树的基本性质

合集下载

测树学考试试题

测树学考试试题

测树学考试试题在测树学考试中,试题是评估学生对树的概念、性质和应用的理解能力以及解决问题的能力的重要工具。

本文将从树的基本概念、树的性质和树的应用三个方面来探讨测树学考试试题。

一、树的基本概念在测树学考试试题中,往往会出现一些涉及树的基本概念的问题。

树是一种非线性的数据结构,它由节点(node)和边(edge)组成。

树的一个节点称为根节点(root),根节点下面可以有多个子节点(child node),子节点可以再有子节点,形成树的分支结构。

树的节点之间通过边相连,边表示了节点之间的关系。

二、树的性质在测树学考试试题中,通常会涉及树的一些重要性质的问题。

其中一些常见的性质包括:1. 树的节点个数等于边的个数加一。

这是因为在树中,每个节点除了根节点外,都有唯一的一条边与之相连。

2. 树中不存在环。

这是因为树是一种无向无环图,其中任意两个节点之间只存在唯一的一条路径。

3. 在树中,从根节点到任意一个节点,存在唯一的一条路径。

这是因为树中任意两个节点之间不存在多条路径。

三、树的应用树作为一种重要的数据结构,被广泛应用于各个领域。

在测树学考试试题中,也常会出现一些与树相关的应用问题。

以下是一些常见的树的应用:1. 文件系统:计算机的文件系统可以看作是一棵树,每个文件夹都是一个节点,文件夹之间的关系由边连接。

2. 数据库查询:数据库中的索引结构通常采用树的结构,例如B树、B+树等,以提高查询效率。

3. 网络路由:在计算机网络中,路由器使用树状的路由表来决定数据包的转发路径。

4. 分析算法:在算法设计中,很多问题可以使用树的形式来建模和解决,例如最小生成树、最短路径等。

通过对树的基本概念、树的性质和树的应用的介绍,可以更好地理解和解答测树学考试试题。

在准备考试时,建议多做一些相关的练习题以加深对树的理解和应用。

同时,要注重对树的基本概念和性质的掌握,这将有助于解决各类与树相关的问题。

总结:在测树学考试中,试题是评估学生对树的概念、性质和应用的理解能力以及解决问题的能力的重要工具。

第八章 图论8.4树及其应用.ppt

第八章 图论8.4树及其应用.ppt

⑥ G中每一对结点之间有惟一一条基本通路。(n≥2)
2017/10/10 82-9
定理4.2.1 分析
直接证明这 6 个命题两两等价工作量太大,一 般采用循环论证的方法,即证明
(1) (2) (3) (4) (5) (6) (1) 然后利用传递行,得到结论。
2017/10/10
证明 TG = <VT, ET> 是 G = <V, E> 的生 分析 必要性:假设 必要性由树的定义即得,充分性利用构造性 成树,由定义 4.2.1 , TG 是连通的,于是 G 也是连通的。 方法,具体找出一颗生成树即可
充分性:假设G = <V, E>是连通的。如果G中无回 路, G 本身就是生成树。如果 G 中存在回路 C1 ,可删除 C1中一条边得到图G1,它仍连通且与G有相同的结点集。 如果G1中无回路,G1就是生成树。如果G1仍存在回路C2, 可删除 C2 中一条边,如此继续,直到得到一个无回路 的连通图H为止。因此,H是G的生成树。
2017/10/10 82-22
思考题
1、一个图的生成树是不是唯一的呢?
2、如果不是唯一的,3个顶点的无向完全图有几棵 生成树?4个顶点的无向完全图又有几棵生成树?n 个顶点的无向完全图又有几棵生成树?
完全图是边数最 多的简单无向图
2017/10/10
82-23
定理4.2.3
一个图G = <V, E>存在生成树TG = <VT, ET>的充分 必要条件是G是连通的。
由定理4.2.1(4) 在结点给定的无向图中, 由定理4.2.1(5) 树是边数最多的无回路图 树是边数最少的连通图 由此可知,在无向图G = (n, m)中, 若m<n-1,则G是不连通的 若m>n-1,则G必含回路

《树的基本性质》课件

《树的基本性质》课件

查找节点
总结词
查找节点是树的基本操作之一,用于在树中 查找指定的节点。
详细描述
查找节点通常从根节点开始,沿着树的分支 向下搜索,直到找到目标节点或搜索到叶子 节点。查找节点的效率取决于树的类型和结
构。
THANKS
感谢观看
有一个父节点。
树的根节点是层次结构的最高点,其他节点都是根节点的子节
03
点。
基本术语
节点
树中的元素,表示对象或实体。

