余角、补角、对顶角的概念和习题答案复习过程
第12讲 角及余角、补角、对顶角(9大考点)(解析版)
第12讲角及余角、补角、对顶角(9大考点)考点考向一、角的相关概念1)角的定义:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边,构成角的两个基本条件:一是角的顶点,二是角的边.角的另一种定义:角也可以看成是由一条射线绕着它的端点旋转而成的.如图4-3-7所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.如图4-3-8所示,射线OA绕点O旋转,当终止位置OC和起始位置OA成一直线时,所成的角叫做平角;如图4-3-9所示,射线OA绕它的端点旋转一周所成的角叫做周角.2)角的分类:小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角小于直角的角叫锐角(0°<锐角<90°);大于直角而小于平角的角叫钝角(90°<钝角<180°).1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.3)角的表示方法:角用几何符号“∠”表示,角的表示方法可归纳为以下三种:(1)用三个大写英文字母表示,如图4-3-3所示,记作∠AOB或∠BOA,其中,O是角的顶点,写在中间;A和B分别是角的两边上的一点,写在两边,可以交换位置.(2)用一个大写英文字母表示,如图4-3-3所示,可记作∠O.用这种方法表示角的前提是以这个点作顶点的角只有一个,否则不能用这种方法表示,如图4-3-4所示,∠AOC就不能记作∠O.因为此时以O为顶点的角不止一个,容易混淆.(3)用数字或小写希腊字母来表示,用这种方法表示角时,要在靠近顶点处加上弧线,注上阿拉伯数字或小写希腊字母α、β、γ等.如图4-3-4所示,∠AOB记作∠l,∠BOC记作∠2;如图4-3-5所示,∠AOB记作∠β,∠BOC记作∠α.4)度量角的方法:度量角的工具是量角器,用量角器量角时要注意:(1)对中(顶点对中心);(2)重合(一边与刻度尺上的零度线重合) (3)读数(读出另一边所在线的刻度数).5)角的换算:在量角器上看到,把一个平角180等分,每一份就是1°的角.1°的160为1分,记作“1′”,即l°=60′.1′的160为1秒,记作“1″”,即1″=60″.二、角的比较1)角的比较方法(1)度量法:如图4-4-4所示,用量角器量得∠1=40°,∠2=30°,所以∠1>∠2.(2)叠合法:比较∠ABC与∠DEF的大小,先让顶点B、E重合,再让边BA和边ED重合,使另一边EF和BC落在BA(DE)的同侧.如果EF和BC也重合(如图4-4-5(1)所示),那∠DEF 等于∠ABC.记作∠DEF=∠ABC;如果EF落在∠ABC的外部(如图4-4-5(2)所示),那么∠DEF 大于∠ABC,记作∠DEF>∠ABC;如果EF落在∠ABC的内部(如图4-4-5(3)所示),那么∠DEF 小于∠ABC,记作∠DEF<∠ABC.提示:叠合法可归纳为“先重合,再比较”.2)角的和、差由图4-4-7(1)、(2),已知∠1,∠2,图4-4-7(3)中,∠ABC=∠1+∠2;图4-4-7(4)中,∠GEF=∠DEG-∠1.3)角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图4-4-9所示,射线OC 是∠BOA 的平分线,则∠BOC =∠COA =21∠BOA ,∠BOA =2∠BOC =2∠COA . 4)方向的表示○1方位角:是指南北方向线与目标方向所成的小于900的水平角。
6.3 余角、补角、对顶角(复习)
朱军民
年级
七年级
科目
数学
备课时间
12、16
上课时间
12、17
课题
6.3余角、补角、对顶角(复习)
课时
1教时Βιβλιοθήκη 1教学目标
1、了解互余、互补、对顶角的概念,熟练掌握余角、补角对顶角的性质。2、能准确地画出图形,掌握角的关系的应用。3、树立严谨科学的学习态度,培养说理论证能力,会进行图形语言和符号语言的相互转化
C、互补的两个角中,至少有一个角大于或等于直角( )
D、两个互余的角都是锐角( )
E、钝角的平分线把钝角分成两个锐角( )
F、两个锐角的和必定是直角或钝角。( )
G、如果∠A=400,∠B=500,那么∠A与∠B互为余角( )
H、如果∠A=400,∠B=500,∠C=900,那么∠A,∠B,∠C互为补角( )
2、如图所示,在直线AB上取一点O,过点O画一条射线OC,再分别画∠BOC、∠AOC的平分线OE和OD,则∠DOE等于多少度?图中有哪些角互余?哪些角互补?
