二次根式定义性质

合集下载

二次根式的定义和概念

二次根式的定义和概念

二次根式1、定义:一般形如a (a≥0)的代数式叫做二次根式。

当a≥0时,a 表示a 的算术平方根;当a 小于0时,非二次根式。

其中,a 叫做被开方数。

2、√ā的简单性质和几何意义(1)双重非负性:a≥0 且a ≥0(2)(a )2=a (a≥0),任何一个非负数都可以写成一个数的平方的形式。

3、二次根式的性质和最简二次根式 如:不含有可化为平方数或平方式的因数或因式的有)0(,3,2≥x x ;含有可化为平方数或平方式的因数或因式的有31,9,4,2)(y x +最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开得尽的因式;(3)被开方数不含分母。

4、二次根式的乘法和除法(1)积的算数平方根的性质b a ab ⋅=(a≥0,b ≥0)(2)乘法法则b a ⋅=ab (a≥0,b≥0)(3)除法法则b a ba =(a≥0,b>0) (4)根式有理化如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。

对根式进行有理化处理,其实就是进行根式分母有理化。

5、二次根式的加法和减法(1)同类二次根式概念一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

(2)二次根式加减时,先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

如:25355=+6、二次根式的混合运算(1)确定运算顺序(2)灵活运用运算定律(3)正确使用乘法公式(4)大多数分母有理化要及时(5)在有些简便运算中也许可以约分,不要盲目有理化7.分母有理化分母有理化有两种方法I.分母是单项式,进行通分即可b ab bb b a b a =⨯⨯= II.分母是多项式,一般为根式的加减多数时间利用平方差公式形如b a b a b a b a b a b a --=-+-=+))((1根式中分母不能含有根号,且要变为最简,运算才会更加直接简便。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。

在学习二次根式时,常常会涉及到以下几个方面的知识点。

一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。

2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。

3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。

二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。

即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。

2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。

即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。

3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。

即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。

4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。

有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。

三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。

2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。

3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。

二次根式定义性质

二次根式定义性质
掌握二次根式的定义和性质,能够正确地进行二次根式的化简和运算。
学习意义
二次根式是数学中的重要概念,在解决数学问题中经常遇到。掌握二次根式的定义和性质,对于提高学生的数学 素养和解决问题的能力具有重要意义。同时,二次根式也是后续学习其他数学知识的基础,如解二次方程、求函 数的导数等。
02
二次根式基本概念
运算性质
在实数范围内,二次根式可以 进行加减乘除四则运算,但需 要注意运算过程中的定义域和
值域问题。
03
二次根式运算规则
加减运算规则
同类二次根式
只有被开方数相同的二次根式才能直接进行加减 运算。
合并同类项
将同类二次根式的系数相加减,被开方数和根指 数不变。
示例
√2 + 2√2 = 3√2,√3 - √3 = 0。
二次根式定义
根号表达式
形如√a (a≥0)的式子叫做二次根 式。其中,√称为根号,a称为被 开方数。
非负性
在实数范围内,被开方数a必须是 非负数,否则二次根式无意义。
二次根式分类
最简二次根式
被开方数中不含能开得尽方的因数或Байду номын сангаас因式,且根号下不含分母的二次根式 ,称为最简二次根式。
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,则这几个二次根 式称为同类二次根式。
07
总结与展望
学习成果总结
二次根式定义
掌握了二次根式的定义 ,即形如$sqrt{a}$($a geq 0$)的代数式,其 中被开方数$a$是非负 数。
二次根式性质
理解了二次根式的性质 ,包括非负性、乘法定 理、加法定理等,并能 够运用这些性质进行二 次根式的化简和计算。

