实验报告-气-汽对流传热综合实验
气气传热实验报告
气气传热实验报告气气传热实验报告摘要:本实验旨在研究气体传热的规律和特性。
通过实验测量不同条件下气体传热的速率和效果,分析实验结果,探讨气体传热的机制和影响因素。
实验结果表明,气体传热受到温度差、气体类型和介质等因素的影响,可以通过调节这些因素来改变气体传热的速率和效果。
引言:气体传热是热力学和工程学中的重要研究内容,对于理解和应用热传导、对流传热和辐射传热等方面具有重要意义。
通过实验研究气体传热的规律和特性,可以为工程实践和能源利用提供理论依据和技术支持。
实验方法:本实验使用了传热实验装置,包括热源、传热介质和传热体。
首先,将传热介质充满传热装置,确保介质的稳定流动。
然后,通过调节热源的温度和传热体的表面积,控制传热的条件。
在不同的实验条件下,使用热电偶测量传热体的温度变化,并记录实验数据。
实验结果:根据实验数据,我们可以得出以下结论:1. 温度差对气体传热速率的影响:实验证明,温度差是影响气体传热速率的重要因素。
当温度差增大时,传热速率也随之增大。
这是因为温度差增大会增大热传导的驱动力,从而加快传热过程。
2. 气体类型对气体传热效果的影响:不同气体的传热特性存在差异。
实验结果表明,氢气和氧气的传热速率较快,而二氧化碳和氮气的传热速率较慢。
这是因为气体分子的质量和结构不同,导致其传热特性存在差异。
3. 介质对气体传热效果的影响:实验中使用了不同的传热介质,包括空气、水和油。
实验结果表明,不同介质对气体传热的影响不同。
水和油的传热效果较好,而空气的传热效果较差。
这是因为水和油的热导率较高,能够更好地传递热量。
讨论:通过对实验结果的分析和讨论,我们可以得出以下结论:1. 温度差是影响气体传热速率的重要因素。
在实际应用中,可以通过控制温度差来调节气体传热的速率和效果。
2. 气体类型对气体传热的影响较大。
在工程实践中,需要根据具体气体的传热特性选择合适的传热介质和传热方式。
3. 介质对气体传热的影响也很重要。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
气汽传热实验报告
气汽传热实验报告实验目的:研究气体与汽体达到热平衡时的传热现象。
实验原理:在气氛中,气体与汽体的传热过程通常是以对流传热为主要方式。
对流传热是通过流体的对流传递热量的过程,其传热速率与传导传热的速率相比较大。
在实验中,我们以空气为气体,水蒸气为汽体,通过一个实验装置将这两种介质进行传热。
实验装置包括一个加热器和一个冷却器,它们分别与制冷装置和加热装置相连。
当实验开始时,加热器中的水被加热转化为水蒸气,水蒸气进入冷却器后被冷却成为液态水。
实验装置中的流量计和温度计可以测量气体和汽体的流量和温度。
实验过程:1. 将实验装置连接好,确保每一处连接都密封可靠。
2. 打开制冷装置和加热装置,开始循环。
3. 记录下气体和汽体的流量和温度,根据实际需要调整加热和冷却的功率。
4. 每隔一段时间记录一次流量和温度,直到达到热平衡状态。
实验数据处理:根据实验记录的数据,我们可以计算出气体和汽体的传热速率。
传热速率可以用下面的公式来计算:q = m * Cp * (Tout - Tin)其中,q为传热速率,m为流量,Cp为比热容,Tout为出口温度,Tin为入口温度。
通过计算得到的传热速率数据可以绘制成传热速率随时间的曲线图。
根据曲线图的特点可以分析传热过程的规律。
实验结果和讨论:根据实验数据和曲线图可以看出,传热速率在开始时较大,随着时间的推移逐渐减小并趋于稳定。
这是因为在开始时,气体和汽体的温差较大,传热速率会比较快。
随着时间的推移,气体和汽体之间的温差减小,传热速率也会相应减小。
当气体和汽体达到热平衡时,传热速率将趋于一定的稳定值。
此外,传热速率还受到其他因素的影响,比如流体的流速、传热表面的面积和传热介质的性质等。
通过调整实验装置中的参数,我们可以研究这些因素对传热速率的影响。
实验结论:在气汽传热实验中,我们通过研究气体和汽体达到热平衡时的传热现象,发现了传热速率随时间变化的规律。
随着时间的推移,传热速率逐渐减小并趋于稳定。
化工原理实验(四)空气-蒸汽对流给热系数测定
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
实验报告-气-汽对流传热综合实验
实验报告-气-汽对流传热综合实验摘要:本实验旨在研究气汽对流传热特性,用实验数据确定理论模型参数,并分析能量守恒定律用于测定实验物体热量容量和总容量。
实验结果显示,气汽对流传热是由气流和质量流动引起的末端传热,在实验环境中表现为气汽对流传热。
由对实验数据的分析,可知通量和温度的关系,且表明了容量的大小与能量的守恒的相关性。
1、实验原理气汽对流传热是一种特殊的传热形式,发生在物体与气体或液体面之间,在其发生时,由于热量转移,而在这两表面之间发生气体或液体的运动,热流量是运动传递所引起的,从而造成介质两端的热量运动,从而形成传热。
2、实验步骤(1)实验仪器准备:实验仪器包括,气汽对流热传输实验台、调压罩、调压阀、进排气管、温度计、湿度计、压力表等设备。
(2)调试:把实验台上的调压阀打开,用手把调压罩拉落,手调温度计指针,在实验台上拉起温度拉丝,注意实验台传感器位置。
