线性代数作业本答案

合集下载

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数第 6 册答案

线性代数第 6 册答案

华东理工大学线性代数 作业簿(第六册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________4.3 向量空间1.设*A 为6阶方阵A 的伴随矩阵,则当A 的秩为2时,齐次线性方程组0A x *=的解空间的维数为______,而当A 的秩为5时,齐次线性方程组0A x *=的解空间的维数为 . 解:6;5.2. 设*A 为n (2)n >阶方阵A 的伴随矩阵,设对任意的n 维向量x 均有*0A x =,则齐次方程组0=Ax 的基础解系中所含向量个数k 满足( )(A) k n = ; (B) 1k =; (C) 0k =; (D) 1k >. 解:D.3.设A 为n 阶矩阵,若3)(-=n A r ,且321,,ααα为0=Ax 的三个线性无关的解向量,则下列各组中为0=Ax 的基础解系是( ). (A)133221,,αααααα--- ; (B) 323123,,αααααα--+; (C) 12220,,ααα+; (D) 123132,,αααα+-. 解:B.4. 设 1V = []123123,,0,,1,2,3T i x x x x x x x x R i ⎫⎧⎪=++=∈=⎨⎬⎪⎩⎭,2V = []123123,,1,,1,2,3T i x x x x x x x x R i ⎫⎧⎪=++=-∈=⎨⎬⎪⎩⎭,问R 3的这两个子集,对R 3的线性运算是否构成向量空间,为什么? 解:按向量空间理论,只需验证每个子集对3R 的线性运算是否满足封闭性.先看1V ,[]Tx x x x 321,,=∀,[]Ty y y y 321,,=∈1V ,及常数k ,有[]Ty x y x y x y x 332211,,+++=+及00)()()()()(321321332211=+=+++++=+++++y y y x x x y x y x y x 即对加法满足封闭性;而[]Tkx kx kx kx 321,,=,及)(321321x x x k kx kx kx ++=++=0亦即对数乘满足封闭性,故1V 构成向量空间.再看2V ,2,V y x ∈∀,有[]Ty x y x y x y x 332211,,+++=+,但112233123123()()()()()112x y x y x y x x x y y y +++++=+++++=--=-即2V y x ∉+,亦即对加法不满足封闭性,故2V 不构成向量空间.5.试求由,,3α生成的向量空间V =span (,,3α)的一个基及V 的维数dim V ,其中[]11,2,3,0Tα=-,[]21,1,5,2T α=--,[]30,1,2,2Tα=-.1α2α1α2α解:由于V 是向量组321,,ααα的生成子空间,故V 的基及维数完全等价于向量组321,,ααα的最大无关组及秩.由[]123110110110110231011011011,,~~~352352022000022022022000ααα----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦知可取21,αα为V 的一个基,且dim V =2.6. 已知一个四维向量组[]11,3,2,1Tα=-,[]20,1,5,2Tα=-,[]33,8,1,5Tα=-,[]41,6,17,5T α=--,(1)求,,3α,4α的一个最大无关组及秩;(2)将其余向量用这个最大无关组来线性表示;解:构造矩阵[]4321,,,αααα并进行初等行变换,由[]4321,,,αααα=103110311031318601130113~~25117055150000125502260000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 知(1) 秩为2,可取21,αα为一个最大无关组;(2) 由初等行变换的结果矩阵1031011300000000⎛⎫ ⎪-⎪⎪ ⎪⎝⎭,知1α2α3124123,3αααααα=+=-.7. 求下列齐次线性方程组的基础解系(1)123413412313424300307730x x x x x x x x x x x x x -+-=⎧⎪+-=⎪⎨++=⎪⎪+-=⎩;(2)02)1(121=+++-+-n n x x x n nx .解:(1)由214311010110120~3110000170730000A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦即()r A =3<4,知方程组有非零解,且基础解系中含有4-()r A =1个线性无关解向量.解为1323420x x x x x =-⎧⎪=⎨⎪=⎩,即知基础解系为[]1,2,1,0Tξ=-.解:(2)显然方程组有非零解,且基础解系中含1n -个线性无关解向量,由解为1212)1(------=n n x x n nx x ,即知基础解系为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=-21000,,10010,0001121 n n n ηηη.8. 设A 是n 阶方阵,试证)()(1+=n n A r A r .证:我们通过证明001==+x A x A n n 与是同解方程组来说明问题.显然,0n A x =的解都是10n A x +=的解,下证10n A x +=的解x 是0n A x =的解.否则,若0≠x A n ,考虑向量组21,,,,n x Ax A x A x -,n A x ,若0112210=+++++--x A k x A k x A k Ax k x k n n n n (*) 在上式两边左乘n A ,利用1220,n n n A x A x A x ++==== 得00n k A x =,而0≠x A n ,故必有0k =0,此时,(*)式变为011221=++++--x A k x A k x A k Ax k n n n n ,再用x A n 1-左乘上式两端,必得01=k ,依次类推,最终必有01210======-n n k k k k k ,这说明n +1个向量2,,,x Ax A x ,1,n n A x A x -是线性无关的,而这显然与“n +1个n 维向量必线性相关”矛盾,故说明假设错误,即只有0=x A n .综合上述,知001==+x A x A n n 与同解,进而有)()(1+=n n A r A r . 4.4线性方程组解的结构1.填空题(1) 已知非齐次线性方程组b Ax =有通解表达式[][]2,3,6,50,5,5,3,(),TTx t t R =-+∈则()=A r .解:3.(2) 设A 是3阶方阵, ()2r A =,且A 中每行元素之和均为零,则齐次线性方程组0Ax =的通解为 . 解:(),,,Tx c c c c R =∈.(3) 已知123,,ξξξ为非齐次线性方程组的三个解,又()123,0,1Tξξ+=,()32,1,0ξ=-且()2r A =,则Ax b =的通解为 . 解:()()1,2,12,1,0,TTx c c R =--+-∈. 2.设123,,ααα为Ax b =的解,则( )是0Ax =的解. (A )123ααα++;(B )123235ααα+-; (C )123ααα+-;(D )123ααα--.解:B.3.已知非齐次线性方程组系数矩阵的秩为2,又已知该非齐次线性方程组的三个解向量为[]11,1,2,3Tx =--,[]23,2,0,4Tx =-,[]31,5,3,1Tx =-,试求该方程组的通解.解:由方程组未知数个数为4及系数矩阵的秩为2,知其对应的齐次线性方程组的基础解系中只含两个线性无关解向量,再由“非齐次线性方程组两个解的差必为对应的齐次线性方程组的解”,以及[]122,3,2,7Tx x -=---,[]130,4,5,2Tx x -=-线性无关.知非齐次线性方程组的通解等于它自身的一个特解加上它对应的齐次线性方程组的通解,即通解 1112213()()x c x x c x x ξ=+-+-[][][]()1212112323270452,,,,,,,,,,TTTc c c c R =--+---+-∈.4.设非齐次线性方程b Ax =的系数矩阵的秩53()2r A ⨯=,21,ηη是该方程组的两个解,且有[]122,1,1Tηη+=-,[]12356,0,5Tηη+=-,求该方程组的通解.解:依题意,非齐次线性方程组Ax =b 对应的齐次线性方程组的基础解系中只含3-()r A =1个解向量,按照非齐次线性方程组与其对应的齐次线性方程组两者解的结构及相互关系,可取b Ax =+为)(2121ηη的一个特解,可取121211(35)()82ηηηη+-+为对应的齐次线性方程组的基础解系,则Ax =b 的通解为121212111()(35)()282c ηηηηηηη⎡⎤=+++-+⎢⎥⎣⎦117111,,,,()22428TTc c R ⎡⎤⎡⎤=-+-∈⎢⎥⎢⎥⎣⎦⎣⎦.5. 已知向量0η,1η, ,r n -η为A n m ⨯b x =的n -r +1个线性无关解,且()r A =r . 试证:(1)1η-0η,2η-0η, ,r n -η-0η为0=Ax 的一个基础解系;(2)Ax b =的通解可由0η,1η, ,r n -η线性表示,且系数和为1.证:(1)依题意,只要证明01ηη-,02ηη-, ,0ηη--r n 是Ax =0的线性无关的解向量即可,而它们是Ax =0的解向量很显然,故下证01ηη-,02ηη-, ,0ηη--r n 线性无关.考虑1k (01ηη-)+2k (02ηη-)+ +r n k -(0ηη--r n )=0,即-(1k +2k + +r n k -)0η+1k 1η+2k 2η+ +r n k -r n -η=0, 由0η,1η,2η, ,r n -η线性无关,知必有⎪⎪⎪⎩⎪⎪⎪⎨⎧====+++0k 0k 0k 0)k k (k -r-n 21r -n 21 故而01ηη-,02ηη-, ,0ηη--r n 线性无关. 证:(2) 由解的结构知Ax b =的通解为1k (01ηη-)+2k (02ηη-)+ +r n k -(0ηη--r n )+0η =[1-(1k +2k + +r n k -)]0η+1k 1η+2k 2η+ +r n k -r n -η 且其系数和为1.4.5向量的内积1.将向量组[]11,1,1Tα=,[]22,0,0Tα=,[]T0,1,13=α规范正交化.解:利用施密特正交化公式,即得[]111,1,1Tβα==;[][]2122111,14221,1,12,0,0,,,3333TT T αββαβββ<>⎡⎤=-=-=--⎢⎥<>⎣⎦;313233121122,,110,,,,22Tαβαββαββββββ<><>⎡⎤=--=-⎢⎥<><>⎣⎦.再进行单位化,即得]]]3121231231,1,1,2,1,1,0,1,1.T T Tβββεεεβββ====--==-2.已知,,3α为n 维规范正交向量组,且1β=2+2+ λ1α2α1α2α3α,2β=2-2λ+λ3α,问λ为何值时,向量1β,2β正交?当它们正交时,求出1β,2β.解:正交即内积为零,为使1212,,0ββββ<>=正交,必有,也即1212,T ββββ<>==123123(22)(22)T ααλααλαλα++-+2112131122232442442T T T T T T ααααλααλααλααλαα=++---2221233332244(2)0T T T λααλααλααλλλ+++=-+=-=(注意,化简过程中利用了321,,ααα为规范正交向量组),故当2λ=时,.,21正交ββ此时,11232123222,242,βαααβααα=++=-+ 于是12ββ========3.已知两个正交单位向量1184(,,),999T α=-- 2814(,,),999T α=--试求列向量3α使得以123,,ααα为列向量组成的矩阵Q 是正交矩阵.解:依题意,所求的向量3α应该满足,132330,0,1T T ααααα===.设向量3123(,,)x x x α=, 由13230,0T Tαααα==有123123(1/9)(8/9)(4/9)0;(8/9)(1/9)(4/9)0.x x x x x x --=⎧⎨-+-=⎩解得: 132344,77x x x x =-=- 1α2α再利用222231231x x x α=++=得: 379x =±于是所求的向量为3447(,,),999T α=--或者3447(,,).999T α=-。