二次根式的概念和性质

二次根式的概念和性质

二次根式与有理数的关系
二次根式与有理数存在着紧密的关系。有理数可以表示为二次根式的特殊形 式,而二次根式也可以化简为有理数的形式。理解这种关系可以帮助我们更 好地处理二次根式的运算和问题。
胡克定理和三角不等式
胡克定理
三角不等式
胡克定理描述了弹簧的弹性变形与所受力的关系, 可以用二次根式的形式表示。
二次根式的运算法则
加减法
二次根式加减法遵循同底 同幂原则,将根号内的数 值进行合并,然后进行相 应操作。
乘除法
二次根式乘除法时,可以 通过有理化的方法将根号 内的数值转化为有理数, 然后进行相应操作。
化简
化简二次根式是将一个二 次根式转化为另一种形式, 通常是将根号内的数值合 并或提取出满足条件的因 式。
二次根式的概念和性质
二次根式是代数Leabharlann 的一种重要形式,表示为一个数的平方根。学习二次根式 的概念和性质,将帮助我们更好地理解和运用这一概念。本章将系统介绍二 次根式的相关内容。
什么是二次根式?
二次根式是一个数的平方根,如√2、√5等。它们在代数和几何中都有重要的 应用。通过学习二次根式的性质,可以深入理解数学中的平方根概念。
三角不等式是数学中一条基本不等式,可以用二 次根式的形式表示。它在几何和代数中都有应用。
二次根式的图像及其性质
二次根式的图像通常是一个开口向上或向下的抛物线。通过研究二次根式的图像特性,我们可以了解它 的曲线形状、对称性以及其他重要的几何性质。
二次根式在实际生活中的应用
二次根式在实际生活中有广泛的应用,例如在物理学中描述速度和加速度,以及在几何学中描述曲线和 曲面的形状。了解这些应用可以帮助我们更好地应用二次根式。
二次根式的加减法和乘除法

二次根式的概念和性质

二次根式的概念和性质

基础知识1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的算术平方根;另 。

一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数范围内,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数范围内有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).
题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】
【练一练】
4、
5、
6、
7、
题型三积的算数平方根的性质
【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简
【例题精析】
【例15】
【例16】
【例17】
【例18】
【练一练】
4、
5、6、6、
7、。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a 3、 4反过来:56、最简二次根式:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简 ②合并同类项二次根式中考试题精选一.选择题:1.【05宜昌】化简20的结果是 ( ).A. 25B.52C. .D.54 2.【05南京】9的算术平方根是 ( ).A.-3B.3C.± 3D.813.【05南通】已知2x <, ).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是().A .a 2+a 3=a5 B .(-2x)3=-2x 3 C .(a -b)(-a +b)=-a 2-2ab -b 2 D =5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B. C. D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是( ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设22a b c ==-=,则,,a b c 的大小关系是: ( ).(A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ). A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ).A.24B.12C.32D.1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1B.(-1)2和-1C.|-1|和-1 1 12.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1D 、 4 =±213.【05毕节―a 的正整数a 的值有( ).A .1个B .2个C .3个D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ).A .3B .– 3C .1D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ). A .aa b++b a b+=1 B .1÷b a×a b=1 C D .21()a b +·22a b a b--=1a b+二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。

