线性微分方程解的结构

合集下载

高阶线性微分方程解的结构

高阶线性微分方程解的结构

特解的求解方法
总结词
求解高阶线性微分方程的特解通常采用常数 变易法、分离变量法、幂级数法等。
详细描述
常数变易法是通过将高阶微分方程转化为等 价的积分方程,然后求解积分得到特解的方 法。分离变量法适用于具有分离变量形式的 高阶线性微分方程,通过将方程拆分为若干 个一阶微分方程来求解特解。幂级数法是将 高阶微分方程转化为幂级数形式的等价方程
稳定性性质
稳定性具有相对性,即一个方程的解在某个 参照系下是稳定的,在另一个参照系下可能 是不稳定的。
稳定性的判断方法
代数法
通过对方程进行整理和化简,利用代数性质判断其稳定性。
图形法
通过绘制方程的解曲线,观察其随时间变化的趋势,判断其稳定性。
比较法
通过比较两个方程的解,利用已知方程解的稳定性判断另一个方程 的解的稳定性。
定义
高阶线性微分方程的通解是指满足方程的任意常数变动的解。
性质
通解具有任意常数可加性和乘性,即通解可以表示为任意常数与基础解系的线性组合。
通解的求解方法
分离变量法
01
通过将方程转化为多个一阶微分方程来求解。
积分法
02
通过对方程两边积分来求解。
幂级数法
03
通过构造幂级数来求解高阶微分方程。
通解的表示形式
高阶线性微分方程解 的结构
目录
CONTENTS
• 高阶线性微分方程的基本概念 • 高阶线性微分方程的通解 • 高阶线性微分方程的特解 • 高阶线性微分方程解的结构 • 高阶线性微分方程的稳定性
01 高阶线性微分方程的基本 概念
高阶线性微分方程的定义
定义
高阶线性微分方程是形如$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$的微分 方程,其中$y^{(n)}(x)$表示函数$y(x)$的$n$阶导数。

三阶常系数齐次线性微分方程通解结构

三阶常系数齐次线性微分方程通解结构

三阶常系数齐次线性微分方程通解结构三阶常系数齐次线性微分方程是指形如$ay+by+cy+dy=0$的三阶常系数齐次线性微分方程,其中a,b,c,d均为常数。

因此,三阶常系数齐次线性微分方程又称为三阶常系数线性普通微分方程,是初等微积分学中较为重要的一类微分方程。

二、定理假设 y = y(x)为$ay+by+cy+dy=0$的通解,则满足下列条件:(1)若 $b^2-3ac>0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ 其中$lambda_1、lambda_2、lambda_3$分别为$$lambda_1= frac{-b-sqrt{b^2-3ac}}{3a},lambda_2=frac{-b+frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a},lambda_3=frac{-b-frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a}$$(2)若$b^2-3ac=0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)若$b^2-3ac<0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C_4sin(lambda_2x)$$其中$lambda_1、lambda_2$分别为$$lambda_1=-frac{b}{3a}+frac{sqrt{3}}{3a}sqrt{3ac-b^2},lambda_2=-frac{b}{3a}-frac{sqrt{3}}{3a}sqrt{3ac-b^2}$$三、公式从上述定理中可以看出,三阶常系数齐次线性微分方程的通解可以分为三类:(1)$b^2-3ac>0$的情况:$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ (2)$b^2-3ac=0$的情况:$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)$b^2-3ac<0$的情况:$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$四、推导(1)$b^2-3ac>0$的情况:两边同时乘以$e^{-lambda_1x},e^{-lambda_2x},e^{-lambda_3x}$,得到$$e^{-lambda_1x}(alambda_1^3y+blambda_1^2y+clambda_1y+dy)=e ^{-lambda_2x}(alambda_2^3y+blambda_2^2y+clambda_2y+dy)=e^{-lambda_3x}(alambda_3^3y+blambda_3^2y+clambda_3y+dy)=0$$ 即$$(alambda_1^3+blambda_1^2+clambda_1+d)e^{-lambda_1x}y+(bla mbda_1^2+2clambda_1+d)e^{-lambda_1x}y+(clambda_1+d)e^{-lamb da_1x}y+(d)e^{-lambda_1x}y=0$$令$e^{-lambda_1x}y=Y$,$e^{-lambda_1x}y=Y’$,$e^{-lambda_1x}y=Y’’$,$e^{-lambda_1x}y=Y’’’$得到一阶齐次线性微分方程的一般解为$y=e^{lambda_1x}(C_1+C_2x+C_3x^2+C_4x^3)$可知,设$C_1=C_2=C_3=0$,有特解$y_p=C_4e^{lambda_1x}x^3$ 所以,原方程的通解为$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}+C_4e ^{lambda_1x}x^3$$(2)$b^2-3ac=0$的情况:类似上述推导,原方程的通解为$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)$b^2-3ac<0$的情况:类似上述推导,原方程的通解为$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$五、例题例 1:求解$y3y+3yy=0$的通解。

