空间几何体的表面积与体积公式大全
空间几何体的表面积和体积公式大全
空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。
三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的。
2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。
分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
设台体上底面积为S 上,下底面积为S 下高为h 。
易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
空间几何体的表面积与体积
空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。
每个空间几何体都有其独特的特征,其中包括表面积和体积。
表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。
不同类型的空间几何体有不同的表面积和体积计算公式。
下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。
一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。
球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。
二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。
长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。
三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。
圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。
四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。
圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。
五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。
正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。
除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。
总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。
空间几何体表面积和体积公式
空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
空间几何体的表面积和体积公式汇总表
空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h 10、空心圆柱R-外圆半径,r-圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面的判定(1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面.(2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面一点与这条直线平行的直线必在这个平面,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面,则它们所成的角是0°的角.(2)取值围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面,那么这条直线上的所有的点都在这个平面.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面的两条直线或既不平行也不相交.异面直线判定定理:用平面一点与平面外一点的直线,与平面不经过该点的直线是异面直线.两异面直线所成的角:围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面、与平面相交、与平面平行①直线在平面——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面,所成的角为0°角由此得直线和平面所成角的取值围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
空间几何体的表面积及体积计算公式
空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
几何体的表面积和体积计算
几何体的表面积和体积计算几何体是指由空间中的点、线、面构成的实体形状,包括常见的球体、立方体、圆柱体等。
在几何学中,表面积和体积是表征几何体大小和形状的重要指标。
本文将介绍几何体表面积和体积的计算方法。
一、球体的表面积和体积计算球体是一种具有无限个相同半径的曲面,其表面积和体积的计算公式如下:表面积公式:S = 4πr²体积公式:V = (4/3)πr³其中,r表示球体的半径,π是一个数学常数(约等于3.14159)。
