第五章 频率分析法解析
线性系统的频域分析法
转折频率:
n 1 T
+20dB/dec
2 2
L( ) 20 lg 1 T
20 0 -20
1 T
• 低频段:T 1时,
G ( j ) j T 1 1 2T 2 e j arctanT
0
幅相曲线:
Im
∞
ω=0
1 Re
A( ) 1 T 幅频特性:
2
2
( ) arctanT 相频特性:
伯德图:
1)对数幅频图
A( ) 1 2T 2
L(ω)/dB
L( ) 20 lg
20dB/dec
ω
( )
90 0 0.1 1 10
2)对数相频图
( ) G( j ) 90
ω
微分环节的对数坐标图
(4)惯性环节
1 传递函数: G ( s ) Ts 1
频率特性: G ( j )
1 1 j T j T 1 1 2 T 2 1 e j arctanT 1 2T 2 1 幅频特性: A( ) 1 2T 2
1 G( s ) Ts 1
解: 将s=jω代入,求得频率特性为:
1 G( j ) G( s ) s j jT 1 1 T j 2 2 2 2 1 T 1 T
1 1 2T 2
11
e j arctanT
2 2T 22 1 1 T ( ) G( j ) arctan T 相频特性: T 虚频特性: Q( ) Im[ G ( j )] 1 2T 2
R(s) C(s)
G(s)
结论: 稳定的系统,在正弦信号作用下其稳态 输出也是同频率的正弦信号,但振幅和相 位不同。
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
频域分析法
111 第五章 频域分析法用时域分析法分析和研究系统的动态特性和稳态误差最为直观和准确,但是,用解析方法求解高阶系统的时域响应往往十分困难。
此外,由于高阶系统的结构和参数与系统动态性能之间没有明确的函数关系,因此不易看出系统参数变化对系统动态性能的影响。
当系统的动态性能不能满足生产上要求的性能指标时,很难提出改善系统性能的途径。
本章介绍的频域分析法是研究控制系统的一种经典方法,是在频域内应用图解分析法评价系统性能的一种工程方法。
频率特性可以由微分方程或传递函数求得,还可以用实验方法测定。
频域分析法不必直接求解系统的微分方程,而是间接地揭示系统的时域性能,它能方便的显示出系统参数对系统性能的影响,并可以进一步指明如何设计校正。
第一节 频率特性对于线性定常系统,若输入端作用一个正弦信号t U t u ωsin )(= (5—1)则系统的稳态输出y(t)也为正弦信号,且频率与输人信号的频率相同,即) t Y t y ϕω+=sin()( (5—2)u(t)和y(t)虽然频率相同,但幅值和相位不同,并且随着输入信号的角频率ω的改变,两者之间的振幅与相位关系也随之改变。
这种基于频率ω的系统输入和输出之间的关系称之为系统的频率特性。
不失一般性,设线性定常系统的传递函数G(s)可以写成如下形式)()()()()())(()()()()(121s A s B ps s B p s p s p s s B s U s Y s G n j j n =+=+++==∏= (5—3) 式中B(s)——传递函数G(s)的m 阶分子多项式,s 为复变量;A(s)——传递函数G(s)的n 阶分母多项式 (n ≥m);n p p p ---,,,21 —传递函数G(s)的极点,这些极点可能是实数,也可能是复数,对稳定的系统采说,它们都应该有负的实部。
由式(5—1),正弦输入信号u(t)的拉氏变换为(查拉氏变换表)))(()(22ωωωωωj s j s U s U s U -+=+= (5—4) 输出信号y(t)的拉氏变换为Y(s)=U(s)G(s)将式(5—3)、式(5—4)代人上式得∏=+⨯-+=n j j ps s B j s j s U s Y 1)()())(()(ωωω 上式可改写成(利用部分分式法)nn p s b p s b p s b j s a j s a s Y +++++++-++= 221121)(ωω (5-5)112上式中 n b b b a a ,,,,,2121 —待定系数,它们均可用留数定理求出。
自动控制原理-胡寿松-第五章-线性系统的频域分析法
第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000
o
( )
10
0
1
10
100
1000
10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)
第五章频域分析法
惯性环节的幅相特性曲线
j
M()
()
0 1 0
1
0 -90
O
自动控制原理
第五章 频域分析法-频率法
3.对数坐标图—伯德图(H.W.Bode) 对数频率特性曲线又称伯德图,包括对数 幅频和对数相频两条曲线。 对数频率特性曲线的横坐标表示频率 , 并按对数分度,单位是1/s。 对数幅频曲线的纵坐标表示对数幅频特性 的函数值,线性均匀分度,单位是分贝, 记作dB。 对数幅频特性定义为 L( ) 20lg M ( )
G( j) A()e j ( )
幅频特性A( ) 系统对不同频率输入信号在稳态情况下的衰减 (或放大)特性; 相频特性 ( ) 系统稳态输出对不同频率输入信号的相位滞后 (或超前)特性。 理论上可将频率特性的概念推广到不稳定系统,但是不稳定系 统的瞬态分量不会消失,瞬态分量和稳态分量始终同时存在, 不稳定系统的频率特性观察不到。 频率特性也是描述系统的动态数学模型,频率响应法 从频率特性出发研究系统。
频率特性反映了系统的内在性质,与外界因素无关!!