WJF8-5线性微分方程的性质与解的结构

WJF8-5线性微分方程的性质与解的结构

如果y1 ( x ), y2 ( x )中的任意一个都不是另一个的常数倍,
y1 ( x ) 即 不恒等于非零常数, 则称y1 ( x )与y2 ( x )线性无关, y2 ( x ) 否则称y1 ( x )与y2 ( x )线性相关。
定理8.2 如果y1 ( x ), y2 ( x )是方程(1)的两个线性无关的解, 则 y C1 y1 C 2 y2 就是方程(1)的通解. 如 y1 cos x和y2 sin x是方程 y y 0的两个线性无关解.
方程(1)的任何两个线性无关的 特解称为基解组.
三、线性非齐次微分方程解的结构
定理8.3 设 y1 ( x ) 是二阶非齐次线性方程 y P ( x ) y Q( x ) y f ( x ) ( 2) 的一个特解, y2 ( x ) 是对应的齐次方程(1)的通解, 那么 Y y1 ( x ) y2 ( x ) 是方程(2)的通解. 证 因为 y1 P ( x ) y1 Q( x ) y1 f ( x ) 且 y P ( x ) y Q( x ) y2 0 2 2 则 Y P ( x )Y Q( x )Y ( y1 y2 ) P ( x )( y1 y2 ) Q( x )( y1 y2 ) [ y1 P ( x ) y1 Q( x ) y1 ] [ y P ( x ) y Q( x ) y2 ] f ( x ) 2 2
y P ( x ) y Q( x ) y f 2 ( x ) 和 的解, 则 y1 ( x ) y2 ( x ) 是方程 y P ( x ) y Q( x ) y f1 ( x ) f( x ) y Q( x ) y 0 (1)
二、线性齐次微分方程解的结构

2.线性微分方程解的结构

2.线性微分方程解的结构

推广 yi(: x)(i 若 1 ,2, .n)是 n阶齐线性微
y ( n ) p 1 ( x ) y ( n 1 ) p n 1 ( x ) y p n ( x ) y 0 ..( .2 ..) .
n
的解,则它们的线性组合 y(x) ciyi(x) 也是方程 (2) 的解。 i1
当且 c1c 仅 20时 当, c 1 y 1 (x 才 ) c 2 y 2 ( 有 x ) 0 ,x I, 则 y1(x)与 y2(x)在区 I上 间线性无关。
定义: 设 y 1 ( x ) y 2 ( , x ) , , y n ( x ) 是定义在区间 I 上的 n 个函数, 若存在不全为 0 的常数 k1,k2, ,kn,使得
由e x 函 的数 e 特 x (e x ) 点 (e x ) : , 即 可
例 1 .求(x 方 1 )y x 程 y y 0 的通解。
解: (x 1 因 ) x 1 为 0 ,所以,
yex是原方程的一个解。
又容易看出:yx 也是原方程的一个解。
利用y: 1(x) y2(x)
常数 y1(x)、 y2(x)线性无关
( 2 ) 若 1 P ( x ) Q ( x ) 0 , 则yex是它的一个; 特解 ( 3 ) 若 1 P ( x ) Q ( x ) 0 , 则yex是它的一个 ; 特
(4 )若 h (x ) p (x ) q (x ) 0 ,则方程
h ( x ) y p ( x ) y q ( x ) y 0 , 则yex是它的一个; 特解
第四节 二阶常系数线性微分方程
一、高阶线性微分方程的一般理论 二、二阶常系数齐线性微分方程的解 三、二阶常系数非齐线性微分方程的解
高阶线性微分方程的一般理论