3、已知∠α是∠β的2倍,∠α的余角的3倍与∠β的补角相等,求∠α、∠β的度数。
4、如图,∠AOC=90°,∠BOC与∠COD互补,∠COD=115°,求∠AOB的度数。
2、同角(或等角)的余角相等
同角(或等角)的补角相等
3、顶点重合,它们的两条边互为反向延长线。我们把这样的2个角叫做互为对顶角。其中一个角叫做另一个角的对顶角。
4、对顶角的性质:对顶角相等
二、例题讲解:
1、判断下列语句是否正确:
A、两个互补的角中必有一个是钝角( )
B、一个角的补角一定比这个角大( )
C
B
O A
D
余角、补角、对顶角的概念和习题答案
余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
对顶角余角和补角的定义
对顶角余角和补角的定义
顶角、余角和补角是在几何学和三角学中常见的概念。
顶角指的是两条直线相交时,形成的相对的两个角,这两个角的顶点是同一个点。
余角是指一个角的补角,即与该角相加为90度的角。
而补角则是两个角的和为90度的角。
从几何学的角度来看,顶角是指两条直线相交时形成的相对的两个角,它们共享一个公共顶点。
例如,在一个三角形中,顶角通常指的是三角形的顶点所对的角。
余角是指一个角的补角,也就是与该角相加为90度的角。
例如,如果一个角的度数是x度,那么它的余角就是90度减去x度。
补角是指两个角的和为90度的角。
例如,如果一个角的度数是x度,那么它的补角就是90度减去x度。
从三角学的角度来看,顶角、余角和补角也有特定的定义。
在三角函数中,余角是指角A的余角是90度减去角A的度数。
补角是指两个角的和为90度的角,例如,如果角A的度数是x度,那么角A的补角就是90度减去x度。
这些概念在解题和推导三角函数的过程中经常被用到。
总的来说,顶角、余角和补角是几何学和三角学中非常基础和
重要的概念,它们帮助我们理解角的关系,解决各种几何和三角学问题。
通过理解这些概念,我们能更好地应用它们解决实际问题,并且在数学推导和证明中起到重要的作用。
相交线与平行线重点难点
讲义:相交线与平行线重难点知识点拨一.余角、补角、对顶角1,余角:如果两个角的和是直角,那么称这两个角互为余角.2,补角:如果两个角的和是平角,那么称这两个角互为补角.3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线. 4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6,对顶角的性质:对顶角相等.二.同位角、内错角、同旁内角的认识及平行线的性质7,同一平面内两条直线的位置关系是:相交或平行.8,“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同位”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.平行线的性质与判定9,平行线的定义:在同一平面内,不相交的两条直线是平行线.10,平行公理:过直线外一点有且只有一条直线和已知直线平行. 11,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.12,如果两条直线都与第三条直线平行,那么这两条直线互相平行. 13,平行线的判定定理:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.14,平行线的性质定理:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.难题巧解点拨例已知:∠B+∠D+∠F=360o.求证:AB∥EF.例如图,∠1+∠2=∠BCD,求证AB∥D E.典型热点考题例1 如图2—15,∠1=∠2,∠2+∠3=180°,AB ∥CD吗 AC ∥BD 吗为什么小试牛刀 一、选择题1.图2—17中,同旁内角共有A .4对B .3对C .2对D .1对 2、光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2= A .50° B .55° C .66° D .65° 3、如图3,把长方形纸片沿EF 折叠,使D ,C 分别落在D ',C '的位置,若65EFB =∠,则AED '∠等于AB E DCA.50 B.55 C.60D.65第2题图第3题图4.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么A.8角均相等B.只有这一对内错角相等C. 凡是内错角的两角都相等,凡是同位角的两角也相等D.凡是内错角的两角都相等,凡是同位角的两角都不相等5、如图,在ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,那么A的度数是 BA 、30° B、45° C、35° D、60°6、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度可以是A.第一次向右拐40°,第二次向左拐140°B.第一次向左拐40°,第二次向右拐40°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐40°CA BDE7、已知:如图,AB A、++=360B、++=180C、+-=180D、--=908、如图,把三角形纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是.A∠A=∠1+∠2B2∠A=∠1+∠2C3∠A=2∠1+∠2D3∠A=2∠1十∠2二、填空题1、如图2—30,直线CD、EF相交于点A,则在∠1、∠2、∠3、∠4、∠B和∠C这6个角中.1同位角有______;2内错角有______;3同旁内角有_____.2、如图2—31,直线a、b被直线AB所截,且AB⊥BC,1∠1和∠2是_______角;2若∠1与∠2互补,则∠1-∠3=_______.3、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.三、解答题1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.2、如图,哪些条件能判定直线EF∥CD3、如图,已知DE、BF平分∠ADC和∠ABC,∠ABF=∠AED,∠ADC=∠ABC,由此可推得图中哪些线段平行并写出理由.4潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗为什么5. 实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.1如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.2在1中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °. 3由1、2,请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗6、如图:已知DEFABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,.1、求证BC EF // ;2、求21∠∠与的度数321nmba。