连接节点的线段,表示节点之间的关系。
子节点
一个节点直接的下属节点。源自基本术语父节点一个节点的直接上级节点。
叶子节点
没有子节点的节点。
兄弟节点
具有相同父节点的节点。
根节点
没有父节点的节点,是树的最高点。
详细描述
插入节点通常在树的末尾进行,但也 可以在树的其他位置进行。插入节点 后,可能需要调整树的结构以保持树 的平衡。
删除节点
总结词
删除节点是树的基本操作之一,用于 从树中移除指定的节点。
详细描述
删除节点时,需要遵循一定的规则和 步骤,以保持树的完整性。例如,如 果被删除的节点有两个子节点,需要 选择一个合适的节点作为替代节点。
总结词
树中不存在任何形式的闭环。
详细描述
在树中,每个节点最多只能有一条边连接到其父节点,并且每个节点只能有一 个子节点。这意味着树的结构中不存在任何形式的闭环,即不存在从一个节点 出发可以沿着边回到原点的路径。
有根性
总结词
树有一个特定的根节点,所有其他节点都直接或间接连接到 这个根节点。
详细描述
树的有根性意味着树有一个特定的节点,被称为根节点,它 是树的起点。所有其他节点都直接或间接连接到这个根节点 。根节点没有父节点,而其他节点都有一个父节点。