《线性代数》作业参考答案

《线性代数》作业参考答案

《线性代数》作业参考答案一、选择题1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.B 9 .A 10.C 11.D 12.B 二、填空题1.相等2.;kn k m C C ⋅3.n 个线性无关的特征向量; 4.不变 5.t=-3 6.B AP P =-17.n n n λλλ 212)1()1(--8.1=k 9.1≠λ且2≠λ 10.2,-211.k=75-12.04321=+++a a a a13. -9 ; 14. 3 ; 15. ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-03100302100201410001A 16. 81; 17. ⎪⎪⎪⎭⎫ ⎝⎛---212424212299; 18. 2;三、证明题1.证:由题设A 是三阶方阵,41=A , 223131111)41(1)41()41(4121)2(A A A A A A A A A ==⋅===⋅-=-----*-。

2.证:由0432=--E A A ,即:E A A 432=-E E A A 4)3(=- E E A A =-)4341( 即A 可逆,且E A A 43411-=-。

3.证:由题设:E A A AA TT== E B B BB TT==所以2()()T T T T TA B BB A BA A B B A A B B A A A A B +=+=+=⋅+=-+即:0)1(2=++B A A 只有0=+B A 证毕。

4.因r n i A b A i -===,,2,1,0,0 γγ,则,b A i =η因此r n -ηηηη,,,,210 是方程组(*)的线性无关解。

设,0221100=++++--r n r n ηληληληλ 则,0)(2211010=+++++++---r n r n r n γλγλγληλλλ 两边左乘A 得,,0)(10=+++-b r n λλλ 有,010=+++-r n λλλ 于是,02211=+++--r n r n ηληληλ 可得r n -ηηηη,,,,210 线性无关。

(正)线性代数练习册答案

(正)线性代数练习册答案

第一章 行列式知识点:全排列及逆序数,n 阶行列式的定义,对换 行列式的性质行列式按行(列)展开 克拉默法则及其相关理论克拉默法则解线性方程组 学习目标:1.理解行列式的定义和性质,掌握行列式的计算方法.2.掌握二、三阶行列式的计算法.3.掌握行列式的性质,会计算简单的n 阶行列式.4.掌握Gramer 法则及其相关理论.5.掌握应用Gramer 法则解线性方程组的方法.1-1 二阶、三阶行列式一、填空题1. 2537=2. 22a ab b=_____ 3. 12531002= _____ 4.000213xx x =- 1.1- 2 . ()ab b a - 3. 6 4. 22x -1-2 逆序数与n 行列式的定义一. 填空题1.排列 5371246的逆序数为 .2. 排列1,3,,(21),2,4,,2n n - 的逆序数为 .3.六阶行列式中,132536415462a a a a a a 的符号为 . 1. 10 2.(1)2-n n 3. 负 1-3 行列式的性质与计算一、利用行列式的性质计算下列各行列式:1021002041.199200397301300600 12322102100204210042141.1992003971200310012330130060013000130c c c c--=--=--13232054541000531005005313r r r r -+--=-==--0002.0000000000x y x y x x y y x 111100000000000000000002.(1)00000000000000000000000(1)n n n n n nx y x y y x y x y xy x y x x x y x y x y x y yxx x y x y +--+=+-=+-3.123423413412412312341123410234123423411034113413.101034121041214124123101231123c c c c c +++÷21323142411234123420113011310101600222004801110004r r r r r r r r r r -----=----+-----二、试将下列式化为三角形行列式求值:2512371459274612----- 4321133141322442251215221522371417340216259272957113461216420121522152215220120012001209011300330033202163603r r r r c c r r r rr r c c r r ----+-----↔------------+---↔==-+-三、用降阶法计算下列行列式:2240413531232051-----21312240200035541354355248323123348321120512211c c c c ----+--=--------1323710527102105322701051c c c c --------=-=---四、计算下列行列式:2100...01210...00121...00012 0..................0000 (2)解: 12112100...01100...01210...00210 (00)121 0121 0220012...00012...0....................................0000...20000...2n n n n n D D D ----=-=-11221321n n n n D D D D D D ---⇒-=-==-=-=111n D D n n ⇒=+-=+1-5 Cramer 法则一、利用Cramer 法则解下列方程组⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==DD x .二、问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解 系数行列式为 λλλλλλλ--+--=----=101112431111132421D =(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3.令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第一章 复习题一、选择题(选项不唯一)1. ()111213111213212223131323313132332122232220;222222a a a a a a D a a a M D a a a D a a a a a a ==≠==;那么A 2MB 2MC 8MD 8M --2. ()11121311111213212223121212223131323331313233423D=1D 423;D 423a a a a a a a a a a a a a a a a a a a a a -==-=-;那么A 8B 12C 24D 24--3. 下列n 阶行列式的值必为零的是()()A 行列式主对角线的元素全为零 ()B 三角形行列式主对角线有一个元素为零 ()C 行列式零元素的个数多于n 个 ()D 行列式非零元素的个数小于n 个4.如果()()()()()3040 50A 0B 1C 1D 3x ky z y z kx y z k k k k +-=⎧⎪+=⎨⎪--=⎩===-=-有非零解,则1. D2. B3. B,D4. C,D 二、填空题1.3421536215________2809230092=行列式2.已知4阶方阵A ,其中第三列元素分别为1,3,-2,2,它们的余子式的值分别为3,-2,1,1,则行列式A =3.若,a b 均为整数,而000,10001ab ba -=-则a=_____;b=_______ 4.ij 123456784A 23486789若阶行列式为;为其代数余子式,13233343210412_______A A A A +++=则1. 122460002. 5 3 0;0 4. 0 三.计算下列行列式1.5042112141201111- 32222142542542542542112111211.1(1)5410014120504123223211112032r r r r r r ++--=-----+ 232154(1)723r r +--=- 2. 22211 (12)2 (23)3......3.....................n n nn n n21212111......111 (12)2 (21)2......22.2333......313......3....................................1......nn n n n n n n n n n n ---=⨯⨯⨯1!()!(1)!2!1!i j nn j i n n ≤<≤=-=-∏3.123111111111111111(0,1,2,,)111111i na a a a i n a +++≠=+解:112233111111111111111110111111111101111111111011011111111110nnn a a a a a a a a ++++++=+++各行减去第一行得行列式:11121223131111111111111000010000000001110000000010000001000ni in nnna a a a c c c a a a a a a a =+--=+++--∑111(1)nni i i i a a ===+∑∏四、证明题1.证明111122110...0001...00... 000...1...n n n n nn n x x x a x a x a xa a a a x a ------=++++-+证:将行列式从最后一列开始逐渐将后一列的x 倍加到前一列上去,得到原行列式等于121112111111111010...00001...00 000...01 (100)10(1)(...) (00)1n n n nn n n n n n n n nn x a x a x a x a x a x a x a x a x a x a x a x a --+--------+++++++--=-++++=++++-第一章 自测题一、填空题1.若,n ij D a a ==则ij D a =-=2.1110110110110111= 3.设1234577733324523332246523A =,则313233A A A ++= ,3435A A += 4.00010020002007000200800000001D ==1.(1)na - 2. 3- 3. 0 ; 0 4. 2008!二、选择题1.三阶行列式3103100204199200395301300600D =的值为( ) A. 0 B. 1 C.2000 D.10002. ()02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩当时,仅有零解()()()()A 0B 1C 2D 2k k k k ≠≠-≠-≠3.设四阶行列式4a b c d cb d aD d b c a a b d c=,,,,a b c d 各不相同,则14243444A A A A +++= A.0 B.abcd C.2abc D.2abd 4.方程组12120x x x x λλ+=⎧⎨+=⎩有非零解,则λ=A. 1B.1±C.0D.-15.设1x ,2x ,3x 是方程30x px p ++=的三个根,则行列式123312231x x x x x x x x x = A. 0 B.p C.2p D.3p1.C2.D3.A4. B5. A三、计算题(每小题10分,共30分)1.5231011171018111D -=-.解: 23234352315534554011100101(1)7117101710182281118212c c D c c ++--==----+- 123274059409010382242224c c c c ++=-=-=()()()()()()11111......1......2................1 (1)1......1nnn n n n n a a a n a a a n D a a a n ---+----=--解:从最后一行开始,逐渐往前做相邻交换,然后从最后一列开始,做相同的变换,得原行列式等于:()()1111111......11.....................()!(1)!2!1!()1......()1......j i n i j n n n nnna n a n ax x n n a n a n a a n a n a -≤<≤+----+==-=---+--+∏第二章 矩阵及其运算知识点:矩阵的概念,矩阵的运算 逆矩阵,矩阵分块法 学习目标:1.理解矩阵的概念,了解单位矩阵、对角矩阵、对称矩阵及其性质.2.熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律,对矩阵的乘法应重点讲解.3.理解逆矩阵的概念,掌握逆矩阵存在的条件及求逆的方法、矩阵分块法.2-1 矩阵的运算一.设矩阵111111A -⎛⎫=⎪-⎝⎭, 123124B ⎛⎫= ⎪--⎝⎭,求2,23A B A B +-。

