控制系统仿真与CAD 实验报告

合集下载

控制系统CAD实验报告

控制系统CAD实验报告

控制系统CAD实验报告一、实验目的1. 掌握如何使用Matlab进行系统的根轨迹分析。

2. 掌握如何使用Matlab进行系统的稳定性分析。

二、实验内容1.根轨迹分析设系统结构如图1所示。

(1)试绘制该系统的根轨迹;(2)请分别在系统左半平面和右半平面的根轨迹图上选择一点,判断在这两点系统闭环的稳定性。

2.稳定性分析(1)代数法稳定性判据:已知某单位负反馈系统的开环传递函数为:试对系统闭环判别其稳定性。

(2)Bode图法判断系统稳定性:已知某单位负反馈系统的开环传递函数为:试绘制系统的Bode图和Nyquist曲线,分别用两种方法判断闭环系统的稳定性,并求出系统的频域性能指标w,γ与时域性能指标σ%、s t。

c三、预习报告1.根轨迹分析g1=tf(1,[1 0])g2=tf(0.2,[0.5 1 0])sys=g1*g2+5*g2rlocus(sys)Gridnyquist(G)2.稳定性分析(1)G=tf([6 7],[1 5 0 27 8]) %闭环环传递函数den=[1 5 0 27 8]p=roots(den)i=find(real(p)>=0)n=length(i)if(n>0) disp('系统不稳定,不稳定根个数为:')nelse disp('系统稳定')end四、上机实验结果1.根轨迹分析2.稳定性分析(1)代数法稳定性判据:Transfer function:6 s + 7----------------------s^4 + 5 s^3 + 27 s + 8den =1 5 0 27 8p =-5.76950.5307 + 2.1137i0.5307 - 2.1137i-0.2920i =23n = 2系统不稳定,不稳定根个数为:n =2(2)Transfer function:0.3 s + 1------------------s^3 + 12 s^2 + 5 s Gm = Inf Pm = 69.1650 Wcg =InfWcp =0.1842五、实验总结对知识的掌握不足,对知识点理解错误。

控制系统仿真与CAD 实验报告

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》实验课程报告一、实验教学目标与基本要求上机实验是本课程重要的实践教学环节。

实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。

通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。

上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。

二、题目及解答第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析1.>>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45(f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:, 1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)),grid2.>>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;rgeScale='off';ff.TolFun= 1e-30;ff.TolX=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[]; B=[];Aeq=[];Beq=[];[x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,f f)Warning: Options LargeScale = 'off' and Algorithm ='trust-region-reflective' conflict.Ignoring Algorithm and running active-set algorithm. To runtrust-region-reflective, setLargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'.> In fmincon at 456Local minimum possible. Constraints satisfied.fmincon stopped because the size of the current search direction is less thantwice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance.<stopping criteria details>Active inequalities (to within options.TolCon = 1e-20):lower upper ineqlin ineqnonlin2x =1.00001.0000f =-1.0000c =4d =iterations: 5funcCount: 20lssteplength: 1stepsize: 3.9638e-26algorithm: 'medium-scale: SQP, Quasi-Newton, line-search' firstorderopt: 7.4506e-09constrviolation: 0message: [1x766 char]3.(a) >> s=tf('s');G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5)) G =s^3 + 4 s + 2------------------------------------------------------s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3Continuous-time transfer function.(b)>> z=tf('z',0.1);H=(z^2+0.568)/((z-1)*(z^2-0.2*z+0.99))H =z^2 + 0.568-----------------------------z^3 - 1.2 z^2 + 1.19 z - 0.99Sample time: 0.1 secondsDiscrete-time transfer function.4.>> A=[0 1 0;0 0 1;-15 -4 -13];B=[0 0 2]';C=[1 00];D=0;G=ss(A,B,C,D),Gs=tf(G),Gz=zpk(G)G =a =x1 x2 x3x1 0 1 0x2 0 0 1x3 -15 -4 -13b =u1x1 0x2 0x3 2c =x1 x2 x3y1 1 0 0d =u1y1 0Continuous-time state-space model. Gs =2-----------------------s^3 + 13 s^2 + 4 s + 15Continuous-time transfer function. Gz =2---------------------------------(s+12.78) (s^2 + 0.2212s + 1.174)Continuous-time zero/pole/gain model.5.设采样周期为0.01s>> z=tf('z',0.01);H=(z+2)/(z^2+z+0.16)H =z + 2--------------z^2 + z + 0.16Sample time: 0.01 secondsDiscrete-time transfer function.6.>> syms J Kp Ki s;G=(s+1)/(J*s^2+2*s+5);Gc=(Kp*s+Ki)/s;GG=feedback(G*Gc,1)GG =((Ki + Kp*s)*(s + 1))/(J*s^3 + (Kp + 2)*s^2 + (Ki + Kp + 5)*s + Ki) 7.(a)>>s=tf('s');G=(211.87*s+317.64)/((s+20)*(s+94.34)*(s+0.1684));Gc=( 169.6*s+400)/(s*(s+4));H=1/(0.01*s+1);GG=feedback(G*Gc,H),Gd=ss(GG),G z=zpk(GG)GG =359.3 s^3 + 3.732e04 s^2 + 1.399e05 s + 127056----------------------------------------------------------------0.01 s^6 + 2.185 s^5 + 142.1 s^4 + 2444 s^3 + 4.389e04 s^2 + 1.399e05 s + 127056Continuous-time transfer function.Gd =a =x1 x2 x3 x4 x5 x6 x1 -218.5 -111.1 -29.83 -16.74 -6.671 -3.029 x2 128 0 0 0 0 0 x3 0 64 0 0 0 0 x4 0 0 32 0 0 0 x5 0 0 0 8 0 0 x6 0 0 0 0 2 0b =u1x1 4x2 0x3 0x4 0x5 0x6 0c =x1 x2 x3 x4 x5 x6 y1 0 0 1.097 3.559 1.668 0.7573d =u1y1 0Continuous-time state-space model.Gz =35933.152 (s+100) (s+2.358) (s+1.499)----------------------------------------------------------------------(s^2 + 3.667s + 3.501) (s^2 + 11.73s + 339.1) (s^2 + 203.1s + 1.07e04) Continuous-time zero/pole/gain model.(b)设采样周期为0.1s>>z=tf('z',0.1);G=(35786.7*z^2+108444*z^3)/((1+4*z)*(1+20*z)*(1+74.04 *z));Gc=z/(1-z);H=z/(0.5-z);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG) GG =-108444 z^5 + 1.844e04 z^4 + 1.789e04 z^3----------------------------------------------------------------1.144e05 z^5 +2.876e04 z^4 + 274.2 z^3 + 782.4 z^2 + 47.52 z + 0.5Sample time: 0.1 secondsDiscrete-time transfer function.Gd =a =x1 x2 x3 x4 x5x1 -0.2515 -0.00959 -0.1095 -0.05318 -0.01791x2 0.25 0 0 0 0x3 0 0.25 0 0 0x4 0 0 0.125 0 0x5 0 0 0 0.03125 0b =u1x1 1x2 0x3 0x4 0x5 0c =x1 x2 x3 x4 x5y1 0.3996 0.6349 0.1038 0.05043 0.01698d =u1y1 -0.9482Sample time: 0.1 secondsDiscrete-time state-space model.Gz =-0.94821 z^3 (z-0.5) (z+0.33)---------------------------------------------------------- (z+0.3035) (z+0.04438) (z+0.01355) (z^2 - 0.11z + 0.02396) Sample time: 0.1 secondsDiscrete-time zero/pole/gain model.8.>>s=tf('s');g1=1/(s+1);g2=s/(s^2+2);g3=1/s^2;g4=(4*s+2)/(s+1)^2;g5=50 ;g6=(s^2+2)/(s^3+14);G1=feedback(g1*g2,g4);G2=feedback(g3,g5);GG=3*fe edback(G1*G2,g6)GG =3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s---------------------------------------------------------------------------s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3 + 7732 s^2 + 5602 s + 1400Continuous-time transfer function.>>s=tf('s');T0=0.01;T1=0.1;T2=1;G=(s+1)^2*(s^2+2*s+400)/((s+5)^2*(s^2 +3*s+100)*(s^2+3*s+2500));Gd1=c2d(G,T0),Gd2=c2d(G,T1),Gd3=c2d(G,T2),s tep(G),figure,step(Gd1),figure,step(Gd2),figure,step(Gd3)Gd1 =4.716e-05 z^5 - 0.0001396 z^4 + 9.596e-05 z^3 + 8.18e-05 z^2 - 0.0001289 z + 4.355e-05----------------------------------------------------------------z^6 - 5.592 z^5 + 13.26 z^4 - 17.06 z^3 + 12.58 z^2 - 5.032 z + 0.8521Sample time: 0.01 secondsDiscrete-time transfer function.Gd2 =0.0003982 z^5 - 0.0003919 z^4 - 0.000336 z^3 + 0.0007842 z^2 - 0.000766 z + 0.0003214----------------------------------------------------------------z^6 - 2.644 z^5 + 4.044 z^4 - 3.94 z^3 + 2.549 z^2 - 1.056 z + 0.2019Sample time: 0.1 secondsDiscrete-time transfer function.Gd3 =8.625e-05 z^5 - 4.48e-05 z^4 + 6.545e-06 z^3 + 1.211e -05 z^2 - 3.299e-06 z + 1.011e-07---------------------------------------------------------------z^6 - 0.0419 z^5 - 0.07092 z^4 - 0.0004549 z^3 + 0.002495 z^2 - 3.347e-05 z + 1.125e-07Sample time: 1 secondsDiscrete-time transfer function.10.(a)>> G=tf(1,[1 2 1 2]);eig(G),pzmap(G) ans =-2.0000-0.0000 + 1.0000i-0.0000 - 1.0000i系统为临界稳定。