6.3余角、补角、对顶角(1)
课题:6.3余角、补角、对顶角(1)一.学习目标:1. 在具体情境中了解余角、补角,知道余角、补角之间的数量关系;2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;3. 会运用互为余角、互为补角的性质来解决问题.二.自主、合作、导学:活动一:(走进课本)1.互为余角的概念:如果 ,这两个角叫做互为余角.简称互余.其中一个角叫做另一个角的余角.2.互为补角的概念:如果 ,这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角.3.已知3组角:A 组B 组C 组(1)对A 组中的每一个角,在B 组中找出它的补角,并用线连接;(2)B 组中有哪些角的余角在C 组中?分别找出这些角,并用线连接。
活动二:(走进课本)如图,如果∠1与∠ 2互余, ∠1与∠3互余,那么∠2与∠3相等吗?为什么?想一想1.如图,如果∠1与∠ 2互余, ∠ 3 与∠4互余, ∠1 =∠ 3,那么∠2与∠4相等吗?为什么?2.如图,如果∠1与∠ 2互补, ∠ 3与∠4互补, ∠1 =∠ 3,那么∠2与∠4相等吗?为什么?结论:余角性质: 。
补角性质: 。
活动三:如图, ∠AOB= ∠COD=90 °,则∠BOC 与∠AOD 有怎样的大小关系?为什么?010055075010001450800105012501700150350550115035010j 4321ODC B A活动四:如图,∠AOC 和∠BOD 都是直角,如果∠AOB =140◦ 求∠DOC 的度数。
ODCBA三.小组合作总结:四.课堂练习:(另附)五.拓展延伸:1、 一个角的补角的余角等于这个角的52,求这个角的度数。
六.反思:课题:6.3余角、补角、对顶角(1)一.课堂练习:1.1.25度 = ________分; 123°角的补角是_________°.2.已知一个角的余角等于'03542 ,则它的补角等于_____________。3.若︒=∠602,则2∠的余角为_____度,2∠的补角为_____度.4.如图,∠COD 为平角,AO⊥OE,∠AOC = 2∠DOE,则有∠AOC =__________。。
62 角、余角、补角以及对顶角(解析版)
2021-2022学年七年级数学上册同步课堂专练(苏科版)6.2角、余角、补角以及对顶角一、单选题1.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离【答案】D【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.2.如图,直线AB,CD相交于点O,分别作∠AOD,∠BOD的平分线OE,OF.将直线CD绕点O旋转,下列数据与∠BOD大小变化无关的是()A.∠AOD的度数B.∠AOC的度数C.∠EOF的度数D.∠DOF的度数【详解】 解:OE ,OF 平分∠AOD ,∠BOD11,22AOE EOD AOD DOF FOB BOD ∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD ∴∠=︒-∠1,2AOC BOD DOF BOD ∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关, 故选:C .3.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'【答案】B解:由题意可得:∠2+∠EAC =90° ∠∠2的余角是∠EAC∠∠EAC =601602740'3220'︒-∠=︒-︒=︒ 故选:B .4.设一个锐角与这个角的补角的差的绝对值为α,则( ) A .090α︒<<︒或90180α︒<<︒ B .0180α︒<<︒ C .090α︒<<︒ D .090α︒<≤︒【答案】B 【详解】解:设这个角的为x 且0<x <90°,根据题意可知180°-x -x =α, ∠α=180°-2x ,∠180°-2×90°<α<180°-2×0°, 0°<α<180°. 故选:B .5.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角【答案】D 【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .6.下列推理错误的是( )A .因为1223∠=∠∠=∠,,所以13∠=∠B .因为12123∠=∠∠+∠=∠,,所以321∠=∠C .因为1223∠+∠=∠,所以1323∠=∠∠=∠,D .因为1∠与2∠互补,13∠=∠,所以2∠与3∠互补 【答案】C 【详解】解:A .因为∠1=∠2,∠2=∠3,所以∠1=∠3(等量代换),故原说法正确; B .因为∠1=∠2,∠1+∠2=∠3,所以∠3=∠1+∠1=2∠1,故原说法正确; C .当∠1+∠2=2∠3时,∠1,∠2不一定等于∠3,故原说法错误; D .因为∠1与∠2互补,∠1=∠3,所以∠2与∠3互补,故说法正确. 故选:C .7.下列说法正确的是( )A.如果∠1+∠2+∠3=90º,那么∠1、∠2、∠3三个互余B.过一点有且只有一条直线与已知直线平行C.不相等的两个角一定不是对顶角D.若两条直线被第三条所截,则同位角相等【答案】C【详解】如果两个角的和是90°,称这两个角互为余角,所以选项A说法错误;过直线外一点有且只有一条直线与已知直线平行,所以选项B说法错误;对顶角永远相等,所以不相等的两个角一定不是对顶角,所以选项C正确;若两条平行直线被第三条所截,则同位角相等,所以选项D说法错误;故选C.8.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.延长AOB∠的平分线C.一个有理数不是整数就是分数D.23-a是单项式【答案】C 【详解】解:A. 连接A ,B 就得到线段AB ,而线段AB 的长度叫做的距离,故原说法错误,不符合题意; B. AOB ∠的平分线就是射线,若延长也只能反向延长,故原说法错误,不符合题意; C. 一个有理数不是整数就是分数,原说法正确,符合题意; D.23-a 是多项式,故原说法错误,不符合题意; 故选:C . 二、填空题9.已知,//MN PQ ,将一副三角板按照如图方式摆放在平行线之间,且线段BC 落在直线MN 上,线段DE 落在直线PQ 上,其中60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠,两条角平分线相交与点O ,则COE ∠=________︒.【答案】52.5 【详解】延长CO 交PQ 于点F ,则∠COE =∠CFE +∠OEF ,∠60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠, ∠∠BCF =30°,∠OEF =22.5°, ∠//MN PQ , ∠∠BCF =∠CFE ,∠∠COE =30°+22.5°=52.5°,故答案为:52.5°.10.