(3,0),过点P作y轴的平行线交过点D与x轴的平行线于点M,交x轴于点N,∵∠PDM+∠MPD=90°,∠MPD+∠EPN=90°,∴∠MPD=∠EPN,∠PMD=∠ENP=90°,PD=PE,∴△PMD≌△ENP(AAS),∴MD=PN,MP=NE,即n=﹣1﹣m,﹣4a﹣n=3﹣m,解得:n=﹣1﹣m,m=2a+1,∵a<0,故m=2a+1<1,故n=﹣m﹣1(m<1).2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)在△ABC内是否存在一点M,使得点M到点A、点B和点C的距离相等,若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,且∠PAQ =∠AQB ,求点Q 的坐标.解:(1)∵y =﹣x 2+(a +1)x ﹣a令y =0,即﹣x 2+(a +1)x ﹣a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵S △ABC =6 ∴(1﹣a )(﹣a )=6解得:a =﹣3,(a =4舍去);(2)如图①,∵A (﹣3,0),C (0,3),∴OA =OC ,∴线段AC 的垂直平分线过原点,∴线段AC 的垂直平分线解析式为:y =﹣x ,∵由A (﹣3,0),B (1,0),∴线段AB 的垂直平分线为x =﹣1将x =﹣1代入y =﹣x ,解得:y =1∴△ABC 外接圆圆心的坐标(﹣1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =AB •PM =×4d∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等,∴AQ ∥PB设直线PB 解析式为:y =x +b∵直线经过点B (1,0)所以:直线PB 的解析式为y =x ﹣1联立.解得:.∴点P坐标为(﹣4,﹣5)又∵∠PAQ=∠AQB,∴∠BPA=∠PBQ,∴AP=QB,在△PBQ与△BPA中,,∴△PBQ≌△ABP(SAS),∴PQ=AB=4设Q(m,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=﹣4,m=﹣8(当m=﹣8时,∠PAQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1).3.如图,抛物线y=ax2+bx+3(a,b是常数,且a≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(﹣1,0),B(3,0).(1)①求抛物线的解析式;②顶点D的坐标为(1,4);③直线BD的解析式为y=﹣2x+6;(2)若P为线段BD上的一个动点,其横坐标为m,过点P作PQ⊥x轴于点Q,求当m 为何值时,四边形PQOC的面积最大?(3)若点M是抛物线在第一象限上的一个动点,过点M作MN∥AC交x轴于点N.当点M的坐标为(2,3)时,四边形MNAC是平行四边形.解:(1)①把A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得:,∴y=﹣x2+2x+3;②函数的对称轴为:x=1,则D的坐标为:(1,4),故答案为(1,4);③将点B、D的坐标代入一次函数表达式并解得:直线BD的表达式为:y=﹣2x+6,故答案为:y=﹣2x+6;(2)∵点P的横坐标为m,则点P的纵坐标为﹣2m+6.当x=0时,y=0+0+3=3.∴C(0,3).由题意可知:OC=3,OQ=m,PQ=﹣2m+6.∴s=(OC+PQ)×OQ=(﹣2m+6+3)m=.∵﹣1<0,1<<3,∴当时,s=;最大值(3)如图所示,四边形MNAC是平行四边形,则CM∥x轴,则点M和点C关于函数对称轴对称,故点M(2,3),故答案为:(2,3).4.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),△BEC面积记为S,当S取何值时,对应的点E有且只有三个?解:(1)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,﹣x+3=0,解得x=4,则C(4,0),把B(0,3),C(4,0)代入y=ax2+x+c得,所以抛物线解析式为y=﹣x2+x+3;(2)当E点在直线BC的下方的抛物线上时,一定有两个对应的E点满足△BEC面积为S,所以当E点在直线BC的上方的抛物线上时,只能有一个对应的E点满足△BEC面积为S,即此时过E点的直线与抛物线只有一个公共点,设此时直线解析式为y=﹣x+b,方程组只有一组解,方程﹣x2+x+3=﹣x+b有两个相等的实数解,则△=122﹣4×3×(﹣24+8b)=0,解得b=,解方程得x1=x2=2,E点坐标为(2,2),此时S=×4×(2﹣)=1,△BEC所以当S=1时,对应的点E有且只有三个.5.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.解:(1)直线y=﹣x+3故点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x+3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2t2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2t2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).6.如图1:抛物线y=ax2+bx+3交x轴于点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC =3.(1)求抛物线的解析式;(2)如图2,点P在第一象限的抛物线上,连接PC、PA,若点P横坐标为t,△PAC 的面积为S,求S与t的函数关系式;(3)在(2)的条件下,当S=3时,点G为第二象限抛物线上一点,连接PG,CH⊥PG于点H,连接OH,若tan∠OHG=,求GH的长.解:(1)c=3,故OC=3,tan∠ABC=1,则OA=3,tan∠BAC=3,则OA=1,故点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),则抛物线的表达式为:y=a(x+1)(x﹣3),将点C坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)点P(t,﹣t2+2t+3),点A(﹣1,0),将点P、A坐标代入一次函数表达式y=kx+b并解得:直线PA的表达式为:y=(3﹣t)(x+1),设直线AP交y轴于点R,则R(0,3﹣t),S=CR×(x P﹣x A)=(3﹣3+t)(t+1)=t2+t;(3)S=t2+t=3,解得:t=﹣3(舍去)或2,故点P(2,3),而点C(0,3),连接CP,则CP∥x轴,CH⊥GP,则∠CPH=∠OCH=α,HM⊥CP,则∠CHM=∠HCO=α,过点O作ON⊥CH交CH的延长线于点N,作HM⊥CP于点M,CP=2,OC=3,CH=CP sinα=2sinα,ON=OC sinα=3sinα,CN=OC cosα=3cosα,∵ON⊥CN,GH⊥CH,∴∠HON=∠OHG,故tan∠HON====tan∠OHG=,解得:tan,则sinα=,cosα=,MH=CH cosα=2sinα•cosα=,CM=CH sinα=,故点H(,);设点G(m,﹣m2+2m+3),而点P(2,3),由点G、P的坐标得,直线PG表达式中的k值为:﹣m=﹣tanα=,故点G(﹣,),由点G、H的坐标得,GH=.7.