溶解氧测定方法 国标

合集下载

水质检测指标国标法

水质检测指标国标法

24【硝基苯类】 还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
25【苯胺类】 水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T11889-1989
26【游离氯】 水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-1989
10【总可滤残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
11【总残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
12【全盐量(溶解性固体)】 水质 全盐量的测定 重量法 HJ/T51-1质 钙和镁总量的测定 EDTA滴定法 GB/T7477-1987
36【铜】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
37【锌】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
38【铅】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
水质各种项目检测国标方法综合版
关键字:水质监测,国标法,汇总
1 【pH值】 水质 pH值的测定 玻璃电极法GB/T6920-1986
2 【溶解氧】 水质 溶解氧的测定 电化学探头法 GB/T11913-1989
碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年
铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
31【硫化物】 水质 硫化物的测定 亚甲基兰分光光度法 GB/T16489-1996
32【阴离子表面活性剂】 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-1987

bod的测定国标法

bod的测定国标法

bod的测定国标法
BOD(生化需氧量)是指在一定温度和时间条件下,微生物需氧呼吸、生长分解有机物质所需的氧量。

BOD的测定是水质评价的重要指标之一,广泛应用于工业和生活废水排放控制、水处理过程监测等领域。

测定BOD的国标法是指按照国家标准GB 11914-89《水质-生化需
氧量的测定》规定的方法进行测定。

该方法采用生物法,即利用水中
的微生物活动进行有机物的氧化分解,测定反应前后水样中溶解氧含
量的差值即为BOD值。

具体操作步骤如下:
1.采样:在水样收集器中收集代表性水样,并将其送至实验室进
行测定。

注意保持水样的温度和氧气状态不变。

2.制备培养液:将适量的基础培养液按照比例配制成浓缩培养液,用生物柿子碱溶液稀释后即为培养液。

3.操作:将培养液加入接水瓶内,加入一定量的水样,根据温度
选取相应的培养时间。

放置于恒温箱内,培养完毕后取出样品,测定
反应前后水样中溶解氧含量的差值即为BOD值。

需要注意的是,在实验过程中需要控制温度、氧气含量、光照等
因素的影响,并排除其他可能干扰结果的因素。

同时需要记录实验过
程的数据和结果,以便进行后续分析和比对。

BOD的测定结果直接反应了水质中有机物的含量和微生物分解能力,可以为水质评价和水处理过程的调整提供参考。

因此,在实际操作中
需要严格按照国标法进行测定,并根据结果进行各种决策。

溶解氧测定方法国标

溶解氧测定方法国标

溶解氧测定方法国标1.引言:溶解氧是水质中重要的指标之一,影响着水中生物的代谢活动。

因此,溶解氧的测定方法的准确性和可靠性非常重要。

国际上,已经制定了一系列标准方法,包括ISO、ASTM等。

而国内,中国国家标准委员会也制定了溶解氧测定方法的国家标准,以确保测定结果的准确性和可比性。

2.国标的背景:3.国标的适用范围:国标适用于水体、废水、海洋环境、水处理设备中溶解氧浓度的测定。

4.测定原理:(根据国标初始内容进行详细描述,此处仅作简述)国标测定溶解氧的原理基于阴极极化法,通过在阴极上施加电势,使溶解氧氧化成为电流,从而通过测量电流的大小来计算出溶解氧的浓度。

5.实验设备和试剂:(根据国标初始内容进行详细描述,此处仅作简述)测定溶解氧所需的设备包括电解池、电极、电位计等。

试剂包括标准氧溶液、背景电解液等。

6.标准操作程序:(根据国标初始内容进行详细描述,此处仅作简述)国标中详细描述了测定溶解氧所需的标准操作程序,包括设备校准、样品处理、实验操作等步骤。

此外,国标还指出了实验误差的控制方法和测定结果的计算公式。

7.检测结果的验证:国标中描述了对测定结果的验证方法,包括用其他测定方法和设备进行对比测定,以验证国标方法的准确性和可靠性。

8.数据处理与质量控制:国标中要求,实验数据应进行统计和分析,检测结果需要进行质量控制。

国标还详细说明了防止和消除误差的方法,以确保测定结果的准确性和可比性。

9.结论:国标的制定,有助于标准化溶解氧的测定方法,使不同实验室和机构的测定结果具有可比性。

同时,国标还提供了操作规范和质量控制方法,以确保测定结果的准确性和可靠性。

总结:国家标准委员会制定了溶解氧测定方法的国家标准,该标准基于国际标准方法,详细描述了溶解氧测定方法的操作程序、设备和试剂的要求,以及测定结果的验证和质量控制方法。

