1.1.2集合之间的基本关系讲义
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案
![新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案](https://img.taocdn.com/s3/m/e1e49c87d1f34693daef3e32.png)
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
人教版高中数学必修一1.1.2集合间的基本关系ppt课件
![人教版高中数学必修一1.1.2集合间的基本关系ppt课件](https://img.taocdn.com/s3/m/9041c23a7e21af45b307a85c.png)
【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2
a
1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×
1.1.2集合间的基本关系 课件2(人教A版必修1)
![1.1.2集合间的基本关系 课件2(人教A版必修1)](https://img.taocdn.com/s3/m/c5068e8910a6f524cdbf857b.png)
又 0∈N,但 0∉M,∴M⫋ N.
反思:判断两个集合间的关系时,主要是根据这两个集合中元素的特征,结合有
关定义来判断.对于用列举法表示的集合,只需要观察其元素即可得它们之间的
关系;对于用描述法表示的集合,要从所含元素的特征来分析,分析之前可以用
列举法多取几个元素来估计它们之间可能有什么关系,然后再加以证明.当
m=
.
解析:∵B⊆ A,5∈B,
∴5∈A.∴m=5.
答案:5
3.集合相等与真子集
定义
记法
如果集合 A 是
集
集合 B 的子集,
合
且集合 B 是集
相
合 A 的子集,那 A=B
等
么称集合 A 与
集合 B 相等
如果集合 A⊆ B,
真 子 集
但存在元素 x∈ B,且 x∉A,我们 就称集合 A 是 集合 B 的真子
题型二
判断集合间的关系
【例 2】 集合 M={x|x2+x-6=0},N={x|2x+7>0},试判断集合 M 和 N 的关系.
分析:明确集合 M 和 N 中的元素,再依据有关的定义判断.
解:M={-3,2},N=
x|x
7 2
}
.
∵-3>- 7 ,2>- 7 , 22
∴-3∈N,2∈N.∴M⊆ N.
M⊆ N 和 M⫋ N 均成立时,M⫋ N 较准确地表达了 M 和 N 的关系.
空集是任何非空集合的真子集, 即⌀ ⫋ A(A≠⌀ ).
【做一做 4】 集合 M={x∈R|2x2+3=0}中元素的个数是( ).
A.不确定
B.2
C.1
D.0
解析:由于方程 2x2+3=0 无实根,则 M=⌀ .
1.1.2集合间的基本关系课件(人教版)
![1.1.2集合间的基本关系课件(人教版)](https://img.taocdn.com/s3/m/d212fb7aa66e58fafab069dc5022aaea988f411f.png)
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
示例1:视察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
1.子 集 一般地,对于两个集合,如果A中
练习1:视察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形}; AB
③ A={x|x2-3x+2=0},
B={1,2}.
A=B
3.真子集
示例3:A={1, 2, 7},B={1, 2, 3, 7}, 如果AB,但存在元素x∈B,且
x∈A,称A是B的真子集.
记作AB,或BA.
示例4:考察下列集合,并指出集合中的 元素是什么?
A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
ቤተ መጻሕፍቲ ባይዱ
4.空 集
示例4:考察下列集合,并指出集合中的 元素是什么? A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
A表示的是x+y=2上的所有的点; B没有元素.
不含任何元素的集合为空集,记作.
A.3个 B.4个 C.5个 D.6个
课堂小结
子集:AB任意x∈Ax∈B.
真子集:AB x∈A,x∈B,但存在
x0∈A且x0A. 集合相等:A=BAB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
1.子 集
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
1.1.2集合之间的基本关系讲义
![1.1.2集合之间的基本关系讲义](https://img.taocdn.com/s3/m/369bca5d3d1ec5da50e2524de518964bcf84d2cc.png)
第二讲 集合之间的基本关系【知识点】1.子集.对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。
记作()A B B A ⊆⊇或 读作A 含于B2.维恩图.用平面上封闭曲线的内部代表集合,这种图叫做韦恩图3.集合相等.集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B4.真子集.如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.表示记作BA (或A B), 读作“A 真包含B ”(或“B 真包含于A ”). 5.空集.我们把不含任何元素的集合叫作空集.空集是任何集合的子集,且是任何非空集合的真子集.【知识点透析】1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。
空集是任何集合的子集,是任何非空集合的真子集。
2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。
【例题精讲】1.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1) {},,,a b c d {},a b ;(2) ∅ {}1,2,3;(3) N Q ; (4) 0 R ; (5) d {},,a b c ; (6) {}|35x x << {}|06x x <. 2. 写出集合{a ,b }的所有子集,3. 说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}.(2)P ={x |x 2=1},Q ={-1,1}. AB(3)N ,N*.4.求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 判断集合{}2A x x ==与集合{}240B x x =-=的关系.5.判断集合A 与B 是否相等?(1) A ={0},B = ∅;(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.4.下列各式中,正确的是( )A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x5.已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.6.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.7.选用适当的符号“”或“”填空: (1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.8.