如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,﹣),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2﹣,将点(6,6)代入y=a(x﹣1)2﹣,得6=a(6﹣1)2﹣,∴a=,∴抛物线的解析式为y=(x﹣1)2﹣;(2)①在y=(x﹣1)2﹣中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴=,∵<4,∴0≤t≤;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,当∠BPQ=90°时,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴=,即=,∴t=;当∠PQB=90°时,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴=,即=,∴t=,综上所述,t 的值为或;③如右图,过点Q 作QH ⊥x 轴于点H ,则∠BHQ =∠BOC =90°,∴HQ ∥OC ,∴△BHQ ∽△BOC , ∴=,即=, ∴HQ =, ∴S 四边形ACQP =S △ABC ﹣S △BPQ =×6×3﹣(4﹣t )×t =(t ﹣2)2+, ∵>0,∴当t =2时,四边形ACQP 的面积有最小值,最小值是.8.如图,抛物线y =ax 2+bx 与x 轴相交于O ,A 两点,顶点D 在第一象限,点P 在该抛物线上.(1)若点P 坐标为(1,3).①求b 与a 的函数关系式;②已知两点M (2,0),N (5,0),当抛物线y =ax 2+bx 与线段MN 没有交点时,求a 的取值范围;(2)若P 点在该抛物线的曲线段OD 上(不与点O ,D 重合),直线DP 交y 轴于点C ,过P 点作PB ⊥x 轴于点B ,连接DA ,CB .求证:DA ∥CB .解:(1)①∵抛物线y=ax2+bx经过点P(1,3),∴a+b=3,∴b=3﹣a;②由①得y=ax2+(3﹣a)x,(Ⅰ)当抛物线与x轴的另一个交点A在M(2,0)左侧时,抛物线与线段MN没有交点,∵抛物线y=ax2+(3﹣a)x开口向下,经过原点且顶点在第一象限,∴,解得:a<﹣3;(Ⅱ)当抛物线与x轴的另一个交点A在N(5,0)右侧时,抛物线与线段MN没有交点,∴,解得:﹣<a<0,综上所述:当a<﹣3或﹣<a<0时,该抛物线与线段MN没有交点;(2)如图,过点D作DH⊥x轴于H点,∵抛物线y=ax2+bx的顶点D(﹣,﹣),∴DH=﹣,H(﹣,0),在y=ax2+bx中,当y=0时,x1=0,x2=﹣,∴点A(﹣,0),HA=OA﹣OH=﹣,设直线PD的解析式为y=mx+n,P(x,ax2+bx),则B(x,0),将P(x,ax2+bx),D(﹣,﹣)代入y=mx+n,∴,解得,∴C(0,bx),∴CO=bx,OB=x,∵==﹣,==﹣,∴=,又∵∠COB=∠DHA=90°,∴△COB∽△DHA,∴∠CBO=∠DAH,∴DA∥CB.9.如图①,已知抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),直线l经过B、C两点.抛物线的顶点为D.(1)求抛物线和直线l的解析式;(2)判断△BCD的形状并说明理由.(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),∴y=﹣x2+bx+3,将点B(3,0)代入y=﹣x2+bx+3,得0=﹣9+3b+3,∴b=2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B(3,0),C(0,3),∴可设直线l的解析式为y=kx+3,将点B(3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△BCD是直角三角形,理由如下:如图1,过点D作DH⊥y轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∵C(0,3),B(3,0),∴HD=HC=1,OC=OB=3,∴△DHC和△OCB是等腰直角三角形,∴∠HCD=∠OCB=45°,∴∠DCB=180°﹣∠HCD﹣∠OCB=90°,∴△BCD是直角三角形;(3)∵EF⊥x轴,∠OBC=45°,∴∠FGB=90°﹣∠OBC=45°,∴∠EGC=45°,∴若△ECG是直角三角形,只可能存在∠CEG=90°或∠ECG=90°,①如图2﹣1,当∠CEG=90°时,∵EF⊥x轴,∴EF∥y轴,∴∠ECO=∠COF=∠CEF=90°,∴四边形OFEC为矩形,∴y E=y C=3,在y=﹣x2+2x+3中,当y=3时,x1=0,x2=2,∴E(2,3);②如图2﹣2,当∠ECG=90°时,由(2)知,∠DCB=90°,∴此时点E与点D重合,∵D(1,4),∴E(1,4),综上所述,当△ECG是直角三角形时,点E的坐标为(2,3)或(1,4).10.在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C(0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为y=kx+b.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.解:(1)将C(0,﹣)代入y=a(x﹣3)(x+1),得﹣3a=﹣,∴a=,∴抛物线的函数表达式为y=(x﹣3)(x+1)=x2﹣x﹣;(2)①如图1,过点F作FN⊥DG,垂足为点N,在y=(x﹣3)(x+1)中,令y=0,得x1=3,x2=﹣1,∴B(3,0),设直线BC的解析式为y=mx﹣,将点B(3,0)代入y=mx﹣,得0=3m﹣,∴m=,∴直线BC的表达式为y=x﹣,∵抛物线y=(x﹣3)(x+1)的对称轴为x=1,∴D(1,0),∴CD==2,∴CD=BD=2,在Rt△COD中,tan∠ODC=,∴∠ODC=60°,∠CDB=120°,∵△DGF∽△BDC,∴DG=FG,∠DGF=120°,设DG=FG=2m,在Rt△NGF中,∠NGF=60°,FG=2m,∴NG=m,NF=m,∴F(1+m,3m),将点F(1+m,3m)代入y=(x﹣3)(x+1)中,得m1=﹣(不合题意,舍去),m2=,∴点F(5,4),∵EF∥BC,∴EF的表达式为y=x+b,将点F(5,4),代入y=x+b,得4=×5+b,∴b=,∴k=1,b=;②如图2,分别过点F、H、E作y轴的垂线,垂足分别为P、Q、S,联立,得点H(,),联立,得x2﹣3x﹣3﹣b=0,设点E、F的横坐标分别为x1,x2,则,由ES∥HQ∥FP,可得△MHQ∽△MES,△MHQ∽△MFP,∴==,==,∵﹣=,∴﹣=1,∴﹣=1,∴=﹣1,∴b=2.11.