图论中的树与树的性质

图论中的树与树的性质

图论中的树与树的性质图论是研究图及其性质的数学分支。

在图论中,树是一种特殊的无环连通图,它具有许多重要的性质和应用。

本文将介绍图论中树以及树的性质的相关内容。

一、树的定义与基本性质树是一个连通且无环的无向图。

具体定义如下:1. 一个只有一个顶点的图是一个树。

2. 一个连通的图,如果删除任意一条边,则图不再连通,那么该图就是一个树。

树具有以下基本性质:1. 一棵树有且只有一个连通分量。

2. 在一棵树中,任意两个顶点之间存在唯一路径。

3. 一棵树的边数比顶点数少1。

树的性质使得其在各个领域有着广泛的应用。

下面将介绍树的一些重要性质。

二、树的性质1. 最小生成树最小生成树是指在一个带权图中,找到一个树,使得该树的边的权值之和最小。

常用的最小生成树算法有Prim算法和Kruskal算法。

最小生成树在网络设计、电力传输等领域有着重要的应用。

2. 无向树与有向树的转化无向树可以通过给每条边赋予方向而转化为有向树,同样,有向树也可以通过移除边的方向而转化为无向树。

3. 树的直径树的直径是指树中任意两个顶点之间的最长路径。

求树的直径的算法可以通过两次BFS或DFS来实现。

树的直径问题在网络拓扑、动态规划等领域有重要应用。

4. 中心与半径树的中心定义为树中顶点到其他所有顶点的距离之和最小的顶点。

树的半径定义为树中顶点到离其最远的顶点的距离。

中心和半径是树中的重要概念,它们在设计网络、发现故障等方面有着重要应用。

5. 树的遍历树的遍历是指按照一定规则来访问树的所有顶点。

常用的树的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

树的遍历在路径搜索、关系分析等方面有广泛应用。

6. 散射树散射树是一种特殊的树结构,它是由无向图中一棵以散射点为根的最小生成树与散射关键路径组成。

散射树在光纤传输等领域有着广泛的应用。

以上是图论中树的一些性质的简要介绍,树作为图论中的重要概念,具有许多重要的性质和应用。

从最小生成树到树的遍历,树的性质在各个领域都有着广泛的应用。

树的定义和基本概念

树的定义和基本概念

25
6.2 二叉树
满二叉树的特点: (1)每一层结点数都达到最大值。即对给 定深度,它是具有最多结点数的二叉树 (2)满二叉树中不存在度数为1的结点,且树 叶都在最下一层上
【例】一个深度为3的满二叉树。
26
6.2 二叉树
完全二叉树特点: (1) 满二叉树是完全二叉树,完全二叉树不一 定是满二叉树。 (2) 叶子结点只可能在层次最大的两层上出现; (3) 对任一结点,若其右分支下的子孙的最大 层次为l,则其左分支下的子孙的最大层次 为必 l 或 l+1。
6.1 树的定义和基本术语
从逻辑结构看:
1)树中只有根结点没有前趋; 2)除根外,其余结点都有且仅一个前趋; 3)树的结点,可以有零个或多个后继; 4)除根外的其他结点,都存在唯一条从根 到该结点的路径; 5)树是一种分枝结构(除了一个称为根的 结点外)每个元素都有且仅有一个直接 前趋,有且仅有零个或多个直接后继。
6
6.1 树的定义和基本术语
A B E K L F , E, F, G, H, I, J,K,L,M} A是根,其余结点可以 划分为3个互不相交 的集合:T1, T2, T3
T1={B, E, F,K,L} , T2={C, G} , T3={D, H, I, J ,M}; 它们是A的子树。 对于 T1,B是根,其余结点可以划分为2个互不相 交的集合:T11={E,K,L},T12={F},T11,T12 7 是B 的子树。
3
第六章
树和二叉树
难点: • 二叉树的遍历及其有关应用
4
第六章
树和二叉树
• 树形结构是一类非常重要的非线性数据结构, 它是以分支关系定义的层次结构。它在现实世 界中广泛存在,在计算机领域中也有广泛应用 • 本章重点讨论二叉树的存储结构及其各种操作, 并研究树和森林与二叉树之间的转换关系。最 后给出一些应用实例

图论课件第二章 树

图论课件第二章 树

3
4
5
6
7
8
5
6
7
8

8、树——(1)不具明显层次的树 (a图) (2)具有层次的树 (b图)
互为兄弟

1
2
3
4
5
6
7
8
a图
互为父 子
b图
§1-2 树的基本性质

1、定理:若连通图G=(V,E),n=|V|,则图 的生成树有n-1条边。
用归纳法易证明。

推论1 :非平凡树至少两个度为1的结点; 推论2: G连通的充要条件是G有生成树。
序 年龄 收入 学生 号 01 青 高 否 02 青 高 否 03 中 高 否 04 老 中 否 05 老 低 是 06 老 低 是 07 中 低 是 08 青 中 否 09 青 低 是 10 老 中 是 11 青 中 是 12 中 中 否 13 中 高 是 14 老 中 否 15 老 中 否
信誉 买计算机吗? 良 优 良 良 良 优 优 良 良 良 优 优 良 优 优 不买 不买 买 买 买 不买 买 不买 买 买 买 买 买 不买 不买
§2-3 有序二元树

1、定义1: 图T是一棵树,把每边规定一 个方向且使得任意的vi∈V(T),存在有向道路 P(v0,vi),则称T是外向树,v0叫做根,把外向 树之定向反过来,得到的有向树叫内向树。
v0 v0





2、定义2:T为外向树,对任意的顶点 v∈V(T), 都有d+(v)≤σ,则称T为σ元树; 3、当e=(u,v)时,u称为v之父,v称为u之子; 同父之子称为兄弟。 4、除叶子外,每顶点皆σ子时,称为典型σ元 树; 5、兄弟间有序时,叫有序树,有序树之序列 叫做有序林。 6、有序树当σ=2时,就叫有序二元树。

山东科技大学 离散数学7-6对偶图与着色7-7 树+复习

山东科技大学  离散数学7-6对偶图与着色7-7 树+复习

7-8 根树及其应用
一、根树
1、有向树 定义7-8.1 如果一个有向图在不考虑边的方向时
是一棵树,那么,该有向图称为 有向树。
2、根树
定义7-8.2 一棵有向树,如果恰有一个 结点的入度为0,其余所有结点的入度都为1, 则称为根树(rooted tree)。 入度为0的结点称为T的树根。 出度为0的结点称为树叶。 出度不为0的结点称为分支点或内点。
7. 设a和b是格<A, ≤>中的两个元素,证明 (1)a∧b=b 当且仅当a∨b=a (2) a∧b < b和a∧b <a 当且仅当a与b是不可比较的 证明: (1)在格中吸收律满足, 则 由a∧b=b, a∨b=a∨(a∧b)=a 反之, 若a∨b=a, 则a∧b= (a∨b)∧b=b (2)若a∧b < b和a∧b <a, 即表明a∧b ≠b和a∧b ≠a, 用反证法: 假设a与b是可比较的, 则 a≤b,a∧b=a,矛盾; b≤a,a∧b=b,矛盾 因此a与b是不可比较的。 反之, a与b是不可比较的, 则a≤b和b≤a均不成立, 即a∧b ≠b和a∧b ≠a 根据∧的定义:a∧b≤a 和 a∧b≤b, 故 a∧b < b和a∧b <a
点中的某一个称为根,其他所有结点被分成有限个
在有向树中,结点的出现次序是没有意义的。 但实际应用中,有时要给出同一级中结点的相对 次序,这便导出有序树的概念。 4、有序数:在根树中规定了每一层上结点的次 序,称为有序树。
为表示结点间的关系,有时借用家族中的术语。
定义 在以v0为根的树中, (1)v1,v2,…,vk称为v0的 儿子,v0称为它们的 父亲。vi,vj 同为一顶点v的儿子时,称它们为兄弟。 (2)顶点间的父子关系的传递闭包称为顶点间