“控制系统数字仿真与CAD”实验指导书.

“控制系统数字仿真与CAD”实验指导书.

写,均要求用标准A4纸进行撰写,单栏排版,单面打印,并左侧装订,以便于报告最终的批阅与存档,(对于存在“逻辑混乱” 、“文字不清” 、“作图潦草” 、“排版混乱”等问题的报告,将予以退回重新撰写)。

封页:(参考最后一页的“封页”格式)正文:(小四字体)仿真实验题目 1、 2、 3、 4、 5、五、思考题 1.在系统启动过程的第 2 阶段中,理想的电流特性为:实际值小于给定/设定值,试说明为何?引言原理/建模设计/分析/论述仿真实验/结果分析结论(思考题解答) 2.动态性能中,电流/转速特性的“超调量”与理论值是否有偏差?;如有偏差,试给出分析/解释。

3.在“双闭环直流电动机调速系统”中,电流调节器与速度调节器的输出都要设置“限幅” ,试说明:你是如何选取限幅值的? 4.假设系统中的励磁电压减小/增加,试说明:系统转速将可能怎样变化?参考文献: [1] 张晓华主编《控制系统数字仿真与 CAD》第 3 版机械工业出版社 2009 [2] 张晓华主编《系统建模与仿真》清华大学出版社 2006 [3] 陈伯时主编《电力拖动自动控制系统》第 3 版机械工业出版社 2008 25
“控制系统数字仿真与CAD” 仿真实验报告姓班学名:级:号:联系电话: Email: 提交日期: 26。

控制系统仿真与CAD

控制系统仿真与CAD

《控制系统仿真与CAD》——控制系统建模、分析、设计与仿真一、摘要本结课论文为设计两个控制器,分别为最小拍无波纹和最小拍有波纹控制器。

通过这次实践可以进一步对所学的《控制系统仿真与CAD》有进一步的了解,并对Matlab软件的操作有一定程度的熟悉,为以后的学习或工作做根底。

MATLAB是矩阵实验室〔Matrix Laboratory〕的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以与数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大局部。

关键字:Matlab;控制系统仿真与CAD;建模;仿真二、课程设计的内容1、求被控对象传递函数G(s)的MATLAB描述。

输入:num=conv([968],conv([1 2],[1 9]));den=conv([1 0 0],conv([1 1],conv([1 4],[1 8])));T=0.05;sys=tf(num,den)显示结果:Transfer function:968 s^2 + 10648 s + 17424------------------------------s^5 + 13 s^4 + 44 s^3 + 32 s^22、求被控对象脉冲传递函数G(z)。

输入:Gz=c2d(Gs,0.02,'zoh')显示结果:ransfer function:------------------------------------------------------------------3、转换G(z)为零极点增益模型并按z-1形式排列。

输入:[z,p,k]=zpkdata(Gz)Gz=zpk(z,p,k,T,'variable','z^-1')显示结果:z = [4x1 double]p = [5x1 double]Zero/pole/gain:0.001132 z^-1 (1+3.605z^-1) (1-0.9802z^-1) (1-0.8869z^-1) (1+0.2586z^-1) ------------------------------------------------------------------------ (1-z^-1)^2 (1-0.9608z^-1) (1-0.9048z^-1) (1-0.8694z^-1)4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳定的要求。