线代作业纸答案

线代作业纸答案

第一章 行列式一、填空1. 按自然数从小到大为标准次序,则排列3421的逆序数为 5 ,32514的逆序数 为 5 .2.四阶行列式中含有因子a a 2311的项44322311a a a a -,42342311a a a a .3.按定义,四阶行列式有!4项,其中有12项带正号,有12项带负号.4.在函数xx x xxx f 21112)(---=中,3x 的系数是2-. 5. =cbac ba222111))()((b c a c a b ---.6.设210132113---=D ,A ij 为元素a ij 的代数余子式)3,2,1,(=j i ,则=-+33231342A A A 37.二、选择1. 四阶行列式a b a b b a b a 4433221100000000的值等于( D ) (A ) b b b b a a a a 43214321- (B ) b b b b a a a a 43214321+(C ) ))((43432121b b a a b b a a -- (D ) ))((41413232b b a a b b a a --2.设1211123111211)(xxx x x f -=,则x 3的系数为 ( C )(A )2 (B )1 (C )1- (D )2- 3.在五阶行列式)det(a ij 中,下列各项中不是)det(a ij 的项为 ( A ) (A )a a a a a 5552214331 (B )a a a a a 5412452331- (C )a a a a a 5145342312 (D )a a a a a 33522514414.行列式1111111111111111--+---+---x x x x 的值为 ( D ) (A )0 (B )22)1()1(-+x x (C )2x (D )4x三、计算 1.2605232112131412- 21r r +=====26052321260514120=(因有两行相同)2.ef cfbfde cd bdaeac ab--- 123r ar d r f÷=====÷÷ec b e c b e c b adf ---123c bc c c e ÷=====÷÷111111111---abcdef 2131r r r r +=====+abcdef abcdef 4020200111=- 3.d c ba100110011001--- 12r ar +=====d cb a ab 100110011010---+1c =====dc a ab 101101--+32 c dc +=====010111-+-+cd c ad a ab 3r =====cdad ab +-+111ad cd ab +++=)1)(1( 四、证明1.322)(11122b a b b a ab ab a -=+证 1112222b b a a b aba +1323c c c c -=====-1002)(22222b b a b a b b ab b a ----122c c -=====120)(222b b a b b ab b a --- 3)(b a -=2.0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a证=++++++++++++2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(d d d d c c c c b b b b a a a a 433221c c c c c c -=====--5232125232125232125232122222++++++++++++d d d d c c c c b b b b a a a a4332c c c c -=====-022122212221222122222=++++d d c cb b a a (因有两列相同)3.01111210100000100001a x a x a x a a a a a a xx x n n n n nn ++++=------证: 递推法,按第一列展开,建立递推公式1011)1(021-*---+=++x xa xD D n n n =0022)1(a xD a xD n n n +=-++又 n a D =1,于是=+1n D 0a xD n +011)(a a xD x n ++=+0112a x a D x n ++=-= =01111a x a x a D x n n n++++-- .0111a x a xa x a n n n n ++++=--五、计算1.x a a a x a aa x D n=解xa a a x aa a x D n =121[(1)]n r r r r x n a +++=====÷+-])1([a n x ++x a a ax a 111 12,,i c ac i n -======])1([a n x ++a x ax --111].)1([)(1a n x a x n -+-=-2.1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+,提示:利用范德蒙德行列式的结果 解 :将行列式上下翻转,即为范德蒙德行列式,若再将行列式左右翻转,由于上下翻转与左右翻转交换次数相等,故行列式于上下翻转再左右翻转其值不变.于是,利用范德蒙德行列式的结果,可得nnnn a n a n a a n a n a D)1()(11111+--+--=+∏+≤<≤-=11).(n i j j i3.nnnnn d c d c b a b a D11112=,其中未写出的元素都是0解: n D 22222n nr r c c ↔=====↔)1(20-n n nn nD d c b a )1(2)(--=n n n n n D c b d a即有递推公式n D 2)1(2)(--=n n n n n D c b d a又111111112c b d a d c b a D -==,利用这些结果递推得n D 2 )(n n n n c b d a -=.)()(11111∏=-=-nk k k k k c b d a c b d a4.nn a a a D +++=11111111121,其中021≠n a a a解 12212332311000010001000100011n n n n na a a c c a a D c c a a a a -----=====---+111213121111121100010000010*******0011()(1)nn ni i nn i ia a a a a a a a a a a a ------===+=+∑∑5.问λ,μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02003213.21321x x x x x x x x x μμλ有非零解?解: 方程组的系数行列式必须为01211111μμλ=D 32r r -=====)1(01111--=λμμμλ故只有当0=μ或1=λ时,方程组才可能有非零解.当0=μ,原方程组成为⎪⎩⎪⎨⎧=+=++0031321x x x x x λ 显然1,1,1321-=-==x x x λ是它的一个非零解. 当1=λ,原方程组成为⎪⎩⎪⎨⎧=++=++=++02003213.21321x x x x x x x x x μμ 显然1,0,1321==-=x x x 是它的一个非零解. 因此,当0=μ或1=λ时,方程组有非零解.第一章 练习题1.381141102---解: 利用对角线法则3108)1(2)1()4(1811)1()1(03)4(2⨯⨯-⨯-⨯--⨯-⨯-⨯⨯+-⨯-⨯+⨯-⨯=D4-=2.yxyx x y x y y x y x+++解: 利用对角线法则)(2)()()()(33333y x y x y x yx y x y x yx y y x x D +-=--+-+++++= 3.71100251020214214解: 12r r D ↔=====-711002510421420212131410r r r r -=====--711020215042702021---- 42r r ↔=====42702021507110221----3242157r r r r +=====+0459008517007110221= 4.4321532154215431543254321 解: 从最后一行开始,后行减去前行1114111411141114111154321----=D 12,,5i c c i -======005100501050015000143211----=D 51215i i c c =+=====∑00500050005000500043213----1875)5(34=-⨯=5. 利用范德蒙德行列式计算四阶行列式cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222解: D 414()r r r a b c d +=====÷+++1111)(33332222d c b a d c b a d c b a d c b a +++ 把行列式的最后一行依次与前面的行交换,共交换三次得333322221111)(d c b a d c b a d c b a d c b a D +++-=))()()()()()((c d b d b c a d a c a b d c b a ------+++-=6.证明na a a 1011121)1(2132∑=-=ni in a a a a a ,其中 021≠n a a a 证: 化行列式为下三角形行列式D112,i inr r a i n -======n a a b * 0002n a a ba 32= 其中,∑=-=ni i a a b 211,于是).1(2132∑=-=n i i n a a a a a D 7.=n D )det(a ij ,其中j i a ij -=解: 0321301221011210------=n n n n n n D n 11221n n n n r rr r r r ----=====--1111111111111210--------n n12n n c c c c +=====+.2)1()1(112001220132121----=---------n n n n n n n8.求满足下列方程的实数z y x ,,:11000100011=zy x zy x解: 将D 按第一行展开得,,0222=++z y x 解得.0===z y x9. 问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(3213.21321x x x x x x x x x λλλ有非零解?解: 方程组的系数行列式必须为0λλλ----=111132421D 13r r ↔=====421132111-----λλλ 21312(1)r r r r λ-=====--2)1(4301210111λλλλλ--+-----2)1(43121λλλλ--+----=21c c +=====2331λλλλλ----)3)(2(---=λλλ 故32,0或=λ,并且当0=λ时,21-=x ,12=x ,13=x ;当2=λ时,21-=x ,32=x ,13=x ;当3=λ时,11-=x ,52=x ,23=x ;均是原方程组的非零解. 因此,当32,0或=λ时,方程组有非零解.第二章 矩阵及其运算 (一)一.填空1.设⎪⎪⎪⎭⎫ ⎝⎛=321a a a A ,()123B b b b = ,则AB =111213212223313233a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;BA = 112233()a b a b a b ++;()T AB =112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;T T A B =()T BA ;T T B A = ()T AB . 2. 设⎥⎦⎤⎢⎣⎡-=121x A ,⎥⎦⎤⎢⎣⎡=012y B ,若BA AB =,则=x 1 ;=y 2 . 3. 设A 为3阶方阵,且2-=A ,则2A = 4 ;=-T A 2 16 ;*A = 4 .4. 设101A λ⎡⎤=⎢⎥⎣⎦,则kA =101k λ⎡⎤⎢⎥⎣⎦.5. 设101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,而2n ≥为正整数,则12n n A A --= 0 (零矩阵) . 6. 已知3A E =,则1A -=2A .二.选择1. 设n 阶方阵,,A B C 满足关系式ABC E =,其中E 为n 阶单位矩阵,则必有( D ). (A ) ACB E = (B )CBA E = (C) BAC E = (D )BCA E =2. 设A 、B 均为n 阶方阵,满足0AB =,则必有 ( C ) (A ) 0A =或0B = (B )0BA = (C) 0A =或0B = (D )0A B +=3. 设A 、B 都是n 阶方阵,则下列命题中正确的是 ( D ) (A )若0≠A 且0≠B ,则0≠AB . (B )若A 、B 都是对称阵,则AB 是对称阵. (C)若AB 不可逆,则A 、B 都不可逆. (D )若AB 可逆,则A 、B 都可逆.三.计算与证明1. 设111111111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 123124051B ⎛⎫ ⎪=-- ⎪⎪⎝⎭,求32AB A -及T A B . 解:32AB A -1111233111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭1112111111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭21322217204292-⎛⎫⎪=-- ⎪ ⎪-⎝⎭111123111124111051T A B ⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭058056290⎛⎫⎪=- ⎪ ⎪⎝⎭2. 13121400121134131402⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪--⎝⎭ ⎪-⎝⎭6782056-⎛⎫= ⎪--⎝⎭3. ()111213112312222321323333a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫⎪=++++++ ⎪⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++4. 设,A B 为n 阶方阵,且A 为对称阵,证明TB AB 也是对称阵. 证明:已知:TA A =则 ()()TTTTTTTTB AB B B A B A B B AB === 从而 T B AB 也是对称阵.第二章 矩阵及其运算 (二)一.填空1. 设⎥⎦⎤⎢⎣⎡=1211A ,⎥⎦⎤⎢⎣⎡-=1011B ,⎥⎦⎤⎢⎣⎡=B O O A C ,则 =C -1 .2. 设1200n a a A a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,(120n a a a ≠). 则1A -=1210101n a a a ⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭3. 设A 为三阶可逆矩阵,且1123012001A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则A *=123012001---⎛⎫⎪- ⎪ ⎪⎝⎭4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,则=-*1)(A 10A ;=*-)(1A 10A .5.