二、立方体的表面积和体积计算立方体是一种六个面都相等且相互垂直的立方体形状,其表面积和体积的计算公式如下:表面积公式:S = 6a²体积公式:V = a³其中,a表示立方体的边长。
三、圆柱体的表面积和体积计算圆柱体由两个平行且相等的圆面和一个侧面组成,其表面积和体积的计算公式如下:表面积公式:S = 2πr² + 2πrh体积公式:V = πr²h其中,r表示圆柱的底面半径,h表示圆柱的高。
四、其他除了球体、立方体和圆柱体外,还存在许多其他形状的几何体,如圆锥体、棱柱体、正四面体等。
它们的表面积和体积计算方法各不相同,具体的计算公式可以通过几何学原理来推导得到,或者通过公式手册查询获得。
在实际应用中,计算几何体的表面积和体积可以帮助我们求解一些实际问题,例如建筑设计、制造工程、容器容积计算等等。
掌握几何体的计算方法,对于解决各种几何问题非常重要。
总结:几何体的表面积和体积计算是几何学中的重要概念,不同几何体有不同的计算公式。
通过熟练掌握这些计算方法,我们可以准确地计算各种几何体的表面积和体积。
这不仅有助于我们理解几何体的特性和形状,也能够应用到实际问题中。
空间几何体的表面积与体积公式大全,DOC
空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。
空间几何体的体积与面积的全部公式
空间⼏何体的体积与⾯积的全部公式空间⼏何体的体积与⾯积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体⾼)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其⾼)S=πR²+πR[(h²+R²)的平⽅根]V=πR²h/33、正⽅体(a为边长)S=6a²V=a³4、长⽅体(a为长,b为宽,c为⾼)S=2(ab+ac+bc)V=abc5、棱柱(S为底⾯积,h为⾼)V=Sh6、棱锥(S为底⾯积,h为⾼)V=Sh/37、棱台(S1和S2分别为上、下底⾯积,h为⾼)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为⾼,C为底⾯周长,S底为底⾯积,S侧为侧⾯积,S表为表⾯积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为⾼)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间⼏何体中的⾯积和体积公式的⽅法:1. ⾯积问题:空间⼏何体的⾯积主要分为两类:侧⾯积和表⾯积,其中的重点是旋转体的侧⾯积公式。
对于多⾯体的⾯积,其各个⾯都是多边形,这个在⼩学阶段就研究过了。
其中,只需要记住圆台的侧⾯积公式就够了。
将圆台侧⾯打开,是⼀个扇环,很像⼀个梯形。
所以圆台的侧⾯积就按照梯形来进⾏计算,就很容易理解。
如下图所⽰:圆台侧⾯积公式对于圆柱和圆锥的侧⾯积公式,不需要单独去记忆,只需要将其看成⼀个特殊的圆台就⾏了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上⾯的思路,把柱体和椎体看成⼀个特殊的台体,因此也只需要记住⼀个台体的体积公式就可以啦。
高中数学公式大全立体形的表面积与体积公式
高中数学公式大全立体形的表面积与体积公式高中数学公式大全:立体形的表面积与体积公式在高中数学学习中,几何部分是我们需要掌握的重要内容之一。
而几何中的立体形状的表面积与体积是我们经常需要计算的一项内容。
在本文中,我们将为大家整理一份高中数学公式大全,涵盖了各种立体形的表面积与体积的公式,以帮助大家更好地应对数学学习和问题解答。
下面是各个立体形状的表面积与体积公式:一、立方体:表面积公式:S = 6a^2其中,S表示立方体的表面积,a表示立方体的边长。
体积公式:V = a^3其中,V表示立方体的体积,a表示立方体的边长。
二、长方体:表面积公式:S = 2(ab + bc + ac)其中,S表示长方体的表面积,a、b、c表示长方体的三条边长。
体积公式:V = abc其中,V表示长方体的体积,a、b、c表示长方体的三条边长。
三、正方体:表面积公式:S = 6a^2其中,S表示正方体的表面积,a表示正方体的边长。
体积公式:V = a^3其中,V表示正方体的体积,a表示正方体的边长。
四、圆柱体:表面积公式:S = 2πrh + 2πr^2其中,S表示圆柱体的表面积,π取3.14或3.14159,r表示圆柱体的底面半径,h表示圆柱体的高。
体积公式:V = πr^2h其中,V表示圆柱体的体积,同样需要确定半径r和高h。
五、圆锥体:表面积公式:S = πr(r + l)其中,S表示圆锥体的表面积,π取3.14或3.14159,r表示圆锥体的底面半径,l表示圆锥体的斜高。
体积公式:V = (1/3)πr^2h其中,V表示圆锥体的体积,同样需要确定半径r和高h。
六、球体:表面积公式:S = 4πr^2其中,S表示球体的表面积,π取3.14或3.14159,r表示球体的半径。
体积公式:V = (4/3)πr^3其中,V表示球体的体积,r表示球体的半径。
通过以上给出的几何立体形状的表面积与体积公式,我们可以更方便地进行计算和解答相关习题。
高中数学的几何体表面积和体积公式是哪些
高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。
对于这一类学生有以下几点建议。
几何体的表面积和体积公式
几何体的表面积和体积公式一、柱体。
1. 棱柱。
- 表面积公式:- 直棱柱的表面积S = 2S_底+S_侧,其中S_底为底面多边形的面积,S_侧为侧面积。