控制系统仿真与CAD-实验报告

控制系统仿真与CAD-实验报告

《控制系统仿真与CAD》实验课程报告一、实验教学目标与基本要求上机实验是本课程重要的实践教学环节。

实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。

通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。

上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。

二、题目及解答第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析1.>>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid2.>>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff)Warning: Options LargeScale = 'off' and Algorithm ='trust-region-reflective' conflict.Ignoring Algorithm and running active-set algorithm. To runtrust-region-reflective, setLargeScale = 'on'. To run active-set without this warning, useAlgorithm = 'active-set'.> In fmincon at 456Local minimum possible. Constraints satisfied.fmincon stopped because the size of the current search direction is less thantwice the selected value of the step size tolerance and constraints aresatisfied to within the selected value of the constraint tolerance.<stopping criteria details>Active inequalities (to within options.TolCon = 1e-20):lower upper ineqlin ineqnonlin2x =1.00001.0000f =-1.0000c =4d =iterations: 5funcCount: 20lssteplength: 1stepsize: 3.9638e-26algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'firstorderopt: 7.4506e-09constrviolation: 0message: [1x766 char]3.(a) >> s=tf('s');G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5))G =s^3 + 4 s + 2------------------------------------------------------s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3Continuous-time transfer function.(b)>> z=tf('z',0.1);H=(z^2+0.568)/((z-1)*(z^2-0.2*z+0.99))H =z^2 + 0.568-----------------------------z^3 - 1.2 z^2 + 1.19 z - 0.99Sample time: 0.1 secondsDiscrete-time transfer function.4.>> A=[0 1 0;0 0 1;-15 -4 -13];B=[0 0 2]';C=[1 00];D=0;G=ss(A,B,C,D),Gs=tf(G),Gz=zpk(G)G =a =x1 x2 x3x1 0 1 0x2 0 0 1x3 -15 -4 -13b =u1x1 0x2 0x3 2c =x1 x2 x3y1 1 0 0d =u1y1 0Continuous-time state-space model.Gs =2-----------------------s^3 + 13 s^2 + 4 s + 15 Continuous-time transfer function.Gz =2---------------------------------(s+12.78) (s^2 + 0.2212s + 1.174) Continuous-time zero/pole/gain model.5.设采样周期为0.01s>> z=tf('z',0.01);H=(z+2)/(z^2+z+0.16) H =z + 2--------------z^2 + z + 0.16Sample time: 0.01 secondsDiscrete-time transfer function.6.>> syms J Kp Ki s;G=(s+1)/(J*s^2+2*s+5);Gc=(Kp*s+Ki)/s;GG=feedback(G*Gc,1) GG =((Ki + Kp*s)*(s + 1))/(J*s^3 + (Kp + 2)*s^2 + (Ki + Kp + 5)*s + Ki)7.(a)>>s=tf('s');G=(211.87*s+317.64)/((s+20)*(s+94.34)*(s+0.1684));Gc=(169.6*s+400)/(s*(s+4));H=1/(0.01*s+1);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG =359.3 s^3 + 3.732e04 s^2 + 1.399e05 s + 127056----------------------------------------------------------------0.01 s^6 + 2.185 s^5 + 142.1 s^4 + 2444 s^3 + 4.389e04 s^2 + 1.399e05 s + 127056Continuous-time transfer function.Gd =a =x1 x2 x3 x4 x5 x6x1 -218.5 -111.1 -29.83 -16.74 -6.671 -3.029x2 128 0 0 0 0 0x3 0 64 0 0 0 0x4 0 0 32 0 0 0x5 0 0 0 8 0 0x6 0 0 0 0 2 0b =u1x1 4x2 0x3 0x4 0x5 0x6 0c =x1 x2 x3 x4 x5 x6y1 0 0 1.097 3.559 1.668 0.7573d =u1y1 0Continuous-time state-space model.Gz =35933.152 (s+100) (s+2.358) (s+1.499)----------------------------------------------------------------------(s^2 + 3.667s + 3.501) (s^2 + 11.73s + 339.1) (s^2 + 203.1s + 1.07e04) Continuous-time zero/pole/gain model.(b)设采样周期为0.1s>>z=tf('z',0.1);G=(35786.7*z^2+108444*z^3)/((1+4*z)*(1+20*z)*(1+74.04*z));Gc= z/(1-z);H=z/(0.5-z);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG =-108444 z^5 + 1.844e04 z^4 + 1.789e04 z^3----------------------------------------------------------------1.144e05 z^5 +2.876e04 z^4 + 274.2 z^3 + 782.4 z^2 + 47.52 z + 0.5Sample time: 0.1 secondsDiscrete-time transfer function.Gd =a =x1 x2 x3 x4 x5 x1 -0.2515 -0.00959 -0.1095 -0.05318 -0.01791x2 0.25 0 0 0 0x3 0 0.25 0 0 0x4 0 0 0.125 0 0x5 0 0 0 0.03125 0b =u1x1 1x2 0x3 0x4 0x5 0c =x1 x2 x3 x4 x5y1 0.3996 0.6349 0.1038 0.05043 0.01698d =u1y1 -0.9482Sample time: 0.1 secondsDiscrete-time state-space model.Gz =-0.94821 z^3 (z-0.5) (z+0.33)----------------------------------------------------------(z+0.3035) (z+0.04438) (z+0.01355) (z^2 - 0.11z + 0.02396)Sample time: 0.1 secondsDiscrete-time zero/pole/gain model.8.>>s=tf('s');g1=1/(s+1);g2=s/(s^2+2);g3=1/s^2;g4=(4*s+2)/(s+1)^2;g5=50;g6=(s^2+2) /(s^3+14);G1=feedback(g1*g2,g4);G2=feedback(g3,g5);GG=3*feedback(G1*G2,g6) GG =3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s---------------------------------------------------------------------------s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3 + 7732 s^2 + 5602 s + 1400Continuous-time transfer function.9.>>s=tf('s');T0=0.01;T1=0.1;T2=1;G=(s+1)^2*(s^2+2*s+400)/((s+5)^2*(s^2+3*s+100 )*(s^2+3*s+2500));Gd1=c2d(G,T0),Gd2=c2d(G,T1),Gd3=c2d(G,T2),step(G),figure,st ep(Gd1),figure,step(Gd2),figure,step(Gd3)Gd1 =4.716e-05 z^5 - 0.0001396 z^4 + 9.596e-05 z^3 + 8.18e-05 z^2 - 0.0001289 z + 4.355e-05----------------------------------------------------------------z^6 - 5.592 z^5 + 13.26 z^4 - 17.06 z^3 + 12.58 z^2 - 5.032 z + 0.8521Sample time: 0.01 secondsDiscrete-time transfer function.Gd2 =0.0003982 z^5 - 0.0003919 z^4 - 0.000336 z^3 + 0.0007842 z^2 - 0.000766 z + 0.0003214----------------------------------------------------------------z^6 - 2.644 z^5 + 4.044 z^4 - 3.94 z^3 + 2.549 z^2 - 1.056 z + 0.2019Sample time: 0.1 secondsDiscrete-time transfer function.Gd3 =8.625e-05 z^5 - 4.48e-05 z^4 + 6.545e-06 z^3 + 1.211e -05 z^2 - 3.299e-06 z + 1.011e-07---------------------------------------------------------------z^6 - 0.0419 z^5 - 0.07092 z^4 - 0.0004549 z^3 + 0.002495 z^2 - 3.347e-05 z + 1.125e-07Sample time: 1 secondsDiscrete-time transfer function.10.(a)>> G=tf(1,[1 2 1 2]);eig(G),pzmap(G) ans =-2.0000-0.0000 + 1.0000i-0.0000 - 1.0000i系统为临界稳定。

控制系统仿真与CAD课程设计报告

控制系统仿真与CAD课程设计报告

控制系统仿真与CAD 课程设计学院:物流工程学院专业:测控技术与仪器班级:测控102姓名:杨红霞学号:201010233037指导教师:兰莹完成日期:2013年7月4日目的和任务配合《控制系统仿真与CAD》课程的理论教学,通过课程设计教学环节,使学生掌握当前流行的演算式MATLAB语言的基本知识,学会运用MATLAB语言进行控制系统仿真和辅助设计的基本技能,有效地提高学生实验动手能力。

一、基本要求:1、利用MATLAB提供的基本工具,灵活地编制和开发程序,开创新的应用;2、熟练地掌握各种模型之间的转换,系统的时域、频域分析及根轨迹绘制;3、熟练运用SIMULINK对系统进行仿真;4、掌握PID控制器参数的设计。

二、设计要求1、编制相应的程序,并绘制相应的曲线;2、对设计结果进行分析;3、撰写和打印设计报告(包括程序、结果分析、仿真结构框图、结果曲线)。

三、设计课题设计一:二阶弹簧—阻尼系统的PID控制器设计及其参数整定考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg,b=2N.s/m,k=25N/m,F(S)=1。

设计要求:(1)控制器为P控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。

(2)控制器为PI控制器时,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。

(例如当kp=50时,改变积分时间常数)(3)设计PID控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:F kx x b xM =++ 25211)()()(22++=++==s s k bs Ms s F s X s G图2 闭环控制系统结构图附:P 控制器的传递函数为:()P P G s K =PI 控制器的传递函数为:11()PI P I G s K T s=+⋅ PID 控制器的传递函数为:11()PID P D I G s K T s T s=+⋅+⋅(一)设计P控制器,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。

控制系统仿真及CAD实验报告(研2021)2

控制系统仿真及CAD实验报告(研2021)2

控制系统仿真及CAD实验报告(研2021)2控制系统仿真及CAD试题(研2021)一、(20分)试论述系统仿真的目的、意义、分类及应用与发展概况。

解:系统仿真的目的:在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。

系统仿真的意义:由于仿真技术经济、安全、快捷的优点以及其特殊的用途,例如优化设计和预测功能,使得其在工程设计、理论研究、产品开发等方面具有重要意义。

系统仿真的分类:1、按模型分类。

当仿真实验所采用的模型是物理模型时,称之为物理仿真;是数学模型是,称之为数学仿真。

2、按计算机类型分类。

(1)模拟仿真。

采用数学模型在模拟计算机上进行的实验研究称之为模拟仿真。

(2)数字仿真。

采用数学模型在数字计算机上进行的实验研究称之为数字仿真。

(3)混合仿真。

将模拟仿真与数字仿真结合起来的混合仿真实验系统,简称混合仿真。

(4)全数字仿真。

对象的模拟也用一台计算机来实现,用软件来实现对象各种机理的模型。

(5)分布式数字仿真。

数字仿真系统将所研究的问题分布成若干个子系统,分别在主站与各分站的计算机上同时进行。

系统仿真的应用:现代仿真技术经过近50年的发展与完善,已经在各行业做出卓越贡献,同时也充分体现出其在科技发展与社会进步中的重要作用。

仿真技术广泛应用在航空与航天工业、电力工业、原子能工业、石油、化工及冶金工业中。

仿真技术还广泛应用在医学、社会学、宏观经济与商业策略的研究等非工程领域中。

系统仿真的发展概况:(1)在硬件方面,基于多CPU并行处理技术的全数字仿真系统将有效提高系统仿真的速度,从而使仿真系统“实时性”得到进一步的加强。

(2)随着网络技术的不断完善与提高,分布式数字仿真系统将为人们广泛采用,从而达到“投资少、效果好”的目的。

(3)在应用软件方面,直接面向用户的高效能的数字仿真软件不断推陈出新,各种专家系统与智能化技术奖更深入的应用于仿真软件开发中,使得在人―机界面、结果输出、综合评判等方面达到更理想的境界。