如图是某城市一座古塔底部平面图,在不能进入塔内测量的情况下,学习兴趣小组设计了如图所示的一种测量方案,学习兴趣小组认为测得COD ∠的度数就是AOB ∠的度数.其中的数学原理是__________.【答案】对顶角相等 【详解】解:∠∠COD 与∠AOB 互为对顶角 ∠∠COD =∠AOB 故答案为:对顶角相等11.如图,AB 和CD 交于点O ,则AOC ∠的邻补角是___;AOC ∠的对顶角是___;若40AOC ∠=︒,则BOD ∠=___,AOD ∠=___,BOC ∠=___.【答案】AOD ∠和BOC ∠ BOD ∠ 40° 140° 140° 【详解】解:AB 和CD 交于点O ,则AOC ∠的邻补角是AOD ∠和BOC ∠;AOC ∠的对顶角是BOD ∠,40AOC ∠=︒,40BOD AOC ∴∠=∠=︒,180********AO D AO C ∴∠=︒-∠=︒-︒=︒, 140BO C AO D ∴∠=∠=︒.故答案为:AOD ∠和BOC ∠;BOD ∠;40︒;140︒;140︒.12.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°12'的方向上,则∠AOB 的补角的度数是_____.【答案】100°12′. 【详解】解:∠OA 是表示北偏东62°方向的一条射线,OB 是表示南偏东38°12′方向的一条射线, ∠∠AOB =180°-62°-38°12′=79°48′,∠∠AOB 的补角的度数是180°-79°48′=100°12′. 故答案是:100°12′. 三、解答题13.如图,已知直线AB,CD相交于点O,射线OE把∠AOC分成两部分.(1)写出图中∠AOC的对顶角,∠COE的补角是;(2)已知∠AOC=60°,且∠COE:∠AOE=1:2,求∠DOE的度数.【答案】(1)∠BOD,∠DOE;(2)160°【详解】解:(1)由图形可知,∠AOC的对顶角是∠BOD,∠COE的补角是∠DOE;(2)设∠COE=x,则∠AOE=2x,∠∠AOC=60°,∠x+2x=60,解得x=20,即∠COE=20°,∠AOE=40°,∠∠AOC+∠AOD=180°,∠∠AOD=120°,∠∠DOE=∠AOE+∠AOD=40°+120°=160°.14.在同一平面内已知∠AOB=150°,∠COD=90°,OE平分∠BOD.(1)当∠COD的位置如图1所示时,且∠EOC=35°,求∠AOD的度数;(2)当∠COD的位置如图2所示时,作∠AOC的角平分线OF,求∠EOF的度数;(3)当∠COD的位置如图3所示时,若∠AOC与∠BOD互补,请你过点O作射线OM,使得∠COM为∠AOC的余角,并求出∠MOE的度数.(题中的角都是小于平角的角)【答案】(1)40°;(2)150°;(3)见解析,∠MOE的度数为105°或135°.【详解】解:(1)∠∠COD=90°,∠EOC=35°,∠∠EOD=55°,∠OE平分∠BOD,∠∠BOD=2∠EOD=110°,∠∠AOD=∠AOB﹣∠BOD=40°;(2)∠∠AOB=150°,∠COD=90°,∠∠AOC+∠BOD=360°﹣150°﹣90°=120°,∠OF平分∠AOC,OE平分∠BOD,∠∠COF=12∠AOC,∠DOE=12∠BOD,∠∠COF+∠DOE=60°,∠∠EOF=60°+90°=150°;(3)设∠AOC=α,∠∠AOB=150°,∠COD=90°,∠∠AOD=90°﹣α,∠BOC=150°﹣α,∠∠AOC与∠BOD互补,∠∠AOC+∠BOD=180°,∠∠AOD+∠BOC=180°,∠90°﹣α+150°﹣α=180°,∠α=30°,即∠AOC=30°,∠∠BOD=150°,∠OE平分∠BOD,∠∠DOE=∠BOE=75°,如图3,∠∠COM为∠AOC的余角,∠∠COM=60°,∠∠DOM=30°,∠∠MOE=∠MOD+∠DOE=30°+75°=105°,如备用图,∠∠COM为∠AOC的余角,∠∠COM=60°,∠BOM=60°,∠∠MOE =∠BOM +∠BOE =60°+75°=135°;综上所述,∠MOE 的度数为105°或135°.15.已知直线AB 与CD 相交于点O .(∠)如图1,若90AOM ∠=︒,OC 平分AOM ∠,则AOD ∠=_________.(∠)如图2,若90AOM ∠=︒,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小;(∠)如图3,若AOM α∠=,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小(用含α的式子表示).【答案】(∠)135°;(∠)54°;(∠)54035α︒- 【详解】解(∠)90AOM =︒∠,OC 平分AOM ∠,11904522AOC AOM ∴∠=∠=⨯︒=︒, 180AOC AOD ∠+∠=︒,180********AOD AOC ∴∠=-∠=︒-︒︒=︒,即AOD ∠的度数为135︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒,OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 3902BOM x x ∠=︒+︒=︒, 36x ∴=︒,33365422MON x ∴∠=︒=⨯︒=︒, 即MON ∠的度数为54︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒, OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 31802BOM x x α∠=︒+︒=︒-, 36025x α︒-∴=, 336025403255MON αα︒-︒-∴∠=⨯=.。
七年级数学上册6.3余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材苏科版解析
什么叫余角、补角?它们的性质是什么?
难易度:★★★★
关键词:角
答案:
(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角。
即其中一个角是另一个角的余角。
(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角。
即其中一个角是另一个角的补角。
(3)性质:等角的补角相等。
等角的余角相
等。
(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联。
注意:余角(补
角)与这两个角的位置没有关系。
不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系。
【举一反三】
典例:已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.
思路引导:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.利用题中“一个角的补角比这个角的余角的3倍大10°”作为相等关系列方程求解即可.设这个角是x,则(180°-x)-3(90°-x)=10°,解得x=50°.故答案为50°.