一阶线性微分方程的概念与解的结构

一阶线性微分方程的概念与解的结构

若 Q (x) 0,则方程成为
y P( x) y 0,

称为一阶线性齐次微分方程,简称线性齐次方程,
若 Q (x) 0,则称方程 ① 为一阶线性非齐次微分 方程,简称线性非齐次方程. 通常方程 ② 称为方程 ① 所对应的线性齐次方程.
1.一阶线性齐次方程的解法
一阶线性齐次方程
y P(x) y 0
程的通解为 x
y Ce 2 , x
设所给线性非齐次方程的解为 y C( x)e 2 ,
将 y 及 y 代入该方程,得
x
C( x)e 2

1 ex,
2
于是,有
C( x)
1e
x 2
dx

x
e2

C,
2
因此,原方程的通解为
x
x
y C( x)e 2 Ce 2 ( x).
则有
C( x) y1 C( x) y1 P( x)C( x) y1 Q( x),
即 C( x) y1 C( x)( y1 P( x) y1 ) Q( x),
因 y1 是对应的线性齐次方程的解,故 y1 P( x) y1 0, 因此有
二、伯努利方程
方程 dy p(x) y Q(x) yn dx
称为伯努利方程。当n=0或1时,该方程是线性方 程;当n≠0或1时,该方程不是线性的,但是通过 变量替换,可以把它化为线性的。
如以yn除以方程两边,得
yn dy p(x) y1n Q(x), dx

z y1n
则 dz (1 n) yn dy
,
2
代入通解公式,得原方程的通解为
xx
x

文学研究一二阶线性微分方程解的结构课件

文学研究一二阶线性微分方程解的结构课件
y* + p(x)y* + q(x)y* = f (x),
Y + p(x)Y + q(x)Y = 0 .
又因为 y = Y + y*, y = Y + y*,所以 y + p(x)y + q(x)y
= (Y + y* ) + p(x)(Y + y* ) + q(x)(Y + y*) = (Y + p(x) Y + q(x)Y) + ( y* + p(x) y*+ q(x)y*) = f (x).
例 1 求方程 y - 2y - 3y = 0 的通解.
解 该方程的特征方程为 r2 - 2r – 3 = 0, 它有两 个不等的实根 r1 = - 1, r2 = 3, 其对应的两个线性无 关的特解为 y1 = e- x 与 y2 = e3x, 所 以 方 程 的 通 解 为
y C1e x C2e3 x .
例 2 求方程 y - 4y + 4y = 0 的满足初始条件 y(0) = 1, y(0) = 4 的特解.
解 该方程的特征方程为 r2 - 4r + 4 = 0,它 有
重根 r = 2. 其对应的两个线性无关的特解为 y1 = e2x 与 y2 = xe2x,所以通解为
求得
y (C1 C2 x)e2x ,
由于erx 0,因此,只要 r 满足方程
r2 + pr + q = 0,

即 r 是上述一元二次方程的根时,y = erx 就是 ④式的解. 方程⑤称为方程④的特征方程. 特征方
程根称为特征根.
1 特征方程具有两个不相等的实根 r1 与 r2, 即

线性微分方程解的结构

线性微分方程解的结构
例4、设 y1, y2, y3 是二阶非齐次方程(2) 的 3 个线性无
关解,求方程的通解 .
定理3、设 y1*, y2 *分别为 y'' P( x) y'Q( x) y f1( x) 与 y'' P( x) y'Q( x) y f2( x) 的特解,则 y1 * y2 *为方程 y'' P( x) y'Q( x) y f1( x) f2( x)
的特解.
例1、讨论下列函数的线性相关性。
(1)1,cos2 x,sin2 x; (2)0, x,e x; (3)1, x, x2 .
定理:两个非零函数 y1( x), y2( x)线性相关
y1( x), y2( x) 成比例,即k 0, 使得阶线性微分方程解的结构
定理2、若 y * ( x) 是非齐次方程(2) 的特解, Y C1 y1( x) C2 y2( x) 是齐次方程(1)的特解,则 y Y y * 是非齐次方程(2) 的通解.
例3、设 y'' y x2 , 则 Y C1e x C2e x 是其通解. 易验证 y* x2 2 是 y'' y x2 的一个特解, 故方程 y'' y x2 的通解为: Y C1e x C2e x x2 2.
定理:二阶线性齐次微分方程的解集构成一个二维
线性空间.
定理1、若 y1( x), y2( x) 是齐次方程(1)的两个线性无关解, 则 y C1 y1( x) C2 y2( x) (C1,C2 是任意常数) 是方程 (1) 的通解.
例2、验证下列函数是否是微分方程的通解.
(1) y'' y 0,
y C1e x C2e x;