若直棱柱底面多边形的边长为a,边数为n,棱柱的高为h,则S_侧=nah。
- 体积公式:V = S_底h,h为棱柱的高。
2. 圆柱。
- 表面积公式:S = 2π r^2+2π rh,其中r为底面半径,h为圆柱的高。
- 体积公式:V=π r^2h。
二、锥体。
1. 棱锥。
- 表面积公式:S = S_底+S_侧,棱锥的侧面积S_侧等于各个侧面三角形面积之和。
若棱锥底面多边形的边长为a,边数为n,斜高(侧面三角形底边上的高)为h',则S_侧=(1)/(2)nah'。
- 体积公式:V=(1)/(3)S_底h,h为棱锥的高。
2. 圆锥。
- 表面积公式:S=π r^2+π rl,其中r为底面半径,l为母线长。
- 体积公式:V = (1)/(3)π r^2h,h为圆锥的高。
三、台体。
1. 棱台。
- 表面积公式:S = S_上底+S_下底+S_侧,棱台的侧面积S_侧=(1)/(2)(n(a + b)h'),其中n为底面边数,a为上底面多边形的边长,b为下底面多边形的边长,h'为斜高。
- 体积公式:V=(1)/(3)h(S_上底+S_下底+√(S_上底)S_{下底}),h为棱台的高。
2. 圆台。
- 表面积公式:S=π r^2+π R^2+π l(R + r),其中r为上底面半径,R为下底面半径,l为母线长。
- 体积公式:V=(1)/(3)π h(r^2+R^2+rR),h为圆台的高。
四、球体。
- 表面积公式:S = 4π R^2,其中R为球的半径。
- 体积公式:V=(4)/(3)π R^3。
空间几何体的表面积和体积公式大全
空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。
三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。
3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。
易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。
体积和表面积的计算公式
体积和表面积的计算公式体积和表面积是数学和物理中非常重要的概念,广泛应用于各个领域。
无论是求解立方体、球体还是其他各种几何体的体积和表面积问题,我们都可以套用相应的计算公式进行计算。
1. 立方体的计算公式立方体是最简单的一种几何体,其形状规则且具有六个相等的面。
根据立方体的定义我们知道,其体积等于边长的立方,表面积等于六个面的总和。
- 体积计算公式:V = a^3,其中V表示体积,a表示边长。
- 表面积计算公式:S = 6a^2,其中S表示表面积,a表示边长。
2. 圆柱体的计算公式圆柱体是由两个平行的圆面和一个侧面围成的几何体,体积和表面积的计算公式需要考虑到圆的性质。
- 体积计算公式:V = πr^2h,其中V表示体积,r表示圆的半径,h 表示圆柱体的高度。
- 表面积计算公式:S = 2πrh + 2πr^2,其中S表示表面积,r表示圆的半径,h表示圆柱体的高度。
3. 球体的计算公式球体是由所有距离球心相等的点组成的几何体,是一种完整封闭的几何体。
求解球体的体积和表面积需要用到球的半径。
- 体积计算公式:V = (4/3)πr^3,其中V表示体积,r表示球的半径。
- 表面积计算公式:S = 4πr^2,其中S表示表面积,r表示球的半径。
4. 锥体的计算公式锥体是由一个底面和一个顶点以及连接两者的曲面组成的几何体。
计算锥体的体积和表面积需要考虑到锥的底面和侧面的形状。
- 体积计算公式:V = (1/3)πr^2h,其中V表示体积,r表示底面的半径,h表示锥体的高度。
- 表面积计算公式:S = πr(r + l),其中S表示表面积,r表示底面的半径,l表示锥体的斜高。
综上所述,体积和表面积的计算公式因几何体的不同而不同。
通过套用相应的计算公式,我们可以准确地求解各种几何体的体积和表面积问题。
这些公式在实际应用中非常重要,特别是在工程建模、几何计算和物理相关领域中发挥着重要作用。
表面积与体积公式
表面积与体积公式表面积与体积是几何学中的两个重要概念,它们是描述物体大小的两个基本指标。
表面积是指物体外部所占据的空间面积,而体积则是指物体所占据的空间大小。
在实际生活中,我们经常需要计算物体的表面积和体积,例如建筑物的面积和容积、容器的容积等等。
本文将介绍表面积与体积的公式及其应用。
一、表面积公式表面积是指物体外部所占据的空间面积,它是一个二维概念。
不同形状的物体的表面积公式也不同。
下面是一些常见物体的表面积公式:1. 矩形的表面积公式矩形是一种常见的四边形,它的表面积公式为:S = 2ab + 2bc + 2ac其中,a、b、c分别为矩形的三条边长。
2. 正方体的表面积公式正方体是一种六面体,它的表面积公式为:S = 6a²其中,a为正方体的边长。
3. 球体的表面积公式球体是一种几何体,它的表面积公式为:S = 4πr²其中,r为球体的半径。
二、体积公式体积是指物体所占据的空间大小,它是一个三维概念。
不同形状的物体的体积公式也不同。
下面是一些常见物体的体积公式:1. 立方体的体积公式立方体是一种六面体,它的体积公式为:V = a³其中,a为立方体的边长。
2. 圆柱体的体积公式圆柱体是一种几何体,它的体积公式为:V = πr²h其中,r为圆柱体的底面半径,h为圆柱体的高。
3. 圆锥体的体积公式圆锥体是一种几何体,它的体积公式为:V = 1/3πr²h其中,r为圆锥体的底面半径,h为圆锥体的高。
三、应用表面积和体积公式在实际生活中有着广泛的应用。