二次根式的性质与化简

二次根式的性质与化简

二次根式的性质与化简二次根式是指含有平方根的表达式,它在数学中有着重要的应用。

本文将探讨二次根式的性质以及化简方法。

一、二次根式的性质1. 二次根式的定义与表示:二次根式是指形如√a的表达式,其中a为非负实数。

二次根式可以用分数指数表示,即a的1/2次方。

2. 二次根式的运算性质:(1)加法与减法:当二次根式的根数相同时,可以进行加法或减法运算。

例如√a + √b = √(a + b),√a - √b = √(a - b)。

(2)乘法与除法:当二次根式的根数相同时,可以进行乘法或除法运算。

例如√a × √b = √(a × b),√a / √b = √(a / b)。

3. 二次根式的化简与分解:对于二次根式而言,有时可以进行化简与分解。

例如√(a^2) = a,√(a/b) = √a / √b。

二、二次根式的化简方法1. 化简含有相同根数的二次根式:当两个二次根式具有相同根数时,可以根据运算规律进行化简。

例如√(a) × √(b) = √(a × b),√(a) / √(b) = √(a / b)。

2. 化简含有不同根数的二次根式:当两个二次根式具有不同根数时,可以通过有理化的方法进行化简。

有理化的目的是将二次根式的分母消去。

具体操作步骤如下:(1)将含有二次根式的分母有理化,即将分母中的二次根式去除。

(2)将有理化后的分母进行分配。

(3)将相同根数的二次根式合并,并进行运算。

3. 示例:化简二次根式√(15) / √(3):(1)将含有二次根式的分母进行有理化,即√(3) × √(3) = 3。

(2)有理化后的分母为3。

(3)利用有理化后的分母,进行分配运算,即(√(15) × √(3)) / 3。

(4)合并二次根式,即√(45) / 3。

(5)化简二次根式,即3√(5) / 3。

(6)最终得到化简后的结果:√(5)。

4. 注意事项:化简二次根式时,需要注意分母不能为零,同时要注意因式分解的方法,以便于简化运算步骤。

二次根式的概念和性质

二次根式的概念和性质

【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3


3 12 3 3 3 12 9 36 3 6 9

12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1

二次根式的概念与性质

二次根式的概念与性质

二次根式一考点、热点回顾1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.二次根式的性质:1.(a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab=a ·b (a≥0,b≥0);b b aa=(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 二 典型例题例1下列各式(1)x21, 1)2(-, 5)3(2+x , 2)3()4(-, 44)5(2+-x x其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x (3)121--x x例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( )A .1) 2)B .3) 4)C .1) 3)D .1) 4) 例4、计算32)2145051183(÷-+的值例5、要使1213-+-x x 有意义,则x 应满足( )A.321≤≤x B. 3≤x 且21≠x C.21 <x <3 D.21 <x ≤3例6. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例7. 把(a -b )-1a -b 化成最简二次根式 例8、已知x 满足xx x =-+-20112010,那么22010-x 的值为_____________例9、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---三 课后练习一、填空题1.在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 3. 化简82-的结果是_____________4. 计算: 若22m n +-和3223m n -+都是最简二次根式,则_____,______m n ==。

八年级下册数学二次根式的定义和性质

八年级下册数学二次根式的定义和性质

二次根式的定义和性质讲学:●二次根式的定义:形如的式子叫二次根式,其中叫被开方数。

两个特点:二次根号,非负性(非负性包括被开方数和开方结果)判断二次根式:1.有二次根号2.被开方数可以确定非负(包括转化为非负形式)1.有意义必须满足_________2.当满足什么条件时下列式子有意义。

●二次根式的性质:1.非负性:是一个非负数.2.3.公式与区别与联系(1)表示求一个数的平方的算术根,的范围是一切实数.(2)表示一个数的算术平方根的平方,的范围是非负数.(3)和的运算结果都是非负的.4.把根号外的因式移入根号内:1判断根号外的因式的符号;2留下符号;3平方后与被开方数相乘计算:因式分解:考练:【例1】下列各式,,,,,,其中是二次根式的是?【例2】若式子有意义,则x的取值范围是.【例3】若则=【例4】若则= .【例5】化简:的结果为()A、B、0 C、D、4【例6】已知,则化简的结果是【例7】如果表示两个实数的点在数轴上的位置如图所示,那么化简的结果等于()A、B、C、D、【例8】如果,那么的取值范围是()o b aA、B、C、或D、【例9】化简二次根式的结果是( )课后作业:二次根式的定义:1.下列各式中,一定是二次根式的是()A、B、C、D、2.在中是二次根式的个数有______个3.使代数式有意义的的取值范围是()A、>3B、≥3C、>4 D 、≥3且≠44.使代数式有意义的的取值范围是5.如果代数式有意义,那么,直角坐标系中点(,)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限6.若,则的值为()A、-1B、1C、2D、37.若都是实数,且,求的值8.当取什么值时,代数式取值最小,并求出这个最小值。

9.二次根式的性质:10.若,则的值为。

11. 已知 为实数,且 ,则 的值为( )A 、3B 、– 3C 、1D 、– 112. 已知直角三角形两边 的长满足 ,则第三边长为______________.13. 若 与 互为相反数,则14. 在实数范围内分解因式: = ; =15. 化简:16. 根式 的值是( )A 、-3B 、3或-3C 、3D 、917. 已知 ,那么 可化简为( )A .B .C .D .18. 若 ,则 等于( )A 、B 、C 、D 、19. 若 ,则化简 的结果是( )A 、-1B 、1C 、D 、20. 化简 得( )A 、2B 、C 、-2D 、21. 当 且 时,化简 = .22. 已知 ,化简求值:23. 实数 在数轴上的位置如图所示: 化简: . 24. 如果 成立,那么实数 的取值范围是________________25. 若 ,则 的取值范围是____________。

二次根式的有关概念及性质

二次根式的有关概念及性质

二次根式的有关概念及性质一、二次根式的有关概念:1. 二次根式:式子(a>0)叫做二次根式。

2. 最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1) 被开方数的因数是整数,因式是整式;(2) 被开方数中不含能开得尽方的因数或I为式。