设A 为m 阶方阵,B 为n 阶方阵,且a A =,b B =,⎥⎦⎤⎢⎣⎡=O B A O C ,则=C (1)mnab -. 6.设A 为3阶矩阵,且A =12,则1*(2)5A A --=16- . 二.选择题1. 设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,则必有( A ) (A ) 1-*=n AA (B ) A A =* (C ) nA A =*(D ) 1-*=A A2. 设A 、B 都是n 阶方阵,则下列等式中正确的是 ( D ) (A )BA AB = (B )TTTB A AB =)( (C )111)(---=B A AB (D )BA AB =3. 已知A 为n 阶方阵,且满足关系式0432=++E A A ,则()=+-1E A ( C )(A )1A E -+ (B )12E A +(C ) 12E A -- (D )4A E +三.计算与证明1. 求下列方阵的逆阵(1) 5200210000120011⎛⎫ ⎪⎪⎪- ⎪⎝⎭解:115221A ⎛⎫=⎪⎝⎭,1111225A --⎛⎫= ⎪-⎝⎭,221211A -⎛⎫= ⎪⎝⎭,122121113A -⎛⎫= ⎪-⎝⎭, 112002500120033110033A --⎛⎫⎪- ⎪ ⎪= ⎪⎪⎪-⎪⎝⎭. (2) 121342541-⎛⎫⎪- ⎪ ⎪-⎝⎭解:2A =, 故1A -存在 . 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭. 2. 解下列矩阵方程 (1) 25461321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭解:125461321X --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭.(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭解:1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫ ⎪= ⎪-- ⎪⎝⎭.(3) 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11010143100100201001001120010X ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭210134102-⎛⎫ ⎪=- ⎪⎪-⎝⎭(4) 设,AX B X +=其中01011111,20,10153A B -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦求.X 解:由,AX B X +=得 ()E A X B -=故 1().X E A B -=- 而 21331213311330()10E A -⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭所以 2133213311330113112020.05311X --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 3. 设1P AP -=Λ, 其中1411P --⎛⎫=⎪⎝⎭, 1002-⎛⎫Λ= ⎪⎝⎭, 求11A . 解:1P AP -=Λ故1A P P -=Λ所以11111A P P-=Λ3P = 1411P *⎛⎫= ⎪-⎝⎭ 1141113P -⎛⎫= ⎪-⎝⎭而 11111110100202--⎛⎫⎛⎫Λ== ⎪ ⎪⎝⎭⎝⎭故11111414103311021133A ⎛⎫ ⎪--⎛⎫⎛⎫= ⎪ ⎪⎪- ⎪⎝⎭⎝⎭-- ⎪⎝⎭27312732683684⎛⎫= ⎪--⎝⎭. 4. 设A 为n 阶方阵,并且满足Θ=--E A A 22,证明:A 及E A 2+都可逆,并求1-A 及1)2(-+E A . 解:由已知得:E E A A =-⋅)(21,故A 可逆,且)(211E A A -=- 又E E A E A 4)3)(2(-=-+, 故E A 2+可逆,且)3(41)2(1E A E A --=+-.5. 设0kA =(k 为正整数),证明121()k E A E A A A ---=++++证明: 由 0kA =有 21()()k E A A A E A -++++-2121k k k E A A A A A A A --=++++----E =因此 121()k E A E A A A ---=++++第二章 练习题1.设A 为4阶方阵,1,3A =求134A A *--. 解:111,3A A A A *--==11111343433A A A A A *----∴-=⋅-=-41311(3)81A =-=⋅243.= 2. 已知⎪⎪⎪⎭⎫ ⎝⎛--=130210005A ,求1-A .解: ⎪⎪⎭⎫⎝⎛=2211A O O A A51111-=-A=⎪⎪⎭⎫ ⎝⎛----==*-132********122A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛-71737271 ∴⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛=---717307271000511221111A OO A A 3. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=121011322A ,解矩阵方程E AXA =*(其中*A 是矩阵A 的伴随矩阵). 解:计算得1-=A ,并且A 可逆 因为E E A AA -==*,故由已知E AXA =*得A EA A AXA ==*所以A AX =-解得E X -=解:A BA BA A 61=-- A BA E A6)(1=--⎪⎪⎪⎭⎫⎝⎛=-=--123)(611E AB 4. 设三阶矩阵A ,B 满足关系式BA A BA A +=-61,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=714131A ,求B .5. 设A 为n 阶方阵,并且满足Θ=-+E A A 2, 证明:A 及E A -都可逆,并求1-A 及1)(--E A .解:由已知得:E E A A =+⋅)(,故A 可逆,且E A A +=-1 又E E A E A -=+-)2)((, 故E A -可逆,且)2()(1E A E A +-=-- .6.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A 及4A . 解: 34432022O A O ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A OA ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭. 7.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1O A B O -⎛⎫⎪⎝⎭.解 : 将1O A B O -⎛⎫⎪⎝⎭分块为1234C C CC ⎛⎫⎪⎝⎭其中 1C 为s n ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵,4C 为n s ⨯矩阵则n n s s O A B O ⨯⨯⎛⎫⎪⎝⎭1234C C C C ⎛⎫ ⎪⎝⎭E ==ns E O O E ⎛⎫⎪⎝⎭由此得到1334411122n s AC E C A AC O C OBC O C O BC E C B --⎧=⇒=⎪=⇒=⎪⎨=⇒=⎪⎪=⇒=⎩(A 、B 均可逆)故 111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.第三章 矩阵的初等变换与线性方程组(一)一、填空1. 设A 为n 阶方阵,若有n 阶初等方阵s P P P ,,21,使 ),(),(21B E E A P P P s = ,则=-1As P P P 21 .2. 设A 是34⨯矩阵,且A 的秩)(A R =2,而⎪⎪⎪⎭⎫⎝⎛-=301020201B ,则=)(AB R 2 .8. 设x 为n 维列向量,1=x x T,令Txx E H 2-=,证明H 是对称阵,且T HH E =. 证明:因为 H xx E xx E xx E H T T T T T T=-=-=-=2)(2)2(,所以H 是对称阵.又 ==2H HHT4)2)(2()2(2+=--=-E xx E xx E xx E T T T T T T xx xx xx 4))((-+=-+=E xx x x x x E T T T 4)(4E xx xx T T =-443. 设四阶方阵A 的秩)(A R =2,则其伴随矩阵*A 的秩为)(*A R = 0 .二.选择1.从矩阵A 中划去一行得到矩阵B ,则A 、B 的秩的关系为( A )(A) 1)()()(-≥≥A R B R A R (B) 1)()()(->≥A R B R A R (C) 1)()()(->>A R B R A R (D) 1)()()(-≥>A R B R A R 2.在秩是r 的矩阵中( C ) (A) 没有等于0的1-r 阶子式 (B) 没有等于0的r 阶子式(C) 等于0的1-r 阶子式和等于0的r 阶子式都可能有 (D) 所有1-r 阶子式等于0三.计算与证明1.把矩阵化为行最简形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---8701111121324321 解:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-000031100313010317001 2.用初等变换求解矩阵方程B AX =,其中⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=520321,102123111B A 解:⎪⎪⎪⎭⎫ ⎝⎛--==-13122018971B A X 3.试利用矩阵的初等变换,求方阵⎪⎪⎪⎭⎫⎝⎛=323513123A 的逆阵1-A .解:⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-210212112332671A4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=443112112013A 的秩.解:秩为25.设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,求k 为何值时可使)(A R 等于:(1) 1 ;(2) 2 ;(3) 3 .解:⎪⎪⎪⎭⎫ ⎝⎛+----)2)(1(300)1(3)1(20321~k k k k k A (1) 当1=k 时,R(A)=1 (2) 当2-=k 时,R(A)=2(3) 当1≠k 且2-≠k 时,R(A)=3第三章 矩阵的初等变换与线性方程组(二)1.求齐次线性方程组⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x 的解.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-134334C2.求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x 的解.解:⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-021112C3.设有⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x ,问λ为何值时,此方程组有唯一解、无解或无穷解?并在有无穷解时求其解. 解:)10()1(2λλ--=A(1)1≠λ且10≠λ时,有唯一解;(2)10=λ时,无解;(3)1=λ时,无穷解:⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-00110201221C C第三章 练习题1.求作一个秩是4的方阵,使它的两个行向量是(1,0,1,0,0)和(1,-1,0,0,0)解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000010000010000011001012.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013解:秩为2,01113≠-(2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123解:秩为3,087312123≠----3.非齐次线性方程组⎪⎩⎪⎨⎧-=++-=-+=+-22223212321321x x x x x x x x x λλ,当λ取何值时有解?并求出它的通解.解:⎪⎪⎪⎭⎫⎝⎛-+---)1)(2(000)1(2330121~λλλλB (1)当2-=λ时, ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛022111C(2)当1=λ时, ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛001111C4.设A 为n m ⨯矩阵,证明:(1)方程m E AX =有解的充分必要条件是m A R =)(; (2)方程n E YA = 有解的充分必要条件是n A R =)(. 解:(1)m E AX =有解),()(E A R A R =⇔(必要性)显然,m A R ≤)(;另一方面,m E A R ≥),(,故m A R =)( (充分性)m E A R A R m ≤≤=),()((2)方程n E YA =有解⇔方程n TT E Y A =有解⇔n A R T =)((由1)⇔n A R =)(5. 设A 为n m ⨯矩阵,证明:若AY AX =,且n A R =)(,则Y X = 证明:Θ=-)(Y X A因为n A R =)(,所以方程Θ=-)(Y X A 只有零解,即Θ=-Y X ,即Y X =6.证明1)(=A R 的充分必要条件是存在非零列向量α及非零行向量T β,使TA βα⋅=. 证明:(充分)1)()(=≤αR A R ,另一方面TA βα⋅=,α和Tβ又都是非零向量,故1)(≥A R ,因此1)(=A R(必要)由于1)(=A R 故⎪⎪⎭⎫ ⎝⎛ΘΘΘ1~A ,所以()TQ P Q P A αβ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛ΘΘΘ=0010011 7.已知三阶矩阵0≠B ,且B 的每一个列向量都是以下方程组的解:)(0302022321321321*⎪⎩⎪⎨⎧=-+=+-=-+x x x x x x x x x λ(1) 求λ的值; (2) 证明0=B .解:(1)设⎪⎪⎪⎭⎫⎝⎛---=11312221λA ,由题设0,0=≠AB B ,知0)1(5=--=λA故1=λ(2)由1=λ,知2)(=A R ,由0=AB ,知3)()(≤+B R A R ,故1)(≤B R又已知1)(≥B R ,因此1)(=B R 从而0=B第四章 向量组的线性相关性(一)一、选择1.若向量组γβα,,线性无关,δβα,,线性相关,则 ( C ) (A )α必可由δγβ,,线性表示;(B )β必可由δγα,,线性表示; (C) δ必可由γβα,,线性表示; (D) β必不可由δγα,,线性表示。