(3)启动实验:把实验装置测试面调节到预定温度,仔细测量压力、温度和湿度,即可进行实验。
3、实验结果(1)实验数据:通过实验台提供的实验数据发现,风口和吹出口的温度变化和压力变化存在一定的变化趋势,即在实验开始时,风口温度和吹出口温度都较高,压力较低;随着实验进行,它们相差越来越小,而压力也越来越增大。
(2)容量测定:借助观察实验数据,通过比较前后温度差以及定义的总容量、物体热量容量可以求得实验物体的热量容量和总容量的取值,说明实验物体的温度变化可以用叠加定律计算出来。
4、结论本实验证明,气汽对流传热是指在实验装置测试表面和空气之间形成的气体或液体流动传热。
实验结果表明,气汽对流传热对温度非常敏感,其传热。
对流传热系数实验报告
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
实验报告-气-汽对流传热综合实验
气—汽对流传热综合实验1. 光滑套管换热器传热系数的测定数据记录与整理表传热管内径d i =0.020 m 有效长度L i =1。
00 m 冷流体:空气(管内)热流体:蒸汽(管外)2. 强化套管换热器传热系数及强化比的测定数据记录与整理表传热管内径d i =0.020 m 有效长度L i =1。
00 m 冷流体:空气(管内)热流体:蒸汽(管外)1壁面温度T w℃99.6 99.7 99。
8 99。
9 99。
9 管内平均温度t m℃59。
9 57.6 56.8 56。
8 57.3 空气密度ρm kg/ m31。
060 1。
068 1。
071 1。
071 1.069 空气导热系数λm*100 W/ m·℃2。
895 2。
879 2.874 2.874 2。
877 空气定压比热容Cpm kJ/ kg·℃ 1.005 1.005 1.005 1。
005 1。
005空气粘度μm*10000Pa·s 2。
01 2.00 1。
99 1。
99 2。
00空气进出口温度差Δt℃61。
7 55。
0 51.7 50.3 50。
2 平均温差Δt m℃39。
7 42。
1 43.0 43。
1 42.6 20℃时空气流量V20m3/ h 8。
79 18。
58 24.34 29。
59 33.89 管内平均流量V m3/ h 9.837 20。
613 26。
902 32。
666 37.432 平均流速u m/s 8。
70 18.22 23。
78 28.88 33.09传热量Q W 179。
60 338。
02 392。
16 491。
27 560。
77 对流传热系数αi W/m2·℃71。
99 127.77 145。
13 181.39 209.48 雷诺数Re 9176 19458 25596 31086 35373 努赛尔准数Nu 49.73 88。
76 101。
0 126。
23 145。
62Nu/Pr0.457。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
气汽对流传热综合实验数据处理
1234孔板压差ΔP(KPa)0.52 1.53 2.56 3.57空气入口温度t1(℃)25.626.126.526.8ρt1(kg/m3) 1.18 1.18 1.18 1.18空气出口温度t2(℃)72.766.166.167.5壁面温度Tw(℃)99.799.799.799.7管内平均温度t m(℃)49.1546.146.347.15ρm(kg/m3) 1.09 1.1 1.1 1.1λm(W/m·℃)0.0280.0280.0280.028 Cp m(J/kg·℃)1005100510051005μm(Pa·s)0.00001970.00001950.00001950.0000195空气进出口温差Δt(℃)47.14039.640.7平均温差Δt m (℃)50.5553.653.452.55 20℃时空气流量V20(m3/h)16.3728.0736.3142.88计量计处空气流量Vt1(m3/h)16.5228.3636.7143.38管内平均流量Vm(m3/h)17.9030.9740.0147.10平均流速um(m/s)15.8327.3835.3741.64传热量Q(W)381.29705.86908.481052.47αi(W/m2·℃)120.03209.56270.73318.71 Re17514.4030892.1839908.6146981.93Nu85.74149.69193.38227.65Pr0.710.700.700.70Pr0.40.870.870.870.87Nu/Pr0.498.49172.65223.04262.58孔板压差ΔP(KPa)0.20.7 1.2 1.7空气入口温度t1(℃)30.631.332.132.4ρt1(kg/m3) 1.165 1.161 1.158 1.158空气出口温度t2(℃)81.676.776.576壁面温度Tw(℃)100100100100管内平均温度t m(℃)56.15454.354.2ρm(kg/m3) 1.073 1.08 1.08 1.08λm(W/m·℃)0.2870.2860.2860.286 