如卷不是最简二次根式,因被开方数中含仃4是W升得尽方的因数,又如*,刷,仙+方................... 都不是最简二次根式,而万,而,5据,都是最简二次根式。

3. 同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如卷,很,而就是同类二次根式,因为思=2®,灰=3^,它们与①的被开方数均为2。

4. 有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如也与也,a+而与a-而,石而与石'+而,互为有理化因式。

二、二次根式的性质:1. (a>0)是-个非负数,即^>0;2. 非负数的算术平方根再平方仍得这个数,即:(石')2=a(a20);a(a>0)3. 某数的平方的算术平方根等于某数的绝对值,即摒'=|a|=〔-角(角〈°)4. 非负数的积的算术平方根等于积中各因式的算术平方根的积,即■庵盘•而(a>0,b>0)o5. 非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即(a>0,b>0) o三、例题:例1.X 为何值时,下列各式在实数范围内才有意义:”3-- (1) (2)摒 +3(3) AI 幻 1 IS(4)J2N + 3 + J- & + 5 ( 5) — 1 ( 6) Jx — 2 + J2 — N分析:这是•组考察二次根式基本概念的问题,要弄清每•个数学&达式的含义,根据分式 和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于 零。

二次根式的定义及性质

二次根式的定义及性质

二次根式的定义及性质1、二次根式的定义形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性 二次根式的两个非负性:)0(≥a a ;0≥a ,具有非负性的还有02≥a ;0≥a ;几个非负数的和等于零,那么这几个非负数均为零。

2、二次根式的主要性质 (1)())0(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a aa a a3、分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a ba -=-+来确定.如: aa4、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式叫最简二次根式 最简二次根式的条件①号内不含有开的尽方的因数或因式,②根号内不含有分母,③分母不含有根号。

5、 同类二次根式:被开方数相同的最简二次根式叫做同类二次根式6、 乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a ab7、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a 8、合并同类二次根式:__________________;=-=+a n a m a n a m形如)0(≥a a 的代数式叫二次根式例1、下列式子中二次根式的个数有( )(1)31(2)3-(3)12+-x (4)38(5)2)31(-(6))1(1>-x x A.2个 B.3个 C.4个 D.5个【变式练习】1、下列各式中,一定是二次根式的有______________________________① a ;②z y +;③6a ;④32+x ;⑤962++x x ;⑥12-x2、222++a a 是不是二次根式?___________(填“是”或“否”)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性例2、(2012.德阳)使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.210≠≥x x 且 D.一切实数 例3、 函数1213-+-=x x y 的自变量x 的取值范围是_______________【变式练习】1、 使12--x x 在实数范围内有意义的x 的取值范围是______________ 2、(2012.杭州)已知0)3(<-a a ,若a b -=2,则b 的取值范围是___________3、若2)(11y x x x +=---,则______=-y x())0(2≥=a a a例4、计算: (1) (2) (3) (4)(b ≥0) (5)【变式练习】计算: (1); (2); (3); (4). ⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a例5、化简: (1); (2); (3); (4).例6、2x =,则x 的取值范围是 。

二次根式的计算与性质

二次根式的计算与性质

二次根式的计算与性质二次根式是数学中的一个重要概念,在许多数学问题的解答中经常涉及。

它的计算和性质具有一定的规律和特点。

本文将深入探讨二次根式的计算方法和性质,并结合实例进行说明。

一、二次根式的定义与基本性质二次根式是指形如√a的数,其中a为非负实数,是它的被开方数。

二次根式具有以下基本性质:1. 当a≥0时,二次根式有意义。

2. 当a>0时,√a>0。

3. 当a>b≥0时,有√a>√b。

4. 二次根式的平方等于被开方数本身。

二、二次根式的四则运算1. 二次根式的加减运算:对于二次根式√a与√b,满足以下运算规律:√a ± √b = √(a ± b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√8 + √2。

解:√8 + √2 = √(4 × 2) + √2 = 2√2 + √2 = 3√2。

2. 二次根式的乘法运算:对于二次根式√a与√b,满足以下运算规律:√a × √b = √(a × b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√3 × √5。