设集合{}0,1,2M =,试写出M 的所有子集,和真子集9.已知集合A={x|x2-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a 的值所组成 的集合M.10.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.11.下列四个集合中,表示空集的是( )A.{0}B.},,|),{(22R y R x x y y x ∈∈-=C.},,5|||{N x Z x x x ∉∈=D.},0232|{2N x x x x ∈=-+12.已知集合,,那么( ) (A )(B ) (C ) (D ) 13.设,,若,则实数的取值范围是( ) (A )(B ) (C ) (D )【课堂练习】(一)集合与集合关系的理解 1.已知集合X 满足{}{}X X 求所有满足条件的集合,5,4,3,2,12,1⊆⊆.2.已知集合,,312,,61⎭⎬⎫⎩⎨⎧∈-==⎭⎬⎫⎩⎨⎧∈+==Z n n x x Z z m m x x M ,612{+==p x x P }Z p ∈,则M,N,P 满足的关系是:3.已知集合{}{},,3,2,1A x x B A ⊆==求集合B.(二)空集的理解4.下列集合中:(1){0};(2{}{};)4(;)3(;,0,12φφR n x n x x ∈<+=(){}0,0)5(,是空集的为:( )(三)由集合之间的基本关系球参数5.若{}02=-a x x {}31<<-x x ,则a 的取值范围是( )6.已知集合{},01=-=ax x A 集合{},0322=--=x x x B 若A B ,求a 的值.(四)证明两集合相等.7.集合{},,12Z n n x x X ∈-=={},,14Z k k y y Y ∈±==试证明:X=Y.(五)集合与函数的综合8.设集合{}{}R x R a a x a x x B R x x x x A ∈∈=-+++=∈=+=,,01)1(2,,04222,若,A B ⊆求实数a的取值范围.9.若集合{}{}01,062=+==-+=mx x B x x x A ,且BA ,求m 的值.(六)提升拓展10.若不等式1<x 成立时,不等式[][]0)4()1(<+-+-a x a x 也成立,求a 的取值范围.【教学反思】。
集合间的基本关系讲义
![集合间的基本关系讲义](https://img.taocdn.com/s3/m/8442066afc4ffe473368ab9a.png)
1.1.2 集合间的基本关系一、子集(一)子集:对于两个集合A 、B ,如果集合A 中任意一个元素......都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B (或B ⊇A ),读作“A 含于B ”(或“B 包含A ”)数学语言表示形式为:若对任意的x ∈A 有x ∈B ,则A ⊆B子集关系用文氏图表示为:A ⊆B (或B ⊇A ) 根据子集的定义,我们可以知道A ⊆A ,也就是说任何集合都是它本身的一个子集.对于空集φ,我们规定φA .,.即空集是任何集合的子集..........。
例1:用适当的符号填空0____{0} φ____{0} 2____{2} 2____N {2}____N变式练习1:已知A ={x |x 2-3x +2=0 },B ={1,2},C ={ x |x <8,x ∈N },用适当的符号填空A___________B A___________C {2}__________C 2_________C例2:写出集合{,,,}a b c d 的所有子集。
【解析】集合{,,,}a b c d 的所有子集可以分为五类,即:(1)含有0个元素的子集,即空集φ;(2)含有一个元素的子集:{},{},{},{}a b c d ;(3)含有二个元素的子集:{,},{,},{,},{,},{,},{,}a b a c a d b c b d c d ;(4)含有三个元素的子集:{,,},{,,},{,,},{,,}a b c a b d a c d b c d ;(5)含有四个元素的子集:{,,,}a b c d . 结论:如果集合A 中有n 个元素,则集合A 共有2n 个子集变式练习1:已知集合A ={x ∈N +︱-1≤x <4},则集合A 的子集有_________个。
【解析】:8个(二)、集合相等:如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),则集合A 与集合B 相等,记作集合A =集合B 。
1.1.2集合间的基本关系(优秀经典公开课比赛课件)
![1.1.2集合间的基本关系(优秀经典公开课比赛课件)](https://img.taocdn.com/s3/m/fd6dfe043c1ec5da50e270bc.png)
• (3)从自然语言,符号语言,图形语言三个方面 理解包含关系及相关的概念.
• 3.情感、态度与价值观
• 应用类比思想,在探究两个集合的包含和相等关 系的过程中,培养学习的辨证思想,提高学生用 数学的思维方式去认识世界,尝试解决问题的能 力.
• (二)教学重点与难点
• 重点:子集的概念;难点:元素与子集,即属于 与包含之间的区别.
我们知道实数有相等关系、大小关系,如5=5,5<7,5>3,等等, 类比实数之间的关系,集合之间存在着什么关系呢?
观察下面几个例子,我们一起来研究集合之间的关系. 例1 (1)A={1,2,3},B={1,2,3,4,5}; (2)设A为新华中学高一(2)班全体女生组成的集合,B为这个 班全体学生组成的集合;
是集合B的子集,记为 A B(或 B A),
读作”A含于B”(或”B包含A”).
韦恩图:用平面上封闭曲线的内部代表集合,这 种图称作韦恩图
A B或B AA来自B例1 (3)设C={x|x是两条边长相等的三角形},
D={x|x是等腰三角形}. 通过观察我们发现集合C中任何一个元素都是集 合D中的元素,同时,集合D中任何一个元素也都 是集合C中元素.这样,集合D的元素与集合C的元 素是一样的. 那么我们可以用子集概念来对集合相等作进一 步的数学描述.
我们可以发现,在(1)中,集合A的任何一个元素都是集合B中 的元素,(2)中的集合A与集合B也有这种关系.反过来说,集合A 可以看成是集合B派生的一个集合,那么对于这种关系,我们称集 合A是集合B的子集.
一、子集
定义:对于两个集合A、B,如果集合A中的任意一个元素都 是集合B的元素,我们就说这两个集合有包含关系,称集合A
1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义
![1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义](https://img.taocdn.com/s3/m/39c27a2669eae009591bec35.png)