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.12.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,已知点P为抛物线第一象限上一动点,连接PB、PC、BC.(1)求抛物线的解析式,并直接写出抛物线的顶点坐标;(2)当△PBC的面积最大时,求出点P的坐标;(3)如图②,当点P与抛物线顶点重合时,过点B的直线与抛物线交于点E,在直线BE上方的抛物线上是否存在一点M,使得∠BEM=∠PBC?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)将点A(﹣1,0)、B(3,0)代入y=ax2+bx+3,得,解得,∴抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为(1,4);(2)如图1,过点P作x轴的垂线,交BC于点N,在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3),则N(x,﹣x+3),∴PN=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∴S=×PN×OB=(﹣x2+3x)×3=﹣(x﹣)2+,△PBC∴当x=时,△PBC的面积最大,∴P(,);(3)存在,如图2,过点P作PH⊥x轴于H,设直线与y轴交于点Q,则Q(0,﹣),在Rt△OBQ中,tan∠OBQ===,在Rt△PHB中,tan∠BPH===,∴∠OBQ=∠BHP,∵∠BPH+∠PBH=90°,∴∠OBQ+∠PBH=90°,即∠PBE=90°,将点B(3,0)代入直线,得3k﹣=0,∴k=,∴y=x﹣,联立,解得,x1=3,x2=﹣,∴E(﹣,﹣),过点E作EF⊥BC于点F,则∠FEB+∠FBE=90°,∵∠PBC+∠FBE=90°,∴∠FEB=∠PBC,则此时射线EF与抛物线的交点即为所求的点M,∵BC==3,PC==,PB==2,∴BC2+PC2=PB2,∴△PCB为直角三角形,且∠PCB=90°,∴sin∠PBC===,∴sin∠FEB==,∵EB==,∴FB=,过点F作FD⊥x轴于点D,∵OB=OC=3,∴∠OBC=∠OCB=45°,∴∠DBF=∠DFB=45°,∴DB=DF=FB=,∴F(,),设直线EF的解析式为y=kx+b,将点E(﹣,﹣),F(,)代入y=kx+b,得,解得,∴直线EF的解析式为y=x﹣,联立,解得,x1=,x2=﹣,当x=时,y=,∴M(,).13.如图,已知二次函数y=﹣x2+2mx+3m2(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)点B的坐标为(3m,0),点D的坐标为(m,4m2);(用含有m的代数式表示)(2)连接CD,BC.①若CB平分∠OCD,求二次函数的表达式;②连接AC,若CB平分∠ACD,求二次函数的表达式.解:(1)在二次函数y=﹣x2+2mx+3m2中,当y=0时,x1=3m,x2=﹣m,∵点A在点B的左侧,m>0,∴A(﹣m,0),B(3m,0),∵y=﹣x2+2mx+3m2=﹣(x﹣m)2+4m2,∴顶点D(m,4m2),∴故答案为:(3m,0),(m,4m2);(2)①如图1,过点D作DH⊥AB,交BC于点E,则DH∥OC,∴∠DEC=∠OCE,∵BC平分∠OCD,∴∠OCE=∠DCE,∴∠DEC=∠DCE,∴CD=DE,由(1)知,C(0,3m2),A(﹣m,0),B(3m,0),∴OC=3m2,OB=3m,∵,∴HE=2m2,∴DE=DH﹣HE=4m2﹣2m2=2m2,∵CD=DE,∴CD2=DE2,∴m2+m4=4m2,解得:m1=,m2=﹣(舍去),∴二次函数的关系式为:;②如图2,过点D作DH⊥AB,交BC于点E,过点C作y轴的垂线CK,过点B作x轴的垂线交CK于点K,连接AE,∵tan∠DCG==m,tan∠KCB==m,∴∠DCG=∠KCB,∴CK∥AB,∴∠KCB=∠EBA,由对称性知,DH垂直平分AB,∴EA=EB,∴∠EAB=∠EBA,∴∠DCG=∠KCB=∠EBA=∠EAB,∵∠AEC=∠EAB+∠EBA,∠DCB=∠DCG+∠KCB,CB平分∠ACD,∴∠DCB=∠AEC=∠ACE,∴AC=AE,∴AC2=AE2=EH2+AH2,∴m2+9m4=4m4+4m2,解得:m1=,m2=﹣(舍去),∴二次函数的关系式为:.14.抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D 四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N (x₂,y₂),则线段MN的中点坐标为(,)解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,可求C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,∴b=﹣1+或b=﹣1﹣,∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,∴b=或b=﹣(舍);综上所述:b=﹣1+或b=.15.平面直角坐标系中,点O是坐标原点,抛物线y=ax2+x+c与x轴交于A、B两点,点B的坐标为(4,0),与y轴交于点C,直线y=kx+2经过A、C两点.(1)如图1,求a、c的值;(2)如图2,点P为抛物线y=ax2+x+c在第一象限的图象上一点,连接AP、CP,设点P的橫坐标为t,△ACP的面积为S,求S与t的函数解析式,并直接写出自变量t的取值范围;(3)在(2)的条件下,点D为线段AC上一点,直线OD与直线BC交于点E,点F 是直线OD上一点,连接BP、BF、PF、PD,BF=BP,∠FBP=90°,若OE=,求直线PD的解析式.解:(1)∵直线y=kx+2经过C点,∴C(0,2),把点B的坐标为(4,0),C(0,2)代入y=ax2+x+c,得到,解得;(2)如图1,过点P作x轴的垂线,与直线AC交于点K,分别过点A、点C作PK的垂线,垂足分别为点M、N,∵y=﹣x2++2,∴A(﹣1,0),∵直线y=kx+2经过A点,∴k=2,∴y=2x+2,∵P点的横坐标为t,∴P(t,﹣t2+t+2),K(t,2t+2),∴PK=t2+t,∴S=S△AMK ﹣S△AMP﹣S△CPK=﹣﹣==,∴S=t2+t(0<t<4);(3)∵OC=2,OB=4,∴tan∠OBE=,如图2:过点O作OH⊥BC于点H,易得OH=,BH=,∵OE=,∴由勾股定理得EH=,∴BE=,∴CE=,过点E作EG⊥y轴于点G,∵tan∠CEG=tan∠OBE=,∴CG=,EG=,∴E(﹣,),∴易得直线OE的解析式y=﹣2x,∵直线AC的解析式为y=2x+2,∴联立直线OE与直线AC的解析式,解得D(﹣,1),过点B作x轴的垂线,与过点P、F作的y轴的垂线分别交于Q、R两点,∵∠FBP=90°,∴∠PBQ=∠BFR,∵BP=BF,∴△PQB≌△BRF(AAS),∴BR=PQ=4﹣t,FR=BQ=﹣t2+t+2,∴F(t2﹣t+2,t﹣4),设FR交x轴于点I,∵tan∠OEG=2=tan∠OFI,∴t﹣4=﹣2(t2﹣t+2),解得t=2或t=0(舍),∴P(2,3),∴易求直线PD的解析式为y=x+.。