解:√3 × √5 = √(3 × 5) = √15。

3. 二次根式的除法运算:对于二次根式√a与√b,满足以下运算规律:√a ÷ √b = √(a ÷ b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√16 ÷ √4。

解:√16 ÷ √4 = √(16 ÷ 4) = √4 = 2。

三、二次根式的化简与有理化1. 化简二次根式:对于二次根式√a,可以通过确定a的因式分解式来进行化简。

举例:(1)化简√72。

解:√72 = √(2 × 2 × 2 × 3 × 3) = √(2^2 × 3^2) = 2√2 × 3 = 6√2。

第七讲二次根式的意义与性质

第七讲二次根式的意义与性质

第七讲二次根式的意义与性质二次根式是数学中重要的概念之一,它在代数学、几何学和物理学等领域中都有着广泛的应用,了解二次根式的意义与性质能够帮助我们更好地理解和运用它。

首先,我们需要明确二次根式的概念。

在代数学中,二次根式是指形如√a的表达式,其中a是一个实数。

这里的√符号称为根号,表示正的平方根。

二次根式通常用于求解一些方程或方程组,以及在几何问题中计算线段的长度、计算图形的面积等。

二次根式具有以下几个重要的性质:1.二次根式可以是正数、负数或零。

当a大于零时,√a是一个正数;当a小于零时,√a是一个虚数;当a等于零时,√a等于零。

2. 如果a和b都是非负实数,那么√(ab)等于(√a)(√b)。

这个性质称为二次根式的乘法性质。

例如,√4×√9=2×3=63.如果a和b都是非负实数,那么√(a/b)等于(√a)/(√b)。

这个性质称为二次根式的除法性质。

例如,√9/√4=3/24.如果a和b都是非负实数,且a大于b,那么√a大于√b。

这个性质表示,二次根式随着被开方数的增大而增大。

例如,√4=2,√9=3,显然2小于35.如果a和b都是非负实数,那么√(a+b)不等于√a+√b。

这个性质表示,二次根式的加法没有简化的形式。

例如,√2+√3不能简化为一个更简单的表达式。

6.二次根式可以进行化简。

对于非完全平方数,可以将其分解为一个完全平方数和一个非完全平方数的乘积。

例如,√10=√(2×5)=√2×√5了解了二次根式的意义与性质,我们可以应用它们来解决一些实际问题。

1.计算线段的长度:假设有一条线段AB,其坐标分别为A(x1,y1)和B(x2,y2),则线段AB的长度可以用二次根式来表示,即√((x2-x1)²+(y2-y1)²)。