Cp m(J/kg·℃)1005100510051005μm(Pa·s) 1.94*10^-6 1.93*10^-6 1.93*10^-6 1.93*10^-6空气进出口温差Δt(℃)5145.444.443.6平均温差Δt m (℃)43.94645.745.8 20℃时空气流量V20(m3/h)10.1518.9924.8629.59管内平均流量V(m3/h)1120.4126.6731.7d i=0.02m L=1.00m 冷流体:空气(管内)流体:蒸汽(管外)平均流速u(m/s)9.7218.0423.5828.03传热量Q(W)168279.4457416.7αi(W/m2·℃)60.996.66124.3144.8 Re10752201902639031370 Nu42.4467.5986.92101.26 Pr0.6790.6780.6780.678 Nu/Pr0.449.5578.96101.54118.29 Nu036.9160.0873.9284.51 Nu/Nu0 1.15 1.13 1.18 1.21234孔板压差 ΔP(KPa)0.260.76 1.26 1.76空气入口温度t 1(℃)28.528.929.329.7ρt1(kg/m 3) 1.165 1.165 1.165 1.165空气出口温度t 2(℃)86.57873.972.6壁面温度Tw(℃)99.799.799.799.7管内平均温度t m (℃)57.553.4551.651.15ρm (kg/m 3)1.06 1.09 1.09 1.09λm (W/m ·℃)0.0290.02830.02830.0283Cp m (J/kg ·℃)1005100510051005μm (Pa ·s)0.0000201 1.96E-050.00001960.0000196空气进出口温差Δt(℃)5849.144.642.9平均温差Δt m (℃)42.246.2548.148.5520℃时空气流量V 20(m 3/h)10.1524.8633.6640.6d i =0.02m L=1.00m 冷流体:空气(管内) 流体:蒸汽(管外)计量计处空气流量10.3025.2334.1941.27Vt1(m3/h)管内平均流量Vm10.7626.6836.3243.84(m3/h)平均流速um(m/s)9.5223.5932.1138.75传热量Q(W)134.42375.55531.54647.61αi(W/m2·℃)50.69129.22175.86212.27 Re10037.0526239.6735710.2843104.86Nu34.9691.32124.28150.01Pr0.700.700.700.70Pr0.40.870.870.870.87 Nu/Pr0.440.40105.56143.66173.41 Re0.81611843.794039.355194.396056.71 Nu027.6060.4577.7490.64 Nu/Nu0 1.15 1.13 1.18 1.20。
冷空气——蒸汽的对流传热实验
∆������������
=
∆������1−∆������2 ������������∆∆������������12
=
(99.5−25.1)−(99.5−67.7) ������������9999..55−−2657..17
℃=50.12℃
传
热
速
率
Q
=
������������������������������(������2
5.稳定 10~15min,记录冷空气流量,蒸汽温度和冷空气进、出口温度。
6. 调节空气 支路调节阀( 逐渐关闭闸阀 16),改变冷空气流量,稳定 10~15min后,记录冷空气流量,进、出口温度和蒸汽温度。
7.重复操作实验步骤 6 八至十次,流量从大到小,均匀分布,完成 1#换热器 的测定。
8.全开冷空气支路调节阀(闸阀 16),选择另一个换热器 2#换热器,全开此 换热器切换阀(球阀 2),管壁已做完实验的 1#换热器的切换阀(球阀 3)。
内径:25mm
外径:30mm
定性温
度������������ (℃)
传热面 积A (m2)
平均 传热速 温差 率 Q ∆������������(℃) (W)
总传热 系数 K (W/( m2/s))
管长:1.3m
Nu
Re
1 19.8 46.4 0.123 50.1 260.44 45.63 40.4 15620.6
3 48.7 54.8 0.123 41.7 503.75 74.80 66.2 38420.3
4 45.0 53.5 0.123 43.8 489.10 74.32 65.8 35501.3
5 40.7 52.8 0.123 43.4 457.44 70.44 62.3 32109.0
传热综合实验报告
传热综合实验报告传热综合实验报告引言:传热是物质内部或不同物质之间热能传递的过程。
在工程领域中,传热的研究对于提高能源利用效率、改善工艺流程等方面具有重要意义。
本实验旨在通过实际操作,探究传热的基本原理和实际应用。
实验目的:1. 了解传热的基本概念和原理;2. 掌握传热实验的基本操作方法;3. 分析传热实验结果,探讨传热机制。