树的诞生故事(数学)

树的诞生故事(数学)

树的诞生故事(数学)【最新版4篇】目录(篇1)1.引言:介绍树的概念及其在数学中的应用2.树的基本结构:节点、边、叶子节点、度、生成树等3.树的种类:满二叉树、完全二叉树、平衡二叉树(AVL 树)和二叉搜索树4.树的遍历:前序遍历、中序遍历和后序遍历5.树的应用:图论、数据结构和算法6.结论:总结树的重要性和在数学领域的发展正文(篇1)树的诞生故事 (数学)树的概念在生活中非常常见,它既是生物学中的基本结构,也是数学中的一个重要研究对象。

在数学领域,树被广泛应用于图论、数据结构和算法等方面,为我们理解和解决许多实际问题提供了有力的工具。

接下来,我们将探讨树的诞生故事,了解其在数学中的基本结构、种类和应用。

首先,让我们来了解一下树的基本结构。

在数学中,树是由节点(vertex)和边(edge)组成的一种非线性数据结构。

树的节点表示元素,边表示元素之间的关系。

树中还存在叶子节点(leaf node),即没有子节点的节点。

度(degree)是树中节点的子节点数量,根节点的度为 0,而叶子节点的度为 1。

生成树(spanning tree)是指一个树覆盖一个图的所有节点,且保持图的连通性。

接下来,我们来探讨树的种类。

满二叉树是一种特殊的完全二叉树,它的每一层都充满了节点,且最后一层可能不完全填充。

完全二叉树是一种特殊的平衡二叉树(AVL 树),它的每一层都充满了节点,且最后一层可能不完全填充。

平衡二叉树是一种保持左右子树高度差不超过 1 的二叉树,它的调整操作使其保持平衡。

二叉搜索树是一种特殊的平衡二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。

在树的遍历方面,有前序遍历、中序遍历和后序遍历三种方式。

前序遍历是指先访问根节点,然后遍历左子树,最后遍历右子树。

中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。

后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。

《图论及其应用》作业习题

《图论及其应用》作业习题

图论作业 1⼀、填空题1. ⾮同构的阶和阶树的个数分别为和⽅法:按照树中存在的最⻓路进⾏枚举 (从开始)注意:对于的树来说,路的最短⻓度为234 阶树2345 阶树2. 阶正则图的补图的边数为考点⼀:完全图每个点的度数是✨考点⼆:⼀个图和其补图的并是完全图⼀个点在原图和补图中的度数和为图是正则,那么图的补图为正则。

故补图的度数之和为根据握⼿定理:3. 设图中各顶点度数均为,且,则 n = ,m =考点:握⼿定理根据握⼿定理:4. 设简单图的邻接矩阵为,且则图的边数为考点:邻接矩阵的性质定理 10:令是⼀个有推⼴邻接矩阵的阶标定图,则的⾏列元素等于由到的⻓度为的途径的数⽬推论:设为简单图的邻接矩阵,则:的元素是的度数。

的元素是含的三⻆形的数⽬的两倍 (考过填空)5. 设是⼀个完全部图,是第部分的顶点数,则它的边数为考点:完全多部图的概念与结构完全部图的点数:;边数:(考过填空)6. 设是阶简单图,且不含完全⼦图,则其边数⼀定不会超过考点:Turán 定理定理 18 (T urán):若是阶简单图,并且不包含,则边数。