新教材必修第一册1.2:集合间的基本关系课标解读:1.子集的含义.(理解)2.真子集的含义.(理解)3.集合相等的含义.(理解)4.空集的含义.(理解)5.Veen图.(了解)学习指导:1.准确理解子集的概念,把握子集与真子集之间的关系.2.注意灵活运用集合的三种语言(文字语言、符号语言、图形语言)分析解决有关问题.3.谨防掉进“空集”陷阱.4.本节难点是对相似概念及符号的理解,例如:区别元素与集合,属于与包含等概念及其符号表示.知识导图:教材全解知识点1:Veen图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Veen图.例1-1:用Veen图表示集合之间的关系:}xxB=,是平行四边形xA=x|{|}{是菱形,xxD=是矩形xC=x}|}.,{|{是正方形答案:知识点2:子集例2-2:给出下列说法:①任意集合必有子集;②若集合BA⊆,则A中元素的个数一定少于集合B中的元素个数;③若集合A是集合B的子集,集合B是集合C的子集,集合C是集合D的子集,则集合A是集合D的子集;④若不属于集合A的元素也一定不属于集合B,则集合B是集合A的子集,其中正确的是()A. ②③B.①③④C.①③D.①②④ 答案:B例2-3:设集合}1,1{},,3,1{2+-==a a B a A ,且A B ⊆,则a 的值为 . 答案:-1或2知识点3:集合的相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A=B.也就是说,若B A ⊆且A B ⊆,则A=B.例3-4:集合},12|{Z n n x x X ∈+==,},14|{z k k y y Y ∈±==,试证明Y X =. 答案:(1)设X x ∈0,则,1200+=n x 且.0Z n ∈①若0n 是偶数,可设Z m m n ∈=,20,则Z m m x ∈+=,140,∴Y x ∈0②若0n 是奇数,可设Z m m n ∈-=,120,则Z m m m x ∈-=+-=,141)12(20,∴Y x ∈0 ∴不论0n 是奇数还是偶数,都有Y x ∈0. ∴Y X ⊆. (2)设Y y ∈0,则.,141400000Z k k y k y ∈-=+=,或∵Z k k k y k k y ∈+-⋅=-=+⋅=+=00000001)12(21412214,,或, ,12,200Z k Z k ∈-∈ ∴X y ∈0,则X Y ⊆ 由(1)(2)得,Y X =. 知识点4:真子集例4-5:在“新冠肺炎”疫情期间,某社区男、女党员自发组成自愿者队伍,参加社区防疫工作.若集合A={参与防疫工作的志愿者},集合B={参与防疫工作的男党员},集合C={参与防疫工作的女党员},则下列关系正确的是( ) A. B A ⊆ B. C B ⊆ C.A C ⊄ D.B ⫋A 答案:D例4-6:指出下列各组集合之间的关系: (1))};1,1(),1,1(),1,1(),1,1{(},1,1{----=-=B A (2)}6,3,2{=A ,B=}12|{的约数是x x ;(3)}|{}|{是等腰三角形,是等边三角形x x B x x A ==; (4)},12|{+∈-==N n n x x M ,},12|{+∈+==N n n x x N .答案:(1)A 与B 无包含关系;(2)A ⫋B ;(3)A ⫋B ;(4)N ⫋M .知识点5:空集 1.空集的定义一般地,我们把不含任何元素的集合叫做空集,记为∅. 2.空集的性质(1)空集是任何集合的子集;(2)空集的任何非空集合的真子集,即∅⫋A (A 为非空集合). 由上述性质可知空集只有一个子集,即它本身. 辨析明理:∅、0、{0}、{ ∅}之间的关系:例5-7:下面四个集合中,表示空集的是( ). A. {0} B.},01|{2R x x x ∈=+ C.},01|{2R x x x ∈>- D.},,0|),{(22R y R x y x y x ∈∈=+ 答案:B例5-8:若集合==+-=}02|{2m x x x A ∅,则实数m 的取值范围是( ) A.1-<m B.1<m C.1>m D.1≥m 答案:C知识点6:有限集合的子集个数 对于集合A 的子集我们有如下结论: 集合AA的所有子集子集个数 真子集个数 非空真子集个数}{a ∅,}{a 122= 1 0 },{b a ∅,}{a ,}{b ,},{b a 224=3 2 },,{c b a∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a328=76猜想:A=},...,,{21n a a a n 2 12-n 22-n例6-9:已知集合},,01234|),{(++∈∈<-+=N y N x y x y x A ,则集合A 的子集个数为( ).A.3B.4C.7D.8 答案:D例6-10:已知集合M 满足}2,1{⫋M }5,4,3,2,1{⊆,则有满足条件的集合M 的个数是( ).A.6B.7C.8D.9 答案:B知识点7:集合的图示法 1.Veen 图(1)用Veen 图表示集合间基本关系,如图所示:(2)用Veen图表示集合之间的关系:A⫋B⫋C可表示为如图:2.数轴法对于由连续实数组成的集合,通常用数轴表示,这也属于集合表示的图示法.在数轴上,若端点值是集合中元素,则用实心点表示;若端点值不是集合中的元素,则用空心点表示.集合}3<-xx≤xx与用数轴分别表示如图:{{≥}5|1|例7-11:图中反映的是“文学作品”、“散文”、“小说”、“叙事散文”这四个文学概念之间的关系,请在下面的空格上填入适当的内容:A为;B为;C为;D为 .答案:{小说} {文学作品} {叙述散文} {散文}例7-12:已知集合A=}2{<≤-xx,则集合A与B的关系是 .|2{-≥x|x,集合B=}8答案:B⫋A题型与方法例13:指出下列各组集合之间的关系: (1)}.50|{},51|{<<=<<-=x x B x x A (2)}.,4|{},,2|{Z n n x x B Z n n x x A ∈==∈==(3)}.,2)1(1|{},0|{2Z n x x B x x x A n∈-+===-= (4)}.0,00,0|),{(},0|),{(<<>>=>=y x y x y x B xy y x A 或 (5)}.,54|),{(},,1|{22++∈+-==∈+==N a a a x y x B N a a x x A答案:(1)B ⫋A ;(2)B ⫋A ;(3)A=B ;(4)A=B ;(5)B A ⊆;(6)A ⫋B.例14:已知集合}|{},3,2,1{A x x Y A ⊆==,则下列结论错误的是( ) A.Y ⊆}1{ B.Y A ∈ C.∅Y ⊆ D.{∅}⫋Y 答案:A变式训练:已知集合},612|{},312|{},,61|{Z c c x x C Z b b x x B Z a a x x A ∈+==∈-==∈+==,,则A ,B ,C 满足的关系是( )A. A=B ⫋CB. A ⫋B=CC. A ⫋B ⫋CD.B ⫋C ⫋A 答案:B题型2:确定集合的子集、真子集例15:设}0)45)(16(|{22=++-=x x x x A ,写出集合A 的子集,并指出其中哪些是它的真子集.答案:集合A 的子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}、{-4、-1、4},集合A 的真子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}.例16:已知集合A={1,3,5},则集合A 的所有非空子集的元素之和为 . 答案:36变式训练:已知集合A=}065|{},033|{22=+-∈==++∈x x R x B x x R x ,A P ⊆⫋B ,求满足条件的集合P. 答案:∅或{2}或{3}例17:已知}012|{},082|{222=-++∈==+-∈=a ax x R x B x x R x A ,若A=B ,则实数a 的取值范围为 . 答案:}44|{>-<a a a 或例18:已知集合}.121|{},52|{-≤≤+=≤≤-=m x m x B x x A (1)若B ⫋A ,求实数m 的取值范围; (2)若B A ⊆,求实数m 的取值范围.答案:(1)}.3|{≤m m (2)不存在m 使得B A ⊆.变式训练:已知}|{},31|{a x x B x x A <=<<-=,若B A ⊄,则实数a 的取值范围是( ). A.}3|{<a a B.}3|{≤a a C.}1|{->a a D.}1|{-≥a a 答案:A例19:已知集合},|{},,12|{},1,1|{2A x x z z C A x x y y B R a a a x x A ∈==∈-==∈->≤≤-=且,是否存在实数a 使得B C ⊆?