下面是一些例子:1. 建筑物的面积和容积在建筑设计中,需要计算建筑物的面积和容积。
例如,计算房间的面积可以使用矩形的表面积公式,计算房间的容积可以使用立方体的体积公式。
2. 容器的容积在制造容器时,需要计算容器的容积。
例如,计算圆柱形容器的容积可以使用圆柱体的体积公式,计算圆锥形容器的容积可以使用圆锥体的体积公式。
空间几何体的表面积与体积公式大全
外接球的半径
4
(3)规律:
:u 正四而体
=3 品 兀:2
① 正四面体的内切球与外接球的球心为同一点;
② 正四面体的内切球与外接球的球心在高线上;
③ 正四面体的内切球与外接球的的半径之和等于高;
④ 正四面体的内切球与外接球的半径之比等于 1: 3
⑤ 正四面体内切球与外接球体积之比为:1: 27
(2)外接球
正方体与其体内最大的正四而体有相同的外接球。(理由:过不共面的
四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所 以它们共球。
回顾:①两点定线②三点定面③三点定圆④四点定球
如图:
(a) 正方体的体对角线=球直径 (b) 正四面体的外接球半径二?高
4
(C)正四面体的棱长=正方体棱长 X 72 (d) 正方体体积:正四面体体积=3: 1 (e) 正方体外接球半径与
1
方法 1:展平分析:(最重要的方法) 如图:取立体图形中的关键平面图形进行分析!
/ Ft''、、 /』)''、、、
连接 DO 并延长交平面 ABC 于点 G,连接 GO, /
X:;盖]
连接 DO,并延长交 BC 于点 E,则 A、G、E B 笔共线< J A —c 在平面 AED 中,由相似
知识可得:
成正方体进行分析。如图:
1 文档来源为:从网络收集整理.word 版本可编借.
文档收集于互联网,已重新整理排版 word 版本可编辑•欢迎下载支持. 此时,正四面体与正方体有共同的外接球。
正四面体的棱长为“,则正方体棱长
正方体的外接球直径为其体对角线 D 亠嗨号
•••正四面体的外接球半径为: 2=也
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱② 圆柱2、锥体 ① 棱锥:hc S‘底棱锥侧21=② 圆锥:l c S底圆锥侧21= 3、台体①棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略二、 体积 1、柱体① 棱柱② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:rV 334π=球②球冠:略 ③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。
三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的。
2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。
分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
设台体上底面积为S 上,下底面积为S 下高为h 。
易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD = 即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴hS S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr ,则: 每个圆柱的体积h S V i i ==nrr i 2π 半球的体积等于这些圆柱的体积之和。
]1[)0()0(222221n r r n r r -=-=]1[)1()1(222222n r r n r r -=-= ]1[)2()2(222223nr r n r r -=-=……]1[)1()1(22222nn r r n n r r n ---=-=∴半球体积为:)......(22221r rr V V n n n r+++⨯⨯==∑π半球=]}......[1{)1()1()0(2222nn n nr n nr -+++-⨯⨯π =]......[222223)1(210nn rn n -++++-π=]6)12)(1(1[])12()1(61[2323n r n r n n n n n n n ---=---ππ ]6)12)(11(1[3n n r ---=π 当+∞→n 时,01→n∴=V 半球r r r n n 33332)6211(]6)12)(11(1[πππ=⨯-=--- ∴球体积为:r V 334π=球5、 球体表面积公式推导分析:球体可以切割成若干(个n )近似棱锥,当+∞→n 时,这些棱锥的高为球体半径,底面积为球面面积的n1,则每一个棱锥的体积r S V n球1311⨯=,则所有的小棱锥体积之和为球体体积。
即有:r r S n n 33431π=⨯球 ∴r S 24π=球 6、正六面体(正方体)与正四面体 (1) 体积关系如图:正方体切下四个三棱锥后, 剩下的部分为正四面体球S n1o设正方体棱长为a , 则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:a a a hSV 3261)21(3131=⨯⨯==三棱锥 中间剩下的正四面体的体积为:aa a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个正方体可以分成四个三棱锥与中间一个正四面体 即:a a a 33331461=+⨯ (2) 外接球正方体与其体内最大的正四面体有相同的外接球。