线性代数练习册第一章部分答案(本)

线性代数练习册第一章部分答案(本)
AAT AA A2 E
1 .AAT E; 3 . A2 E 2. AT A
AAT E A1 AT ; A2 E A1 A AT A1 A
或 或
AAT E AAAT AE AT A
AAT E, A2 E A( AT A) 0, A可逆 A1 A( AT A) A1 0 AT A
2 −3 1 r2 − 2 r1 0 0 1 3 0 2r2 0 −1 −3 r − 2r 0 4 1
2 0 0
−3 1 10
2 −3 1 r1 + 3r2 0 1 0 1 3 0 r1 0 0 0 0 2 −4 −4 −2 −2 3 5 3 4 3 1 0 −1 −4 3 −4 1 −2 0 −2 −1
而 B11 所以,
(1)11 0 1 0 1 0 , 11 211 0 2 0 2 0
11
1 4 1 0 1 1 4 A11 PB11 P 1 11 1 1 0 2 3 1 1 4 213 1 1 213 1 4 1 1 213 3 1 211 1 1 3 1 211 4 211 2731 2732 683 684
1 0 0
0 5 1 3 0 0
1 (2)B = 3 2 3 解:
−1 −3 −2 −3
3 5 3 4 −1 −3 −2 −3
1 B= 3 2 3 r2 − 3r1 r3 − 2r1 r4 − 3r1
1 0 0 0
3 −1 3 − 4 −8 0 −4 8 0 −3 6 −6 0 −5 10 −10 3 1 0 0 0 1 0 0 −4 −2 0 0 2 −2 0 0 3 2 0 0 −3 2 0 0

线性代数作业及参考答案

线性代数作业及参考答案

第一章 矩阵作业答案班级: 姓名: 学号 : 得分:一、选择题 (每小题5分,共20分)1. 设A 为任意n 阶矩阵,下列4项中( B )是反对称矩阵。

(A )T A A + (B )T A A - (C )T AA (D )A A T2.设n 阶矩阵A ,B 是可交换的,即BA AB =,则不正确的结论是( D )。

(A )当A ,B 是对称矩阵时,AB 是对称矩阵 (B )2222)(B AB A B A ++=+ (C )22))((B A B A B A -=-+(D )当A ,B 是反对称矩阵时,AB 是反对称矩阵3.设n 阶矩阵A ,B 和C 满足E ABAC =,则( A)。

(A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =24. 设÷øöçèæ=21,0,0,21a ,a a T E A -=,a a T E B 2+=,则AB =( B )(A) a a TE + (B) E (C) E - (D) 0二、计算与证明题 (每小题20分,共80分)1.已知úûùêëé--=1121A ,试求与A 可交换的所有二阶矩阵X得分得分2. 已知úúúûùêêêëé=010101001A , (1)证明:E A A A n nn -+=³-223时,(2)求100A.3. 已知矩阵,,试作初等变换把A 化成B ,并用初等矩阵表示从A 到B 的变换.BQ AQ Q Q B a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a A c c c c =úúúûùêêêëé=úúúûùêêêëé==úúúûùêêêëé+++¾¾®¾úúúûùêêêëé+++¾¾®¾úúúûùêêêëé=«+21213133323321232223111312133333323123232221131312113332312322211312110010101001100100013123所以,设解:4.已知矩阵,试作初等行变换,把分块矩阵化成,其中E 是单位矩阵,B 是当左块A 化成E 时,右块E 所变成的矩阵;并计算矩阵的乘积AB 与BA .úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé+-+-101110012430001321100431010212001321312112r r r r )()(解:úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé---¾¾®¾úúúûùêêêëé----¾¾®¾+-+-+--+«3151004160101120013151001011100013210124301011100013211213233321223113r r r r rr r r r r r )()()()(úúúûùêêêëé==úúúûùêêêëé----=100010001315416112BA AB B 则第二章 行列式与矩阵求逆作业答案班级: 姓名: 学号 : 得分:一.计算下列行列式:(每题10分,共30分)1. 已知4阶行列式44332211400000a b a b b a b a D =, 求4D 的值. 解:得分2. 计算n 阶行列式111111111111nn n n D n ----=3. 计算5阶行列式242322214321500032100111011110x x x x x x x x D =二.计算题:(每题15分,共60分)1. 已知3阶行列式2101123z y x D =,且,1,0322213331311-=++=+-M M M M M M2132131=+-M M M其中的值的余之式,求中元素是33D a D M ij ij .得分2. 求4阶行列式22350070222204034--=D 中第4行各元素余之式之和.3. 设úúúúûùêêêêëé=5400320000430021A , 则求1-A .4. 若úúúúûùêêêêëé=121106223211043a A 可逆,则求a 的值.三.(10分)问m l 、取何值时,齐次方程组ïîïíì=+m +=+m +=++l 0200321321321x x x x x x x x x有非零解?零解。

线性代数习题册参考解答

线性代数习题册参考解答

第一章 行列式1、求下列排列的逆序数,并确定它们的奇偶性。

(1)1347265;(2)321)1( -n n 。

【解】(1)62130000)1347265(=++++++=τ,偶排列;(2)2)1()1(210]321)1([-=-++++=-n n n n n τ。

当14,4+=k k n 时,2),14(22)1(-=-k k k n n 当34,24++=k k n 时,4)(12(2)1(+=-k n n 排列。

■2、用行列式定义计算xx x x x f 111231112)(=中4x 和3x 的系数,并说明理由。

含4x 2;含有3x (4,4)的元素乘积项,而10=+,故3x 的系数为1-36116120311022516113110612022516011301160212152323112241324--=---=--=↔↔++-r r c c r r r r r r D933003110225123242-=--=--r r r r 。

■4、求84443633224211124=D 。

【解】性质(三角化法)+行和相等的行列式:211112111121111224844436332242111243212432434r r r r r r r D +++÷÷÷===120100001000010111112014,3,2==-=r r k k 。

■5、求x x x D n -=111mD n n c c c nn=+++ (21mm m x ni i c x c nk k k ---=∑=-=101001)(1,,3,2111))((-=--=∑n ni i m m x 。

■6、求nn a a a D100111110211=+,其中021≠n a a a 。

【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。

为此,第一列减去第k 列的ka 1(n k ,,3,2 =)可得: n ni inni in a a a a a a a a D2112111)1(00000001111∑∑==+-=-=。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