这个公式可以推广到三维空间中的点和线段的计算。

2. 计算图形的面积:例如,正方形的面积可以用边长的平方来表示,即√a²=a;矩形的面积可以用长和宽的乘积来表示,即√(ab)。

二次根式的性质与计算

二次根式的性质与计算

二次根式的性质与计算二次根式是数学中一个重要的概念,它涉及到了根号以及平方等运算,具有一些特殊的性质和计算规律。

本文将介绍二次根式的一些基本性质和计算方法,帮助读者更好地理解和应用这个概念。

一、二次根式的定义二次根式是指形如√a的数,其中a是一个非负实数。

在二次根式中,根号下的数被称为被开方数。

被开方数的值必须大于等于零,否则二次根式就没有意义。

二、二次根式的性质1. 二次根式的值:对于二次根式√a,它的值是满足b^2 = a的非负实数b。

例如,√9的值是3,因为3^2等于9。

2. 二次根式的性质:(a) 任意非负实数a和b,有以下性质成立:a)√(a*b) = √a * √b;b)√(a/b) = √a / √b。

(b) 对于任意的非负实数a和b,有以下性质成立:a) √(a + b) ≠ √a + √b;b) √(a - b) ≠ √a - √b。

(c) 对于任意非负实数a,有以下性质成立:a) √(a^2) = |a|。

3. 二次根式的化简:当被开方数是特殊形式时,我们可以通过化简来简化二次根式的计算。

常见的化简规则包括:(a) 约分:如果被开方数能够被某个因数整除,那么可以将该因数提出到根号外。

(b) 分解因式:将被开方数分解成多个因数的乘积,然后将相同的因数提出到根号外。

(c) 完全平方数:如果被开方数是一个完全平方数,那么可以直接将其开方并化简。

三、二次根式的基本计算方法1. 二次根式的加减法:当两个二次根式相加或相减时,如果它们的被开方数相同,那么可以直接将系数相加或相减,并保持根号下的数不变。

例如,√3 + √3 =2√3,√5 - √2 = √5 - √2。

2. 二次根式的乘法:当两个二次根式相乘时,可以将它们的被开方数相乘,并保持根号下的数不变。

例如,√3 * √5 = √15,√2 * √2 = 2。

3. 二次根式的除法:当两个二次根式相除时,可以将它们的被开方数相除,并保持根号下的数不变。

二次根式的性质与计算

二次根式的性质与计算

二次根式的性质与计算二次根式是数学中一个重要的概念,它在代数表达式和方程求解中有着广泛的应用。

本文将介绍二次根式的性质,并探讨如何进行二次根式的计算。

一、二次根式的性质1. 定义:二次根式是形如√a的表达式,其中a为非负实数。

根号下面的数称为被开方数。

2. 化简与合并:当被开方数是一个常数时,我们可以化简二次根式来得到一个最简形式,并且对不同的二次根式可以进行合并操作。

例如:√4 = 2√9 = 3√(4+9) = √133. 乘法与除法:二次根式之间可以进行乘法和除法运算,其中乘法的规则如下:√a * √b = √(a*b)同理,除法的规则如下:√a / √b = √(a/b)√2 * √3 = √(2*3) = √6√6 / √2 = √(6/2) = √34. 有理化:有理化是指将分母有二次根式的分式转化为分母为有理数的分式。

有理化的方法是将分子和分母同时乘以分母的共轭形式。

例如:1 / (√2 + √3) = (√2 - √3) / ((√2 + √3)(√2 - √3))= (√2 - √3) / (2 - 3)= (√2 - √3) / (-1)= -√2 + √3二、二次根式的计算1. 加法与减法:二次根式之间可以进行加法和减法运算,只要它们的被开方数相同。

例如:√2 + √2 = 2√2√5 - √3 = √5 - √3 (无法合并)2. 乘法:二次根式之间可以进行乘法运算,根据乘法规则,我们可以将二次根式的被开方数相乘,并将结果开方。

√2 * √3 = √63. 除法:二次根式之间可以进行除法运算,根据除法规则,我们可以将二次根式的被开方数相除,并将结果开方。

例如:√6 / √2 = √(6/2) = √34. 分式运算:在分式的计算中,二次根式可以作为分子或者分母出现。

我们可以按照有理化的方法将分母有二次根式的分式转化为分母为有理数的分式,然后进行简化计算。

例如:1 / (√2 + √3) = -√2 + √3结论:二次根式拥有多种性质,我们可以通过化简合并、乘法、除法和有理化等运算来对二次根式进行计算。

二次根式的有关概念及性质

二次根式的有关概念及性质

二次根式的有关概念及性质二次根式的概念及性质一、二次根式的概念:1.二次根式:形如$\sqrt{a}$($a\geq 0$)的式子。

2.最简二次根式:满足以下两个条件的二次根式称为最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

例如,$\sqrt{4}$含有可开得尽方的因数4,不是最简二次根式;而$\sqrt{5}$、$\sqrt{x}$都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就是同类二次根式。

例如,$\sqrt{2}$、$2\sqrt{2}$、$\sqrt{18}$就是同类二次根式。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则称这两个代数式互为有理化因式。

例如,$(\sqrt{2}+1)(\sqrt{2}-1)=2-1=1$是有理化因式。

二、二次根式的性质:1.非负数的算术平方根再平方仍得这个数,即:$(\sqrt{a})^2=a$($a\geq 0$)。

2.非负数的算术平方根是非负数,即$\sqrt{a}\geq0$($a\geq 0$)。

3.某数的平方的算术平方根等于该数的绝对值,即$\sqrt{a^2}=|a|$。

4.非负数的积的算术平方根等于各因式的算术平方根的积,即$\sqrt{ab}=\sqrt{a}\sqrt{b}$($a\geq 0,b\geq 0$)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($a\geq 0,b>0$)。