标准答案:50°
1。
6.3余角、补角、对顶角(1)
6.3余角、补角、对顶角(1)一、课前准备:(1)互为余角:如果两个角的和等于90°(直角),就说这两个角互为,其中一个角是另一个角的。
互为补角:如果两个角的和等于180°(平角),就说这两个角互为,其中一个角是另一个角的。
(2)30°的余角是_____,补角是______;若一个角的度数是x,则它的余角的度数和补角的度数分别是__________,_________。
(3)若∠1与∠2互补,则∠1+ ∠2=________。
∠1= 180°- ∠2,则∠1与∠2的关系为___________。
(4)二、探索新知:1、议一议:(1)读图:课本p158 图6-15(2)图(1)中∠α与∠β的和时多少度?为什么?(3)图(2)中∠α与∠β的和时多少度?为什么?2、读一读:“互为余角”、“互为补角”3、画一画:画一个直角∠CDE,过它的顶点D任意画一条射线DN,思考:∠CDN、∠EDN有什么关系?语言表达:,符号表达:。
画一个平角∠AOB ,过它的顶点O 任意画一条射线OM ,思考:∠AOM 、∠BOM 有什么关系?语言表达: ,符号表达: 。
三、知识运用:1、课本p158做一做22、若一个角的余角比它的补角的31还小200,求这个角。
3、(1)如图,已知∠1+∠2= 90°,∠1 +∠3= 90°。
说说∠2和∠3有什么关系? 为什么?(2)想一想:如果∠1+∠2= 90°,∠3 +∠4= 90°。
若∠1=∠3,那么∠2和∠4有什么关系?为什么?对于补角是否也有类似的性质?试说明你的结论。
你得到什么结论?请与同学交流。
总结:同角(或等角)的余角 ;同角(或等角)的补角 。
四、当堂反馈:1、看图回答:(1)图中互余的角是__________与___________。
(2)图中互补的角是_______与_______;______与______。
6.3余角、补角、对顶角教学设计
(二)讲授新知
在这一环节,教师将系统地讲授余角、补角、对顶角的定义、性质和应用。
1.余角:讲解余角的定义,即两个角的和为90度时,这两个角互为余角。通过具体例子,让学生理解余角的概念。
2.补角:介绍补角的定义,即两个角的和为180度时,这两个角互为补角。结合生活实例,解释补角的意义。
-针对学生空间想象力、逻辑推理能力的差异,设计不同难度的教学任务,使每个学生都能在原有基础上得到提高。
-对基础薄弱的学生,进行个别辅导,的学生,提供拓展性学习资源,引导他们进行更深入的探讨和研究。
3.突破重难点,强化训练
-针对重难点内容,设计具有针对性的例题和练习,帮助学生巩固所学知识。
1.学生在空间想象力方面的发展水平不一,部分学生对图形的认识和角度的把握可能不够准确。教师应针对这一情况,设计丰富的教学活动,帮助学生建立清晰的空间概念。
2.学生在逻辑推理能力方面存在差异,对几何证明的掌握程度不同。教师应关注学生的个体差异,提供适当的引导和提示,帮助学生逐步掌握证明方法。
3.学生在解决实际问题时,可能难以将所学知识灵活运用。教师应结合生活实例,引导学生发现生活中的几何问题,培养学生学以致用的能力。
6.3余角、补角、对顶角教学设计
一、教学目标
(一)知识与技能
1.理解余角、补角、对顶角的定义,能够识别并正确标记图形中的余角、补角和对顶角。
2.学会运用余角、补角和对顶角的性质进行相关角度的计算,解决实际问题。
3.能够运用余角、补角和对顶角的性质,推导和证明几何图形中的相关结论。
4.能够运用所学的角度知识,解决生活中的实际问题,提高解决问题的能力。
(五)总结归纳
对顶角、余角和补角
试一试
∠α
∠α的余角
∠α的补角
5°
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
62°23′ x°
27°37′ 90° x°
117°37′ 180° x°
同一个锐角的补角比其余角大90 °。
互余和互补是两个角的数量关系,与它们的位置无关。
2
1
43
补角性质:等角的补角相等
补角性质:等角的补角相等
如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什么?
21
43
解:∵∠1 与∠2 互补 ,∠3 与∠4 互补 ∴∠1 +∠2 = 180°,∠3 +∠4 = 180° ∴∠2 = 180°- ∠1 ,∠4 = 180°- ∠3
三、新课精讲
比萨斜塔
2
1
引入概念(互为余角)
互为余角(互余): 如果两个角的和是90°(直角),
那么这两个角叫做互为余角,其中 一个角是另一个角的余角。
∠1与∠2互为余角
2
几何语言表示为:
∵∠1+∠2=90°
∴∠1与∠21互为余角
理解概念(互为余角)
2
1
互为余角(互余): 如果两个角的和是90°(直角),
练习4、一个角是钝角,它的一半是什么角? 锐角
五、小结测试
1、若一个角的补角等于它的余角的4倍,求这个角 的度数。
2、(1)互余且相等的两个角,各是多少度? (2)一个锐角的补角比这个角的余角大多少度?