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简略答案)

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简略答案)
9.在平面直角坐标系中,抛物线 与 轴交于 两点(点 在点 的左侧),与 轴交于点 ,对称轴与 轴交于点 ,点 在抛物线上.
(1)求直线 的解析式;
(2)如图1,点 是直线 下方抛物线上的一点,连接 ,当 的面积最大时,连接 ,设 分别是线段 上的点,且 ,求四边形 的面积;
(3)如图2,点 是线段 的中点,将抛物线 沿 轴正方向平移得到新抛物线 , 经过点 , 的顶点为 ,在新抛物线 的对称轴上,是否存在点 ,使得 为等腰三角形?若存在,写出点 的坐标;若不存在,请说明理由.
(3)若点Q是上述抛物线上一点,且满足∠ABQ=2∠ABC,求满足条件的点Q的坐标.
11.如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)在抛物线对称轴上找一点 ,使点 , , 三点构成的图形是直角三角形,求点 的坐标.
(2)当△PBC的面积最大时,求P点的坐标.
(3)在X轴上是否存在点N,使△NBC是等腰三角形,若存在直接写出所有符合条件的点N的坐标,若不存在说明理由
8.如图,直线 交 轴于点 ,交 轴于点B,抛物线 的顶点为 ,且经过点 .
(1)求该抛物线所对应的函数表达式;
(2)点 是抛物线上的点, 是以 为直角边的直角三角形,请直接写出点 的坐标.
13.如图,抛物线 经过 , 两点,且与 轴交于点 ,点 是抛物线的顶点,抛物线的对称轴 交 轴于点 ,连接 .
(1)求经过 三点的抛物线的函数表达式;
(2)点 在该抛物线的对称轴上,若 是以 为直角边的直角三角形,求点 的坐标;
(3)若 为 的中点,过点 作 轴于点 , 为抛物线上一动点, 为 轴上一动点, 为直线 上一动点,当以 、 、 、 为顶点的四边形是正方形时,请求出点 的坐标.