线代练习册参考答案

线代练习册参考答案

第一章 行列式练习一一、填空题 1.()1!n - 2.()()12121n n n λλλ-- 3. 26,2x -4. (8,3)5.12213344a a a a -6. 2- 二、选择题1.(D)2.(B)3.(C)更正:1112n nq p q p p qa a a 改为1122n n q p q p q p a a a三、解答题1.1x =2.4-3. x a x b ==或4. 2014!5.112ln 3sin 4cos 2525C θθθ+++ 练习二一、填空题1.16-2.()()33x a x a +- 3. 1204. 27 二、选择题 1.(B)2.(D) 三、解答题1.(1)500-(2)160(3)02. (1)9-(2)3-(3)1练习三一、填空题1.62.0,0a b ==3. 124. 2 二、选择题1.(D)2. (D)更正: (D)222--改为3.(B)4. (A)5. (D) 三、解答题1.270-2.1n +3. 64. 12341,2,3,1x x x x ====-第一章复习自测题一、选择题1.(C)2. (D)3.(C)4. (B) (D)5. (A)6. (D)7.(B) 二、填空题1.122460002.53. 1a =更正:去掉b =4. 245. 2014-! 三、解答题1.(1)7-(2)()()()()a b c b a c a c b ++---2.()221n a a --3.略第二章 矩阵及其运算练习一一、填空题1.24210;121363-⎛⎫ ⎪- ⎪ ⎪-⎝⎭2.8212⎛⎫⎪⎪ ⎪⎝⎭3.112233122221321231212333222x x x x x a a a a x x x a a x +++++4. 72- 二、选择题1.(B)2.(D)3.(A)4.(C)5.(A)三、解答题1.1602.86,1441810310⎛⎫⎪- ⎪ ⎪⎝⎭3. 146561717173,5139181651122-⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 112125224336-⎛⎫⎪- ⎪ ⎪-⎝⎭5.略 练习二一、填空题1.8,6a b ==2.33140416513-⎛⎫⎪- ⎪ ⎪--⎝⎭,更正:222()4AB A B A ==改为 3. 04. 1 5. cos sin sin cos θθθθ⎛⎫⎪-⎝⎭6. 100122010345⎛⎫⎪⎪ ⎪⎝⎭二、选择题1.(D)更正:最后一选项改为(D)2.(A)3.(B)4.(C) 三、解答题1.3476814234-⎛⎫⎪-- ⎪ ⎪-⎝⎭2. 1122212221n n n n ++⎛⎫-- ⎪--⎝⎭ 3.102427-4.略5.()()1111;(2)324A A E A E A E --=-+=-- 练习三一、填空题1.4更正:*A A B =+=改为2.03. 64.100-5.(1)3mn mab - 6. 100010003100051007⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,10007100051003100⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭二、计算题1.020024001320013320057-⎛⎫ ⎪-- ⎪⎪-- ⎪--⎝⎭,,2.4411644643400252550430005252510,120000222001122O A A A O -⎛⎫- ⎪⎪⎛⎫ ⎪⎪--⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪-⎝⎭, 第二章复习自测题一、填空题1.36924612310,⎛⎫⎪ ⎪ ⎪⎝⎭2.3412⎛⎫⎪⎝⎭3. 1005011023A ⎛⎫ ⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭4. 10010110553211052⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭5.26. 22350035a a b b ⎛⎫-+ ⎪-+⎝⎭7. 68.21(3)2A A E -+ 二、选择题1.(C)2. (D)3.(A)4. (C)5. (B)6. (B)7.(C)8.(B) 三、解答题1.1123212331236312491016x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩2.123503x x x =⎧⎪=⎨⎪=⎩ 3.321⎛⎫⎪ ⎪ ⎪⎝⎭4.27312732683684⎛⎫ ⎪--⎝⎭5.201030102⎛⎫ ⎪ ⎪ ⎪⎝⎭6.100020011223400252543002525⎛⎫⎪ ⎪⎪-⎪ ⎪ ⎪⎪⎪⎪-⎝⎭第三章矩阵的初等变换与线性方程组练习一 一、填空题1.123123123c c c b b b a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭2.212322111312313332b b b b b b b b b ⎛⎫⎪ ⎪ ⎪⎝⎭二、选择题1.(B)2.(A)3.(B)4.(D)1.(1)100001000012⎛⎫ ⎪ ⎪ ⎪-⎝⎭(2)10202011030001400000-⎛⎫⎪- ⎪⎪ ⎪⎝⎭2.当||0A k =≠时,A 可逆且1100010111A k k -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦3. 11111444411111444411114444411114444A A -⎡⎤⎢⎥⎢⎥--⎢⎥==⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦4. 033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭5.001010100-⎛⎫⎪-⎪ ⎪-⎝⎭ 练习二 一、填空题1.02.33. 14. 25. 3二、选择题1.(D)2.(B)3.(A)4.(B)三、解答题1.秩是2,32721=--是一个最高阶非零子式2. (1)当1k =时,()1R A =;(2)当2k =-且1k ≠时,()2R A =; (3)当1k ≠且2k ≠-时,()3R A =.练习三1.(B)2.(C)3.(D)4.(B)二、填空题1.1-2.n3. 1238315x x x =-⎧⎪=-⎨⎪=⎩三、计算题1.12123421100001x x k k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k 1,k 2为任意常数).2.211210x y k z --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k 为任意常数). 3.提示:在第二个方程组中求一组特解. 令34211,1,1,0x x x x ==-==解得. 将该组特解代入第一个方程组中得: 1,4,4a b c ===.更正:第一个方程组中12342x ax x x +++=改为12341x ax x x +++=4.(1)当1m ≠-时, 方程组有惟一解; (2)当1,1,m k =-≠时方程组无解; (3)当1,1,m k =-=时方程组有无穷多解.通解为: 37110710x k ⎛⎫- ⎪-⎛⎫ ⎪⎪ ⎪=+ ⎪ ⎪⎪ ⎪⎝⎭⎪ ⎪⎝⎭第三章复习自测题一、填空题1.32.3-3. 2314113-⎛⎫⎪-⎝⎭4. 11n -- 5.1 二、选择题1.(D)2. (D)3.(B)4. (C)5. (B)三、解答题1.3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭2.秩为3,0755********-=≠是一个最高阶非零子式.3.720335203322233⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭4.2t ≠-无解2t =-且8p =-时, 121234411221100010x x c c x x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (12,c c 为常数)2t =-且8p ≠-时,123411210010x x c x x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(c 为常数)5.(1)方程组()I 通解为: 21415201x k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(2)将2450-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭代入方程组()II 得2,4,6m n t ===第四章 向量组的线性相关性练 习 一一、C D A B A二、1、3≠t 2、无关 三、线性相关 练 习 二一、D A D C B 二、1、 3 ,531,,ααα2、 6=k , 21,αα3、21r r = 三、12,a a 四、123,,ααα 422αα=练 习 三 一、C C B二、1、)(,)0,0,1()1,1,1(31R k k TT ∈+2、13、(2,1,0,1)Tk -- 4、n r -三、 基础解系 133(,,1,0)22T ξ=,237(,,0,1)44T ξ-= 四、 基础解系 ξ1=(-9, 1, 7, 0)T , ξ2=(1, -1, 0, 2)T特解 η=(1, -2, 0, 0)T复 习 自 测 题一、B B D D D 二、1、22、 相关3、(1111)T4、1三、1012101212100111210013a b a b ⎛⎫⎛⎫ ⎪ ⎪-→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当1-=a 且3≠b 时,方程组无解 当1-≠a 时,方程组有唯一解当1-=a 且3=b 时,方程组有无穷多解.四、向量组的秩为3,124,,ααα是一个最大线性无关组,并且312ααα=-+,51242αααα=-++. 五、基础解系为: 4534,121001ξξ--==⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭,六、方程组的通解为: 2111011191212011311040150--=++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭x x c c x x (12,c c 为任意常数) 七、略第五章相似矩阵及二次型练 习 一 一、D C C二、1、 1或-12、12n λλλ ,12n λλλ+++3、 -15 ,94、()T1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α5、 -1 三、⎪⎪⎭⎫ ⎝⎛==11111a b ,⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b , ⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . 四、25五、(1)10λ=,22λ=,33λ=,112121p -⎛⎫⎪⎪-⎪= ⎪ ⎪⎪ ⎪⎝⎭,2110p -⎛⎫ ⎪= ⎪⎪⎝⎭,3111p ⎛⎫ ⎪= ⎪ ⎪⎝⎭ (2)1232λλλ===,1120p ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2001p ⎛⎫ ⎪= ⎪ ⎪⎝⎭六、02321a ,b ,c ,λ==-== 练 习 二 一、A AB二、555555156656650112001102212111102011122121110001011222A P P -⎛⎫⎛⎫--+--⎛⎫⎛⎫⎪ ⎪⎪ ⎪=Λ=--=-+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭三、01000P ⎛⎫⎪⎪⎪=⎪⎪,且1100010005P AP --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦四、11/1/,1/p ⎛ = ⎝211,0p ⎛⎫ =- ⎪⎝⎭311,2p ⎛⎫ ⎪= ⎪ -⎝ 令123(,,)P p p p =,则1800020002P AP -⎛⎫⎪= ⎪ ⎪⎝⎭五、1(2)01(2)102021(2)01(2)nn n n ⎛⎫+--- ⎪ ⎪⎪--+-⎝⎭练 习 三一、 C C C C D 二、1、可逆2、大于零3、 1,0三、1232/32/31/32/3,1/3,2/31/32/32/3p p p -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令123(,,)P p p p =,则所用线性变换的矩阵为P ,且令x Py =,则22212325f y y y =-++。