第一节 余角与补角、对顶角
第一节 余角、补角与对顶角1.互为余角:如果两个角的和是直角,那么称这两个角互为余角。
注:互为余角仅仅表明了两个角之间的度量关系,与角的位置无关。
2.互为补角:如果两个角的和是平角,那么称这两个角互为补角。
注:和是平角,说明了互为补角仅仅表明了两个角之间的度量关系,与角的位置无关。
3.对顶角直线AB 与CD 相交于点O ,∠AOC 与∠BOD 有公共顶点O ,它们的两边互为反向延长线,这样的两个角叫做对顶角。
注:(1)两条直线相交;(2)有公共顶点;(3)无公共边(4)对顶角是成对的,是具有特殊位置的两个角。
4.角的重要性质:(1)同角或等角的余角相等。
(2)同角或等角的补角相等。
(3)对顶角相等。
例1:判断题(1).若∠1+∠2=90°,则∠1与∠2互余.( ) (2).若∠A 与∠B 互补,则∠A +∠B =180°.( )(3).若∠1与∠2互补,∠2与∠3互补,则∠1与∠3互补.( ) (4).若∠AOB +∠BOC =180°,则点A 、O 、C 必在同一直线上.( ) (5).若∠α+∠β+∠γ=90°,则∠α、∠β、∠γ互余.( )例2:如图1,直线l 1与l2相交,∠1=50°,则∠2=_________,∠3=_________.图1 图2例3:如图2,直线AB 与CD 相交于O 点,且∠AOD =90°,则∠AOC =_________=_________=_________=_________.例4:如图3,若AO ⊥CO ,BO ⊥DO ,∠BOC=150°,则∠DOC=________,∠AOD =________.图3 图4 图5AOBCA BCODOBA C例5:如图4,直线AB 与CD 相交于O ,∠EOD =90°,正确填写下列两角关系的名称.∠1与∠2:______________________ ∠2与∠3:______________________ ∠2与∠4:______________________ ∠1与∠4:______________________ 例6:如图5,AO ⊥BO ,直线CD 经过点O ,∠AOC =30°,求∠BOD 的度数. 例7:两条直线相交于一点,则共有对顶角的对数为( )A.1对B.2对C.3对D.4对例8:下面说法正确的个数为( )①对顶角相等 ②相等的角是对顶角 ③若两个角不相等,则这两个角一定不是对顶角 ④若两个角不是对顶角,则这两个角不相等A.1个B.2个C.3个D.4个例9:若∠1和∠2互余,∠2与∠3互余,∠1=40°,则∠3等于( )A.40°B.130°C.50°D.140°例10:如图,∠1和∠2是对顶角的图形有( )A.(1)(3)B.(2)(3)C.(3)D.(3)(4)例11:如图,已知直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,:4:1AOD DOC ∠∠=,AOF ∠的度数。
七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版
初中数学认识余角、补角、对顶角精讲精练【考点精讲】1. 互为余角与互为补角(1)概念:若,则称、互为余角;若则称、互为补角。
(2)记法的余角记作;的补角记作。
2. 余角(补角)的性质同角或等角的余(补)角相等。
3. 对顶角:如下图中,我们把叫做对顶角,也是对顶角。
OADBC4. 对顶角的性质:对顶角相等。
【典例精析】例题1 如图所示,O是直线AB上的一点,,平分,平分,则图中互为补角的对数有()A. 6对B. 7对C. 8对D. 9对思路导航:是直线AB上的一点,,又,,平分,,,,。
答案:互补的角有:,,,,,共8对。
答案选C。
点评:本题涉及互补的角较多,根据题意计算有关角的度数,再根据互为补角的定义,按照一定的顺序来写,做到既不重复又不遗漏。
例题2 一个角的补角与它的余角的2倍的差是平角的,请你求出这个角的度数。
思路导航:可以直接设元(题中问什么就设什么,直接求出结果),也可以间接设元(先求出这个角,再求出它的余角),然后列方程求解。
答案:设这个角的度数为,则它的补角、余角分别为,(),根据题意得,解得,所以这个角的度数为60度。
点评:有关余角和补角的计算题目,常设未知数,根据题意列方程求解。
所设的未知数不同,所得到的方程也不同。
例题3 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线。
D(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?思路导航:(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分得∠AOD的两部分角的度数即可说明。
答案:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°-80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°。
∵∠1+∠2+∠3=180°,∴∠3=180°-∠1-∠2=180°-40°-100°=40°。
七年级数学下册课后补习班辅导余角补角对顶角讲学案苏科版
余角、补角、对顶角【本讲教育信息】一. 教学内容:余角、补角、对顶角本周要紧内容是学习互为余角和互为补角的概念及其性质,对顶角的概念及其特点。
并要求在经历观看、操作、推理、交流等进程中,进一步进展空间概念,培育推理能力、有层次的表达能力,并要求能解决一些实际问题。