齐次线性微分方程的通解

齐次线性微分方程的通解

齐次线性微分方程的通解
一阶齐次、非齐次线性微分方程的解的特点与解的结构也是类似的。

解的特点:一阶齐次:两个解的和还是解,一个解乘以一个常数还是解。

一阶非齐次:两个解的差是齐次方程的解,非齐次方程的一个解加上齐次方程的一个解还是非齐次方程的解。

通解的结构:一阶齐次:y=Cy1,y1是齐次方程的一个非零解。

一阶非齐次:y=y+Cy1,其中y是非齐次方程的一个特解,y1是相应的齐次方程的一个非零特解。

这与直接套用公式得到的一阶线性方程的通解是一样的。

线性微分方程通解的结构

线性微分方程通解的结构
y p( x) y q( x) y f1( x)
y p( x) y q( x) y f2( x)
的解y, 则py(1x()xy) qy(2x()xy)是0方程:(6.1)
y p( x) y q( x) y f ( x) (6.2) y p( x) y q( x) y f1( x) f2( x) 的解

y2 tan x 常数, y1
y C1 cos x C2 sin x是所给方程的通解.
15
2. 非齐线性微分方程解的结构 定理9.2 (二阶非齐次线性方程(2)的解的结构)
设 y*是二阶非齐次线性方程 y p( x) y q( x) y f ( x) (2)
的一个特解, Y 是与(2)对应的齐次线性方程(1) 的通解, 那么 y Y y* 是二阶非齐次线性微 分方程(2)的通解.
使得
则称这 n个函数在 I 上线性相关;否则称为 线性无关.
8
例3 下列各函数组在给定区间上是线性相关
还是线性无关?
(1) e x,e x , e2x ( x (,)); 线性无关
解 若 k1e x k2e x k3e2x 0, 则 k1e x k2e x 2k3e2x 0, k1e x k2ex 4k3e2x 0,
y C( y1 y2 ) y1
25
16
例6 设 y1, y2 , y3 是微分方程 y p( x) y q( x) y f ( x)
的三个不同解,且 y1 y2 常数, y2 y3
则该微分方程的通解为( D ).
( A) C1 y1 C2 y2 y3; (B) C1( y1 y2 ) C2( y2 y3 ); (C) C1 y1 C2 y2 C3 y3; ( D) C1( y1 y2 ) C2( y2 y3 ) y3.

阶线性微分方程解的结构与通解性质

阶线性微分方程解的结构与通解性质

稳定性应用举例
控制系统设计
在控制系统中,稳定性是至关重要的指标。通过设计控制器使 得系统达到稳定状态,可以确保系统的正常运行和安全性。
生态学研究
在生态学中,研究生物种群的动态变化时,稳定性是一个重要概念。通过 分析种群的稳定性,可以预测种群的发展趋势和制定相应的保护措施。
经济学分析
在经济学中,稳定性与经济增长、通货膨胀等宏观经济指标密切相关 。通过分析经济系统的稳定性,可以为政策制定者提供决策依据。
微分方程是描述自然现象、工程技术和社会科学等领域中变量间关系的数 学模型。
微分方程按照自变量个数可分为常微分方程和偏微分方程,其中常微分方 程研究一个自变量的函数与其导数之间的关系。
微分方程在物理学、化学、生物学、经济学等领域有广泛应用。
线性微分方程定义
线性微分方程是指关于未知函数及其各 阶导数都是一次方的方程,即方程中不 会出现未知函数及其导数的二次及以上 的项。
高阶线性微分方程的通解表达式较为复杂, 一般通过特征方程、比较系数等方法求解。
通解性质分析
唯一性
对于给定的初始条件,线性微分方程的通解是唯一的。
叠加性
若y1和y2分别是线性微分方程对应于f1(x)和f2(x)的特解,则 y=c1y1+c2y2(c1、c2为任意常数)也是该方程的解。
齐次性
若y1和y2是齐次线性微分方程的解,则它们的线性组合c1y1+c2y2 (c1、c2为任意常数)也是该方程的解。
积分因子法
通过构造一个积分因子$mu(x) = e^{int p(x)dx}$,将原方程转化为$mu(x)y' + mu(x)p(x)y = mu(x)q(x)$,即 $(mu(x)y)' = mu(x)q(x)$,然后两边积分得到通解。