控制系统仿真实验报告书

控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。

二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。

首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。

2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。

3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。

4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。

调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。

五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。

控制系统仿真实验一报告

控制系统仿真实验一报告

实验一 经典的连续系统仿真建模方法一 实验目的1. 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。

2. 掌握机理分析建模方法。

3. 深入理解一阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写 数值积分法仿真程序。

4. 掌握和理解四阶 Runge-Kutta 法,加深理解仿真步长与算法稳定性的关系。

二 实验内容1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。

(1) 将阀位u 增大10%和减小10%,观察响应曲线的形状;u=0.45时的图像:010020030040050060070080090010001.251.31.351.41.451.5u=0.55010020030040050060070080090010001.351.41.451.51.551.61.651.7开大或关小阀位之后,稳态值会相应的从原液位上升或下降,这是符合实际的。

(2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定? 由(1)可知,当步长为40时,仿真结果是稳定的 当步长为80时的图像12345670200400600800100012001400160018002000-140-120-100-80-60-40-20020h (1,1)的数值稳定,但是并不是实际求得的稳态值。

h (1,2)的值显然发散。

进一步取小步长,取hstep=42时,图像出现偏差,但是稳态值不变0200400600800100012001.351.41.451.51.551.61.651.71.75Hstep=65时,图像偏差明显0200400600800100012001400160018000.511.522.53而hsetp=65.7时,图像就发散了020040060080010001200140016001800-25-20-15-10-55(3)利用MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。

控制系统仿真与CAD课程设计报告.doc

控制系统仿真与CAD课程设计报告.doc

控制系统仿真与CAD 课程设计学院:物流工程学院专业:测控技术与仪器班级:测控102姓名:杨红霞学号:201010233037指导教师:兰莹完成日期:2013年7月4日一、目的和任务配合《控制系统仿真与CAD》课程的理论教学,通过课程设计教学环节,使学生掌握当前流行的演算式MATLAB语言的基本知识,学会运用MATLAB 语言进行控制系统仿真和辅助设计的基本技能,有效地提高学生实验动手能力。

一、基本要求:1、利用MATLAB提供的基本工具,灵活地编制和开发程序,开创新的应用;2、熟练地掌握各种模型之间的转换,系统的时域、频域分析及根轨迹绘制;3、熟练运用SIMULINK对系统进行仿真;4、掌握PID控制器参数的设计。

二、设计要求1、编制相应的程序,并绘制相应的曲线;2、对设计结果进行分析;3、撰写和打印设计报告(包括程序、结果分析、仿真结构框图、结果曲线)。

三、设计课题设计一:二阶弹簧—阻尼系统的PID控制器设计及其参数整定考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg,b=2N.s/m,k=25N/m,F(S)=1。

设计要求:(1)控制器为P控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。

(2)控制器为PI控制器时,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。

(例如当kp=50时,改变积分时间常数)(3)设计PID控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:F kx x b x M =++&&&25211)()()(22++=++==s s k bs Ms s F s X s G图2 闭环控制系统结构图附:P 控制器的传递函数为:()P P G s K =PI 控制器的传递函数为:11()PI P I G s K T s=+⋅ PID 控制器的传递函数为:11()PID P D I G s K T s T s=+⋅+⋅(一)设计P控制器,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告一、实验目的本次控制系统仿真实验的主要目的是通过使用仿真软件对控制系统进行建模、分析和设计,深入理解控制系统的工作原理和性能特点,掌握控制系统的分析和设计方法,提高解决实际控制问题的能力。

二、实验设备与软件1、计算机一台2、 MATLAB 仿真软件三、实验原理控制系统是由控制对象、控制器和反馈环节组成的一个闭环系统。

其工作原理是通过传感器测量控制对象的输出,将其与期望的输出进行比较,得到误差信号,控制器根据误差信号产生控制信号,驱动控制对象,使系统的输出逐渐接近期望的输出。

在仿真实验中,我们使用数学模型来描述控制对象和控制器的动态特性。

常见的数学模型包括传递函数、状态空间方程等。

通过对这些数学模型进行数值求解,可以得到系统的输出响应,从而对系统的性能进行分析和评估。

四、实验内容1、一阶系统的仿真建立一阶系统的数学模型,如一阶惯性环节。

使用 MATLAB 绘制系统的单位阶跃响应曲线,分析系统的响应时间和稳态误差。

2、二阶系统的仿真建立二阶系统的数学模型,如典型的二阶振荡环节。

改变系统的阻尼比和自然频率,观察系统的阶跃响应曲线,分析系统的稳定性、超调量和调节时间。

3、控制器的设计与仿真设计比例控制器(P 控制器)、比例积分控制器(PI 控制器)和比例积分微分控制器(PID 控制器)。

对给定的控制系统,分别使用不同的控制器进行仿真,比较系统的性能指标,如稳态误差、响应速度等。

4、复杂控制系统的仿真建立包含多个环节的复杂控制系统模型,如串级控制系统、前馈控制系统等。

分析系统在不同输入信号下的响应,评估系统的控制效果。

五、实验步骤1、打开 MATLAB 软件,新建脚本文件。

2、根据实验内容,定义系统的数学模型和参数。

3、使用 MATLAB 中的函数,如 step()函数绘制系统的阶跃响应曲线。

4、对响应曲线进行分析,计算系统的性能指标,如超调量、调节时间、稳态误差等。

5、设计控制器,修改系统模型,重新进行仿真,比较系统性能的改善情况。

《控制系统仿真与CAD》学习的感想(共五则)

《控制系统仿真与CAD》学习的感想(共五则)

《控制系统仿真与CAD》学习的感想(共五则)第一篇:《控制系统仿真与CAD》学习的感想《控制系统仿真与CAD》学习的感想学习了《控制系统仿真与CAD》这门课程。

在这一过程中我学了很多东西,最直接的就是将控制理论和MATLAB软件联系起来,用计算机来仿真在《自动控制原理》中所学的内容,即利用MATLAB软件来对自动控制系统进行仿真,以验证所学的知识并且得到比较直观的结论。

控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。

控制系统意味着通过它可以按照所希望的方式保持和改变机器、机构或其他设备内任何感兴趣或可变化的量。

控制系统同时是为了使被控制对象达到预定的理想状态而实施的。

控制系统仿真是建立在控制系统模型基础之上的控制系统动态过程试验,目的是通过试验进行系统方案论证,选择系统结构和参数,验证系统的性能指标等。

MATLAB不仅仅是一门编程语言,还是一个集成的软件平台,它包含以下几个主要部分:MATLAB语言、集成工作环境、MATLAB图形系统、数学函数库、交互式仿真环境Simulink、编译器、应用程序接口API、工具箱、Notebook工具。

而在控制系统CAD中我们较多的是使用MATLAB数学函数库中的函数来对控制系统进行仿真与处理。

另外,也利用MATLAB交互式仿真环境Simulink来构建系统的结构框图,这样更直接的应用于不知道系统传递函数的情况下来得到系统的仿真结果,从而省去了计算传递函数的复杂计算。

MATLAB它具有丰富的可用于控制系统分析和设计的函数,MATLAB的控制系统工具箱提供对线性系统分析、设计和建模的各种算法;MATLAB的仿真工具箱(Simulink)提供了交互式操作的动态系统建模、仿真、分析集成环境。