实验步骤:1. 实验前准备:准备实验所需材料和仪器设备,包括热导率测量仪、传热模型等;2. 实验一:热导率测量。
通过热导率测量仪测量不同材料的热导率,包括金属、塑料等;3. 实验二:传热模型实验。
选择一个传热模型,如平板散热器,将其加热并记录温度变化;4. 实验三:传热管实验。
将传热管加热并测量不同位置的温度,分析传热过程。
实验结果与分析:1. 热导率测量结果表明,不同材料的热导率存在较大差异。
金属材料的热导率较高,而塑料等非金属材料的热导率较低。
这与金属的晶体结构和电子传导机制有关;2. 传热模型实验结果显示,随着加热时间的增加,模型表面的温度逐渐升高,表明传热过程中热能从高温区传递到低温区;3. 传热管实验结果表明,在传热管的两端,温度差异较大,而在中间位置,温度差异较小。
这说明传热管的传热效果在两端较好,而在中间位置传热效果较差。
实验讨论:1. 通过热导率测量实验,我们了解了不同材料的热导率特性。
这对于材料选择和工程设计中的热传导问题具有指导意义;2. 传热模型实验结果表明,传热是一个由高温区向低温区传递热能的过程。
这与热力学第二定律相符合;3. 传热管实验结果提示我们,在传热过程中,传热效果会受到材料、管道长度等因素的影响。
因此,在实际工程应用中,需要考虑传热效果的优化。
结论:通过本次传热综合实验,我们对传热的基本原理和实际应用有了更深入的了解。
热导率测量结果表明不同材料的热导率存在差异,传热模型实验结果显示了传热的基本过程,传热管实验结果提示了传热效果受到多种因素影响。
空气对流传热实验报告准数
竭诚为您提供优质文档/双击可除空气对流传热实验报告准数篇一:实验五套管换热器传热实验(1)实验五套管换热器传热实验实验学时:4实验类型:综合实验要求:必修一、实验目的通过本实验的学习,使学生了解套管换热器的结构和操作方法,比较简单内管与强化内管的差异。
二、实验内容1、测定空气与水蒸汽经套管换热器间壁传热时的总传热系数。
2、测定空气在圆形光滑管中作湍流流动时的对流传热准数关联式。
3、测定空气在插入螺旋线圈的强化管中作湍流流动时的对流传热准数关联式。
4、通过对本换热器的实验研究,掌握对流传热系数?i的测定方法。
三、实验原理、方法和手段两流体间壁传热时的传热速率方程为Q?KA?tm(1)式中,传热速率Q可由管内、外任一侧流体热焓值的变化来计算,空气流量由孔板与压力传感器及数字显示仪表组成的空气流量计来测定。
流量大小按下式计算:Vt1?c0?A0?2??p?t1其中:c0—孔板流量计孔流系数,0.65;A0—孔的面积,m2;(可由孔径计算,孔径d0?0.0165m)?p—孔板两端压差,kpa;?t1—空气入口温度(即流量计处温度)下的密度,kg/m3。
实验条件下的空气流量V(m/h)需按下式计算:3V?Vt1?273?t273?t1其中:t—换热管内平均温度,℃;t1—传热内管空气进口(即流量计处)温度,℃。
测量空气进出套管换热器的温度t(℃)均由铂电阻温度计测量,可由数字显示仪表直接读出。
管外壁面平均温度tw(℃)由数字温度计测出,热电偶为铜─康铜。
换热器传热面积由实验装置确定,可由(1)式计算总传热系数。
流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:lnu?f(Re,pr,)d对于空气,在实验范围内,pr准数基本上为一常数;当管长与管径的比值大于50时,其值对nu准数的影响很小,故nu准数仅为Re准数的函数,因此上述函数关系一般可以处理成:nu?b?Re式中,b和m为待定常数。
传热综合实验
其中Qi=WiCpi(t2-t1),Wi= ;Δtm= ,Δt2=tw-ti2,Δt1=tw-ti1;Si=πdiLi
式中,Wi为冷凝速率,kg/s;Vi为体积流量,m3/s;ρi为密度,kg/m3;Cpi为定压比热容,kJ/(kg·°C);t1为入口温度,°C;t2为出口温度,°C;tw为管壁温度,°C;di为管直径,m;Li为管长,m。
实验条件:装置号 内管内径/壁厚/外径=20.0/1.0/22.0mm
入口温度ti1/°C
出口温度to1/°C
壁温tW/°C
孔板流量计ΔP/kPa
管路压降 ΔP1/kPa
1
2
3
4
5
6
备注:
表2-2 2号管换热器实验数据记录表
实验条件:装置号 内管内径/壁厚/外径=20.0/1.0/22.0mm
入口温度ti2/°C
0.06644
奴塞尔数Nu×10-3
0.08762
0.08226
0.07762
0.06859
0.05902
0.04666
雷诺数Re×10-4
5.0077
4.5964
4.1329
3.5589
2.8982
1.9361
普朗特数Pr×10
6.96813
6.96936
6.97044
6.97139
6.97184
3.必须保证空气管线的畅通。即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀必须全开。在转换支路时,应先关闭风机电源,然后开启、关闭控制阀。
4.调解流量后,应至少稳定5~8分钟后读取实验数据。
5.实验中保持上升蒸汽的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。