若存在,求出实数a 的取值范围;若不存在,请说明理由. 答案:当1=a 时,B C ⊆易错题型易错1:混淆属于关系和包含关系例20:已知集合A={0,1},B=}|{A x x ⊆,则下列关于集合A 与B 的关系正确的是( ) A.A B ⊆ B.A ⫋B C.B ⫋A D.B A ∈ 答案D易错2:忽略对参数的讨论例21:已知集合},0)1(|{},0|{22=--===x a x x F x x E 判断集合E 和F 的关系. 答案:①当1=a 时,E=F ;②当1≠a 时,E ⫋F.易错3:忽略空集例22:已知集合A={-1,1},B=A B ax x x ⊆+=若},1|{,则实数a 的所有可能取值组成的集合为( ).A.{-1}B.{1}C.{-1,1}D.{-1,0,1} 答案:D易错4:利用数轴求参数范围时,忽略端点值是否能取到例23:已知集合},31|{},54|{R a a x a x B x x x A ∈+≤≤+=-<≥=或,若A B ⊆,则a 的取值范围为 .答案:}38|{≥-<a a a 或创新升级例24:已知非空集合21A A ,是集合A 的子集,若同时满足两个条件:(1)若21A a A a ∉∈,则;(2)若12A a A a ∉∈,则,则称),(21A A 是集合A 的“互斥子集”,并规定),(21A A 与),(12A A 为不同的“互斥子集组”,则集合A={1,2,3,4}的不同“互斥子集组”的个数是 . 答案:50组感知高考考向1:集合间关系判定及应用例25:已知集合A={1,2,3},B={2,3},则( )A.A=BB.A B ∈C.A ⫋BD.B ⫋A答案:D例26:已知集合A=},1{a ,B={1,2,3},那么( ).A.若3=a ,则B A ⊆B.若B A ⊆,则3=aC.若3=a ,则B A ⊄D.若B A ⊆,则2=a 答案:C 考向2 :子集的个数 例27:已知集合A=},023|{2R x x x x ∈=+-,B=},50|{N x x x ∈<<,则满足条件B C A ⊆⊆的集合C 的个数为( ).A. 1B. 2C. 3D. 4答案:D基础巩固:1.已知下列四个命题:①;则且若C A C B B A ⊆⊆⊆,②且若B A ⊆B ⫋C ,则A ⫋C ;③若A ⫋B 且B ⊆C ,则A ⫋C ;④若A ⫋B 且B ⫋C ,则A ⫋C.其中正确命题的个数是( )A. 1B. 2C. 3D. 42.满足M a ⊆}{⫋},,,{d c b a 的集合M 共有( )A.6个B. 7个C. 8个D.15个3.已知集合U=R ,则正确表示集合U ,M={-1,0,1},N=}0|{2=+x x x 之间的Veen 图是().4.集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )A.N M =B.N ⫋MC.M ⫋ND.M 与N 没有相同的元素5.设结合A={-1,1},集合B=},1|{R a ax x ∈=,则使得A B ⊆的a 的所有取值构成的集合是 .6.已知7.已知集合A=}.52|{≤≤-x x(1)若}126{-≤≤-=⊆m x m B B A ,,求实数m 的取值范围;(2)是否存在实数m ,使得A=B ,}126{-≤≤-=m x m B ?若存在,求出实数m 的范围;若不存在,请说明理由.综合提升:8.集合A=},,1{y x ,B=}2,,1{2y x ,若A=B ,则实数x 的取值集合为( ) A.{21} B.{2121-,} C.{210,} D.{21210-,,}9.下列四个结合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-10.集合},54|{2R a a a x x A ∈+-==,},344|{2R b b b y y B ∈++==,则下列关系正确的是( ). A. A=B B.B ⫋A C.A B ⊆ D.A B ⊄11.同时满足①}5,4,3,2,1{⊆M ,②M a M a ∈-∈6,且的非空集合M 的个数为( )A. 16B.15C. 7D. 612.若一个集合中含有n 个元素,则称该元素集合为“n 元集合”,已知集合}4,3,21,2{-=A ,则其“2元子集”的个数为( )A. 6B. 8C. 9D. 1013.设集合A=}023|{2=+-x x x ,集合B=},04|{2为常数a a x x x =+-,若A B ⊆,则实数a 的取值范围是 .14.已知集合A=}40|{≤<∈x Z x ,若A M ⊆,且M 中至少有一个偶数,则这样的集合M 的个数为 .15.若规定E=},...,,{1021a a a 的子集},...,,{21ni i i a a a 为E 的第k 个子集,其中1112...2221---+++=ni i i k ,则:(1)},{31a a 是E 的第 个子集;(2)E 的第211个子集为 .16.已知三个集合}02|{}01|{},023|{222=+-==-+-==+-=bx x x C a ax x x B x x x A ,,同时满足B ⫋A ,C ⊆A 的实数b a ,是否存在?若存在,求出b a ,的所有值;若不存在,请说明理由.参考答案1. D2. B3. B4. C5. {-1,0,1}6. }41|{≤a a7. (1)}43|{≤≤m m ;(2)不存在.8. A9. D10.B11.C12.A13.}4|{≥a a14. 1215.(1)5;(2)},,,,{87521a a a a a .16.存在2222,23,2<<-===b a b a 或满足要求.。
第一章 1.1 1.1.2 集合间的基本关系
![第一章 1.1 1.1.2 集合间的基本关系](https://img.taocdn.com/s3/m/4957aa403c1ec5da50e27071.png)
②当 B={1}或 B={2}时, 方程 x2-x+2m=0 有两个相同的实数解 x=1 或 x=2, 1 1 2 因此其判别式 Δ=1-8m=0,解得 m= ,代入方程 x -x+2m=0 解得 x= , 8 2 1 矛盾,显然 m= 不符合要求; 8
人教A版数学·必修1
返回导航
上页
下页
③当 B={1,2}时, 方程 x2-x+2m=0 有两个不相等的实数解 x=1 或 x=2, 因此 1+2=1,2m=2.显然第一个等式不成立. 1 综上所述,m> . 8
人教A版数学·必修1
返回导航
上页
下页
1.1.2
集合间的基本关系
人教A版数学·必修1
返回导航
上页
下页
考
纲
定
位
重
难
突
破
1.理解集合之间的包含和相等的含义,重点:1.集合之间的包含与相等关系.
能识别给定集合的子集. 2.在具体情境中,了解全集与空集 的含义. 2.子集、真子集的含义和判断. 难点:1.判断集合之间的关系. 2.空集的理解和应用.
人教A版数学·必修1
返回导航
上页
下页
(1)求集合的子集问题时,一般可以按照集合的元素个数进行分类,再依次找出每 类中符合要求的集合. (2)解决这类问题时,还要注意两个比较特殊的集合,即∅和集合本身. (3)集合子集的个数: 求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的 子集. 集合的子集、真子集个数的规律为:含 n 个元素的集合有 2n 个子集,有 2n-1 个 真子集,有 2n-2 个非空真子集.写集合的子集时,空集和集合本身易漏掉.
人教A版数学·必修1
返回导航
1.1.2 集合间的基本关系
![1.1.2 集合间的基本关系](https://img.taocdn.com/s3/m/70f3121c360cba1aa911da49.png)
16
…
…
…
n个元素
2n
返回
思维训练:集合A={1,2,3,4,5,6,7,8,9,10},将 集合A的子集中的所有元素相加所得的和是 多少?