[目标]1. 在现实背景下了解余角、补角、对顶角的概念。
2. 明白等角(同角)的余角相等,等角(同角)的补角相等;能利用对顶角相等的性质进行计算。
二. 重、难点:本周的重点是互为余角和互为补角的概念及其性质,和利用学习过的知识解决一些实际问题。
三. 知识要点1. 余角、补角。
(1)若是两个角的和等于90°,那么称这两个角互为余角。
(2)若是两个角的和等于180°,那么称这两个角互为补角。
(3)定理:同角(或等角)的余角相等;同角(或等角)的补角相等。
说明:①互余与互补角是研究两个角的关系,单唯一个角不能说是余角或补角,就像称号两兄弟一样,而且可不能随位置改变。
②“互为余角”和“互为补角”是指具有特殊关系的两个角. 犹如代数中的“互为倒数”和“互为相反数”一样,是指具有特殊关系的两个数,而且只能是两个角之间的特殊关系。
若是三个角的和是180°,咱们不能说这三个角互为补角2. 对顶角(1)一个角的两边别离是另一个角的两边的反向延长线,这两个角叫做对顶角。
如:两条直线相交形成∠1,∠2,∠3,∠4四个角,如图:∠1和∠3叫做对顶角,∠2和∠4也是对顶角。
(2)定理:对顶角相等。
【典型例题】例1. 如图,直线m 和l 交于O 点,已知∠1的余角与它的补角的比为1:3,求∠2的度数。
分析:此题能够利用题目中所给的条件列方程(设∠1为x°),求出∠1的度数,而∠1和∠2是对顶角,利用对顶角的性质能够求出∠2的度数。
解:设∠1的度数为x°,那么它的余角为(90-x) °,它的补角为(180-x) °,依照题意: (90-x ):(180-x )=1:3 解之得x =45又因为∠1和∠2是对顶角, 因此∠1=∠2 (对顶角相等) 答:那个角的度数为45 °。
余角、补角、对顶角(2)
6.3余角、补角、对顶角(2)编写:徐雅萍审核:初一数学组时间:2023.12 班级姓名________学号_______一、自主研读初步学(一)认真阅读课本161-163页,并回答下列问题:知识点一:对顶角的概念写出图中的对顶角:;归纳:有顶点且角的两条边都互为线的两个角称为对顶角.注意:(1)对顶角形成的前提是两条直线相交,对顶角必须有公共的顶点.(2)对顶角是成对出现的,单独的一个角不能称为对顶角.例:下列图形中,表示1∠是对顶角的是()∠和2A.B.C.D.知识点二:对顶角的性质(1)如图,直线AC、BD相交于点O,问∠AOC与∠BOD有何大小关系?说明理由.关系:理由:总结:对顶角_____________________上述结论我们可用以下符号语言表述:∵∠AOC与∠BOD是对顶角∴∠AOC=∠BOD思考:对顶角一定相等,那相等的角一定是对顶角吗?如果是,说明理由;如果不是,画出反例.(2)例:如图,AB、CD相交于点O,∠BOE=90°,∠1=64°,求∠DOE的度数.分析:已知∠BOE的度数,要求∠DOE的度数,只要知道∠BOD的度数即可.解:∵∠1与∠2是对顶角∴(对顶角相等)12∵∠1=64°∴∠2= °.∵∠DOE=∠BOE-∠2,∠BOE=90°.∴∠DOE=90°- 64°=26°.说明:要求一个角的度数,首先要观察图形,判断这个角与已知角有何关联,然后通过下列途径计算:①.先求出与它相等的角的度数,然后进行等量代换求得.②.将这个角转化为其他角的和差倍分的形式求得.练习:如图,AB,CD相交于点O,OB平分∠DOE,若∠AOC=30°,求∠DOE的度数.1.下图中∠1与∠2是对顶角的是()A B C D2.如图,AB与CD相交于点O,∠AOD+∠BOC=280°,则∠AOC的度数为( ) A.40°B.60°C.120°D.140°第2题第3题3. 如图,直线AB、CD、EF相交于点O,∠1=50°,∠2=67°,则∠COF=°.4.若两个角是对顶角且互补,则这两个角都是________度.5.如图,已知直线AB、CD相交于点O,OE平分∠AOD,∠AOE=350,∠BOF=200,,求∠COF的度数.二、合作探究深化学(一)检查建构1.下列说法中正确的是()A.有公共顶点的两个角是对顶角B.两条直线相交所成的角是对顶角C.对顶角一定相等D,两个相等的角一定是对顶角2.如图,直线AB、CD相交于点O,OA平分∠EOD,∠EOD=116°(1)写出图中的对顶角;(2)求∠BOC的度数.问题1 观察下列图形,找出对顶角(不含平角)(1) 如图①,图中共有对对顶角;(2)如图②,图中共有对对顶角;(3)如图③,图中共有对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
(2)互余、互补的两角是否一定有公共顶点或公共边?两角互余或互补,只与角的度数有关,与位置无关。
(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、∠3 互余(互补)吗?不能,互余或互补是两个角之间的数量关系。