空气蒸汽对流传热系数的测定实验报告
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
实验四 气汽对流传热综合实验报告
化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:气-汽对流传热综合实验报告学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期: 2017.05.26 交报告日期: 2017.06.02掌握对流传热系数应用线性回归分析方法,确定关联式中常数,对流传热系数在该实验中,空气走内管,蒸汽走外管。
对流传热系数式中,为管内流体对流传热系数,;为管内传热速率,;管内换热面积,为内壁面与流体间的温差,由右式确定:式中,分别为冷流体的入口、出口温度,为壁面平均温度,温度近似相等,用管内换热面积:式中,为内管管内径,;为传热管测量段的实际长度,由热量衡算式:其中质量流量由右式求得:式中,为冷流体在套管内的平均体积流量,;为冷流体的定压比热,;冷流体的密度,。
可根据定性温度查得,为冷流体进出口平均温度。
可采流体在管内做强制湍流,被加热状态,准数关联式的形式为:其中,,物性数据可根据定性温度查得。
经计算可知,对于管内被加热的空气,普兰特常数与,然后用线性回归方法确定的值。
科学家通过实验研究总结了形式为的形式是:是强化管的努塞尔准数,;为孔板两端压差,为空气入口温度(及流量计(2)温度的测量传热管内径孔板压差空气入口温度壁面温度管内平均温度空气进出口温差平均温差℃时空气流量平均流速传热量孔板流量计压差、空气入口温度已知数据及有关常数及流通截面积及传热面积管内换热面积:先算出空气的定性温度在此温度下空气的物性数据如下:;;;和平均流速℃,需进行校正,传热管内的体积流量平均流速(5)壁面和冷热流体间的平均温度差的计算:)传热速率)管内传热系数)传热准数:雷诺准数:普兰特常数:纵坐标,为横坐标,在对数坐标系上标绘由图得线性回归方程如下:传热管内径孔板压差空气入口温度壁面温度管内平均温度空气进出口温差平均温差℃时空气流量平均流速传热量步,并将数据结果填到表)求强化套管换热器关联式纵坐标,为横坐标,在对数坐标系上标绘关系,见图)强化比将强化套管换热器求得的数代入光滑套管换热器所得的准数关联式中,可以得到组数据:(三)绘图纵坐标,为横坐标,在对数坐标系上标绘种换热器本身来说,改变孔板温差,对流传热系数由此可知,影响对流传热系数②光滑管和强化管换热器的准数关联式中常数。
气汽对流传热实验报告
气汽对流传热实验报告
实验目的:
探究气汽对流传热及其影响因素。
实验器材:
热水器、玻璃管、烧瓶、水、火柴、温度计。
实验过程:
1.将瓶底烧红后浸入水中,造成热水器内部产生气汽对流。
2.分别在烧瓶上方和下方的不同位置放置温度计,测量温度。
3.利用火柴将烧瓶中的气汽点燃,观察燃烧状况。
实验结果:
实验结果表明,气汽对流传热后,温度会产生不同程度的变化。
在烧瓶上方,温度升高较快并保持较高的温度,而在下方,温度升高缓慢且较为不稳定。
同时,在烧瓶中点燃气汽后,燃烧迅速而热量释放较大,温度急剧上升。
实验结论:
气汽对流传热会影响温度变化,而气体的燃烧会释放大量热量。
因此,了解气汽对流传热的影响因素有助于合理利用能源及避免安全事故的发生。
传热综合实验
气---汽对流传热综合实验班级:化学工程与工艺姓名:韩兴云学号:033112037 组别:甲4一、实验目的:1、测定光滑圆形直管管外蒸气冷凝,管内为空气强制对流时的传热系数——K值;2、学会用实验方法,讲所测实验数据整理成准数方程式3、了解并掌握热电偶和电位差计的使用,及其温度测量。
二、基本原理概述1、测定传热系数K。
根据传热速率方程式得:其中:传热速率Q,既可以用热流体得放热速率计算,也可以用冷流体的吸收速率计算。
传热推动力Δtm可用对数平均温度差计算。
逆流时,S=лdl2、测定给热系数α在蒸汽-空气换热系统,若忽略管壁与污垢的热阻,则总传热系数与分传热系数的关系为:由于蒸汽冷凝给热系数远大于管壁对空气的给热系数,所以α1=K3、求与Re的定量关系式。
由因次分析法可知,流体在圆形管中呈强制湍流时的给热系数,符合下列准数关联式:本实验就是通过调节空气的流量,测得对应的给热系数,然后将流量整理为Re,将给热系数整理为Nu。
再将所得的一系列Nu-Re数据,通过图解法或者回归分析法,求得待定系数A、n。
进而得到给热系数α与Re的经验公式。
三、装置与流程:来自鼓风机的空气通过调节阀1转子流量计2和换热管3,经换热后排空。
热量由缠绕在换热管表面的电热丝4供给;空气流量由转子流量计2测定;进、出口空气温度由温度计读取,其进口压强由U形管液柱压差计显示;壁温由热电偶测量。