此外,仅当时,✨计算公式:,则例:阶简单图,,则最多有条边例: 9 阶简单图,,则最多有 27 条边7. 设阶图是具有个分⽀的森林,则其边数为树的边数 = 顶点数 - 1森林的边数 = 顶点数 - 连通分⽀数8. ⼀棵树有个度为的结点,,则它有个度数为的顶点考点:握⼿定理 + 树的性质(边数 = 顶点数 - 1),其中由握⼿定理:故:整理得:9. 完全图的⽣成树的个数为定理 27:⼆、不定项选择题1. 关于图的度序列,下列命题正确的是(ABCD)A. 同构的两个图的度序列相同B. ⾮负整数序列是图的度序列当且仅当是偶数C. 如果正整数序列是⼀棵树的度序列且,那么序列中⾄少有两个D. 正整数序列是⾮平凡树的度序列当且仅当E. 若图的顶点度数之和⼤于等于图的顶点度数之和,则图度优于图❌F. 如果⾮负整数序列是简单图的度序列,那么在同构意义下只能确定⼀个图❌考点:度序列 && 图序列关系:简单图的度序列简称图序列注意:判断⾮负整数序列是否为简单图的度序列暂⽆好的⽅法,只有等价转换的⽅法A 显然正确(已经默认递增或递减排列)B 正确:定理 3:⾮负整数组是图的度序列的充分必要条件是:为偶数C 正确:定理 20:每棵⾮平凡树⾄少有两⽚树叶D 正确:存在⼀棵⾮平凡树,以该序列为度序列的充要条件握⼿定理E 错误:先有度弱或度优,才有度数之和⼩于或⼤于;反过来不成⽴F 错误:不⽌确定⼀个图2. 对于序列,下列说法正确的是(BD)A. 可能是简单图的度序列❌B. ⼀定不是简单图的度序列C. 只能是简单图的度序列❌D. 只能是⾮简单图的度序列E. 不是任意图的度序列❌考点:度序列 && 图序列对于简单图,顶点的最⼤度顶点数 - 1A 错B 对C 错:对于该题,⻓度为 6,说明有 6 个点,同时最⼤度为 7,显然不是简单图!!D 对E 错:定理 3:⾮负整数组是图的度序列的充分必要条件是:为偶数3. 下列说法错误的是(ACE)A. 若⼀个图中存在闭途径,则⼀定存在圈❌B. 偶图中不存在奇圈C. 若图不含三⻆形,则为偶图❌D. 图的顶点之间的连通关系⼀定是等价关系E. 存在每个顶点的度数互不相同的⾮平凡简单图❌A 错误:闭途径(),但不存在圈B 正确:定理 9:⼀个图是偶图当且仅当它不包含奇圈C 错误:可能存在⻓度不为 3 的奇圈,如 5,7 等等D 正确:即便在有向图中,也存在弱连通E 错误:定理 5:⼀个简单图的个点的度不能互不相同4. 关于简单图的邻接矩阵,下列说法错误的是(C)A. 矩阵的⾏和等于该⾏对应顶点的度数B. 矩阵的所有元素之和等于该图边数的倍C. 矩阵的所有特征值之和等于该图边数的倍❌D. 矩阵的所有特征值的平⽅和等于该图边数的倍E. 矩阵的主对⻆线的元素之和等于该图边数的倍F. 若是⾮连通图,则相似于某个准对⻆矩阵考点:简单图邻接矩阵的性质A 正确:矩阵的「⾏和」或「列和」等于该「⾏」或「列」对应顶点的度数B 正确:所有元素之和等于度数之和,根据握⼿定理判断正确C 错误:矩阵的所有特征值之和等于矩阵的迹;矩阵的迹⼜是矩阵主对⻆线上的元素之和;对于简单图,邻接矩阵主对⻆线元素均为D 正确:所有特征值的平⽅和等于的所有特征值之和;的迹就是主对⻆线之和,也就是图的所有度数之和,就等于边数的两倍E 显然正确F 正确:⽆法解释,因为不懂5. 图⼀定是树的是(BDE)A. 连通图❌B. ⽆回路但任意添加⼀条边后有回路的图C. 每对顶点间都有路的图❌D. 连通且E. ⽆圈且考点:树的基本性质A 错误:树是连通的⽆圈图B 正确:回路是边不重圈的并;⽆回路肯定⽆圈,加⼀条边有回路,肯定就有圈C 错误:每对顶点间存在唯⼀的⼀条路DE 显然正确三、解答题1. 设⽆向图 有条边, 度与 度顶点各 个,其余顶点度数均⼩于 ,问 中⾄少有⼏个顶点?在顶点数最少的情况下,写出 的度序列,该度序列是⼀个图序列吗?考点:握⼿定理 + 图序列解:由于求顶点数量最少,故假设 0 度顶点为 0 个,1 度顶点为 0 个,同时设 2 度顶点有 个根据握⼿定理得:;解得:所以 中⾄少有 7 个顶点;图 的度序列为 根据 Havel-Hakimi 定理,可得下⾯推导过程:显然 是可图的,所以 是可图的2. 证明整数序列是简单图的度序列,并构造⼀个对应的简单图。