频率特性的定义: 稳定的线性定常系统,正弦信号的作用下 三种数学模型的关系如图 输出的稳态分量也是正弦信号,和输入频率相同; 振幅与输入信号振幅之比为幅频特性 A( ); 相位与输入信号相位差为相频特性 ( ) 。 输出稳态分量与输入正弦信号的复数比得频率特性。
-26.6 -45 -63.5 -71.5 -76
0
-78.7 -90
自动控制原理
第五章 频域分析法-频率法
幅频和相频特性曲线
自动控制原理
第五章 频域分析法-频率法
1 1 2T 2 1
第五章频率分析法.ppt
频率法的特点:
1、不必直接求解系统的微分方程,而间接的运用系统的 开环特性分析闭环的响应; 2、频率特性具有明确的物理意义,很多元部件都可以用 实验方法确定,进而可计算传递函数; 3、应用广泛,适用于某些非线性系统; 4、频域法也是一种图解的方法; 5、利用频域法可以设计出能有效抑制噪声的控制系统。
-63.5 ° -71.5 °
-78.7 ° -90 °
1.0 0.8 0.6 0.4 0.2 0 1/T 2/T 3/T
-20 -40 -60 -80 -100 0 1/T 2/T 3/T 4/T 5/T
ω 4/T 5/T
由上图曲线可知,输入电压频率ω较低时,输出和 输入的幅值几乎相等,相角滞后不大;当ω增大时,输 出幅值减小,相角滞后增大;ω趋于无穷时,输出幅值 为0,相角滞后90°。 函数1/(1+j ωT)完整的描述了网络在正弦输入下的 稳态输出电压幅值和相角随正弦输入信号频率ω变化的 规律,把1/(1+j ωT)称为网络的平率特性。 因此,对于任何线性定常系统, φ(j ω)=φ(s)|s= jω 故 幅频特性M(ω)=|φ(jω)| 相频特性ψ(ω)=∠φ(jω) 因此,已知一个系统的微分方程或传递函数,只要将 复变量s置换成纯虚变量jω,就可以得到系统频率特性 的数学表达式,并依次作出频率特性曲线。
L/dB 40 20 0.1 ψ 0.1 -90°
积分环节的伯特图
特征点: ω=1,L=0dB j
-20
1 10 ω
1
10
0
ω
ω
积分环节的幅相曲线(极坐标图)
积分环节的对数幅频是一条在ω=1处通过横轴 (0dB)、斜率为-20dB/10倍频程的直线,其相频特 性是一条ψ=-90°的且和横轴平行的直线。
自动控制理论第五章频率分析法1.详解
5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。
④
G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
控制系统的频域分析法
(5-
53)
(554)
图5-9不稳定惯性环节的频率特性
图5-4 惯性环节的频率响应
不稳定环节的频率特性如图5-9。比较图5-4可知,它与惯性 环节的频率特性相比,是以平面的虚轴为对称的。
26
(八)滞后环节的传递函数
滞后环节的传递函数为: 其对应的频率特性是:
幅频特性和相频特性分别为:
如图5-10所示,滞后环节的 频率特性在平面上是一个顺 时针旋转的单位圆。
频率ω无关且平行于横轴的直线,其纵坐标为20lgK。
当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
34
(二)积分环节 积分环节的频率特性是: 其幅频特性为:
对数幅频特性是:
(5-65) (5-66)
(547) (548)
(549) (550)
24
二阶微分环节频率特性曲线如图5-8所示, 它是一个相位超前环节,最大超前相角为 。
图5-8 二阶微分环节频率特性
(七)不稳定图环节
不稳定环节的传递函数为:
不稳定环节有一个正实极点 , 对应的频率特性是:
(551)
(5-
52)
25
幅频特性和相频特性分别为:
(5-67)
35
设
,则有:
可见,其对数幅频特性是一条
在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率
降低20分贝的速度(-20dB/dec) 变化的直线。
积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环
自动控制原理 第五章 控制系统的频域分析法
则
uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自
自动控制原理第五章频率法
频率响应的分析方法
频域分析法
通过求解系统的传递函数,得到系统的频率响应曲线,进而分析 系统的动态性能。
时域分析法
通过求解系统的微分方程,得到系统的时域响应,进而分析系统 的动态性能。
根轨迹法
通过绘制系统的极点轨迹图,分析系统的稳定性,并得到系统的 频率响应特性。
03
频率响应的特性
稳定性分析
判断系统稳定性的依据
频率响应是指控制系统对不 同频率输入信号的输出响应 特性。
频率响应的测量方法
通过测量控制系统在不同频 率下的输出信号,可以得到 系统的频率响应特性。
频率响应的分析
通过对频率响应的分析,可 以了解系统的动态特性和稳 定性。
控制系统中的稳定性分析
稳定性定义
如果一个系统受到扰动 后能够回到原来的平衡 状态,则称该系统是稳 定的。
频率特性的表示方法
极坐标图
01
通过极坐标图表示频率特性的幅度和相位角。
Bode图
02
通过Bode图表示频率特性的对数幅度和相位角随频率的变化关
系。
Nyquist图
03
通过Nyquist图表示频率特性的极点和零点随频率的变化关系。
02
频率响应分析
频率响应的定义
01
频率响应是指在稳态下,线性定常系统对不同频率的正弦输 入的稳态输出。
频率响应的极点和零点位置。
稳定裕度
衡量系统稳定性的指标,包括相位裕度和幅值 裕度。
稳定判据
基于频率响应的极点和零点位置,判断系统是否稳定的准则。
动态特性分析
动态响应过程
系统受到正弦波输入信号后,频率响应随时 间变化的过程。
动态性能指标
衡量系统动态响应性能的指标,如超调和调 节时间、峰值时间等。
第5章 控制系统的频域分析
积分环节的对数相频特性表达式为
积分环 节 的 伯 德 图 如 图 5-12 所 示。
第5章 控制系统的频域分析
图5-12 积分环节的伯德图
第5章 控制系统的频域分析 3.微分环节
第5章 控制系统的频域分析
图5-13 微分环节的极坐标图
第5章 控制系统的频域分析
图5-9 比例环节的极坐标图
第5章 控制系统的频域分析 2)伯德图 比例环节的对数幅频特性表达式为
其对数相频特性表达式为
比例环节的对数频率特性曲线(即伯德图)如图5-10所示。
第5章 控制系统的频域分析
图5-10 比例环节的伯德图
第5章 控制系统的频域分析 2.积分环节 积分环节的传递函数为
第5章 控制系统的频域分析
图5-21 二阶比例微分环节的伯德图
第5章 控制系统的频域分析 8.延迟环节
第5章 控制系统的频域分析
图5-22 延迟环节的极坐标图和伯德图
第5章 控制系统的频域分析 5.3 系统的开环频率特性
第5章 控制系统的频域分析
5.3.1 最小相位系统和非最小相位系统 若控制系统开环传递函数的所有零、极点都位于虚轴以
图5-1 典型一阶系统
第5章 控制系统的频域分析
第5章 控制系统的频域分析 对于图5-2所示的一般线性定常系统,可列出描述输出量
c(t)和输入量r(t)关系的微分方程:
图5-2 一般线性定常系统
第5章 控制系统的频域分析 与其对应的传递函数为
如果在系统输入端加一个正弦信号,即 式中,R0是幅值,ω 是角频率。由于 所以
第5章 控制系统的频域分析
自动控制原理(第二版)第五章频率响应法
发展多变量频率响应法
针对多输入多输出系统,需要发展多变量频率响 应法,以便更好地处理复杂系统的分析问题。
深入研究非最小相位系统
针对非最小相位系统的稳定性判断问题,需要深 入研究其频率响应特性,并寻求有效的解决方法 。
06
CATALOGUE
结论
总结频率响应法的要点与重点
01 02 03 04
频率响应法是一种通过分析线性定常系统对正弦输入信号的稳态响应 来评价系统性能的方法。
频率响应法的优势与局限性
优势
频率响应法能够提供系统在整个频率范围内的动态性能信息,有助于全面了解 系统的性能特点;通过分析频率特性,可以更容易地识别系统的稳定性和潜在 的谐振问题。
局限性
频率响应法主要适用于线性定常系统,对于非线性或时变系统,其应用可能受 到限制;此外,频率响应法无法提供系统的时域信息,如瞬态响应和稳定性。
05
CATALOGUE
频率响应法的局限性与改进方法
频率响应法的局限性