四、实验数据及处理:表一普通套管换热器原始数据表二强化套管换热器原始数据表三普通套管换热器实验数据处理表t2 /℃67.1 66.4 65.7 65.7 66.5 67.8 68.2t /℃48.8 49.6 49.6 50.4 52 54.3 54.9ρ/(kg/m3) 1.097 1.094 1.094 1.092 1.086 1.079 1.077 Cp/(J/kg·k)1005λ/(w/m·k)0.02816 0.02821 0.02821 0.02827 0.02838 0.02854 0.02858 μ/(Pa·s)19.5 19.6 19.6 19.6 19.7 19.8 19.8Pr0.4 0.866Vt0/(m3/h) 15.57 23.62 29.64 34.49 38.42 42.11 42.99 V/(m3/h) 16.51 24.92 31.2 36.21 40.23 43.94 44.81 Tw/℃109.2 109.5 109.5 109.5 109.5 109.5 109.5 Δtm/℃60.4 59.9 59.9 59.1 57.5 55.2 54.6Q/w 185.6 255.7 306.8 338.9 354.9 358.7 358.4 α/(w/m2·℃)48.9 67.9 81.5 91.3 98.2 103.4 104.5 Nu 34.7 48.1 57.8 64.6 69.2 72.5 73.1u/(m/s) 14.6 22.03 27.58 32.01 35.57 38.85 39.62 Re 16426.9 24592.7 30788.3 35668.3 39217.3 42342.6 43101.8 lnNu 3.55 3.87 4.06 4.17 4.24 4.28 4.29 lnRe 9.71 10.11 10.33 10.48 10.58 10.65 10.67由Nu=ARemPr0.4 , 可得lnNu=lnA+mlnRe+0.4lnPr所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnA+0.4lnPr作图,可得m=0.78,lnA+0.4lnPr=-3.9922,所以A=0.0195即Nu=0.0195Re0.78Pr0.4表四强化套管换热器实验数据处理表Nu 103.7 98.7 91.1 81.5 70.5 51.7u/(m/s) 35.89 32.96 29.12 25.06 20.55 13.77 Re 37854.1 35102.4 31402.8 27262.2 22397.4 15007.9 lnNu 4.64 4.59 4.51 4.40 4.25 3.95 lnRe 10.54 10.47 10.35 10.21 10.02 9.62由Nu=BRem, 可得lnNu=lnB+mlnRe所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnB.作图得,m=0.75 , lnB=-3.30677所以B=0.0366即 Nu=0.0366Re0.75强化比的计算:同一流量下,强化管的努塞尔准数Nu与普通管的努塞尔准数Nuo之比,即Nu/Nuo.当流量等于40.60m3/h时,Nu=103.7, 当流量等于40.23m3/h时, Nuo=69.2.所以强化比=103.7/69.2=1.50实验数据处理过程:以普通管第一组数据为例孔板流量计压差ΔP=0.60kPa,进口温度t1=30.4℃,出口温度t2=67.1℃,壁面温度热电势4.59mV.已知数据及有关常数:(1)传热管内径di及流通段面积Fdi=20.0mm=0.0200mF=л(di2)/4=3.142*0.02002 /4=0.0003142m2(2)传热管有效长度L及传热面积Si L=1.00mSi=лLdi=3.142*1.00*0.0200=0.06284m2(3) t1为孔板处空气的温度,为由此值查得空气的平均密度ρ当t1=30.4℃时,ρ= kg/m3(4)传热管,测量段上空气平均物性常数的确定先算出测量段上空气的定性温度t /℃t= (t1 +t2)/2=(30.4+67.1)/2=48.8 ℃查得:测量段上空气的平均密度ρ=1.097 (kg/m3)测量段上空气的平均比热Cp=1005(J/kg·k)测量段上空气的平均导热系数λ=0.02816 (w/m·k)测量段上空气的平均黏度μ=19.5 (μPa·s)测量段上空气的平均普朗特准数的0.4 次方为:Pr0.4=0.866(5)空气流过测量段上平均体积V(m3/h)的计算:Vto=20.243*(ΔP)0.5139=15.57(m3/h)V=Vto*(273+t)/(273+ t1)=16.51(m3/h)(6) 冷热流体间的平均温度差Δtm/℃的计算:Tw=1.2705+23.518*4.59=109.2℃Δtm= Tw-t=109.2-48.8=60.4℃(7) 其余计算传热速率Q=V*ρ*Cpi*Δt/3600=15.57*1.097*1005*(67.1-30.4)/3600=185.6 wα=Q/(Δtm Si)=185.6/(60.4*0.06284)=48.9 (w/m2·℃)传热准数N u=α*di/λ=48.9*0.0200/0.0283=34.7测量段上空气的平均流速u=V/(F*3600)=16.51/(0.0003142*3600)=14.60(m/s)雷诺准数Re=di*u*ρ/μ=0.0200*14.60*1.097/0.0000195=16426.9(8)作图,回归得到准数关联式Nu=ARemPr0.4中的系数绘制两个实验的Nu—Re的关系图:。