一本线性代数练习一参考答案

一本线性代数练习一参考答案

一本《线性代数》练习一答案(共4页)一、单项选择题(4×5=20分)1. 行列式1026341953-的元素6的代数余子式等于( A )(A) 10 (B) -10 (C) 11 (D) -11 2. 设B A ,是n 阶方阵, 则下列结论正确的是( C )(A) T T T B A AB =)( (B) 222)(A B AB = (C) T T T A B AB =)((D) 111)(---=B A AB3. 设A 为n 阶非奇异矩阵, 则下列说法错误的是( B )(A) 0≠A (B) 0=Ax 有非零解 (C) n A R =)((D) A 的特征值均非零4. A 是n 阶正交矩阵, 则下列结论不正确的是( A )(A) A A =2(B) 1-A 也是正交矩阵(C) 1±=A (D) A 的列向量组是n R 的一个标准正交基 5. 设A 为3×4维矩阵, 且3)(=A R , 则A 的标准形为( B )(A)⎪⎪⎪⎭⎫ ⎝⎛100010001 (B)⎪⎪⎪⎭⎫ ⎝⎛010********* (C)⎪⎪⎪⎭⎫ ⎝⎛030000300003 (D)⎪⎪⎪⎭⎫⎝⎛000000000003二、 填空题(4×5=20分)6. 向量(2,3)-在2R 中的一组基12(1,1),(2,0)αα=-=下的坐标是 3, 1/27. 设321,,λλλ为⎪⎪⎪⎭⎫ ⎝⎛--=640151243A 的全部特征值, 则=++321λλλ 28. 已知A 为3阶方阵, 且2=A , 则23A = 1089. 已知B A ,均为3阶方阵, 且2)(=A R ,B 可逆, 则)(AB R = 210. A 是n m ⨯维矩阵, 且r A R =)(, 则方程组0=Ax 的解空间的维数是r n - 三、 计算题(8×3=24分)11. 求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=121201111A 的逆矩阵. 解:,1-=A (3分) ⎪⎪⎪⎭⎫⎝⎛=-1121232341A (5分)12. 计算行列式4321343223431234的值解:4321343223431234=4321521010620151050---------(3分)521021000)1(521106215105)1(14-----=----------=+(3分)2002100=-=(2分) 13. 求向量组)1,1,1(),2,1,0(,)3,2,1(321===ααα的秩和一个最大无关组.解:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛==000110101220110101123112101,321),(TT T A ααα(5分),→→=21,,2)(ααA R 或(→→→→3231,;,αααα)是一个最大无关组(3分)。

线代作业册答案总打印(1)

线代作业册答案总打印(1)


c1
,
c2
,
c3
R
.
0 1 0 0
0 0 1 0
1 1 3
3.
方程组的通解为
x
c1
1 0
c2
1 1
4 0
,
c1, c2 R
1 0 0
单元测试 4
1. (1) 8
(2)4
2. (1)B
(2)B
(3)C
(4)C
3.
R 1,2,3 = 2 ,最大无关组为1,2 ;
四、 1 0, 2 3 1.
0 0 1
1 0 0
五、 (1)x 0, y 2 ;
(2)P
2
1
0
,
P
1
AP
0
2
0
.
1 1 1
0 0 2
0 1 1
六、
a
0

P
0
2
2
.
1 0 0
七、 (2 2n1 3n , 2 2n2 3n1, 2 2n3 3n2 )T .
单元测试五
一、填空题
2
3
2 3
,提示:设
p3 为属于 3 的特征向量,则
p3 与
p1,
p2
正交,则可取
p3
(2, 2,1)T
.
0
1、 1 n, 2 3
二、 A B C B B
1 0 0
n
0
;2.
24
;3.
0
1
0
;4.
(
1
A )2
1;5.1, 1,3 .
0 0 0
三、 k 1 ,或 k 2

(精选)线性代数 课后作业及参考答案

(精选)线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

线性代数课后作业参考答案

线性代数课后作业参考答案

第一章作业参考答案1-1. 求以下排列的逆序数:(1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10(2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1)2(1)2n n n n -⨯=-1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a解:()12(234516)4,•3126454t t t t ====128t t t =+=为偶数,故该项带正号。

1-3. 用行列式的定义计算:(1)0004004304324321(3)0123100010001x x x a a a x a ---+解:(1)12412312400040043(1)(1)444425604324321tq q q a a a ++=-=-⨯⨯⨯⨯=∑ (3)1320123100010()(1)(1)001x x x x x x a x x a x a a a x a --=⨯⨯⨯++-⨯⨯⨯-⨯-+233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-⨯-⨯-⨯+-⨯-⨯=++++1-4. 计算下列行列式:(1) 1111111111111111--- (3)1200340000130051- (5)1111111111111111a a b b +-+- (7)n a b b b b a b b D b b b a=解:(1)11111111111102001(2)(2)(2)81111002011110002--==⨯-⨯-⨯-=-----(3)()120034001213(1423)113532001334510051-=⨯=⨯-⨯⨯-⨯-⨯=⎡⎤⎣⎦- (5)111111111111111000001111000011110000a a a a a aab a b a b b a b a b++----==+-------2221111110000000000000000a aa b a a a b b b bab+--===---(7)(1)(1)(1)n a b b b a n b a n b a n b b a b b b a bD b b b a b b a+-+-+-==111111100[(1)][(1)][(1)]()00000n ba b a b a n b a n b a n b a b bb a a b--=+-=+-=+---1-5. 证明:(1)332()xy x y y x y x x y x yx y ++=-++ (3)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++证明:(1)2()2()2()xy x y x y x y x y yx y x y x y x x yxy x y x y +++++=+++1111112()2()00x y y x y x x y x x y x yx y yx=++=+-+--2332()[()]2()x y x y x y x y =+-+-=-+(3)22222222222222222222(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469a a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d ++++++++++++=++++++++++++222221262126021262126a ab bc cd d ++==++1-6. 计算下列行列式:(1)001000000100n a a D a a=(3)12311100002201(1)n n n n ------解:(1)2001000000000(1)10000000100100nn a a a a a D a aa a a==+-⨯⨯2nn a a-=-(3)123112321110001100002200022000001(1)0000(1)n nn n n n n ----=-------112323342101000(1)!(1)002002(1)n n n n n n n n +++++++++++--+===----1-7. 解下列方程:(1)24211231223()023152319x D x x -==-解:要使原方程有解,观察可知只有两种可能:①当221x -=时,即1x =±时,4()0D x = ②当295x -=时,即2x =±时,4()0D x = 综上所述,原方程的解为1,-1,2,-21-8. 设1578111120963437D --=--,试证:414243440A A A A +++=证明:根据拉普拉斯定理可知4142434411110A A A A ⨯+⨯+⨯+⨯=即414243440A A A A +++=1-9. 用Cramer 法则解下列方程组:(1)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩解:该方程组的系数行列式为215113062702121476D ---==--,常数向量8950β⎛⎫⎪⎪= ⎪- ⎪⎝⎭1815193068152120476D ---==--- 22851190610805121076D --==----3218113962702521406D --==-- 4215813092702151470D --==---312412343,•4,•1,•1D D D Dx x x x D D D D∴====-==-==1-10. (1)问λ取何值时,下列齐次方程组有非零解?12312313220300x x x x x x x x λλ++=⎧⎪++=⎨⎪-=⎩解:要使原方程有解,由定理1.8知2223112001λλλλ=+-=- 解得11λ=或22λ=-。