01
频率响应法主要适用于线性时不 变系统,对于非线性或时变系统 ,频率响应法可能不适用。
02
频率响应法只能给出系统在正弦 输入下的稳态输出,无法反映系
统的动态行为。
频率响应法无法处理多输入多输 出系统,对于复杂的多变量系统 ,需要采用其他方法进行分析。
02
CATALOGUE
频率响应的基本概念
频率特性的定义
频率特性
系统对正弦输入信号的稳态输出与输入之比,用复数表示的频率 函数。
频率特性与传递函数
传递函数是系统在零初始条件下,频率特性的解析表达式。
频率特性与系统性能
频率特性直接反映系统在不同频率的正弦输入信号下的响应特性 ,与系统的动态和稳态性能密切相关。
第5章线性系统的频域分析方法
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
频率分析法
因此,幅频特性A()是的偶函数,相频特性 () 是的奇函数。
Q ( )
A( ) ( )
P ( )
0
s 1 G( s) 2 s s 1
K (1 2 s ) 1 1 例 : G( s ) K (1 2 s ) s(1 0.1s ) s 1 0.1s
5.2.2 典型环节的频率特性 1.比例环节 比例环节的频率特性是G(jω)=K,幅相曲线如下左图。
(dB) j
20lgK
波特图
1 10
极坐标图或 奈奎斯特图
0 k
0
(o) 0
ω
·
1
10
ω
图5.3 比例环节K的幅相曲线
图5.4 比例环节的 对数 频率特性曲线
比例环节的对数幅频特性和对数相频特性分别是: L(ω)=20lg| G(jω)|=20lgK 和φ(ω)=0 相应曲线如上右图。
2积分环节
G( s ) 1 1 1 , G( j ) s j 2
A(ω) 称幅频特性,φ(ω)称相频特性。二者统称为频率特性。
说明: 1.在稳态求出的输出信号 与输入信号的幅值比是 的非 线性函数, 称为幅频特性 Y/X | G(j ) | 2.输出信号与输入信号的 相位差是的非线性函数 称 , 为相频特性它描述在稳态情况下 . ,当系统输入不同频率 的谐波信号时 其相位产生超前 0 )或滞后( 0 )的 , ( 特性. 3.幅频特性和相频特性总 称为频率特性 记为 , G(j ) G(j ) e jG(j ) 4.频率特性的求取 G(j ) G(s) s j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用对数坐标图的优势:
① 可以展宽频带; ② 对数特性将乘除变为加减运算; ③ 典型环节可用分段直线(或渐近线)近似表
示; ④ 可用实验方法确定系统的频率特性表达式。
对数幅相特性曲线
尼柯尔斯(Nichols)曲线。对数幅相图的横坐标为 相角,纵坐标为对数幅频特性幅值的分贝数。横 坐标、纵坐标都是线性分度。而ω作为参变量标 在曲线相应点的旁边。
为讨论方便,不考虑重极点
G(s) Y (s) N(s)
N (s)
X (s) D(s) (s p1)(s p2 ) (s pn )
x(t) X sin t
X (s) X
X
s2 2 (s j)(s j)
N (s)
X
Y (s) G(s) X (s) (s p1) (s pn ) s2 2
A() | G( j) | ——幅频特性; ()=G( j) ——相频特性;
关系:
P() A() cos() Q() A() sin()
A() P2 () Q2 () () tan1 Q()
P()
频率特性曲线:
1、极坐标频率特性曲线——奈奎斯特(Nyquist)曲线; 2、对数频率特性曲线——伯德(Bode)曲线; 3、对数幅相特性曲线——尼柯尔斯(Nichols)曲线。
1. 应用奈奎斯特判据,根据系统的开环频率特性来分析 闭环系统稳定性;
2. 根据频率特性和性能指标的关系分析系统的瞬态性能 和稳定性指标;
3. 频率特性可以通过实验方法测得; 4. 可以推广应用于某些非线性系统; 5. 图解方法,直观性强,在工程上得到广泛应用。
5.1 频率特性的基本概念及作图
频率特性定义 频率特性和传递函数的关系 频率特性作图
在联系,可相互转化。
频率特性是频域 中的数学模型。
三、频率特性作图
极坐标频率特性曲线 对数频率特性曲线 对数幅相特性曲线