对流传热实验报告
对流传热实验报告对流传热实验报告引言:热传导是物质内部由高温区向低温区传递热量的过程,而对流传热则是通过流体的运动来传递热量。
在工程和科学领域中,对流传热是一个非常重要的研究方向。
为了更好地理解对流传热的机理和特性,我们进行了一系列的实验研究。
本文将对这些实验进行报告,并探讨实验结果的意义和应用。
实验一:自然对流传热我们首先进行了自然对流传热的实验。
实验装置是一个封闭的容器,其中有一根加热丝和一个温度计。
我们通过控制加热丝的电流来产生不同的温度差,并记录下温度计的读数。
实验结果表明,随着温度差的增加,热量的传递速率也随之增加,符合自然对流传热的基本规律。
实验二:强制对流传热接下来,我们进行了强制对流传热的实验。
实验装置是一个封闭的容器,其中有一根加热丝和一个风扇。
我们通过控制风扇的转速来产生不同的风速,并记录下温度计的读数。
实验结果显示,随着风速的增加,热量的传递速率也随之增加。
这是因为风速的增加会增加流体的对流运动,从而加快热量的传递。
实验三:对流传热的影响因素在第三个实验中,我们研究了对流传热的影响因素。
我们改变了容器的形状和尺寸,并记录下温度计的读数。
实验结果表明,容器的形状和尺寸对对流传热有着显著的影响。
较大的容器能够提供更大的表面积,从而增加热量的传递面积,加快对流传热的速率。
实验四:应用与意义对流传热的研究在工程和科学领域有着广泛的应用和意义。
首先,对流传热的研究可以帮助我们设计更高效的散热系统。
例如,在电子设备中,通过合理设计散热器的结构和风扇的布局,可以提高设备的散热效率,防止过热导致的故障。
其次,对流传热的研究也对气候模型和天气预报有着重要的影响。
了解大气中的对流传热机制,可以帮助我们更准确地预测气候变化和天气情况。
结论:通过一系列的实验研究,我们对对流传热的机理和特性有了更深入的理解。
实验结果表明,对流传热的速率受到多种因素的影响,包括温度差、风速、容器的形状和尺寸等。
对流传热的研究具有广泛的应用和意义,可以帮助我们设计更高效的散热系统,并提高气候模型和天气预报的准确性。
空气对流传热系数的测定实验报告
一、实验目的1. 了解空气对流传热的基本原理和影响因素。
2. 掌握空气对流传热系数的测定方法。
3. 通过实验验证牛顿冷却定律,并分析其实际应用中的适用性。
4. 掌握传热实验的基本操作和数据处理方法。
二、实验原理对流传热是流体在运动过程中,由于流体各部分之间存在温差而引起的热量传递。
在空气对流传热过程中,热量通过流体运动传递给物体表面,使物体表面温度升高。
牛顿冷却定律是描述对流传热的一种基本定律,其表达式为:\[ Q = hA\Delta T \]其中,\( Q \) 为传热量,\( h \) 为对流传热系数,\( A \) 为传热面积,\( \Delta T \) 为流体与物体表面的温差。
本实验采用牛顿冷却定律法,通过测量空气与物体表面之间的温差,以及空气的流速和温度,计算对流传热系数。
三、实验仪器与材料1. 套管加热器2. 温度计3. 流量计4. 计算器5. 记录本四、实验步骤1. 将套管加热器固定在实验台上,连接好温度计、流量计和电源。
2. 调节流量计,使空气流速稳定。
3. 打开电源,加热套管加热器,使物体表面温度升高。
4. 记录物体表面温度、空气温度和空气流速。
5. 重复步骤3和4,改变空气流速,记录相应的温度和流速数据。
6. 根据牛顿冷却定律,计算不同空气流速下的对流传热系数。
五、实验结果与分析根据实验数据,绘制空气流速与对流传热系数的关系曲线。
结果表明,对流传热系数随空气流速的增加而增大,符合牛顿冷却定律。
六、实验讨论1. 实验结果表明,牛顿冷却定律在实验条件下适用,但在实际应用中,由于流体流动状态复杂,可能存在误差。
2. 影响对流传热系数的因素有:流体流速、流体温度、物体表面粗糙度等。
3. 实验过程中,应注意测量精度,避免误差。
七、结论1. 通过实验验证了牛顿冷却定律在空气对流传热过程中的适用性。
2. 掌握了空气对流传热系数的测定方法。
3. 了解了对流传热的基本原理和影响因素。
八、实验改进建议1. 采用更精确的测量仪器,提高实验精度。
热力学实验:空气-水蒸气传热综合实验(套管,列管)
化工传热方式、传热系数测量综合实验目录一、实验目的: (1)二、实验内容: (1)三、实验原理: (1)1.普通套管换热器传热系数测定及准数关联式的确定: (1)2.强化套管换热器传热系数、准数关联式及强化比的测定 (2)3.列管换热器总传热系数K (3)四、实验装置的基本情况 (4)1.实验装置流程示意图 (4)2.实验设备主要技术参数 (6)五、实验操作步骤 (6)六、实验注意事项 (7)七、实验数据记录及数据处理过程 (7)1.光滑管及强化实验数据计算 (7)2.列管换热器总传热系数的测定数据计算 (9)一、实验目的:1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
2.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
3.通过变换列管换热器换热面积实验测取数据计算总传热系数k ,加深对其概念和影响因素的理解。