试一试
2.已知A {x | 2 x 5},B {x | a 1 x 2a 1}, B A,求实数a的取值范围.
例3 设A={x,x2,xy}, B={1,x,y},且 A=B,求实数x,y的值.
数学语言表示形式: 若对任意x∊A,有x ∊B,则 A⊆B。
若A不是B的子集,则记作:A⊈B(或B ⊉A) 例:A={2,4},B={3,5,7} ; 则A⊈B。
A⊆B的图形语言
A B
用平面上封闭 的曲线的内部 表示集合这图
叫轴直观表示:
如:{x| x>3}表示为
做一做
例4:已知A{x|x=8m+14n,m,n ∈Z} , B ={x|x=2k,k ∈Z}。
(1)数2和集合A的关系如何? (2)集合A与集合B的关系如何
课堂小结:
• 今天你学到了什么知识? • 你能用自己的话说说吗?
A⊊B, B⊊C ⇒ A⊊C。
• 例1、 判 断 下 列 关 系 式 : ① {0}; ② {0}; ③ {0}; ④0 {0}; ⑤{a} {a, b}; ⑥ {}; ⑦ {}; ⑧ {}; ⑨{a} { x | x {a, b}},⑩{(0,0)}={0}
其 中 正 确 的 是③⑥⑦⑨ 。
02345
x
集合相等
• 用子集概念描述:如果集合A 是集合B的子集( A⊆B) 且集合B也是集合A的子集( B⊆A)就说A与B相等, 记A=B。即 A⊆B, B⊆A⇔A=B。
类似于a≥b,b≥a则a=b
1.1.2_集合间的基本关系_课件(人教A版必修1)
![1.1.2_集合间的基本关系_课件(人教A版必修1)](https://img.taocdn.com/s3/m/8c21d30b6c85ec3a87c2c512.png)
③从集合之间的关系看,Ø⊆{Ø},Ø {Ø}. (2)分别写出集合{a},{a,b}和{a,b,c}的所有子集, 通过子集个数你能得出一个规律吗?
提示:集合{a}的所有子集是Ø,{a},共有2个子集; 集合{a,b}的所有子集是Ø,{a},{b},{a,b},共 有4个,即22个子集; 集合{a,b,c}的所有子集可以分成四类:即Ø;含 一个元素的子集:{a},{b},{c};含两个元素的子集{a, b},{a,c},{b,c};含三个元素的子集{a,b,c}.共有 8个,即23个子集. 规律:集合{a1,a2,a3,…,an}的子集有2n个;真 子集有(2n-1)个;非空真子集有(2n-2)个.
图6 当a<1时,B=Ф,此时B⊆A成立. 综述,当a≤2时,B⊆A.
• 类型三 集合相等及应用 • [例4] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}, 若A=B,求c的值.
[解]
a+b=ac ①若 2 a+2b=ac
,消去b得a+ac2-2ac
=0,即a(c2-2c+1)=0, 当a=0时,集合B中的三个元素相同,不满足集 合中元素的互异性, 故a≠0,c2-2c+1=0,即c=1. 当c=1时,集合B中的三个元素也相同, ∴c=1舍去,即此时无解.
[例3]
已知集合A={x|-2≤x≤5},B={x|m+
1≤x≤2m-1},若B⊆A,求实数m的取值范围.
-2≤m+1 2m-1≤5
[错解] 欲使B⊆A,只需
⇒-
3≤m≤3. ∴m的取值范围是-3≤m≤3.
[错因] 空集是一个特殊的集合,是任何集合 的子集,因此需要对B=Ø与B≠Ø两种情况分别确 定m的取值范围.
3.对于A B可以分为两类去讨论: (1)A=Ø,(2)A≠Ø,特别注意不要遗漏A=Ø的 情况。在解决子集的有关问题时,常常需要数形结 合,借助于数轴,通过图示找到相应的关系式,从而 使问题获得解决.
高中数学高一上册第一章-1.1.2集合之间的关系课件
![高中数学高一上册第一章-1.1.2集合之间的关系课件](https://img.taocdn.com/s3/m/3b617808a98271fe910ef9c9.png)
读作 “集合A 等于B 集合” 显然 若 A B 且 B A,则 A B
想一想用图示法怎么表示A=B?
三、真子集
对于两个集合 A 和 B , 如果 A B ,且 B 中至少有一个元素不属于 A
那么集合 A 叫做集合B 的真子集.
记作
A B ( B A )
读作 “ A 真包含于B ” (“B 真包含A ”)
70,1 0,1
例3.求出所有符合条件的集合C (1) C{1,2,3}
(2) C {a , b}
(3) {1,2,3} C{1,2,3,4,5} 解: (1) C 可以是以下集合: , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } (2) C 可以是以下集合: ,{a},{b} (3) C 可以是以下集合: { 1 ,2 ,3 ,4 } ,{ 1 ,2 ,3 ,5 } ,{ 1 ,2 ,3 ,4 ,5 }解毕
当B=时, a = 0
当B={-2}时,a = 1
当B={3}时,a
=
2
1
3
解毕
有勇气承担命运这才是英雄好汉。——黑塞 说话不要有攻击性,不要有杀伤力,不夸已能,不扬人恶,自然能化敌为友。 树立必信的信念,不要轻易说“我不行”。志在成功,你才能成功。 不会生气的人是愚者,不生气的人乃真正的智者。 友谊要像爱情一样才温暖人心,爱情要像友谊一样才牢不可破。 每天都将自己最好的一面展示给别人。——杨丽娜 我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬起来。 我们不能选择命运,但是我们能改变命运。
答:x2,y5.