通过在传递函数的建立、绘制响应的曲线等方面谈了我学习的经历,以及整个对控制系统仿真的整体过程。

在学习过程中还有利用Simulink工具箱绘出系统的结构框图,再调用这个框图来产生出传递函数再进行仿真计算。

控制系统CAD实验报告

控制系统CAD实验报告

《控制系统CAD》实验指导书编者:刘辉实验一 Matlab 使用方法和程序设计一、实验目的1. 掌握Matlab 软件使用的基本方法;2. 熟悉Matlab 的基本运算和程序控制语句;3. 熟悉Matlab 程序设计的基本方法。

二、实验内容1.求多项式的根4532)(234++++=x x x x x P程序:p=[1 2 3 5 4] ;x=roots(p)结果截图:2已知)()()(224224224b a c a c b c b a f -+-+-=,试使用符号运算的方法对其因式分解。

程序: Syms a b c;f=a^4*(b^2-c^2)+b^4*(c^2-a^2)+c^4*(a^2-b^2);R1=factor(f)结果截图:结果:3.编写一个函数,完成求和s=1+2+3+...+i+...+n。

程序:求1000个数相加的和sum=0;for i=1:1000sum=sum+i;endsum结果截图:4.已知一传递函数452)(2+++=s s s s F ,试将其分解为部分分式。

程序:num=[1 2]; den=[1 5 4];[r,p,k]=residue(num,den)结果截图:结果:实验二一、 实验目的1. 掌握如何使用Matlab 进行系统的时域分析。

2. 掌握如何使用Matlab 进行系统的频域分析。

3. 掌握如何使用Matlab 进行系统的根轨迹分析。

4. 掌握如何使用Matlab 进行系统的稳定性分析。

二、 实验内容 1.时域分析根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,绘制系统的单位脉冲响应。

8106)65(3)(232+++++=s s s s s s G程序:num=[3 15 18]; den=[1 6 10 8]; G=tf(num,den); Grid;impulse(G) time=[0:0.1:20]; step(G,time)结果截图:结果分析:超调量2.41 计算2.频域分析典型二阶系统传递函数为:2222)(nn nw s w s w s G ++=ζ当 ζ=0.7, ωn 取6时的 B ode Nichols Nyquist 图的单位阶跃响应。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告控制系统仿真实验报告引言控制系统是现代科学技术中的重要组成部分,广泛应用于工业生产、交通运输、航空航天等领域。

为了验证和优化控制系统的设计方案,仿真实验成为一种重要的手段。

本篇文章将对控制系统仿真实验进行详细的报告和分析。

一、实验目的本次控制系统仿真实验旨在通过模拟真实的控制系统运行环境,验证控制系统的性能和稳定性。

具体目标包括:1. 验证控制系统的闭环性能,包括稳定性、响应速度和误差补偿能力。

2. 评估不同控制策略在系统性能上的差异,比较PID控制、模糊控制等算法的效果。

3. 优化控制系统的设计方案,提高系统的控制精度和鲁棒性。

二、实验装置和方法本次实验采用MATLAB/Simulink软件进行仿真。

通过搭建控制系统的数学模型,并设置不同的控制参数和输入信号,模拟真实的控制环境。

具体步骤如下:1. 建立控制系统的数学模型,包括被控对象、传感器、执行器等部分。

2. 设计不同的控制策略,如PID控制器、模糊控制器等,并设置相应的参数。

3. 设置输入信号,模拟系统的工作条件和外部干扰。

4. 运行仿真实验,记录系统的输出响应、误差曲线和稳定性指标。

5. 分析实验结果,对比不同控制策略的性能差异,优化控制系统的设计方案。

三、实验结果与分析通过多次仿真实验,我们得到了一系列实验结果,并进行了详细的分析。

以下是其中的一些重要发现:1. PID控制器在大部分情况下表现出良好的控制性能,能够实现较快的响应速度和较小的稳态误差。

然而,在某些复杂系统中,PID控制器可能存在过调和震荡的问题。

2. 模糊控制器在处理非线性系统时表现出较好的鲁棒性,能够适应不同工况下的控制要求。

但是,模糊控制器的设计和参数调整相对复杂,需要较多的经验和专业知识。

3. 对于一些特殊的控制系统,如高阶系统和时变系统,需要采用更为复杂的控制策略,如自适应控制、鲁棒控制等。

这些策略能够提高系统的鲁棒性和适应性,但也增加了控制系统的设计和调试难度。

控制系统仿真与CAD实验报告

控制系统仿真与CAD实验报告
%传递函数 num2=1; den2=den1; w=logspace(-5,5); %bode 图 figure(1);bode(num1,den1,w);grid; %nyquist 图 figure(2);nyquist(num1,den1); %根轨迹 figure(3);rlocus(num2,den2); K1=rlocfind(num2,den2) %找出系统稳定的开环增益 K %鼠标点击根轨迹与虚轴交点处 %0<K<K1 时稳定 %不同 K 时的阶跃响应 K=[0.2 2 6 7]; for n=1:4; numo=K(n); deno=den1; [numc,denc]=cloop(numo,deno);
y=step(sys,t); plot(t,y); grid; yss=1; [y1,i]=max(y); Mp=(y1-yss)/yss; j=5000; while y(j)<1+0.002&&y(j)>1-0.002; j=j-1; end Ts=t(j); Tp=t(i); yr1=0.1*yss; yr2=0.9*yss; i=1; while y(i)<yr1; i=i+1; end; t1=t(i); while y(i)<yr2; i=i+1; end; t2=t(i); Tr=t2-t1; %找到比 yr1 大的 y(i)值 %让此时的 t(i)给 t1 %找到比 yr2 大的 y(i)值 %让此时的 t(i)给 t2 %上升时间 %过渡过程时间 %峰值时间 %y 是阶跃函数 %画出阶跃函数图形 %yss:稳态值 %峰值及峰值时间 %超调量的计算公式 %找ቤተ መጻሕፍቲ ባይዱ稳态时刻
饱和
系统结构框图 其中: G ( s )

(答案)控制系统CAD仿真实验报告一

(答案)控制系统CAD仿真实验报告一

实验一、熟悉MATLAB 环境及矩阵、数组的数学计算一、 实验目的1、熟悉启动和退出Matlab 的方法;2、熟悉Matlab 命令窗口的组成;3、掌握建立矩阵的方法;二、 实验内容:1、帮助命令使用help 命令,查找 sqrt (开方)函数的使用方法;2、先求下列表达式的值,然后显示Matlab 工作空间的使用情况并保存全部变量。

0.3,9.2,8.2,...,8.2,9.2,0.3,23.0ln )3.0sin(2)3(545.0212),1log(21)2(185sin 2)1(3.03.032221---=+++-=⎥⎦⎤⎢⎣⎡-+=++=+=-a a a e e z i x x x z e z a a 其中 提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

⎪⎩⎪⎨⎧=<≤+-<≤-<≤=5.2:5.0:0,32,1221,110,)4(2224t t t t t t t t z 其中提示:用逻辑表达式求分段函数值。