4.认识套管换热器(光滑、强化)、列管换热器的结构及操作方法,测定并比较不同换热器的性能。
二、实验内容:1.测定5-6组不同流速下简单套管换热器的对流传热系数i α。
2.测定5-6组不同流速下强化套管换热器的对流传热系数i α。
3.测定5-6组不同流速下空气全流通列管换热器总传热系数k 。
4.测定5-6组不同流速下空气半流通列管换热器总传热系数k 。
三、实验原理:1.普通套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
m i i i t S Q ∆⨯⨯=α (1)im ii S t Q ⨯∆=α (2)式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据项目
1
2
3
4
5
孔板压差
ΔP
kPa
0.15
0.67
1.15
1.70
2.23
空气入口温度
t1
℃
29.0
30.1
30.9
31.6
32.2
空气出口温度
t2
℃
90.7
85.1
82.6
81.9
82.4
壁面温度
Tw
对流传热系数
αi
W/m2·℃
57.87
88.57
108.70
124.30
143.02
雷诺数
Re
12436
24531
32258
37980
43260
努赛尔准数
Nu
40.60
62.29
76.20
86.98
99.60
Nu/Pr0.4
46.879
71.007
88.036
100.549
115.137
2.
数据记录与整理表
209.48
雷诺数
Re
9176
19458
25596
31086
35373
努赛尔准数
Nu
49.73
88.76
101.0
126.23
145.62
Nu/Pr0.4
57.42
102.49
116.76
145.92
168.14
Nu0
31.98
54.37
66.04
75.73
82.98
强化比
Nu/Nu0
1.56
1.63
℃
99.6
99.7
99.8
99.9
99.9
管内平均温度
tm
℃
59.9
57.6
56.8
56.8
57.3
空气密度
ρm
kg/ m3
1.060
1.068
1.071
1.071
1.069
空气导热系数
λm*100
W/ m·℃
2.895
2.879
2.874
2.874
2.877
空气定压比热容
Cpm
kJ/ kg·℃
1.005
1.005
1.005
1.005
1.005
空气粘度
μm*10000
Pa·s
2.01
2.00
1.99
1.99
2.00
空气进出口温度差
Δt
℃
61.7
55.0
51.7
50.3
50.2
平均温差
Δtm
℃
39.7
42.1
43.0
43.1
42.6
20℃时空气流量
V20
m3/ h
8.79
18.58
24.34
29.59
气-汽对流传热综合实验
1.光滑套管换热器传热系数的测定
数据记录与整理表
传热管内径di=0.020 m有效长度Li=1.00 m冷流体:空气(管内)热流体:蒸汽(管外)
数据项目
1
2
3
4
5
孔板压差
ΔP
kPa
0.27
1.05
1.85
2.58
3.41
空气入口温度
t1
℃
31.8
35.3
37.6
39.7
42.2
2.853
2.858
2.872
空气定压比热容
Cpm
kJ/kg·℃
1.005
1.005
1.005
1.005
1.005
空气粘度
μm*100000
Pa·s
1.98
1.97
1.98
1.98
1.99
空气进出口温度差
Δt
℃
43.4
34.5
31.3
29.8
28.7
平均温差
Δtm
℃
46.4
47.3
46.2
45.3
43.4
33.89
管内平均流量
V
m3/ h
9.837
20.613
26.902
32.666
37.432
平均流速
u
m/s
8.70
18.22
23.78
28.88
33.09
传热量
Q
W
179.60
338.02
392.16
491.27
560.77
对流传热系数
αi
W/m2·℃
71.99
127.77
145.13
181.39
20℃时空气流量
V20
m3/h
11.793
23.256
30.870
36.455
41.911
管内平均流量
V
m3/h
12.884
25.194
33.442
39.456
45.456
平均流速
u
m/s
11.39
22.27
29.57
34.88
40.19
传热量
Q
W
168.74
263.27
315.59
353.84
390.06
空气出口温度
t2
℃
75.2
69.8
68.9
69.5
70.9
壁面温度
Tw
℃
99.9
99.9
100.0
99.9
100.0
管内平均温度
tm
℃
53.5
52.6
53.8
54.6
56.6
空气密度
ρm
kg/m3
1.081
1.085
1.080
1.078
1.071
空气导热系数
λm*100
W/m·℃
2.851
2.844
1.53
1.67
5
3.
由 可得
由线性拟合结果可求得:光滑套管换热器A= 0.0581 m=0.7074
强化套管换热器A= 0.0496 m=0,771