2020年九年级中考数学压轴题专题训练 二次函数含答案.docx

2020年九年级中考数学压轴题专题训练 二次函数含答案.docx

2020年九年级中考数学压轴题专题训练二次函数一、选择题(本大题共7道小题)1.己知二次函数y=x2+bx+c与x轴只有一个交点,且图象过,加)、B(Xi+n,m)两点,则加、"的关系为()1 1 1 , 1 ,A.加=B.加=才〃C.加=D.加=玄〃2.下列函数中,满足y的值随x的值增大而增大的是()1 °A. y= ~2xB. y=3x~ 1C. y=~D. y=x'3.下列说法正确的是()A.抛物线的开口向下B.当x> —3时,y随x的增大而增大C.二次函数的最小值是一2D.抛物线的对称轴是x=~l4.已知二次函数y=a.x5 6+bx+c的图象如图所示,则下列结论正确的个数为()A-2 / -1 Ho 1\①c>0;②a<b<0;③2b+c>0;④当x>—时,y随x的增大而减小.A. 1个B.2个C. 3个D.4个5 点Pi(-1,力),P2(3,y2) ' P3(5,旳)均在二次函数-x2+2x+c的图象上,则”,y2 9旳的大小关系是()A.旳〉y2>y\B.旳> 旳=旳C.刃>力>旳D.刃=力>旳6 二次函数y=ax1+bx+c(a,b,c为常数且°主0)的图象如图所示,则一次函数y=ax7.若二次函数y=x2+nu的对称轴是x=3 >则关于x的方程?+/^=7的解为()A.兀1=0、兀2=6B.兀1 = 1、兀2=7C.兀i =],兀2=_7D.兀i = —1,兀2=7二' 填空题(本大题共6道小题)&己知A(0 ‘ 3),B(2 ‘ 3)是抛物线y=—F+加+c上两点‘该抛物线的顶点坐标是9. _____________________________________________ 如图,抛物线y=c/ + i>x+c与x 轴相交于点A > B(m+2 > 0) 1与y轴相交于点C > 点D在该抛物线上'坐标为(m > c)'则点A的坐标是_____________________________________________________ .10.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).己知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为.11.已知二次函数y=3.r+c 与正比例函数y=4x的图象只有一个交点‘则c的值为X-2 — 1.5 -1 —0.5 0 0.5 1 1.5 2 ・・•y 2 0.75 0 -0.25 0 -0.25 0 m 213.如图,抛物线H+2X+3与y轴交于点C,点D(0,1),点P在抛物线上,且△ PCD是以CD为底的等腰三角形,则点P的坐标为___________ .三' 解答题(本大题共4道小题)14.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1X(18 —10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写岀该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量尢的取值范围;(3)—天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10V150时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?15.如图,抛物线cix2+2ax+1与x轴仅有一个公共点A >经过点A的直线交该抛物线于点交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.16.如图,抛物线y=$ + bx+c与x轴交于A(-l,0) ' B(3,0)两点,顶点M关于x轴的对称点是M'.(1)求抛物线的解析式;(2)若直线AM,与此抛物线的另一个交点为C ‘求4 CAB的面积;(3) 是否存在过A 、B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.17.如图 > 已知抛物线y=x 1— (m+3')x+9的顶点C 在x 轴正半轴上,一次函数y=x+3 与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.⑴求"2的值;(2) 求A 、B 两点的坐标;(3) 点P(a /)( —3<a<l)是抛物线上一点,当△ PAB 的面积是△ ABC 面积的2倍时,求“、b 的值.答案b=-|n|-2xi, .*.c=— ~ =1»1 +4|n|xi+4xi ,.,人匕],m)在 y=x?+bx+c 上,.I m=x?+bxi+c > m=x?+(—|n|—2xi)- xi +回 + 網xi+例,化简整理得 m =i n2 ,故选D.2. 【答案】B 【解析】一次函数y =—2x 中,y 随x 增大而减小;一次函数y=3x —1 中,y 随一、选择题(本大题共7道小题)1.【答案】D 【解析】因为二次函数y=x 2+bx+c 的图象与x —4c=0 '即C =Y ,由题意知,点A ,B 关于抛物线的对称轴对称,轴只有一个交点, •■•|AB=2 =b-2:.b- ■xi 'x的增大而增大;反比例函数y=|•中,在每一个分支上,y随x的增大而减小;二次函数y=x?中,当x>0时,y随x增大而增大,当x<0时,y随x的增大而减小,故答案为B.3.【答案】D【解析】从表中选取三组值(一4,0),(― 1,0),(0,4),由此设抛物线的解析式为y=G U+4)(A-+1).将(0,4)代入y=a(x+4)(x+l),求得a=l.:.抛物线的解析式为y=x+5x+4 '即j=(x+|)2—由此可见 ' 只有选项D中的说法是正确的.4.【答案】C【解析】•••抛物线与y轴交点在正半轴,••,>(),故①正确;抛物线开口向下,.•.“<(),对称轴在y轴左侧,,血同号,.•』<0.由图象知,二次函数图象经过点(1,0),.•.d+b+c=0 ? c= —a—b,又4a—2b+cV0 j»\4a—2b—a—b<0 f .*.3a—3b VO 5 .*.«—b<0,故②正确;V^+/?+c=O,•: a= —c—b 5 4a—2b+cV0,・;一. A4c—4/?—2b+cV0,・;一6Z?—3cV0 5 /.2/?+c>0,故③正确;丁― IV—不VO,若对称轴兀h 1=—石〉一㊁时5y随兀增大不一定减小,故④不正确.5.【答案】D【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y = -x+2x+c 图象的对称轴为直线x=l ‘可画草图如解图:由解图知,Pi(-1,刃),P2(3,力)关于直线x=l对称,P3(5,旳)在图象的右下方部分上,因此,刃=力>旳・6.【答案】C【解析】抛物线开口向上,所以a>0,对称轴在y轴右侧,所以a、b 异号,所以b<0,抛物线与y轴交于负半轴5所以c<0,所以直线y=ax+b过第一、三、四象限,反比例函数立于第二、四象限,故答案为C.7.【答案】D【解析】•.•二次函数y=x2+mx的对称轴为,r=-y=3 >解得心一6,则关于X的方程为.r —6.¥=7 >解得> .¥1 = — 1 ' .¥2 = 7.二、填空题(本大题共6道小题)8.【答案】(1,4)【解析]VA(O,3)、B(2,3),两点纵坐标相同,.・.A、B两点关于直线x=l对称,.•.抛物线的对称轴是直线x=l >即—2x (^1) =1 '解得b = 2,[当x =0 时,y=3 > /.c = 3,抛物线的解析式为y= —x?+2x+3,当x = l 时,y = —x?+2x+ 3 = -l2+2xl + 3=4,.I 抛物线的顶点坐标是(1 ‘ 4).9.【答案】(-2,0)【解析】如解图,过D作DM±x轴于点M - :.M(m,0),又B(m+2,0) - .-.MB = 2,由C(0,c),D(m,c)知:OC=DM,即点C、D 关于对称轴对称,故点O、M也关于对称轴对称,.・.OA=MB=2,...AC —2,0).10.【答案】144【解析】T围墙的总长为50 m?设3间饲养室合计长x m»则饲养室48——x48——x 1 1的宽=——m,・••总占地面积为y=x・一—=—/?+12x(0VxV48),由y=—Q'+IQX =-|(X-24)2+144 ' Vx=24 在0 Vx<48 范围内,a=-|<0,.•.在0 Vx《24 范围内,丫随x的增大而增大-.'.x=24时,y取得最大值,y **=144 m.411.【答案】扌【解析】本题考查了己知二次函数的图象与一次函数的图象的交点个数,求字母未知数的值.把y=3x2+c与y=4x联立方程组并消去y得3x2+c=4x,化简得3x2 -4x+c=0,由于它们的图象只有一个交点,故此方程有两个相等的实数根,所以b2-4ac =(—4)2—4x3c=0,解得c=|.12.【答案】0.75【解析】根据表格可得该图象关于y轴对称,故当x=1.5和x=-1.5 时1 y 的值相等..".m=0.75.13.【答案】(1+迈,2)或(1—迈,2)【解析】抛物线y =-X2+2X+3与y轴交于点C,则点C坐标是(0,3),[点D(0,1),点P在抛物线上,且4 PCD是以CD 为底的等腰三角形,・••易得点P的纵坐标是2 5当y=2时,二一x?+2x+3=2,则x2—2x— 1 =0,解得方程的两根是x=2,・••点P的坐标是(1+迈,2)或(1 一迈,2).三、解答题(本大题共4道小题)14.【答案】解:⑴设一次至少买X只计算器,才能以最低售价购买,则每只降价为:O.I(X-IO)元,由题意得,20-0.1(x-10)=16,解得x=50.答:一次至少购买50只计算器,才能以最低售价购买.(2分)【一题多解】设一次购买x只计算器1才能以最低售价购买 ' 则每只降低为:0.1(x —10)元,由题意得,20-0.1(x-10)<16 > 解得xV50,.•.最大整数x=50.答:一次至少购买50只计算器,才能以最低售价购买.(2)由题意得 > 当10<x<50 时'y=[20—12—0.1(x—10)]x >即y=—0.1X2+9X(3分)当x>50时,则每只计算器都按16元销售..".y= 16x— 12x=4x ‘—0.1x+x (10<x<50)综上可得y=•(5 分)4x (x>50)h Q(3)由y =-0.1X2+9X得,其图象的对称轴为x=—石=—2x(_。