离散数学第九章树知识点总结

离散数学第九章树知识点总结

生成树的存在性 定理 任何无向连通图都有生成树. 证 用破圈法. 若图中无圈, 则图本身就是自己的生成树.
否则删去圈上的任一条边, 这不破坏连通性, 重复进行 直到无圈为止,剩下的图是一棵生成树. 推论 1 设 n 阶无向连通图有 m 条边, 则 mn1. 推论 2 设 n 阶无向连通图有 m 条边, 则它的生成树的余树 有 mn+1 条边.
{0,10,010, 1010} 不是前缀码
例 在通信中,设八进制数字出现的频率如下:
0:25%
1:20%
2:15%
3:10%
4:10%
5:10%6:5% Nhomakorabea7:5%
采用 2 元前缀码, 求传输数字最少的 2 元前缀码 (称作最佳前
缀码), 并求传输 10n(n2)个按上述比例出现的八进制数字需
要多少个二进制数字?若用等长的 (长为 3) 的码字传输需要
推论 3 设
为 G 的生成树 T 的余树,C 为 G 中任意一个
圈,则 C 与
一定有公共边.
基本回路与基本回路系统
定义 设 T 是 n 阶 m 条边的无向连通图 G 的一棵生成 树,设 e1, e2, … , emn+1 为 T 的弦. 设 Cr 为 T 添加弦 er 产生的 G 中惟一的圈(由 er和树枝组成), 称 Cr 为对应 弦 er的基本回路或基本圈, r=1, 2, …, mn+1. 称{C1, C2, …, Cmn+1}为对应 T 的基本回路系统. 求基本回路的算法: 设弦 e=(u,v), 先求 T 中 u 到 v 的路径 uv, 再并上弦 e, 即得对应 e 的基本回路. 基本割集与基本割集系统定义 设 T 是 n 阶连通图 G 的一棵生成树, e1, e2, …, en1 为 T 的树枝,Si 是 G 的只含树枝 ei, 其他边都是弦

树,二叉树,森林

树,二叉树,森林

二叉树
二叉树性质(续) ② 高度为k的二叉树最多有2k-1个结点(k≥1) 证明:
高度为k的二叉树只有在每一层都达到最大结点数时,整个二叉树的结点数 才能达到最大。即当每层的结点数目都达到该层的最大结点数2i-1时(性质 2),对应的二叉树的结点数目取得最大值(等比数列求和) a1(1-qn)/(1-q)
因此如果把完全二叉树的各个结点按编号顺序依次存放到一个一维数组, 对于完全二叉树中任意结点i的双亲结点序号、左孩子结点序号和右孩子 结点序号都可由公式计算得到,具体做法是将n个结点存放到一维数组 a[n+1]中。这便是完全二叉树的顺序存储。
二叉树
带有结点编号的完全二叉树
二叉树
对于非完全二叉树是构造虚结点完成顺序存储
树的基本概念
A B E K L F C G H M D I J
back
树的基本概念
3、树的表示方法 (4种)
树形表示 文氏图表示 凹入表示
嵌套括号表示
A(B,C(D,E))
二叉树
二叉树是树型结构的一个重要类型,许多实际问题抽象 出来的数据结构都是二叉树的形式,此外一般的树也可以 简单的转换为二叉树,因此二叉树是特别重要的一种树结 构。 1、二叉树的定义: 二叉树(Binary Tree)是n(n≥0)个有限结点构成、 每个结点最多有两个孩子且有左右区分的有序树合。 n=0的树称为空二叉树;n>0的二叉树由一个根结点 和两个互不相交的、分别称作左子树和右子树的子二叉树 构成。
树、森林和二叉树的关系
树、森林和二叉树的关系
孩子兄弟表示法(二叉链表表示法): 链表中每个结点设有两个链域,分别指向该结点的第一个孩 子结点和下一个兄弟(右兄弟)结点。
树、森林和二叉树的关系

流体网络题库

流体网络题库

第一章流体网络的基本概念与拓扑关系 名词解释:1.流体网络: 无论是矿井的通风系统(包括有风流流动的井巷通道、调节风量分配用的构筑物、作为通风动力的风机等等),还是城市集中供热系统(包括输送管路、各种调节阀门、作为动力的泵站等等),以及城市煤气输送系统、自来水供应系统、集中空调系统等各种有流体流动的管路系统,它们都有一共同的特点,那就是它们都是由输送流体的管路、各种调节设施及动力设施构成,流体管路连接在一起形成流体网络。

2. 分支: 抛开流体网络的各种属性,只考虑流体管路的几何连接拓扑关系。

为此,将管路称之为分支。

3. 节点: 三条以上分支的连接点称之为节点;有时为研究问题方便,将管路的某种属性的交变点也称为节点,也就是说两条物理属性不同的分支的交点也称之为节点;还有一类分支,其一端与其他分支相连接,而另一端是自由的,不与任何分支相连接,将这类端点也称为节点。