长春理工大学 线性代数作业本答案

长春理工大学 线性代数作业本答案

第一章 行列式第一节 n 阶行列式 第二节 行列式的性质 1.计算行列式(1)0D = ; (2)70D =-; (3)4x ;(4)1(1)(1)n n n x ---2.(1)72a =-(2)212a = 3. 12223242(1)0A A A A -+-=,41424344(2)5M M M M +++=- 4.(1)313233A A A 0++=,(2)3435A A 0+=第三节 克拉默法则1. ,,x a y b z c =-==2. 300D =-≠,方程组仅有零解3.(1)0,λ=或4λ=,方程组有非零解 (2)0,λ≠且4λ≠,方程组只有零解第一章 综合练习题一、选择题(1) ()D (2)()A (3)()B (4)()A (5)()A (6) ()D (7)()B 二、填空题(1)4- (2) 1- (3) 0 (4)12- (5)14(6)1234a a a a +++ (7)28- 三、计算1.9-,2. 5!3.(1)2n n +. 4 6(3)!n ⋅-. 四、略五、2λ≠-且1λ≠时方程组有唯一零解,2λ=-或1λ=时,方程组有非零解.六、 ,21,2,23,33210-==-==a a a a第二章 矩阵第一、二节 矩阵的概念、矩阵的运算1.计算(1)12(2)2134268412---⎛⎫⎪⎪ ⎪⎝⎭(3) 1041431-⎛⎫ ⎪--⎝⎭ (4)000000000⎛⎫ ⎪ ⎪ ⎪⎝⎭2.1410()3024f A -⎛⎫= ⎪-⎝⎭3. nA 111123232133312n -⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭4.3B = 第三节 逆矩阵1. A 可逆, 1A -=135222111222011⎛⎫--- ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭2. 1002101021C ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭ 3.()12516A A -*-=- 4. 11(2)(4)8A EB E --=- 5. 242B ⎛⎫ ⎪=- ⎪ ⎪⎝⎭第四节 矩阵的分块1. 1004011023⎛⎫ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ 2. 12002500120033110033-⎛⎫⎪- ⎪ ⎪ ⎪⎪⎪- ⎪⎝⎭ 3. 31213,2,5A A A A += 20 4. 356A B -=.第五节 矩阵的初等变换和初等矩阵1. 113232352.111A --⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭ 2. 1100201010AB -⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 3. 210134102X -⎛⎫⎪=- ⎪ ⎪-⎝⎭第六节 矩阵的秩1. 2a =, 2. ()2R AB = 3. A 和B 是等价的, 4. 3k =-第二章 综合练习题一、选择题1. ()D2. ()A3. ()D4. ()D5. ()C6. ()B7. ()A8. )(B二、填空题 1.A B -=64.B A -=16 2.110A .3. 1(2)2A E + . 4. 1283 5. 132465798⎛⎫⎪ ⎪ ⎪⎝⎭6.a =11n -三、计算下列各题1. 12=||B2. 011228003AB ⎛⎫ ⎪=- ⎪ ⎪⎝⎭3. 125012001X ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 4. 略第三章 线性方程组第一节 第二节 n 维向量 向量组的线性相关性1. (1)两向量成比例,所以线性相关.(2)有零向量,所以线性相关.(3)123|||,,|0TA ααα==,所以线性相关.(4)123|||,,|()()()0TA c a c b b a ααα==---≠,所以线性无关. (5)向量的个数大于维数,线性相关. 2. 当3k =或2k =-时,321,,ααα线性相关 当3k ≠且2k ≠-时,321,,ααα线性无关 3.线性无关.第三节 向量组的秩1.32. 2,5a b ==3.(1)向量组的秩为3. (2)123,,ααα为极大无关组. (3)41235123111,222=+-=-+αααααααα. 第四节 线性方程组的解法1.方程组的全部解为132333212x x x x x x=--⎧⎪=+⎨⎪=⎩2. (1)1a =时, 方程组的全部解为1222322x x x x x x=-⎧⎪=⎨⎪=⎩(2)当1a =-时,方程组的全部解为122230x x x x x =⎧⎪=⎨⎪=⎩第五节 线性方程组解的结构1.基础解系(1,1,1,2)T=-- ξ,通解为 11,1 2X c c c ⎛⎫ ⎪- ⎪== ⎪- ⎪⎝⎭ξ为任意常数.2.方程组通解为121212*********,,020000x x k k k k x x ⎛⎫-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭为任意常数 3. (1)当1a ≠且2a ≠-时,方程组有唯一解,12312x x x a ===+.(2)当2a =-时,原方程组无解.(3)当1a =时,方程组有无穷多解,通解为1212123111010,,001x x k k k k x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭为任意常数.4.(1)0111⎛⎫⎪⎪= ⎪ ⎪-⎝⎭ξ为AX β=对应的齐次线性方程组AX O =的一个基础解系;(2)AX β=的通解为10911,91241X k k ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭为任意常数. 第三章 综合练习题一、选择题1. )(D2. )(A3. )(C4. )(B 5.)(B 6. )(C 7. )(A 8. )(C 9. )(B 二、填空题1. 1a ≠ ,2. 5t = 3.2k = 4.3t =- 5. λ为 1或2 6. 2a =- 三、计算题1.略2.15,5a b ==.3.方程组AX b = 的通解为 1212011231,111021X k k k k R ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4. 略5. (1)0,3λλ≠≠-时, β 可由123,,ααα唯一线性表示.(2)当0λ=时, β 可由123,,ααα线性表示,并且有无穷多表示方法.(3)3λ=-时, β 不能由123,,ααα线性表示.第四章 综合练习题1.(1) 1V 是向量空间. (2)2V 不是向量空间.2. 基础解系12(2,1,0,0),(1,0,0,1),TTξξ=-=为线性空间一组基dim 2S =3. 123(,,)(1,1,1)TTx x x =-4. 1230100,1,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭5. α 在基123,,ααα下的坐标.为(3,4,3)T- 6.,(1)略(2)由基321,,ααα 到基321,,βββ 的过渡矩阵234010101⎛⎫⎪- ⎪ ⎪--⎝⎭(3) (1,2,3)ξ=- 在基321,,ααα 下的坐标为(2,1,4)T--.第五章 方阵的特征值与相似对角化第一节 向量的内积1. 1(1,1,1,1)2T α=±--2.T 1=γ,T 2= γ,T3= γ 3.4.略第二节 方阵的特征值及其特征向量1. 1232λλλ===为A 的特征值.对应的特征向量为12211001c c -⎛⎫⎛⎫ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12,c c 为不同时为零的任意常数.2.2,2,1a b c =-==3. (1)160B = (2)20A E -= 4. A 的其它特征值.为233,4λλ== 5. 6.略第三节 相似矩阵1. A 可以对角化, 102101110P --⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,则1211P AP --⎛⎫⎪=⎪ ⎪⎝⎭2.(1) 1,3,0a b λ=-=-=(2)A 不能对角化3. 1||24B E --=4.(1)5,6a b ==. (2) 111102013P ⎛⎫ ⎪=-- ⎪⎪⎝⎭,且1P AP B -=. 第四节 实对称矩阵的对角形1.0P ⎛ = ⎝且1228P AP -⎛⎫⎪=Λ= ⎪ ⎪⎝⎭ 2. (1)属于6的全部特征向量为T (1,1,1),0k k -≠. (2)411141114A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭第五章 综合练习题一、选择题1.()B 2. ()A 3. ()B 4. ()C 5. ()D 6. ()A 二、填空1.4 2.24 3. 3A = 4. 3t = 5. 2012A E = 6.111,,246- 7.3λ=6-8. 111,,24128 9. 3t = (1,4,3),T k k ≠ 10.A = 10002003⎛⎫ ⎪ ⎪ ⎪⎝⎭11.0,1x y == 三、解答题 1.A 不能对角化.2. 1232,1,4λλλ=-==为A 的特征值.122333212333221333P ⎛⎫-⎪ ⎪⎪=-- ⎪ ⎪ ⎪⎪⎝⎭,为所求的正交相似变换矩阵且1214P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭. 3. 3225A A E *++=4. (1)A 的特征值分别为121,1λλ=-=,30λ=,对应的特征向量分别为1112223331100,0,1110k k k k k k ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (2)001000100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭四、证明 略第六章 二次型第一节 二次型及其矩阵1. 121242121⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,()()1R f R ==A .2. 112323135(,,)324541x f x x x x x ⎛⎫⎛⎫ ⎪⎪=-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭22212312132326108x x x x x x x x x =--++-3. 3t =第二节 化二次型为标准形1.A 的特征值为1231,2,5λλλ===.1122330101/01/0x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪⎪ ⎪ ⎝⎭⎝⎭⎝,22212325f y y y =++2. 3,1a b ==,0P ⎛= ⎝第三节 正定二次型与正定矩阵1.(1)二次型f 是负定二次型. (2)二次型f 是正定二次型. 2.3.略第六章 综合练习题一、选择题1.()D 2.()D 3.()C 4. ()D 5. ()B 6.()C 7. ()A 8. ()B 9. ()D 10. ()C 二、填空题1.秩为3 A =122212221⎛⎫⎪ ⎪ ⎪⎝⎭,标准形为2221235y y y -- 2. =2,1p q == 3. 21λ-<< 4 2a = 5. 1k > 三、解答题1..正交变换11223310000x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎝, f 的成标准形为22212323f y y y =++ 2. (1)3c =-,特征值1230,4,9λλλ===(2)方程123(,,)1f x x x =表示母线平行于z 轴的椭圆柱面 3. (1) 矩阵A 的全部特征值为1232,0λλλ==-=.(2)当2k >时,矩阵A kE +为正定矩阵,4.(1)0a = (2)正交变换11223300010x y x y x y ⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭,2212312(,,)22f x x x y y =+ (3)(3)求方程()123,,0f x x x =的解. T(1,1,0)X k =-5.(1)1,2a b ==求,a b 值;(2)00100⎫⎪⎪=⎪ ⎪Q 为正交矩阵,正交变换为11223300100x y x y x y ⎫⎪⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭使222123223f y y y =+-。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

华理线性代数答案

华理线性代数答案

解:原式等于:
2 2 a11 x12 + a22 x2 + a33 x3 + ( a12 + a21 ) x1 x2 + ( a13 + a31 ) x1 x3 + ( a23 + a32 ) x2 x3
⎡ ⎢ (2) A = ⎢ ⎢ ⎢ ⎣
1 2 3 2

3⎤ ⎥ 2 ⎥ ,求 A2008 ; 1 ⎥ ⎥ 2 ⎦
由可交换矩阵的定义知道所求矩阵必为3阶方阵不妨设其为于是有baab11121321222331323312211331233220082007利用等式173512351235123197126673852922某公司为了技术革新计划对职工实行分批脱产轮训已知该公司现有2000人正在脱产轮训而不脱产职工有8000年从不脱产职工中抽调30的人脱产轮训同时又有60脱产轮训职工结业回到生产岗位设职工总数不变令0706800003042000试用a与x通过矩阵运算表示一年后和两年后的职工状况并据此计算届时不脱产职工与脱产职工各有多少人
αα T α 为 n 维列向量, , 其中 I 为 n 阶单位阵, α Tα
试证 A 为对称矩阵,且 A2 = I . 证:
AT = ( I − 2
αα T T αα T T 2 αα T T T T ) 2( ) ( ) 2 αα = I − = I − = I − =A α Tα α Tα α Tα α Tα
c ⎤ ⎡0 1 0 ⎤ ⎡0 a b ⎤ ⎥ ⎥ ⎢ ⎢ f⎥ ⎥ ⎢0 0 1 ⎥ = ⎢0 d e ⎥ , i⎥ ⎦ ⎣0 g h ⎥ ⎦ ⎢ ⎣0 0 0 ⎥ ⎦⎢ f⎤ i⎥ ⎥= 0⎥ ⎦ ⎡0 a b ⎤ ⎢0 d e ⎥ , ⎥ ⎢ ⎥ ⎢ 0 g h ⎦ ⎣

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---140113*********12211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档