代数式: G( j) P() jQ() P()——实部; Q() ——虚部;
极坐标式: G( j) | G( j) | G( j) A()() 指数式: G( j) | G( j) | e jG( j) A()e j ()
第五章 频率分析法
引言 第一节 频率特性的基本概念及作图 第二节 典型环节频率特性图 第三节 开环频率特性绘制 第四节 Nyquist稳定判据 第五节 稳定裕度 第六节 开环频率特性与时域指标间关系 第七节 闭环频率特性简介 本章小结
引言
频率响应是指系统对正弦输入的稳态响应 频率响应法是以频率特性为基础研究系统的性能 频率分析法特点:
uo (t)
1
UiT T 2
2te TUi sin(t tan1 T) 1 T 22
当 t 时,有:
lim
t
uo
(t)
Ui sin(t tan1 T) 1 T 22
Uo sin(t uo )
比较输入信号
ui (t) Ui sin t
1、输出电压稳态值是与输入信号同频率的正弦信号; 2、幅值和相角与输入不同,与频率ω和系统参数T有关;
2 21
lg2 lg1 lg2 / 1 lg 2 0.301
频率由1到10的对数分度:
对数坐标图的纵坐标:
• 对数幅频特性曲线的纵坐标:
L() 20lg A() 均匀分度,单位分贝(db)
• 相频特性曲线的纵坐标: 一般以度或弧度为单位进行线性分度。
对数频率特性曲线一般画在半对数坐标纸上。
幅频特性: 相频特性:
A() Y | G( j) |
X () y x G( j)
得到频率特性和传函的关系为:
A()e j() G(s) |s j G( j)
说明:
1. 频率特性适合线性系统或元件; 2. A(ω)和φ(ω)是频率ω的函数,随输入频率变
化而变化,与输入幅值和相角无关; 3. 微分方程、传递函数、频率特性之间具有内
对数频率特性曲线
伯德(Bode)曲线,包括对数幅频特性曲线和相频 特性曲线,应用最多。
对数坐标图的横坐标:横坐标按ω的对数lgω
线性分度,标以ω。
横轴上每一线性单位表示频率的十倍变化,称十 倍频或十倍频程,用符号dec表示。
2 101
lg2 lg1 lg2 / 1 lg10 1
如果ω变化1倍,在对数坐标上变化0.301,称为 倍频程。
n
Ki Kc
Kc
i1 s pi s j s j
n
y(t) Kie pit Kce jt Kce jt i 1
当系统稳定时:
y(t) |t Kce jt Kce jt
写出稳态响应表达式:
Kc
G(s) (s
X j)(s
j)
(s
j) |s j
G( j)X
2j
Kc
G(s)
(s
一、频率特性定义
例:一阶RC网络的频率特性
微分方程:
T
duo (t) dt
uo (t)
ui (t)
若 ui (t) Ui sin t
G(s) Uo(s) 1 Ui (s) Ts 1
则
Ui
(s)
Ui s2 2
Uo(s)
1 Ts
1Ui
(s)
1 Ts 1
Ui s2 2
A Ts 1
Bs c
s2 2
极坐标频率特性曲线
ω:0→∞向量G(jω)在复平面上的运动轨迹。
G(-jω)、 G(jω)共轭,频率特性曲线对称于实轴。
绘制极坐标曲线的方法: 方法一:计算实部和虚部,描点。
G( j) P() jQ()
方法二:计算幅值和相角,描点。
G( j) | G( j) | G( j) A()()
绘制极坐标草图的方法: 1、计算起点和终点; ω为0、∞时,G(jω) 2、计算关键点; 3、给出曲线走向; 4、画出草图。
X j)(s
j)
(s
j) |s j
G( j)X
2j
G( j) | G( j) | e j G( j) | G( j) | e j | G( j) | e j G( j)、G( j)共轭
y(t) X | G( j) | e j[t] e j[t]
2j
X | G( j) | sin(t ) Y sin(t y )
令: A() Uo
1
Ui 1 T 2 2
() tan1 T 0 tan1 T
A(ω)和φ(ω)反映了RC网络频率响应的振幅和相位随频率变换的规律。
:0
A(ω)和φ(ω)联合起来称为系统的频 率特性。
二、频率特性和传函的关系
结论: A()e j() G(s) |s j G( j)