4. 图:将流体网络中的节点和分支的集合称为图,记为),(E V G = ,式中,V 表示节点的集合,{}m v v v V ,,,21 = ,m 为节点数,V m =;E 表示分支集合,{}n e e e E ,,,21 = ,n为分支数,E n =5.有向图: 分支ke 对应着的两个节点分别为iv 和jv 。

当流体流动的方向是ji v v →,此时将分支ke 写成()j i k v v e ,=,图G 称为有向图6. 无向图:当流体流动方向尚未确定,或者流体流动方向与我们所研究的问题无关时,网络分支ke 即可写成ji k v v e ,=,也可写成ij k v v e ,=,图G 称为无向图。

7. 关联: 在图),(E V G = 中,如果节点i v 是分支k e 的一个节点,则称分支k e 和节点i v 相关联。

8. 邻接:对于节点iv 和jv ,若Ev v j i ∈,,则称iv 和jv 是邻接的。

9.子图; 对图()E V G ,= 和()E V G ''=', 来说,若有V V ⊆' 和E E ⊆' ,则称图G ' 是G 的一个子图。

软件技术--树与二叉树

软件技术--树与二叉树
(2)若*p结点只有左子树PL或者只有右子树PR, 此时只要令PL或PR直接成为其双亲结点*f的左子 树即可。显然,作此修改也不会破坏二叉排序树 的特性。
(3 ) 若*p结点的左子树和右子树均不为空。
五、哈夫曼树的应用
1、什么是哈夫曼树
假设有n个权值{w1,w2,…,wn},试构造一棵有n 个叶子结点的二叉树,每个叶子结点带权wi,则其中带 权路径长度WPL最小的二叉树称作最优二叉树或哈夫 曼树。
2、 树的基本术语
结点的度:一个结点拥有的子树数称为该结点的度。 叶子结点:度为0的结点称为叶子(Leaf)或终端结点。 非终端结点:度不为0的结点称为非终端结点或分支结点。除根结 点之外,分支结点也称为内部结点。
树的度:树内各结点的度的最大值称为树的度。 树中结点之间的关系:在描述结点之间的关系时,通常用家族关 系来形象的称呼结点之间的联系。结点的子树的根称为该结点的孩 子(Child),相应的,该结点称为孩子的双亲(Parents)或父结点。 同一个双亲的孩子之间称为兄弟(Sibling)。 结点的层次(Level):一棵树从根开始定义起,根为第一层,根的 孩子为第二层,…,依此类推。若某结点在第i层,则其子树的根就 在第i+1层。其双亲在同一层的结点互为堂兄弟。
(4) 性质4: 具有n个结点的完全二叉树的深度为log2n+1。
3、几种特殊的二叉树
• 满二叉树:深度为K,且存在2K-1个结点的二叉树。 • 完全二叉树:至多只有最下面两层上的结点度数可以小于
2,并且最下层结点都集中在该层最左边的位置。 • 平衡二叉树:或是一棵空树,或是具有下列性质的二叉树:
每次插入一个结点的递归算法
struct node {anytype data; struct node *lchild; struct node *rchild; } *root; void insnode(t,d) struct node *t; anytype d;

§6.3 树与支撑树

§6.3 树与支撑树

§6.3 树与支撑树
1 §6.3 树与支撑树
1、树及其基本性质
树:一个连通且无回路(除非特别声明,以后皆指初级回路)的图
k -树(森林):有k 个连通分支且无回路的图
21H H :子图1H 和子图2H 的边的并集
21H H :子图1H 和子图2H 的边的交集
21\H H :在子图1H 中但不在子图2H 中的边的集合
G + e :在图G 中加连边e
G - e :在图G 中去掉边e
G - i :在图G 去掉点i 及与点i 关联的所有边
定理6.3.1 设T =(N ,E )是3|| N 的一个图,则下列六个定义是等价的:
(1)T 连通且无回路;
(2)T 有1|| N 条边且无回路;
(3)T 连通且有1|| N 条边;
(4)T 连通且每条边都是割边;
(5)T 的任两点间都有唯一的路相连;
(6)T 无回路,但在任一对不相邻的点间加连一条边,则构成唯一的一个
回路。

定理6.3.2 每个树至少有两个次为1的点。

2、支撑树及其基本性质
图G 的支撑树:G 的一个是树的支撑子图
G 的反树:T G T \* ,其中),(E N T 是),(E N G 的一个支撑树 )(e :割集},{21S S ,其中21,S S 为e T 的两个连通分支的点集合
定理6.3.3 G 有支撑树当且仅当G 是连通的。