(理由:过不共面的四点确定一个球。
)正方体与其体内最大的正面体有四个公共顶点。
所以它们共球。
回顾:① 两点定线 ② 三点定面 ③ 三点定圆 ④ 四点定球 如图:(a)正方体的体对角线=球直径 (b)正四面体的外接球半径=43高 (c)正四面体的棱长=正方体棱长⨯2 (d)正方体体积:正四面体体积=3:1 (e)正方体外接球半径与正四面体外接球半径相等 (方体的内切球与正四面体的关系(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:a ar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R ,截面高度均为h ,倒圆锥的截面半径为r 1锥,半球截面半径为r 1球,则:挖去圆锥后的组合体的截面为:r R S 2121锥ππ-= 半球截面面积为:r S 212球π= ∵倒圆锥的底面半径与高相等,由相似三角形易得:h r =1锥 在半球内,由勾股定理易得:h Rr 221-=球∴hR S 221ππ-=h R S 222ππ-=即:S S 21=,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。
由祖暅原理可得:V V 21=所以半球体积:R R R V Sh Sh Sh 3232323231ππ=⨯⨯==-=⨯半球即,球体体积:RR V 3334322ππ=⨯=球8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径dV a 361π= V(2) 正方体的外接球正方体的体对角线=a 3球体的直径da d r V 333233434)2(πππ===球 :球V 2:3π=V 正方体(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:33⑤正四面体内切球与外接球表面积之比为:1:3⑥正方体外接球半径、正方体棱长、内切球半径比为:3:2:1 ⑦正四面体外接球、正四面体、内切球体积比为:ππ:6:33 ⑧正四面体外接球、正四面体、内切球表面积比为:ππ:6:3 9、正四面体与球(1)正四面体的内切球解题关键:利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径r 。
利用体积关系得:h a r a⨯︒⨯=⨯︒⨯⨯)60sin 21(31)60sin 2131422( 所以:h r 41=,其中h 为正四面体的高。
由相关计算得:a a ah 36)]321(32[22=-=⨯⨯ ∴ah r 12641==即:a a r V 33321663434)126(πππ===球 aa a V 321223660sin 2131=⨯︒⨯=正四面体 ∴π3:18=V V 球正四机体:(2)正四面体的外接球外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 a3386)π=aa 312236=⨯ ∴2:33122:86:33ππ==a aV V 正四面体球 (3)规律:①正四面体的内切球与外接球的球心为同一点; ②正四面体的内切球与外接球的球心在高线上; ③正四面体的内切球与外接球的的半径之和等于高; ④正四面体的内切球与外接球的半径之比等于1:3 ⑤正四面体内切球与外接球体积之比为:1:27 ⑥正四面体内切球与外接球表面积之比为:1:9⑦正四面体外接球半径、正四面体棱长、内切球半径比为:63:12:6 ⑧正四面体外接球、正四面体、内切球体积比为:ππ3:18:327 ⑨正四面体外接球、正四面体、内切球表面积比为:ππ:26:9 10、 圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)圆柱高=底面直径=球的直径 球体体积=32圆柱体积 球面面积=圆柱侧面积(2)球容圆柱球体直径、圆柱的高、圆柱底面直径构成直角三角形。
设球体半径为R ,圆柱高为h ,底面半径为r则有:)2()2(222r h R += 即:2422r hR +=四、 方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为a ,求它的内切球和外接球的半径思路:先分析球心的位置。
因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。
且是正四面体的高线交点。
再分析球心与一些特殊的点、线、面的位置、数量关系。
在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。
方法1:展平分析:(最重要的方法)连接DO 并延长交平面ABC 于点G 连接D O 1并延长交BC 于点E ,则A 、G 在平面AED 中,由相似知识可得:2111==GA EG DE O O ∴AD G O //1 且311=ADG O ∴△GO O 1∽△DOA ∴31AOO O 1= 即:a a A h O 4636434343AO 1=⨯=⨯== a a A h O 12636414141O 11O =⨯=⨯==a V 338634DO ππ==⨯外接球a OO V 331216634ππ==⨯内切球 方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD 的内切球球心为O ,连接AO 、BO 、CO 、DO ,则正四面体被分成四个完全一样的三棱锥。