例 5 : 已 知 集 合 A = { x | x 2 x 6 0 } 与 集 合 B = {x |a x 1 0 }
人A版数学必修1讲义: 第1章 1.1.2 集合间的基本关系
![人A版数学必修1讲义: 第1章 1.1.2 集合间的基本关系](https://img.taocdn.com/s3/m/29dfe949168884868762d6f2.png)
1.1.2集合间的基本关系1.理解集合之间的包含与相等的含义.(重点)2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)[基础·初探]教材整理1子集与真子集阅读教材P6~P7第一段,完成下列问题.1.子集与真子集A B(或B A)用平面上封闭曲线的内部代表集合,这种图称为Venn图.3.集合的相等(1)条件:A⊆B且B⊆A;(2)表示:A=B;(3)Venn图:.判断(正确的打“√”,错误的打“×”)(1)0⊆{x|x<5,x∈N}.()(2)设A是一个集合,则A A.()(3)若集合A中有3个元素,则集合A共有7个真子集.()【解析】(1)×.“⊆”用来表示集合与集合间的关系,所以(1)错误.(2)×.集合A是它本身的子集,但不是真子集,故(2)错误.(3)√.若集合A的元素个数为n,则其真子集的个数为2n-1,(3)正确.【答案】(1)×(2)×(3)√教材整理2空集阅读教材P7第二段和第三段,完成下列问题.1.定义:不含任何元素的集合,叫做空集.2.符号表示为:∅.3.规定:空集是任何集合的子集.下列四个集合中,是空集的为()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}【解析】满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅.【答案】B教材整理3子集的性质阅读教材P7“思考”以下部分,完成下列问题.子集的性质:(1)任何一个集合是它本身的子集,即A⊆A;(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.对于集合A,B,C,若A⊆B,且B C,那么A与C的关系是________.【解析】由子集的性质可知A C.。
1.1.2 集合间的基本关系
![1.1.2 集合间的基本关系](https://img.taocdn.com/s3/m/4b9370e608a1284ac8504360.png)
1.1.2 集合间的基本关系一、子集1、定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含包含关系,称集合A 为集合B 的子集2、记法与读法:记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”)3、结论(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,若A ⊆B ,且B ⊆C ,则C A ⊆4、对子集概念的理解(1)集合A 是集合B 的子集的含义是:集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A 能推出x ∈B .例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A 中存在着不是集合B 的元素,那么集合A 不包含于B ,或B 不包含A .此时记作A B 或B ⊉A .(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N ,“∈”只能用于元素与集合之间.如0∈N ,而不能写成0⊆N.二、集合相等1、集合相等的概念如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作B A =.2、对两集合相等的认识(1)若A ⊆B ,又B ⊆A ,则A =B ;反之,如果A =B ,则A ⊆B ,且B ⊆A .这就给出了证明两个集合相等的方法,即欲证A =B ,只需证A ⊆B 与B ⊆A 同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.三、真子集1、定义:如果集合A ⊆B ,但存在元素A x ∈,且B x ∈,我们称集合A 是集合B 的真子集2、记法与表示:3、对真子集概念的理解(1)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .(2)若A 不是B 的子集,则A 一定不是B 的真子集.四、空集1、定义:我们把不含任何元素的集合,叫做空集2、记法:∅3、规定:空集是任何集合的子集,即∅⊆A4、特性:(1)空集只有一个子集,即它的本身,∅⊆∅(2)A ≠∅,则∅真包含A5、∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是( B )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2 C.3 D.4题型二、有限集合子集的确定例2(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.[解析](1)集合M的真子集所含有的元素的个数可以有0个,1个或2个,含有0个为∅,含有1个有3个真子集{1},{2},{3},含有2个元素有3个真子集{1,2}{1,3}和{2,3},共有7个真子集,故选B.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.[活学活用]非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.解析:由“若a∈S,则6-a∈S”知和为6的两个数都是集合S中的元素,则()集合S中含有1个元素:{3};集合S中含有2个元素:{2,4},{1,5};集合S中含有3个元素:{2,3,4},{1,3,5};集合S中含有4个元素:{1,2,4,5};集合S中含有5个元素:{1,2,3,4,5}.故满足题意的集合S共有7个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.[解]当B=∅时,只需2a>a+3,即a>3;当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.[活学活用]1、已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围. 解:(1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1}且A ⊆B , 如图作出满足题意的数轴:∴⎩⎪⎨⎪⎧ a >0,1a≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a } ∵A ⊆B ,如图所示, ∴⎩⎪⎨⎪⎧ a <0,2a≥-1,1a ≤1,∴a ≤-2.综上所述,a 的取值范围是{a |a =0或a ≥2或a ≤-2}.2、已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.解:A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有⎩⎪⎨⎪⎧Δ=0,a 2-1=0,∴a =-1.(3)当B ={-4}时,有⎩⎪⎨⎪⎧Δ=0,a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.课堂练习1.给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有( )A .0个B .1个C .2个D .3个解析:由空集的性质可知,只有④正确,①②③均不正确.答案:B2.已知A ={x |x 是菱形},B ={x |x 是正方形},C ={x |x 是平行四边形},那么A ,B ,C 之间的关系是 ( B )A .A ⊆B ⊆C B .B ⊆A ⊆C C .A B ⊆CD .A =B ⊆C3.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.解析 :∵B ⊆A ,B ={3,4},A ={-1,3,m}∴m ∈A ,∴m =4.答案:44.集合A ={x|0≤x<3且x ∈N}的真子集的个数为________.解析:由题意得A ={0,1,2},故集合A 有7个真子集.答案:75.已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:(1)若A 是B 的真子集,即A B ,故a>2.(2)若B 是A 的子集,即B ⊆A ,则a ≤2.(3)若A =B ,则必有a =2.课时跟踪检测(三) 集合间的基本关系一、选择题1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( )A .A ⊆BB .A ⊇BC .A BD .A B2.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( ) A.1 B.-1C.1或-1 D.0,1或-14.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( ) A.6 B.5C.4 D.35.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( ) A.P M B.M PC.M=P D.M P二、填空题6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.答 案课时跟踪检测(三)1.选D 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.5.选C ∵⎩⎪⎨⎪⎧ x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P .6.解析:∵y =(x -1)2-2≥-2,∴M ={y |y ≥-2}.∴N M .答案:N M7.解析:由Venn 图可得AB ,CD B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.答案:小说 文学作品 叙事散文 散文8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意.当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.答案:{0,1,-1}9.解:由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.10.解:化简集合A 得A ={x |-2≤x ≤5}.(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)①当m ≤-2时,B =∅⊆A ;②当m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。
高中数学 第1章 集合与函数概念 1.1.2 集合间的基本关系课件 a必修1a高一必修1数学课件
![高中数学 第1章 集合与函数概念 1.1.2 集合间的基本关系课件 a必修1a高一必修1数学课件](https://img.taocdn.com/s3/m/050fcbf176c66137ef0619ff.png)
4.集合间关系的性质 (1)任何一个集合都是它本身的子集,即 A⊆A. (2)对于集合 A,B,C, ①若 A⊆B,且 B⊆C,则 A⊆C; ②若 A B,B C,则 A C. (3)若 A⊆B,A≠B,则 A B.
2021/12/12
第七页,共三十二页。
[基础自测] 1.思考辨析 (1)空集中只有元素 0,而无其余元素.( ) (2)任何一个集合都有子集.( ) (3)若 A=B,则 A⊆B 或 B⊆A.( ) (4)空集是任何集合的真子集.( )
2.若集合 A={x|1<x<b},试结合 b 的取值,指出 A 集合中的元素.