定理6.3.4 任给图G ,设T 是G 的支撑树, e 是T 的一条边,则存在唯一的一个割集)(e 包含于e T *中。

定理6.3.5 设1T 和2T 是G 的两个支撑树,且k T T |\|21,则2T 经过k 次迭代后就得到1T .。

树(一)树的基本知识

树(一)树的基本知识

树(⼀)树的基本知识树结构1) 了解树的定义、表⽰形式和基本术语2) 了解⼆叉树的概念和性质3) 掌握⼆叉树的⼏种遍历⽅法4) 理解⼆叉树的遍历⽅法的C语⾔代码实现5) 了解树的存储结构6)了解哈夫曼树和哈夫曼编码的基本概念树的定义树(Tree),是n(n≥0)个结点的有限集。

若n=0时称为空树;若n>0时为⾮空树。

在⼀个⾮空树中,有且仅有⼀个称为根的结点。

除根以外的其他结点划分为m(m>0)个互不相交的有限集T1,T2,. . .,Tm,其中每⼀个集合本⾝⼜是⼀棵树,并且称为根的⼦树(SubTree)。

例如下图是只有⼀个结点的树,这个唯⼀的结点也是这棵树的根节点:再⽐如下⾯这棵树:这棵树有9个结点,其中A是根,其余结点组成2个互不相交的⼦集:T1={B, D, E, I},T2={C, F, G, H},T1和T2都是A的⼦树,其本⾝也是⼀棵树:在树T1中,B是根节点,其余结点⼜分为两个互不相交的⼦树:T11={D, I},T12={E}。

在树T11中D是根,其包含由结点I组成的⼦树。

从这个概念上我们可以看出树的定义是⼀个递归的定义,即在树的定义中⼜⽤到了树的定义,⽽递归也将是实现树的相关操作的⼀个重要⼿段。

树的表⽰⽅法树形表⽰法⽬录结构表⽰韦恩图表⽰法⼴义表表⽰法凹⼊表⽰法树的基本概念(※有关术语※重点※)以下图为例⼦:结点:数据元素以及指向⼦树的分⽀。

图中的A,B,C等都是结点。

根结点:⾮空树中⽆前驱结点的结点。

图中的A结点。

结点的度(Degree):结点拥有的⼦树数量。

图中度为3的有:A、D,度为2的有:B、E、H,度为1的有:C、H。

:树内各结点的度的最⼤值。

上图中树的度为3。

叶⼦结点(终端结点)(Leaf):树没有⼦结点,即度为0的结点。

图中的F,G,I,J,K,L,M 都是叶⼦结点。

分⽀结点(分⽀点或⾮终端结点):不属于叶⼦结点的结点,即度不为0的结点。

A,B,C,D等都是分⽀结点。

第6章-1( 树的基本概念)

第6章-1( 树的基本概念)

10.层数 根结点的层数为1,其它结点的层数为从根结点到该 结点所经过的分支数目再加1。 11. 树的高度(深度) 树中结点所处的最大层数称为树的高度,如空树的 高度为0,只有一个根结点的树高度为1。 12.树的度 树中结点度的最大值称为树的度。
13. 有序树
若一棵树中所有子树从左到右的排序是有顺序的,不 能颠倒次序。称该树为有序树。 14. 无序树
性质3 对任意一棵二叉树,如果叶子结点个数为n0, 度为2的结点个数为n2,则有n0=n2+1。 证明:设二叉树中度为1的结点个数为n1,根据二叉树 的定义可知,该二叉树的结点数n=n0+n1+n2。又因为 在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩 子结点数为 n0*0+n1*1+n2*2 ,而一棵二叉树中,除根 结点外所有都为孩子 结点,故该二叉树的结点数应为 孩子结点数加1即:n=n0*0+n1*1+n2*2+1因此,有 n=n0+n1+n2=n0*0+n2*1+n2*2+1,最后得到n0=n2+1。 先定义两种特殊的二叉树:
初始化树T。 (2) root(T) 求树T的根结点。
(3) parent(T,x)
求树T中,值为x的结点的双亲。 (4) child(T,x,i)
求树T中,值为x的结点的第i个孩子。
(5) addchild(y,i,x) 把值为x的结点作为值为y的结点的第i个孩子插入到树 中。 (6) delchild(x,i)
图 6-1 树的示意图
2. 凹入法表示法
具体参见图6-3 。
A B E J K L F C G D H M I 图 6-3 图 6-1(c)的树的凹入法表示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档