一阶齐次线性微分方程的解法

一阶齐次线性微分方程的解法

一阶线性微分方程解的结构如下:
形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。

一阶,指的是方程中关于Y的导数是一阶导数。

线性,指的是方程简化后的每一项关于y、y'的次数为0或1。

扩展资料:
形如(记为式1)的方程称为一阶线性微分方程。

其特点是它关于未知函数y及其一阶导数是一次方程。

这里假设,是x的连续函数。

若,式1变为(记为式2)称为一阶齐线性方程。

如果不恒为0,式1称为一阶非齐线性方程,式2也称为对应于式1的齐线性方程。

式2是变量分离方程,它的通解为,这里C是任意常数。

常微分方程(ODE)是指微分方程的自变量只有一个的方程。

最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。

一阶线性微分方程的概念与解的结构

一阶线性微分方程的概念与解的结构
由通解公式即可得到方程的通解为
y Cecosx.
例 7 求方程 (y - 2xy) dx + x2dy = 0 满足初始
条件 y|x=1 = e 的特解. 解 将所给方程化为如下形式:
ddxy1x22xy0,
这是一个线性齐次方程, 且P(x)1x22x,

P (x)d x 2 xx 1 2 d xln x21 x,
C(x)y1Q (x),
其中 y1 与 Q(x) 均为已知函数,所以可以通过积分 求得
Q(x)
C(x)
dxC, y1
代入
y=
C (x)y1 中,得 yC1yy1
Q(x)dx. y1
容易验证,上式给出的函数满足线性非齐次方程
yP (x)yQ (x),
且含有一个任意常数,所以它是一阶线性非齐次方程
的通解
xe1y22ydyC
12ydy e y2 dy
1
1
1
y2ey(Cey)y2(1Cey),
即所求通解为
1
x y2(1Cey ).
二、伯努利方程
方程 dyp(x)yQ(x)yn dx
称为伯努利方程。当n=0或1时,该方程是线性方 程;当n≠0或1时,该方程不是线性的,但是通过 变量替换,可以把它化为线性的。
两边积分,得
dy P(x)dx, y
ln yP (x)d xln C ,
所以,方程的通解公式为
yCeP(x)dx.
例 6 求方程 y + (sin x)y = 0 的通解. 解 所给方程是一阶线性齐次方程,且 P(x) = sin x, 则
P (x )d x six d n x co x , s
例 8 求方程 2y - y = ex 的通解.

线性微分方程解的性质

线性微分方程解的性质

线性微分方程解的性质一、线性微分方程的解的结构1.1二阶齐次线性方程y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 (1)y''+P(x)y'+Q(x)y=0 \tag{1} y′′+P(x)y′+Q(x)y=0(1)定理1:如果函数 y 1 ( x ) y_1(x) y1(x)与 y 2 ( x ) y_2(x)y2(x)是方程(1)的两个解,那么y = C 1 y 1 ( x ) + C 2 y 2 ( x ) (2) y=C_1y_1(x)+C_2y_2(x) \tag{2} y=C1y1(x)+C2y2(x)(2)也是方程(1)的解,其中 C 1 , C 2 C_1,C_2 C1,C2是任意常数。

解(2)从形式上看含有C1C_1C1和C2C_2C2两个任意常数,但它不一定是方程(1)的通解。

那么在什么情况下(2)式才是方程(1)的通解呢?要解决这个问题,还得引入新概念,即函数组的线性相关与线性无关。

设 y 1 ( x ) , y 2 ( x ) , ⋅⋅⋅ , y n ( x )y_1(x),y_2(x),···,y_n(x) y1(x),y2(x),⋅⋅⋅,yn(x)为定义在区间 I I I上的n个函数,如果存在n个不全为零的常数 k 1 , k 2 , ⋅⋅⋅ , k n k_1,k_2,···,k_n k1,k2,⋅⋅⋅,kn,使得当x ∈ I x\in I x∈I时有恒等式k 1 y 1 + k 2 y 2 + ⋅⋅⋅ + k n y n = 0k_1y_1+k_2y_2+···+k_ny_n=0 k1y1+k2y2+⋅⋅⋅+knyn=0成立,那么称这n个函数在区间I上线性相关;否则线性无关。