已知∠A 与∠B 互余,∠B 与∠C 互补,若∠A=50°,则∠C 的度数是 [ D ] A .40° B .50° C .130° D .140° 如果∠A 的补角是它的余角的4倍,则∠A=______度.设∠A 为x ,则∠A 的余角为90°-x ,补角为180°-x ,根据题意得,180°-x=4(90°-x ), 解得x=60°. 故答案为:60.已知∠ α=50°17',则∠α的余角和补角分别是 [ B ]A .49°43',129°43'B .39°43',129°43'C .39°83',129°83'D .129°43′,39°43′两个角的比是6:4,它们的差为36°,则这两个角的关系是( )A .互余B .相等C .互补D .以上都不对设一个角为6x ,则另一个角为4x , 则有6x-4x=36°,∴x=18°,则这两个角分别为108°,72°, 而108°+72°=180°∴这两个角的关系为互补. 故选C .如果∠A=35°18′,那么∠A 的余角等于______.如果∠A=35°18′,那么∠A 的余角等于90°-35°18′=54°42′. 故填54°42′.已知∠1和∠2互补,∠3和∠2互余,求证:∠3= =21(∠1-∠2).证明:由题意得:∠2+∠3=90°,∠1+∠2=180°, ∴2(∠2+∠3)=∠1+∠2,故可得:∠3=21(∠1-∠2) 如图,∠1的邻补角是[ ]A.∠BOCB.∠BOC 和∠AOFC.∠AOFD.∠BOE 和∠AOF两个角互为补角,那么这两个角大小 [ D ]A.都是锐角B.都是钝角C.一个锐角,一个钝角D.无法确定如果两个角互为补角,那么这两个角一定互为邻补角,证明此命题真——加原因如果两个角互为补角,那么这两个角一定互为邻补角,这是假命题.如果两个角互为领补角,那么这两个角一定互为补角,这是真命题.譬如说,两直线平行,同旁内角互补,但互为同旁内角的两个角一定不互为领补角.如果两个角互补,那它们是邻补角”——————为什么说这个是假命题?两条平行线切出的同旁内角也互补,但是它们不是邻补角.所以说:“如果两个角互补,那它们是邻补角”是假命题!因为邻补角是相邻的两个角互补,那么这两个角是互为邻补角,而互补的两个角有不相邻的,比如四边形的两个对角互补,则这四点共圆如果一个角是36°,那么[ D ].它的余角是64°B.它的补角是64°C.它的余角是144°D.它的补角是144°下列说法中:①同位角相等;②两点之间,线段最短;③如果两个角互补,那么它们是邻补角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确的个数是()A.2个B.3个C.4个D.5个①同位角相等,说法错误;②两点之间,线段最短,说法正确;③如果两个角互补,那么它们是邻补角,说法错误;④两个锐角的和是锐角,说法错误;⑤同角或等角的补角相等,说法正确;说法正确的共有2个,故选:A.下列说法正确的是()A.小于平角的角是锐角B.相等的角是对顶角C.邻补角的和等于180°D.同位角相A、小于平角的角有:锐角、直角、钝角,故本选项错误;B、对顶角相等,相等的角不一定是对顶角,故本选项错误;C、邻补角的和等于180°正确,故本选项正确;D、只有两直线平行,才有同位角相等,故本选项错误.故选C.下列说法正确的是()A.相等的角是对顶角B.对顶角相等C.同位角相等D.锐角大于它的余角A、相等的角是对顶角,说法错误;B、对顶角相等,说法正确;C、同位角相等,说法错误;D、锐角大于它的余角,说法错误;故选:B.下列说法中,正确的是()A.对顶角相等B.内错角相等C.锐角相等D.同位角相等A、对顶角相等,说法正确;B、内错角相等,说法错误,只有两直线平行时,内错角才相等;C、锐角相等,说法错误,例如30°角和20°角;D、同位角相等,说法错误,只有两直线平行时,同位角才相等;故选:A.三条直线相交于一点可以构成几对对顶角?两条直线出现2*(2-1)=2对对顶角三条直线出现3*(3-1)=6对对顶角四条直线出现4*(4-1)=12对对顶角依次类推,n条直线相交于一点有n*(n-1)对对顶角三条直线相交于一点,共可组成______对对顶角.如图,单个的角是对顶角的有3对,两个角的复合角是对顶角的有3对,所以,共有对顶角3+3=6对.故答案为:6.三条直线相交与一点,能构成几对对顶角?四条呢?五条呢?N条呢?我要方法和答案!三条直线相交与一点,6对;四条直线相交与一点,12对;五条直线相交与一点,20对;N条直线相交与一点,N(N-1)对;如果有n条直线相交于一点,有多少对对顶角?n的平方减去2条数个数2 2=2x13 6=3x24 12=4x35 20=5x4…………n n(n-1)三条直线相交于一点,对顶角最多有______对.把三条直线相交于一点,拆成三种两条直线交于一点的情况,因为两条直线相交于一点,形成两对对顶角,所以三条直线相交于一点,有3个两对对顶角,共6对对顶角两条直线相交,有一个交点。
三条直线相交,最多有多少个交点?四条直线呢?你能发现什么规律吗?这个其实就是组合问题。
因为两条线构成一个交点,所以三条线时,从三条线中取两条线,有3*2/2=3种取法,所以有3个交点。
四条线中取两条,有4*3/2=6种取法,所以有6个交点。
n条线中取两条,有n(n-1)/2种取法,所以有n(n-1)/2个交点。
邻补角是互补的角是真命题吗当然是,邻补角相加等于180度就是互补啊互补的角是邻补角是真命题还是假命题若是真命题,请举反例两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角称为互为邻补角.可以随便画两个没有公共边的角,比如1个60度,另一个120度,显然它们是互补的,但是并不是邻补角所以互补的角是邻补角这是一个假命题应该说邻补角是互补的角,这才是真命题既相邻又互补的两个角是邻补角吗两条平行线切出的同旁内角也互补,但是它们不是邻补角。
所以说:“如果两个角互补,那它们是邻补角”是假命题!成互补关系的两个角互为邻补角是对还是错不对相邻的两个角互补称之为邻补角像两直线平行,同旁内角互补(这两个互补的角不相邻)、互补的两个角是邻补角用因为所以答因为两个角是邻补角所以两个角互补反过来不成立。