三、例题:例1.求$x$的取值范围,使得以下各式有意义:1) $\frac{1}{\sqrt{6-x}}$;(2) $\sqrt{x^2+3}$;(3)$\frac{\sqrt{x+3}}{\sqrt{3-x}}$;(4) $\sqrt{2x-1}+\sqrt{x-1}$;(5) $\sqrt{4-x^2}$;(6) $\sqrt{2x-3}+\sqrt{5-x}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B组: 1、 为正整数时,
为整数,则 的值为___。
2、判断
式子是否为二次根式
a 3、已知:
+ ,求5y的值a。
a
思考:( )2与
相同吗?为什么?
a
y x 1 1 x
a
a2
y
解: ∵ ( x+2 )2 ≥0, ≥0,(x+2)2+ =0
y
y
∴ (x+2 )2 =0, =0
解得x=-2 y=0
y
∴ xy =(-2)0=1
a 练习2:若 +
a=0,求ba、1b的值。
例3:计算
(1) (
)2
1(2)(2
)2
2
3
2 1
解:(1) ( )2=( 1 )2= (2) ( 2 )2=222× (
3
1 )2=24×3=12
3
练习3:计算
(1) ( )2 (2) ( )2 (3) ( -4 )2
(4)
0.3(5) (
)2 7
(采用练习1相同的游戏形式进行练习)
(11) 2
23
a 三、性质公式(
)2 =a(a
a=( )2 (a 0)
0)逆用可以得到:
a
利用这个式子,可以把任何一个非负数写成 一个数的平方的形式。
例如:3= ( )2 ,b= ( )2 (b 0)
3
b
例4:在实数范围内因式分解:4m2-7
解: 4m2-7= (2m)2- ( )2 =(2m+ )(2m-
)7
7
7
练习4:在实数范围内因式分解 (1)a2-5 (2)16b2 –17
例5:化简
a 4b a 2 b
解:
a 4b ( a )2 (2 b )2
1
在实数范围内有意义
1 x
练习游戏:
x取何值时,下列各式在实数范围内有意义? (分组抢答)
(1) (3)
(2)
x3
(4)
(5) + 1 x2
x x
3 2x
1 x2
游戏规则,每出示一题,完成后可举手抢答, 并将解答过程利用幻灯在屏幕上显示。根据答 题情况评选出优胜组。
例2:已知(x+2)2 +
=0,求xy=?
x2
( 3 )2=?
5
(二)引导启发 构建新知
形如上面所看到的算术平方根 、 、 ( ) 11 3 a a 0
都是二次根式。
二次根式的定义:式子 (
)叫做a二次根a 式 。0
大家观察一下,二次根式具有哪些特点呢?
1、被开方数a必须是非负数。因此,二次根式
a
( )就是指非负数a的算术平方根。
a0
2、a可以是表示具体的数,也可以表示字母,只要a是
表示一个非负数的代数式就可以。
3、 a 0 ((a 0))
4、( )a2=a (a 0)
ห้องสมุดไป่ตู้
举出几个二次根式的例子:如:
7,
1, 2
x2 y ( y 0), x2 y 2
思考:
中x+2须满足什么条件呢?
你能x知道2,当x是怎么样实数时
范围内有意义呢?
二次根式
(一)复习提问 以旧引新
回忆平方根定义,思考下列问题: 1、如果x2=3,那么x=_______
3
3 把 代入式子x2=3,又可得到什么式子呢? 3 学生回答:( )2=3
(回忆探讨上面的练习,做一做) 如果x2=11,x2=0,x2=a呢?
想一想:
从上面我们得到的结论,你能知道 中x取值范围是什么?
在实数
x2
例1、x是怎样的实数时,下列各式在实数范围 内有意义?
(1) x 3
1 (2) 1 x
解:(1)要使 x 3 在实数范围内有意义
则x-3 0 解得x 3
∴当x 3时, x 3 在实数范围内有意义
1 (2) 1 x
解:要使
1
在实数范围内有意义
1 x

1- x≠0
x≥0
解得x≥0且x≠1 ∴当x≥0且x≠1时,
a 2 b
a 2 b
( a 2 b)( a 2 b) a2 b
a2 b
(三)归纳总结 深化理解
1、二次根式定义。(强调a 0) 2、二次根式的性质。
利用这些性质,我们常常进行因式分解和根 式化简、计算等。
这为我们今后学习奠定了基础,希望同学们 能灵活掌握和运用。
(四)布置作业 反馈教学
(A组必做,B组选做) A组:P172 2(4)(5)(6) 3(2)(4)
相关文档
最新文档