应用上述概念可知,对于两个函数的情形,它们线性相关与否,只要看它们的比是否为常数;如果比为常数,那么它们就线性相关;否则就线性无关。

线性方程解的结构

线性方程解的结构

由于 y1 ( x ) = 3 y 2 ( x )
⇒ y1 = ln x 3 , y 2 = ln x
在任一区间(0,b)上都是线性相关的
定理 2:如果 y1 ( x )与 y 2 ( x ) 是方程(1)的两个线性无关 的特解, 那么 y = C1 y1 + C 2 y2 就是方程(1)的通解.且包 含了所有的解。
′ + Q ( x ) y1 = 0 由已知y1 ' '+ P ( x ) y1 证 明: y2 ' '+ P ( x ) y ′ 2 + Q( x ) y2 = 0
c1 (1) + c 2 ( 2)即得
(1) ( 2)
′ + c 2 y 2 ' ) + Q( x )(c1 y1 + c 2 y 2 ) = 0 ( c1 y1 ' '+ c 2 y 2 ' ' ) + P ( x )(c1 y1
y1 ( x ) 特别地: 若在 I 上有 ≠ 常数, y2 ( x ) 则函数 y1 ( x )与 y2 ( x ) 在 I 上线性无关.
定理 2:如果 y1 ( x )与 y 2 ( x ) 是方程(1)的两个线性无关 的特解, 那么 y = C1 y1 + C 2 y2 就是方程(1)的通解.且包 含了所有的解。
k1 y1 + k 2 y2 + L + kn yn = 0,
那么称这 n 个函数在区间 I 内线性相关.否则 称线性无关
例如 当x ∈ ( −∞ , + ∞ )时, e x, e − x , e 2 x 线性无关
1,cos 2 x , sin 2 x 线性相关

一阶线性微分方程的概念与解的结构讲解

一阶线性微分方程的概念与解的结构讲解

dx dy

12 y2
y
x

1,
这是一个关于未知函数 x = x(y) 的一阶线性非齐次
方程,
其中
P(
y)

1
2 y2
y
,
它的自由项 Q(y) = 1.
代入一阶线性非齐次方程的通解公式,有
x

e
12 y2
y dy
C

e
12 y2
y
dy
dy



1
1
1
y2e y (C e y ) y2(1 Ce y ),

P( x)dx


1 2
dx

x 2
,
x
e P ( x )dx e 2 ,
Q( x)e P( x)dxdx
1e xe
x
2 dx

e
x 2
,
2
代入通解公式,得原方程的通解为e 2 Ce 2 e x .
例 9 求解初值问题.
xy y cos x,
P( x)dx sin xdx cos x,
由通解公式即可得到方程的通解为 y Cecosx .
例 7 求方程 (y - 2xy) dx + x2dy = 0 满足初始
条件 y|x=1 = e 的特解. 解 将所给方程化为如下形式:
dy 1 2x
dx
x2
y 0,
即 C( x) y1 C( x)( y1 P( x) y1 ) Q( x),
因 y1 是对应的线性齐次方程的解,故 y1 P( x) y1 0, 因此有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性微分方程解的结构
我们以二阶方程为例来说明线性方程解的结构,当然这些结论也适合于高阶线性微分方程。

二阶线性方程的一般形式为
其中y",y',y都是一次的,否则称为二阶非线性方程。

线性齐次方程解的结构
二阶线性齐次方程的形式为:
定理:如果函数均是方程的解,那末
也是该方程的解,其中C1,C2为任意常数。

线性齐次方程的这一性质,又称为解的叠和性。

问题:我们所求得的解是不是方程的通解呢?
一般来说,这是不一定的,那么什么情况下它才是方程的通解呢?为此我们由引出了两个概念:线性相关与线性独立。

定义:设是定义在区间I的两个函数,如果,那末称
此两函数在区间I线性相关,否则,即之比不恒等于一个常数,那末称此两函数线性独立或线性无关。

为此我们有了关于线性齐次方程特解的定理。

定理:如果是二阶线线性齐次方程的任意两个线性独立的特解,那末
就是该方程的通解,其中C1,C2为任意常数。

线性非齐次方程解的结构
二阶线性非齐次方程的形式为:
对于一阶线性非齐次方程我们知道,线性非齐次方程的通解等于它的一个特解与对应的齐次方程通解之和。

那末这个结论对高阶线性非齐次方程适合吗?
答案是肯定的。

为此我们有下面的定理。

定理:设y是二阶线性非齐次方程的任一特解,Y是与该方
程对应的齐次线性方程的通解,那末 y=y+Y 就是方程的通解。

我们为了以后的解题方便,又给出了一个定理,如下:
定理:设有线性非齐次方程.如果分别是方程
与方程
的解,那末就是原方程的解。

相关文档
最新文档