提示:当 b≤1 时,A=∅;当 b>1 时,A 中的元素是由满足不等式 1<x<b 的实 数组成的.
2021/12/12
第二十页,共三十二页。
例 3 已知集合 A=|x|-2≤x≤5},B={x|m+1≤x≤2m-1},若 B A,求实数 m 的取值范围. 思路探究: B={x|m+1≤x≤2m-1} ―分―B结=―合∅―数和―轴B―≠→∅
∴∴2m2m2mmm++- --1111≤ ≤ 1>≥>--mm5++,22,,11,,
即即mmmmmm≥>≤≥ ≤ >22- 3,3-,,,33,, ∴∴mm不不存存在在..
即即不不存存在在实实数数
m m
使使
AA⊆ ⊆BB..
2021/12/12
第二十四页,共三十二页。
[规律方法] 1.利用集合的关系求参数问题
(1)利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含
参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需
特别注意端点问题.
1.2集合间的基本关系-人教A版(2021)高中数学必修第一册同步讲义
![1.2集合间的基本关系-人教A版(2021)高中数学必修第一册同步讲义](https://img.taocdn.com/s3/m/07edcbc7227916888586d716.png)
第一章 集合与常用逻辑用语1.2集合间的基本关系【课程标准】1. 理解集合之间包含和相等的含义,能识别给定集合的子集;2. 能用符号和Venn 图表示集合间的关系;3. 掌握列举有限集的所有子集的方法,掌握规律。
【知识要点归纳】1.子集(1)定义:一般地,对于两个集合A 、B ,如果集合A 中 所有 元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“ A 包含于B ”(或“ B 包含A ”)。
.A AAA B B C A C ⊆Φ⊆⊆⊆⊆(2)注 ① ② ③若,,则2.集合相等定义:如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,记作 A=B3.真子集(1)定义:如果A ⊆B ,但存在元素x ∈B ,且x ∉A ,我们称集合A 是集合B 的真子集,记作A B (或B A ).Φ≠Φ⇒(2)注①A 的子集中除A 本身外,都是A 的真子集②A (A ) ③A B ,B C A C4.空集5.venn 图4.子集与真子集个数与元素关系(举例说明)总结例1 (1)下列各式中,正确的个数是( )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1 B.2 C.3 D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.跟踪训练:若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是( ) A.M T B.M⊆T C.M=T D.M ∈T用 Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.例2 (1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为( )A.-2 B.4 C.0 D.以上答案都不是[跟踪训练](1)已知集合M={x∈Z|1≤x≤m},若集合M有4个子集,则实数m=( ) A.1 B.2 C.3 D.4(2)若集合A {1,2,3},且A中至少含有一个奇数,则这样的集合有________个.例12 已知集合A ={x |a <x <5},B ={x |x ≥2},求满足A ⊆B 的实数a 的取值范围.{}{}+=14,12,(1)(2)A x x B x a x a x N a -<<=+<<∈⊆例3 已知集合若时,用列举法表示出集合A ,并求出A 的真子集的个数若B A ,求实数的取值范围[跟踪训练] 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.例4 已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.注意:集合相等则元素相同,但要注意集合中元素的互异性,防止错解.[跟踪训练] 含有三个实数的集合可表示为,也可表示为{a 2,a +b,0},求a .,b .⎭⎬⎫⎩⎨⎧1,,a b a【当堂检测】一.选择题(共4小题)1.已知集合M的非空子集的个数是7,则集合M中的元素的个数是()A.3B.4C.2D.52.已知集合A={x|a≤x<3},B=[1,+∞),若A是B的子集,则实数a取值范围为()A.[0,3)B.[1,3)C.[0,+∞)D.[1,+∞)3.下列关系正确的是()A.{0}∈{0,1,2}B.{0,1}≠{1,0}C.{0,1}⊆{(0,1)}D.∅⊆{0,1} 4.集合M={y|y=,x∈N,y∈N}的非空子集个数是()A.3B.7C.15D.31二.填空题(共2小题)5.已知集合A={x|mx2﹣2x+m=0}仅有两个子集,则实数m的取值构成的集合为.6.已知A={x||2x﹣3|<a},B={x||x|≤10},且A⫋B,则实数a的取值范围是.三.解答题(共1小题)7.已知y=x2﹣2mx+1,m为常数.(1)若y≤0的解集为空集,求m的取值范围.(2)若A={x|1≤x≤2}是B={x|x2﹣2mx+1≤0}的子集,求m的取值范围.当堂检测答案一.选择题(共4小题)1.已知集合M的非空子集的个数是7,则集合M中的元素的个数是()A.3B.4C.2D.5【分析】若集合M中有n个元素,则集合M的非空子集的个数是2n﹣1.【解答】解:设集合M中有n个元素,∵集合M的非空子集的个数是7,∴2n﹣1=7,解得n=3,∴集合M中元素的个数是3.故选:A.【点评】本题考查集合元素个数的求法,考查子集、真子集的定义等基础知识,考查运算求解能力,是基础题.2.已知集合A={x|a≤x<3},B=[1,+∞),若A是B的子集,则实数a取值范围为()A.[0,3)B.[1,3)C.[0,+∞)D.[1,+∞)【分析】根据条件讨论A是否为空集:A=∅时,a≥3;A≠∅时,,解出a的范围即可.【解答】解:∵A={x|a≤x<3},B=[1,+∞),且A⊆B,∴①A=∅时,a≥3;②A≠∅时,,解得1≤a<3,∴综上,实数a的取值范围为[1,+∞).故选:D.【点评】本题考查了子集的定义,描述法、区间的定义,分类讨论的思想,考查了计算能力,属于基础题.3.下列关系正确的是()A.{0}∈{0,1,2}B.{0,1}≠{1,0}C.{0,1}⊆{(0,1)}D.∅⊆{0,1}【分析】根据集合元素与集合属于关系的定义,可判断A,根据集合元素的无序性及集合相等的定义可判断B,根据集合与集合的关系可判断C,根据空集的定义,可判断D.【解答】解:A,“∈”用于表示集合与元素的关系,故:{0}∈{0,1,2}错误;B,根据集合元素的无序性,可得{0,1}={1,0},故B错误;C,集合{(0,1)}中只有一个元素(0,1),集合{0,1}中有两个元素0,1,故C错误;D,空集是任一集合的子集,故∅⊆{0,1}正确.故选:D.【点评】本题考查的知识点是元素与集合关系,空集的性质及集合相等的概念,熟练掌握集合的基本概念及性质是解答本题的关键.4.集合M={y|y=,x∈N,y∈N}的非空子集个数是()A.3B.7C.15D.31【分析】分别找出适合条件的变量y,求出相应的x值,则集合的元素可求,从而求出集合的非空子集.【解答】解:∵M={y|y=,x∈N,y∈N},∴y=1,2,4,8,对应的x=7,3,1,0,即满足条件的y有4种情况,故M={1,2,4,8}.∴M的非空子集个数是:24﹣1=15,故选:C.