(1)z1=2*sin(85/180*pi)/(1+(exp(1))^2)z1 =0.2375(2)x=[2 1+2i;-0.45 5]x =2.0000 1.0000 + 2.0000i-0.4500 5.0000z2=0.5*log(x+sqrt(1+x^2))z2 =0.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044i(3)a=-3.0:0.1:3.0a =Columns 1 through 5-3.0000 -2.9000 -2.8000 -2.7000 -2.6000Columns 6 through 10-2.5000 -2.4000 -2.3000 -2.2000 -2.1000Columns 11 through 15-2.0000 -1.9000 -1.8000 -1.7000 -1.6000Columns 16 through 20-1.5000 -1.4000 -1.3000 -1.2000 -1.1000Columns 21 through 25-1.0000 -0.9000 -0.8000 -0.7000 -0.6000Columns 26 through 30-0.5000 -0.4000 -0.3000 -0.2000 -0.1000Columns 31 through 350 0.1000 0.2000 0.3000 0.4000Columns 36 through 400.5000 0.6000 0.7000 0.8000 0.9000Columns 41 through 451.0000 1.1000 1.2000 1.3000 1.4000Columns 46 through 501.5000 1.6000 1.7000 1.8000 1.9000Columns 51 through 552.0000 2.1000 2.2000 2.3000 2.4000Columns 56 through 602.5000 2.6000 2.7000 2.8000 2.9000Column 613.0000z3=((exp(0.3*a)-exp(-0.3*a)).*sin(a+0.3))/2+log((a+0.3)/2) z3 =Columns 1 through 30.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i Columns 4 through 60.7913 + 3.1416i 0.7822 + 3.1416i 0.7602 + 3.1416i Columns 7 through 90.7254 + 3.1416i 0.6784 + 3.1416i 0.6196 + 3.1416i Columns 10 through 120.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i Columns 13 through 150.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i Columns 16 through 18-0.0771 + 3.1416i -0.2124 + 3.1416i -0.3566 + 3.1416i Columns 19 through 21-0.5104 + 3.1416i -0.6752 + 3.1416i -0.8536 + 3.1416i Columns 22 through 24-1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i Columns 25 through 27-1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416i Columns 28 through 30-37.0245 -3.0017 -2.3085 Columns 31 through 33-1.8971 -1.5978 -1.3575 Columns 34 through 36-1.1531 -0.9723 -0.8083 Columns 37 through 39-0.6567 -0.5151 -0.3819 Columns 40 through 42-0.2561 -0.1374 -0.0255 Columns 43 through 450.0792 0.1766 0.2663 Columns 46 through 480.3478 0.4206 0.4841 Columns 49 through 510.5379 0.5815 0.6145 Columns 52 through 540.6366 0.6474 0.6470 Columns 55 through 570.6351 0.6119 0.5777 Columns 58 through 600.5327 0.4774 0.4126 Column 610.33880.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044i(4)t=0:0.5:2.5;if t<1,z4=t.^2,elseif t<2,z4=t.^2-1,else z4=t.^2-2.*t+1,end; z4 =1.0000 0.2500 0 0.2500 1.00002.25003、已知:(1)A=[12 34 -4;34 7 87;3 65 7],B=[1 3 -1;2 0 3;3 -2 7],A+6*B,A =12 34 -434 7 873 65 7B =1 3 -12 0 33 -2 7ans =18 52 -1046 7 10521 53 49I=eye(3),I =1 0 00 1 00 0 1>> A-B+Ians =12 31 -332 8 840 67 1(2)A*Bans =68 44 62309 -72 596154 -5 241>> A.*Bans =12 102 468 0 2619 -130 49(3)A^3ans =37226 233824 48604247370 149188 60076678688 454142 118820>> A.^3ans =1728 39304 -6439304 343 65850327 274625 343(4)A/Bans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000>> B\Aans =109.4000 -131.2000 322.8000-53.0000 85.0000 -171.0000-61.6000 89.8000 -186.2000三、预习要求:利用所学知识,编写实验内容中1到3的相应程序,并写在预习报告上。

实验七 控制系统仿真及CAD

实验七  控制系统仿真及CAD

实验七控制系统仿真及CAD【设计要求】要求采用MATLAB语言,编制.m文件实现,对于给定的题目,要求完成控制器的设计,程序编制,系统调试,性能指标的计算,结果演示以及系统分析等任务。

【报告要求】a) 设计题目的任务及要求;b) 控制器的设计;c) 系统框图及仿真程序;d) 系统性能的计算及分析;e) 调试过程总结、分析及体会。

【实验内容】某化工过程中计算机控制系统如下图所示:(1) 试用环节离散化方法对该系统做仿真研究, 设计PID调节器参数, 使该系统动态性能达到最佳。

(2)试用smith预估控制方法对该系统进行重新设计,并用仿真的方法分析滞后参数对系统动态性能的影响。

PID参数整定程序:T3=10;Kp=0.10;Ti=0.042;Td=0.1;r=1;T0=0;Tf=100;T=0.01;t=0;f=0;h=0.002;e=zeros(3,1);u=zeros(2,1);yout=0;M1=fix(T3/h);M2=T3/h-M1;ylag=zeros(M1+2,1);Y=[0;0];Uk=[0;0];FI=[exp(-h*2);exp(-h*3)];FIM=[(1-exp(-h*2))*0.05;(1-exp(-h*3))/3];FIJ=[h*0.05-(1-exp(-h*2))*0.05*0.5;h/ 3-(1-exp(-h*3))/9];nout=2;N=round((Tf-T0)/T);for k=1:Nfor i=1:T/hUb=Uk;Uk=[u(1);Y(1)];Udot=(Uk-Ub)/h;Y=FI.*Y+FIM.*Uk+FIJ.*Udot;ylag=[Y(nout);ylag(1:M1+1)];y=(1-M2)*ylag(M1+1)+M2*ylag(M1+ 2);endyout=[yout,y];ek=r-y;e=[ek;e(1:2)];a=1+T/Ti+Td/T;b=1+2*Td/T;c=Td/T;uk=u(1)+Kp*(a*e(1)-b*e(2)+c*e(3));f=f+T;t=[t,f];u=[uk;u(1:2)]; endt=T0:T:Tf;plot(t,yout,'r') grid onhold on如果运用史密斯预估进行控制,其原理如下:smith预估控制方法程序:T=0.01;Td=0.1;Ti=0.001;Kp=0.06;T1=1/2;T2=1/3;T3=0.1;T4=10;h=0.002;P=[1 T1 1/6 0;1 T2 1 T3];WIJ=[1 0 1;2 1 1];T0=0;Tf=100;r=1;n=2;N=round((Tf-T0)/T);E=zeros(n+1,1);u=zeros(n,1);a=Kp*(1+T/Ti+Td/T);b=Kp*(1+2*Td/T);c=Kp*Td/T;M1=T4/T;ylag=zeros(M1+1,1);nout=2;A=P(:,1);B=P(:,2);C=P(:,3);D=P(:,4);m=length(WIJ(:,1));W0=zeros(n,1);W=zeros(n,n);for k=1:mif(WIJ(k,2)==0);W0(WIJ(k,1))=WIJ(k, 3);elseW(WIJ(k,1),WIJ(k,2))=WIJ(k,3);end;end;for i=1:nif(A(i)==0);FI(i)=1;FIM(i)=h*C(i)/B(i);FIJ(i)=h*h*C(i)/B(i)/2;FIC(i)=1;FID(i)=0;if(D(i)~=0);FID(i)=D(i)/B(i);elseendelseFI(i)=exp(-h*A(i)/B(i));FIM(i)=(1-FI(i))*C(i)/A(i);FIJ(i)=h*C(i)/A(i)-FIM(i)*B(i)/A(i) ;FIC(i)=1;FID(i)=0;if(D(i)~=0);FIM(i)=(1-FI(i))*D(i)/A(i);FIJ(i)=h*D(i)/A(i)-FIM(i)*B(i)/A(i) ;FIC(i)=C(i)/D(i)-A(i)/B(i);FID(i)=D(i)/B(i);elseendendendY=zeros(n,1);X=Y;Y1=Y;y=0;Uk=zeros(n,1);N=round((Tf-T 0)/T);for i=1:Nfor j=0:T/hUb=Uk;Uk=W*Y+W0*u(1);Udot=(Uk-Ub)/h;Uf=2*Uk-Ub;X=FI'.*X+FIM'.*Uk+FIJ'.*U dot;Y=FIC'.*X+FID'.*Uf;ylag=[Y(nout);ylag(1:M1)];yk=ylag(M1+1);Y1=Y-yk;endE=[r-yk-Y1;E(1:2)];u=u(1)+a*E(1)-b*E(2)+c*E(3);U=[u:u(1)];y=[y;yk];endt=T0:T:Tf;plot(t,y)grid on【实验结果】史密斯预估控制,取得较好的控制效果PID控制取得的控制效果,可以控制但是品质不好本实验是对采样控制系统中常见的有滞后环节的数学模型进行仿真的实现,结果显示对于带滞后的系统来说,相应的输出曲线也滞后相同的时间,并且使得滞后环节对系统的响应也影响较小。