2020年中考数学二次函数压轴题专题复习 (含答案)

2020年中考数学二次函数压轴题专题复习 (含答案)

2020年中考数学二次函数压轴题专题复习 (含答案)2020年中考数学二次函数压轴题专题复1.在平面直角坐标系中,抛物线$y=ax^2+bx+c$交$x$轴于$A、B$两点,交$y$轴于点$C(0,c)$,$OA=1$,$OB=4$,直线$l$过点$A$,交$y$轴$CD$于点$D$,交抛物线于点$E$,且满足$\tan∠OAD=$。

1)求抛物线的解析式;2)动点$P$从点$B$出发,沿$x$轴正方向以每秒$2$个单位长度的速度向点$A$运动,动点$Q$从点$A$出发,沿射线$AE$以每秒$1$个单位长度的速度向点$E$运动,当点$P$运动到点$A$时,点$Q$也停止运动,设运动时间为$t$秒。

①在$P、Q$的运动过程中,是否存在某一时刻$t$,使得$\triangleADC$与$\triangle PQA$相似,若存在,求出$t$的值;若不存在,请说明理由。

②在$P、Q$的运动过程中,是否存在某一时刻$t$,使得$\triangle APQ$与$\triangle CAQ$的面积之和最大?若存在,求出$t$的值;若不存在,请说明理由。

2.在平面直角坐标系中,抛物线$y=ax^2+bx+c$交$x$轴于$A、B$两点($A$在$B$的左侧),且$OA=3$,$OB=1$,与$y$轴交于$C(0,3)$,抛物线的顶点坐标为$D(-1,4)$。

1)求$A、B$两点的坐标;2)求抛物线的解析式;3)过点$D$作直线$DE\parallel y$轴,交$x$轴于点$E$,点$P$是抛物线上$B、D$两点间的一个动点(点$P$不与$B、D$两点重合),$PA、PB$与直线$DE$分别交于点$F、G$,当点$P$运动时,$EF+EG$是否为定值?若是,试求出该定值;若不是,请说明理由。