【点评】本题考查了子集,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个,此题是基础题.二.填空题(共2小题)5.已知集合A={x|mx2﹣2x+m=0}仅有两个子集,则实数m的取值构成的集合为{0,1,﹣1}.【分析】由集合A={x|mx2﹣2x+m=0}仅有两个子集,说明集合中元素只有一个,同理讨论二次项系数与0的关系,结合根与系数得到关系求m.【解答】解:由题意,①当m=0时,方程为﹣2x=0,解得x=0,满足A={0}仅有两个子集;②当m≠0时,方程有两个相等实根,所以△=4﹣4m2=0,解得m=±1;所以实数m的取值构成的集合为:{0,1,﹣1}.故答案为:{0,1,﹣1}.【点评】本题考查集合的求法,考查子集与真子集等基础知识,考查运算求解能力,是基础题.6.已知A={x||2x﹣3|<a},B={x||x|≤10},且A⫋B,则实数a的取值范围是(﹣∞,17].【分析】根据题意,可得B,分两种情况讨论A包含于B时a的取值范围,即可得答案.【解答】解:根据题意,易得B={x|﹣10≤x≤10},若A是B的真子集,分两种情况讨论:当a≤0时,A=∅,此时A包含于B;当a>0时,|2x﹣3|<a⇒<x<,若A包含于B,则有⇒a≤17,a的取值范围为(0,17];故答案为:(﹣∞,17].【点评】本题考查集合间的相互包含关系及运算,应特别注意不能忽略对空集这一情况的讨论,属于基础题.三.解答题(共1小题)7.已知y=x2﹣2mx+1,m为常数.(1)若y≤0的解集为空集,求m的取值范围.(2)若A={x|1≤x≤2}是B={x|x2﹣2mx+1≤0}的子集,求m的取值范围.【分析】(1)利用△<0即可求出m的取值范围;(2)函数f(x)=x2﹣2mx+1,利用二次函数根的分布列出不等式组,解出m的取值范围即可.【解答】解:(1)∵y≤0的解集为空集,∴△=(﹣2m)2﹣4<0,解得:﹣1<m<1,所以m的取值范围为:(﹣1,1).(2)设函数f(x)=x2﹣2mx+1,∵A={x|1≤x≤2}是B={x|x2﹣2mx+1≤0}的子集,∴,解得:,所以m的取值范围为:[,+∞).【点评】本题主要考查了一元二次不等式,考查了集合间的基本关系,以及二次函数根的分布问题,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 集合之间的基本关系
【知识点】
1.子集.对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。
记作
()A B B A ⊆⊇或 读作A 含于B
2.维恩图.
用平面上封闭曲线的内部代表集合,这种图叫做韦恩图
3.集合相等.
集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B
4.真子集.
如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.
表示记作B
A (或A B), 读作“A 真包含
B ”(或“B 真包含于A ”). 5.空集.
我们把不含任何元素的集合叫作空集.空集是任何集合的子集,且是任何非空集合的真子集.
【知识点透析】
1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。
空集是任何集合的子集,是任何非空集合的真子集。
2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。
【例题精讲】
1.用符号“⊆”、“⊇”、“∈”或“∉”填空:
(1)
{},,,a b c d {},a b ;(2) ∅ {}1,2,3; (3) N Q ; (4) 0 R ;
(5) d {},,a b c ; (6) {}|35x x << {}|0
6x x <.
2. 写出集合{a ,b }的所有子集,
3. 说出下列每对集合之间的关系. A
B
(1)A ={1,2,3,4,},B ={3,4}.
(2)P ={x |x 2=1},Q ={-1,1}.
(3)N ,N*.
4.求下列集合之间的关系,并用Venn 图表示.
A ={x |x 是平行四边形},
B ={x |x 是菱形},
C ={x |x 是矩形},
D ={x |x 是正方形}. 判断集合{}2A x x ==与集合{}
240B x x =-=的关系.
5.判断集合A 与B 是否相等?
(1) A ={0},B = ∅;
(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;
(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.
4.下列各式中,正确的是( )
A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x
5.已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.
6.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.
7.选用适当的符号“”或“”填空: (1){1,3,5}_ _{1,2,3,4,5};
(2){2}_ _ {x | |x |=2}; (3){1} _∅.
8.设集合{}0,1,2M =,试写出M 的所有子集,和真子集
9.已知集合A={x|x2
-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a 的值所组成 的集合M.
10.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.
11.下列四个集合中,表示空集的是( )
A.{0}
B.},,|),{(22R y R x x y y x ∈∈-=
C.},,5|||{N x Z x x x ∉∈=
D.},0232|{2N x x x x ∈=-+
12.已知集合,,那么( ) (A )
(B ) (C ) (D ) 13.设,,若,则实数的取值范围是( ) (A )
(B ) (C ) (D )
【课堂练习】
(一)集合与集合关系的理解 1.已知集合X 满足{
}{}X X 求所有满足条件的集合,5,4,3,2,12,1⊆⊆.
2.已知集合,,312,,61⎭⎬⎫⎩⎨⎧∈-==⎭⎬⎫⎩⎨⎧
∈+==Z n n x x Z z m m x x M ,612{+==p x x P }Z p ∈,则M,N,P 满足的关系是:
3.已知集合{}{},,3,2,1A x x B A ⊆==求集合B.
(二)空集的理解
4.下列集合中:(1){0};(2{}{};)4(;)3(;,0,12φφR n x n x x ∈<+=(){}0,0)5(,是空集的为:( )
(三)由集合之间的基本关系球参数
5.若{}02=-a x x {}31<<-x x ,则a 的取值范围是( )
6.已知集合{},01=-=ax x A 集合{}
,0322=--=x x x B 若A B ,求a 的值.
(四)证明两集合相等.
7.集合{},,12Z n n x x X ∈-=={},,14Z k k y y Y ∈±==试证明:X=Y.
(五)集合与函数的综合
8.设集合{}{}R x R a a x a x x B R x x x x A ∈∈=-+++=∈=+=,,01)1(2,,04222,若,A B ⊆求实数a 的取值范围.
9.若集合{}{}01,062=+==-+=mx x B x x x A ,且B
A ,求m 的值.
(六)提升拓展
10.若不等式1<x 成立时,不等式[][]0)4()1(<+-+-a x a x 也成立,求a 的取值范围.
【教学反思】。