控制系统仿真实验报告

控制系统仿真实验报告

哈我滨理工大教之阳早格格创做真验报告统造系统仿真博业:自动化12-1教号: 1230130101姓名:一.分解系统本能一.真验手段及真量:1. 认识MATLAB硬件的支配历程;2. 认识关环系统宁静性的推断要领;3. 认识关环系统阶跃赞同本能指目标供与.二.真验用设备仪器及资料:PC, Matlab 硬件仄台三、真验步调1. 编写MATLAB步调代码;2. 正在MATLAT中输进步调代码,运止步调;3.分解截止.四.真验截止分解:得到阶跃赞同直线得到赞同指标截图如下得到整极面分散图根据宁静的充分需要条件判别线性系统的宁静性最简朴的要领是供出系统所有极面,并瞅察是可含有真部大于0的极面,如果有系统没有宁静.有整极面分散图可知系统宁静.二.单容历程的阶跃赞同一、真验手段1. 认识MATLAB 硬件的支配历程2. 相识自衡单容历程的阶跃赞同历程3. 得出自衡单容历程的单位阶跃赞同直线 二、真验真量已知二个单容历程的模型分别为1()0.5G s s =战51()51s G s e s -=+,试正在Simulink 中修坐模型,并供单位阶跃赞同直线. 三、真验步调1. 正在Simulink 中修坐模型,得出真验本理图.2. 运止模型后,单打Scope ,得到的单位阶跃赞同直线. 四、真验截止1.修坐系统Simulink 仿真模型图,其仿真模型为 2.历程阶跃赞同直线为三.单容历程的阶跃赞同一、真验手段1. 相识比率积分安排的效率;2. 相识积分安排强强对于系统本能的效率.二、真验真量已知统造系统如下图所示,其中01()(1)(21)(51)G s s s s =+++,H(s)为单位反馈,且正在第二个战第三个关节(即1(21)s +战1(51)s +)之间有乏加的扰动输进(正在5秒时幅值为0.2的阶跃扰动).对于系统采与比率积分统造,比率系数为2p K =,积分时间常数分别与3,6,12i T =,试利用Simulink 供各参数下系统的单位阶跃赞同直线战扰动赞同直线. 三、真验步调1. 正在Simulink 中修坐仿真模型,其模型为2. 运止模型后,单打Scope ,得到的单位阶跃赞同直线为3.置阶跃输进为0,正在5秒时,加进幅值为0.2的阶跃扰动,得到扰动赞同直线为四.PID 统造器参数整定一、真验手段1. 通过真验进一步认识历程统造系统的结构组成;2. 掌握简朴统造系统的投运战参数整定的要领;3. 定性天分解P 、PI 、PID 统造顺序对于系统本能的效率. 二、真验真量已知统造系统如下图所示,其中01()(1)(5)G s s s s =++,试采与临界比率度法估计系统P、PI、PID统造器的参数,并画造整定后系统的单位阶跃赞同直线.三、真验步调1. 正在Simulink中修坐仿真模型2. 正在Simulink中把反馈连线、微分器的输出连线、积分器的输出连线皆断启,Kp的值从大到小举止考查,直到输出等幅振荡直线为止,记下此时的Kp战Tk.通过考查得到Kp为30时输出等幅震荡直线3.根据临界振荡体味公式估计P统造时的比率搁大系数Kp,并将模型中Kp置为该值,仿真运止.运止完成后单打Scope,得到P统造时系统的单位阶跃赞同直线.4. 根据临界振荡体味公式估计PI统造时的比率搁大系数Kp 战积分时间常数Ti,并将模型中比率战积分器参数置为估计所得值,将积分器的输出连线连上,仿真运止,运止完成后单打Scope,得到PI统造时系统的单位阶跃赞同直线.表4-1临界比率度法整定体味公式5. 根据临界振荡体味公式估计PID统造时的比率搁大系数Kp,积分时间常数Ti,微分时间常数Td,并将模型中比率系数,积分器及微分器参数置为相映估计所得值,将微分器的输出连线连上,仿真运止,运止完成后单打Scope,得到PID统造时系统的单位阶跃赞同直线.四、真验截止1.参数整定截止为表4-2各统造顺序下参数整定截止赞同直线为五.串级统造系统一、真验手段1. 通过真验进一步认识串级统造系统的结构组成;2. 相识串级统造系统的效率效验. 二、真验真量串级与单回路统造对于比仿真,分别获与系统的阶跃赞同输出,一次扰动效率下的系统输出赞同,二次扰动效率下的系统输出赞同.系统输进及一次扰动战二次扰动均与阶跃旗号.对于比仿真截止分解系统串级统造的效率效验. 三、真验步调1. 正在Simulink 中修坐单回路统造时系统的模型:q1为一次扰动,q2为二次扰动,012190331G s s =++为主对于象,023211021171G s s s =+++为副对于象,r为系统输进,q1、q2、r均为单位阶跃函数,正在示波器上瞅测输出.(1) PID参数树坐中,与输进比率系数为3.7,积分系数为38,微分系数为0时运止系统,得到系统阶跃赞同输出.正在Simulink中修坐仿真模型,如下运止截止,得到的图形如下(2)采与共样的PID参数时,使二次扰动q2效率,运止系统,得到二次扰动效率下的系统输出赞同.(3)采与共样的PID参数时,使一次扰动q1效率,运止系统,得到一次扰动效率下的系统输出赞同.2. 正在Simulink中修坐串级统造时系统的模型:PID C1为主统造器,采与PI统造;PID C2为副统造器,采与P统造;其余共单回路统造系统.正在Simulink中修坐仿真模型,如下(1)主统造器PID C1输进参数与比率系数为8.4,积分系数为12.8,微分系数为0;副统造器PID C2与比率系数10,积分系数0,微分系数0,运止系统,得到系统阶跃赞同输出.(2)采与共样的PID参数时,正在二次扰动q2效率下,运止系统,得到系统的输出赞同.(3)采与共样的PID参数时,正在二次扰动q1效率下,运止系统,得到系统的输出赞同.四、真验截止表5-1 单回路统造与串级统造对于比六.串级统造的参数整定一、真验手段1. 通过真验进一步认识串级统造系统的结构组成;2. 掌握串级统造系统参数整定的要领; 二、真验真量已知某隧讲窑系统,烧成戴温度为主变量、焚烧室温度为副变量形成的串级统造系统中,主副对于象的传播函数分别为:011()(301)(31)G s s s =++,0221()(101)(1)G s s s =++ 试整定PID 统造器的参数,并画造整定后系统的单位阶跃赞同直线. 三、真验步调1.正在Simulink 中修坐仿真模型. 其仿真模型 运止步调得到2. 使用任性一种串级统造系统参数整定要领整定主副统造器参数. 采用PI 整定 仿真模型3.画造系统单位阶跃赞同直线.四、真验截止1.主副安排器参数整定截止.表6-1 主副安排器整定参数七.统造系统数教模型一、真验手段函数模型与状态空间模型的变换; 2. 掌握模型连交的MATLAB 真止要领; 二、真验真量已知某单位背反馈系统启环传播函数为21()52s G s s s +=++,试利用Simulink 修坐系统正在单位阶跃输进效率下的模型,利用MATLAB 修坐传播函数模型并得出状态空间模型,获与系统的单位阶跃赞同直线. 三、真验步调1.正在Simulink 中修坐仿真模型. 其运止截止2. 用[numc,denc]=cloop(num,den,-1)下令获与传播函数模型 截止如下3.用[A,B,C,D]=tf2ss(num,den)下令将传播函数模型变换为状态空间.其仿真模型运止截止八.系统可控性可瞅性分解一、真验手段系统可控性、可瞅性的分解;2. 掌握MATLAB正在可控可瞅尺度型中的应用;二、真验真量给定系统的状态圆程:利用MATLAB举止以下分解:(1)修坐统造系统的数教模型;(2)分解系统的可控性、可瞅性;(3)画造系统的阶跃赞同直线.三、真验步调1.挨启MATLAB处事窗心用ss()下令修坐系统的状态空间模型运止截止2. 考验系统的可控性、可瞅性运止截止3.画造系统单位阶跃赞同直线.运止截止4.推断系统的宁静性.步调运止截止论断:系统是宁静的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《控制系统仿真与CAD》实验课程报告一、实验教学目标与基本要求上机实验是本课程重要的实践教学环节。