3.二次函数$y=ax^2+bx+c$的图象与$x$轴交于点$A、B$,与$y$轴交于点$C$,点$A$的坐标为($-4,0$),$P$是抛物线上一点(点$P$与点$A、B、C$不重合)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学压轴专题二次函数动点成特殊三角形问题(含答案)1.如图,在平面直角坐标系中,二次函数y=-13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=________,c=________;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由.第1题图解:(1)134;【解法提示】∵二次函数y=-13x2+bx+c与x轴交于A(-3,0),B(4,0),∴b c=b c=--+⎧⎪⎨-++⎪⎩33016403,解得b=c=⎧⎪⎨⎪⎩134,(2)可能是,理由如下:∵点P在AC上以每秒1个单位的速度运动,∴AP=t,∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t,∴AQ=t+3,∵∠P AQ<90°,∠PQA<90°,∴若要使△APQ是直角三角形,则∠APQ=90°,在Rt△AOC中,OA=3,OC=4,∴AC=5,如解图①,设PQ与y轴交于点D,第1题解图①∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°,∴∠DQO=∠DCP,∴tan ∠DQO =AP PQ =tan ∠DCP =AO CO =34, ∵AP =t,∴PQ =43t , 由勾股定理得:AQ 2=AP 2+PQ 2,即(t +3)2=t 2+(43t )2, 解得t =92或t =- 98(舍去), 根据题意,点Q 在线段OB 上,∴0≤t ≤4,∴不存在这样的t 值满足题意,即△APQ 不可能是直角三角形;(3)假设存在点M 使得△PMQ 是以点P 为直角顶点的等腰直角三角形,如解图②,过P 作PE ⊥x 轴于E ,过M 作MN ⊥PE 交PE 的延长线于点N ,第1题解图②∵∠MPN +∠PMN =90°,∠MPN +∠QPE =90°,∴∠PMN =∠QPE ,在△PMN 和△QPE 中,∠∠⎧⎪∠∠⎨⎪⎩PMN=QPE PNM=PEQ MP=PQ ,∴△PMN ≌△QPE (AAS),∴PN =EQ ,MN =PE ,∵AP =t ,cos ∠CAO =AO AC =35, sin ∠CAO =OC AC =45, ∴AE =35t ,PE =45t , ∴MN =45t ,EN =EQ -PE =AQ -AE -PE =3+t -35t -45t =3- 25t , ∴x M =x E -MN =35t -3-45t =-15t -3, ∴点M 的坐标为(-15t -3,25t -3),在x 轴下方, ∵点M 在抛物线上,∴-13(-15t -3)2-13(15t +3)+4=25t -3, 整理得t 2+65t =225,解得t =-65+52052或t =-65-52052(舍), 综上,存在满足条件的点M ,此时运动时间t 为-65+52052秒.2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得⎩⎪⎨⎪⎧-b2a=-1a +b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0),∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得⎩⎪⎨⎪⎧-3m +n =0n =3,解得⎩⎪⎨⎪⎧m =1n =3, ∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第2题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172. 综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172). 3. 如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0).(1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△P AC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得⎩⎪⎨⎪⎧36+6b +c =0c =-6, 解得⎩⎪⎨⎪⎧b =-5c =-6, ∴抛物线的解析式为y =x 2-5x -6;(2)当y =0时,则有:x 2-5x -6=0,即(x +1)(x -6)=0,∴解得x 1=-1,x 2=6(舍),∴B (-1,0).由两点之间的距离公式可得:BC 2=2=49,AC 2=(6-0)2+2=72,AB 2=(-1-0)2+2=37,∵AB 2+BC 2>AC 2,∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△P AC 是以AC 为底的等腰三角形理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P ,∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC ,∴直线MP 过点O ,设直线MP 的解析式为y =kx ,将点M (3,-3)代入得,k =-1,即直线MP 的解析式为y =-x ,联立⎩⎪⎨⎪⎧y =-x y =x 2-5x -6, 解得⎩⎪⎨⎪⎧x 1=2-10y 1=10-2或⎩⎪⎨⎪⎧x 2=2+10y 2=-2-10, ∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,P A =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图 解:(1)∵直线y=-2x +10与x 轴、y 轴相交于A 、B 两点,∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0),把点A (5,0)和C (8,4)代入可得⎩⎪⎨⎪⎧25a +5b =064a +8b =4, 解得⎩⎨⎧a =16b =-56, ∴抛物线的解析式为y =16x 2-56x ; ∵A (5,0),B (0,10),C (8,4),∴AB 2=125,AC 2=25,BC 2=100,∵AB 2=AC 2+BC 2,∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt △AOP 和Rt △ACQ 中,⎩⎪⎨⎪⎧AC =OA P A =QA, ∴Rt △AOP ≌Rt △ACQ ,∴OP =CQ ,∴2t =10-t ,∴t =103, ∵t <5,∴当运动时间为103秒时,P A =QA ; (3)存在.由题可得,抛物线的对称轴直线为x =52, 设点M 的坐标为( 52,b ), 利用点的坐标可求得AB 2=102+52=125,MB 2=(52)2+(b -10)2, MA 2=(52)2+b 2, ∵△MAB 是等腰三角形,∴可分以下三种情况讨论:①当AB =MA 时,即125=(52)2+b 2, 解得b =±5192, 即点M 的坐标为(52,5192)或(52,-5192);②当AB =BM 时,即125=(52)2+(b -10)2,解得b =10±5192,即点M 的坐标为(52,10+5192)或(52,10-5192);③当MB =MA 时,即(52)2+(b -10)2=(52)2+b 2,解得b =5,此时点A 、M 、B 共线,故这样的点M 不存在.综上所述,存在点M ,使以点A 、B 、M 为顶点的三角形是等腰三角形,点M 的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192). 5. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3;(2)如解图①,过点P作PG∥CF交CB与点G,第5题解图①由题可知,直线BC的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,∵PG∥CF,∴△GPE为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<3), 则G(t,-t+3)PE=22PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2(t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D在C下方D2位置时,由勾股定理得BD22+BC2=CD22,即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1,综上所述,当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).6.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN的值最小,求出此时点K的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C (0,4),A (4,0),∴c=a a c=⎧⎨-+⎩41680,解得a=c=⎧-⎪⎨⎪⎩124, ∴抛物线的解析式为y =-12x 2+x +4;(2)由y =-12x 2+x +4=-12(x -1)2+92可得抛物线的顶点坐标为N (1,92),如解图①,作点C 关于x 轴的对称点C ′,则C ′(0,-4),连接C′N 交x 轴于点K ,则K 点即为所求点,第6题解图①设直线C′N 的解析式为y =kx +b (k ≠0),把N ,C′两点坐标代入可得:k b=b=⎧+⎪⎨⎪-⎩924,解得k=b=⎧⎪⎨⎪-⎩1724, ∴直线C′N 的解析式为y =172x -4, 令y =0,解得x =817,∴点K的坐标为(817,0);(3)存在.要使△ODF是等腰三角形,需分以下三种情况讨论:①DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DF A=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(2,2);由-12x2+x+4=2得,x1=1+5,x2=1- 5.此时,点P的坐标为(1+5,2)或(1-5,2);②FO=FD,如解图②,过点F作FM⊥x轴于点M.第6题解图②由等腰三角形的性质得:OM =12OD =1,∴AM =3,∴在等腰直角△AMF 中,MF =AM =3, ∴F (1,3).