实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。

通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。

上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。

二、题目及解答第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析1.>>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid2.>>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff)Warning: Options LargeScale = 'off' and Algorithm ='trust-region-reflective' conflict.Ignoring Algorithm and running active-set algorithm. To runtrust-region-reflective, setLargeScale = 'on'. To run active-set without this warning, useAlgorithm = 'active-set'.> In fmincon at 456Local minimum possible. Constraints satisfied.fmincon stopped because the size of the current search direction is less thantwice the selected value of the step size tolerance and constraints aresatisfied to within the selected value of the constraint tolerance.<stopping criteria details>Active inequalities (to within options.TolCon = 1e-20):lower upper ineqlin ineqnonlin2x =1.00001.0000f =-1.0000c =4d =iterations: 5funcCount: 20lssteplength: 1stepsize: 3.9638e-26algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'firstorderopt: 7.4506e-09constrviolation: 0message: [1x766 char]3.(a) >> s=tf('s');G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5))G =s^3 + 4 s + 2------------------------------------------------------s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3Continuous-time transfer function.(b)>> z=tf('z',0.1);H=(z^2+0.568)/((z-1)*(z^2-0.2*z+0.99))H =z^2 + 0.568-----------------------------z^3 - 1.2 z^2 + 1.19 z - 0.99Sample time: 0.1 secondsDiscrete-time transfer function.4.>> A=[0 1 0;0 0 1;-15 -4 -13];B=[0 0 2]';C=[1 00];D=0;G=ss(A,B,C,D),Gs=tf(G),Gz=zpk(G)G =a =x1 x2 x3x1 0 1 0x2 0 0 1x3 -15 -4 -13b =u1x1 0x2 0x3 2c =x1 x2 x3y1 1 0 0d =u1y1 0Continuous-time state-space model.Gs =2-----------------------s^3 + 13 s^2 + 4 s + 15 Continuous-time transfer function.Gz =2---------------------------------(s+12.78) (s^2 + 0.2212s + 1.174) Continuous-time zero/pole/gain model.5.设采样周期为0.01s>> z=tf('z',0.01);H=(z+2)/(z^2+z+0.16) H =z + 2--------------z^2 + z + 0.16Sample time: 0.01 secondsDiscrete-time transfer function.6.>> syms J Kp Ki s;G=(s+1)/(J*s^2+2*s+5);Gc=(Kp*s+Ki)/s;GG=feedback(G*Gc,1) GG =((Ki + Kp*s)*(s + 1))/(J*s^3 + (Kp + 2)*s^2 + (Ki + Kp + 5)*s + Ki)7.(a)>>s=tf('s');G=(211.87*s+317.64)/((s+20)*(s+94.34)*(s+0.1684));Gc=(169.6*s+400)/(s*(s+4));H=1/(0.01*s+1);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG =359.3 s^3 + 3.732e04 s^2 + 1.399e05 s + 127056----------------------------------------------------------------0.01 s^6 + 2.185 s^5 + 142.1 s^4 + 2444 s^3 + 4.389e04 s^2 + 1.399e05 s + 127056Continuous-time transfer function.Gd =a =x1 x2 x3 x4 x5 x6x1 -218.5 -111.1 -29.83 -16.74 -6.671 -3.029x2 128 0 0 0 0 0x3 0 64 0 0 0 0x4 0 0 32 0 0 0x5 0 0 0 8 0 0x6 0 0 0 0 2 0b =u1x1 4x2 0x3 0x4 0x5 0x6 0c =x1 x2 x3 x4 x5 x6y1 0 0 1.097 3.559 1.668 0.7573d =u1y1 0Continuous-time state-space model.Gz =35933.152 (s+100) (s+2.358) (s+1.499)----------------------------------------------------------------------(s^2 + 3.667s + 3.501) (s^2 + 11.73s + 339.1) (s^2 + 203.1s + 1.07e04) Continuous-time zero/pole/gain model.(b)设采样周期为0.1s>>z=tf('z',0.1);G=(35786.7*z^2+108444*z^3)/((1+4*z)*(1+20*z)*(1+74.04*z));Gc= z/(1-z);H=z/(0.5-z);GG=feedback(G*Gc,H),Gd=ss(GG),Gz=zpk(GG)GG =-108444 z^5 + 1.844e04 z^4 + 1.789e04 z^3----------------------------------------------------------------1.144e05 z^5 +2.876e04 z^4 + 274.2 z^3 + 782.4 z^2 + 47.52 z + 0.5Sample time: 0.1 secondsDiscrete-time transfer function.Gd =a =x1 x2 x3 x4 x5 x1 -0.2515 -0.00959 -0.1095 -0.05318 -0.01791x2 0.25 0 0 0 0x3 0 0.25 0 0 0x4 0 0 0.125 0 0x5 0 0 0 0.03125 0b =u1x1 1x2 0x3 0x4 0x5 0c =x1 x2 x3 x4 x5y1 0.3996 0.6349 0.1038 0.05043 0.01698d =u1y1 -0.9482Sample time: 0.1 secondsDiscrete-time state-space model.Gz =-0.94821 z^3 (z-0.5) (z+0.33)----------------------------------------------------------(z+0.3035) (z+0.04438) (z+0.01355) (z^2 - 0.11z + 0.02396)Sample time: 0.1 secondsDiscrete-time zero/pole/gain model.8.>>s=tf('s');g1=1/(s+1);g2=s/(s^2+2);g3=1/s^2;g4=(4*s+2)/(s+1)^2;g5=50;g6=(s^2+2) /(s^3+14);G1=feedback(g1*g2,g4);G2=feedback(g3,g5);GG=3*feedback(G1*G2,g6) GG =3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s---------------------------------------------------------------------------s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3 + 7732 s^2 + 5602 s + 1400Continuous-time transfer function.9.>>s=tf('s');T0=0.01;T1=0.1;T2=1;G=(s+1)^2*(s^2+2*s+400)/((s+5)^2*(s^2+3*s+100 )*(s^2+3*s+2500));Gd1=c2d(G,T0),Gd2=c2d(G,T1),Gd3=c2d(G,T2),step(G),figure,st ep(Gd1),figure,step(Gd2),figure,step(Gd3)Gd1 =4.716e-05 z^5 - 0.0001396 z^4 + 9.596e-05 z^3 + 8.18e-05 z^2 - 0.0001289 z + 4.355e-05----------------------------------------------------------------z^6 - 5.592 z^5 + 13.26 z^4 - 17.06 z^3 + 12.58 z^2 - 5.032 z + 0.8521Sample time: 0.01 secondsDiscrete-time transfer function.Gd2 =0.0003982 z^5 - 0.0003919 z^4 - 0.000336 z^3 + 0.0007842 z^2 - 0.000766 z + 0.0003214----------------------------------------------------------------z^6 - 2.644 z^5 + 4.044 z^4 - 3.94 z^3 + 2.549 z^2 - 1.056 z + 0.2019Sample time: 0.1 secondsDiscrete-time transfer function.Gd3 =8.625e-05 z^5 - 4.48e-05 z^4 + 6.545e-06 z^3 + 1.211e -05 z^2 - 3.299e-06 z + 1.011e-07---------------------------------------------------------------z^6 - 0.0419 z^5 - 0.07092 z^4 - 0.0004549 z^3 + 0.002495 z^2 - 3.347e-05 z + 1.125e-07Sample time: 1 secondsDiscrete-time transfer function.10.(a)>> G=tf(1,[1 2 1 2]);eig(G),pzmap(G) ans =-2.0000-0.0000 + 1.0000i-0.0000 - 1.0000i系统为临界稳定。

相关文档
最新文档