由-12x 2+x +4=3得,x 1=1+3,x 2=1- 3.此时,点P 的坐标为(1+3,3)或(1-3,3); ③OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =42,∴点O 到AC 的距离为2 2. 而OF =OD =2<22,∴在AC 上不存在点F 使得OF =OD =2.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或 (1-5,2)或(1+3,3)或(1-3,3).7. 如图①,抛物线y =-13x 2+bx +8与x 轴交于点A (-6,0),点B (点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE 、EC .(1)求抛物线的表达式及点C 的坐标;(2)连接AC 交直线l 于点D ,则在点P 运动过程中,当点D 为EP 中点时,求S △ADP ∶S △CDE ;(3)如图②,当EC ∥x 轴时,点P 停止运动,此时,在抛物线上是否存在点G ,使△AEG 是以AE 为直角边的直角三角形?若存在,请求出点G 的坐标;若不存在,说明理由.第7题图解:(1)∵点A (-6,0)在抛物线y =-13x 2+bx +8上,∴0=-13×(-6)2+(-6b )+8,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +8,令x =0,得y =8, ∴C (0,8);(2)设点E (t ,-13t 2-23t +8),∴P (t ,0),∵点D 为EP 的中点,∴DP =DE ,D (t ,-16t 2-13t +4),设直线AC 的解析式为y =kx +b (k ≠0),将A (-6,0),C (0,8),代入得:k b=b=-+⎧⎨⎩608,解得k=b=⎧⎪⎨⎪⎩438,∴直线AC 的解析式为y =43x +8,∵点D 在直线AC 上, ∴43t +8=-16t 2-13t +4, 解得t 1=-6(舍去),t 2=-4, ∴P (-4,0), ∴AP =2,OP =4,∴S △ADP S △CDE =1212g g DP APDE OP =AP OP =12; (3)存在.如解图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,第7题解图①∵EC ∥x 轴, ∴EP =CO =8,把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2, ∴P (-2,0), ∴AP =AO -PO =4,(ⅰ)如解图①,当∠AEG =90°时, ∵∠MEG +∠AEP =90°, ∠AEP +∠EAP =90°, ∴∠MEG =∠EAP , 又∵∠APE =∠EMG =90°, ∴△EMG ∽△APE , ∴EM AP =MG EP, 设点G (m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8,∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m ,MG =PN =PO +ON =2+m , ∴13m 2+23m 4=2+m 8,∴m =-2(舍去)或m =32,∴G (32,254);(ⅱ)如解图②,当∠EAG =90°时,第7题解图②∵∠NAG +∠EAP =90°, ∠AEP +∠EAP =90°, ∴∠NAG =∠AEP , ∵∠APE =∠GNA =90°, ∴△GNA ∽△APE , ∴GN AP =ANEP, 设点G (n ,-13n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n ,∴2128 334+-n n=68+n,∴n=-6(舍去)或n=112,∴G(112,-234),综上,符合条件的G点的坐标为(32,254)或(112,-234).8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE.已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式;(2)分别求出点B和点E的坐标;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m 为何值时,△OPQ是等腰三角形.第8题图解:(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴将A 、D 两点的坐标代入得⎩⎪⎨⎪⎧4a -2b -8=036a +6b -8=-8, 解得⎩⎪⎨⎪⎧a =12b =-3, ∴抛物线的函数表达式为y =12x 2-3x -8; (2)∵y =12x 2-3x -8=12(x -3)2-252, ∴抛物线的对称轴为直线x =3,又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0),∴点B 的坐标为(8,0).设直线l 的函数表达式为y =kx ,∵点D (6,-8)在直线l 上,代入得6k =-8,解得k =-43, ∴直线l 的函数表达式为y =-43x , ∵点E 为直线l 和抛物线对称轴的交点,∴点E 的横坐标为3,纵坐标为-43×3=-4,即点E 的坐标为(3,-4); (3)需分两种情况进行讨论:①当OP =OQ 时,△OPQ 是等腰三角形,如解图①,第8题解图①∵点E 的坐标为(3,-4),∴OE =32+42=5,过点E 作直线ME ∥PB ,交y 轴于点M ,交x 轴于点H ,则OM OP =OE OQ , ∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5,E (3,-4)在直线ME 上,∴3k 1-5=-4,解得k 1=13, ∴直线ME 的函数表达式为y =13x -5, 令y =0,解得x =15,∴点H 的坐标为(15,0).又∵MH ∥PB ,∴OP OM =OB OH ,即-m 5=815, ∴m =-83;②当QO =QP 时,△OPQ 是等腰三角形,如解图②,第8题解图②∵当x =0时,y =12x 2-3x -8=-8, ∴点C 的坐标为(0,-8),∴CE =32+(8-4)2=5,∴OE =CE ,∴∠1=∠2,又∵QO =QP ,∴∠1=∠3,∴∠2=∠3,∴CE ∥PB .设直线CE 交x 轴于点N ,其函数表达式为y =k 2x -8,E (3,-4)在直线CE 上,∴3k 2-8=-4,解得k 2=43, ∴直线CE 的函数表达式为y =43x -8,令y =0,得43x -8=0, ∴x =6,∴点N 的坐标为(6,0).∵CN ∥PB .∴OP OC =OB ON, ∴-m 8=86,解得m =-323. 综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形. 9. 如图,抛物线y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,过点B 作直线BC ⊥x 轴,交直线y =-2x 于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D 的坐标,并判断顶点D 是否在直线y =-2x 上;(3)点P 是抛物线上一动点,是否存在这样的点P (点A 除外),使△PBC 是以BC 为直角边的直角三角形?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.第9题图解:(1)∵y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,∴⎩⎨⎧13×32+3b +c =013×(-1)2-b +c =0, 解得⎩⎪⎨⎪⎧b =-23c =-1, ∴抛物线的解析式为y =13x 2-23x -1; (2)∵a =13,b =-23,c =-1, 抛物线的顶点D 的坐标为(-b 2a ,4ac -b 24a), ∴x D =--232×13=1, y D =4×13×(-1)-(-23)24×13=-43, ∴D (1,-43). 把x =1代入y =-2x 中得y =-2,∵-43≠-2, ∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如解图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.第9题解图∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得:y =-2×(-1)=2,∴C (-1,2).∴把y =2代入y =13x 2-23x -1中得13x 2-23x -1=2, 解得x 1=10+1,x 2=-10+1.∴P 1(10+1,2),P 2(-10+1,2).10. 如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D.(1)求抛物线的解析式;(2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第10题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得, ⎩⎪⎨⎪⎧-12-b +c =0c =2,解得⎩⎪⎨⎪⎧b =32c =2, ∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0, 解得x 1=-1,x 2=4,∴点B 的坐标为(4,0),在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55; (3)存在,点P 坐标为(32,52)或(32,-52)或(32,4). 【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32, ∴点D 的坐标为(32,0). ∴CD =OC 2+OD 2=22+(32)2=52. ∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形, ∴当点D 为顶点时,有DP =CD =52,此时点P 的坐标为(32,52)或(32,-52); 当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第10题解图∵DG =2,∴PG =2,PD =4,∴点P 的坐标为(32,4). 综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,52)或(32,-52)或(32,4).。

相关文档
最新文档