该国标的制定,有助于确保溶解氧测定结果的准确性和可比性,进一步提高水质监测工作的科学性和规范性。

49种化学水处理水质项目检测国标方法汇总整理

49种化学水处理水质项目检测国标方法汇总整理

各类水处理水质项目检测方法汇总1 【pH 值】水质pH 值的测定玻璃电极法GB/T6920-19862 【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年3 【臭和味】文字描述法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年4 【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年5 【酸度】酸度指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002年6 【碱度( 总碱度、重碳酸盐和碳酸盐) 】酸碱指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年7 【色度】水质色度的测定GB/T11903-19898 【浊度】水质浊度的测定GB/T13200-19919 【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-198910【总可滤残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年11【总残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年12【全盐量( 溶解性固体) 】水质全盐量的测定重量法HJ/T51-199913【总硬度( 钙和镁总量) 】水质钙和镁总量的测定EDTA 滴定法GB/T7477-198714【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-198915【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法GB/T11914—198916【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—198717【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987水杨酸-次氯酸盐光度法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987水质硝酸盐氮的测定紫外分光光度法》HJ/T346-200719【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987 20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-198922【总磷】水质总磷的测定钼酸铵分光光度法》GB/T11893-198923【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)25【苯胺类】水质苯胺类化合物的测定N-(1-萘基) 乙二胺偶氮分光光度法GB/T11889-198926【游离氯】水质游离氯和总氯的测定N,N-二乙基-1 ,4-苯二胺滴定法GB/T11897-198927【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-198928【氟化物】水质氟化物的测定离子选择电极法GB/T7484-198729【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-1987930【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89铬酸钡分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)31【硫化物】水质硫化物的测定亚甲基兰分光光度法GB/T16489-199632【阴离子表面活性剂】水质阴离子表面活性剂的测定亚甲蓝分光光度法GB/T7494-198733【石油类】水质石油类和动植物油的测定红外光度法GB/T 16488-199634【动植物油】水质石油类和动植物油的测定红外光度法GB/T 16488-1996 35【总铬】水质总铬的测定高锰酸钾氧化-二苯碳酰二肼分光光度法GB/T7466-1987火焰原子吸收分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)36【铜】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 37【锌】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 38【铅】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 39【镉】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 40【镍】水质镍的测定火焰原子吸收分光光度法GB/T 11912-198941【钾】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198942【钠】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198943【钙】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198944【镁】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198945【铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198946【锰】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198947【溶解性铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-1989 48【银】水质银的测定火焰原子吸收分光光度法GB/T 11907-198949【甲醛】水质甲醛的测定乙酰丙酮分光光度法GB/T13197-1991。

溶解氧测定方法-国标

溶解氧测定方法-国标

水质溶解氧得测定碘量法 GB 7489-87本方法等效采用国际标准ISO5813 1983本方法规定采用碘量法测定水中溶解氧由ﻫ于考虑到某些干扰而采用改进得温克勒(Winkler)法ﻫ1范围ﻫ碘量法就是测定水中溶解氧得基准方法在没有干扰得情况下此方法适用于各种溶解氧ﻫ浓度大于0、2mg/L与小于氧得饱与浓度两倍(约20mg/L)得水样易氧化得有机物如丹宁酸腐植酸与木质素等会对测定产生干扰可氧化得硫得化合物如硫化物硫脲也如同易于消ﻫ耗氧得呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法ﻫ亚硝酸盐浓度不高于15mg/L时就不会产生干扰因为它们会被加入得叠氮化钠破坏掉ﻫ如存在氧化物质或还原物质需改进测定方法见第8条、ﻫ如存在能固定或消耗碘得悬浮物本方法需按附录A 中叙述得方法改进后方可使用ﻫ2原理在样品中溶解氧与刚刚沉淀得二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰ﻫ中制得)反应酸化后生成得高价锰化合物将碘化物氧化游离出等当量得碘用硫代硫酸钠滴定法测定游离碘量3、1 硫酸溶液ﻫ小心3 试剂ﻫ分折中仅使用分析纯试剂与蒸馏水或纯度与之相当得水ﻫ地把500mL 浓硫酸(ρ= 1、84g/mL)在不停搅动下加入到500mL水ﻫ注:若怀疑有三价铁得存在则采用磷酸(H3PO4ρ=1、70g/mL)3、2 硫酸溶液c(1/2H2SO4)=2mol/L3、3碱性碘化物叠氮化物试剂ﻫ注:当试样中亚硝酸氮含量大于0、05mg/L而亚铁含量不超过1mg/L时为防止亚硝酸氮对测定结果得干涉需在试样中加叠氮化物叠氮化钠就是剧毒试剂若已知试样中得亚硝酸盐低于0、05mg/L 则可省去此试剂a、操作过程中严防中毒ﻫb、不要使碱性碘化物叠氮化物试剂(3、3)酸化因为可能产生有毒得叠氮酸雾ﻫ将35g得氢氧化钠(NaOH)[或50g得氢氧化钾(KOH)]与30g碘化钾(KI)[或27g 碘化钠(NaI)]溶解在大约50mL 水中,单独地将1g 得叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧得细口棕色瓶子里,经稀释与酸化后在有指示剂(3、7)存在下本试剂应无色、3、4无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)ﻫ可用450g/L 四水二价氯化锰溶液代替过滤不澄清得溶液3、5 碘酸钾c(1/6KIO3) 10mmol/L标准溶液在180℃干燥数克碘酸钾(KIO3) 称量3、567±0、003g 溶解在水中并稀释到1000mL。

bod国标检测方法

bod国标检测方法

bod国标检测方法摘要:一、Bod国标检测方法简介二、Bod国标检测方法的原理及步骤三、Bod国标检测方法的应用领域四、Bod国标检测方法的优缺点五、我国在Bod国标检测方法的发展与应用正文:一、Bod国标检测方法简介Bod国标检测方法,全称为“生物需氧量测定方法”,是一种用于测定水中有机物生物降解能力的标准方法。

该方法起源于20世纪70年代,在我国得到了广泛的应用,并被纳入国家环保标准。

Bod国标检测方法的主要目的是评估水体中有机物的污染程度,为水资源的合理利用和污染防治提供科学依据。

二、Bod国标检测方法的原理及步骤Bod国标检测方法的原理是利用微生物在有机物存在下进行生物降解,通过测定微生物生长过程中消耗的氧气量来反映水体中有机物的含量。

具体步骤如下:1.准备样品:从水体中采集水样,并尽快进行分析。

2.接种微生物:将水样接种到含有特定微生物的培养基中,使其在恒定条件下生长。

3.培养:将接种后的培养基置于恒温培养箱中,培养一段时间(通常为5天)。

4.测定氧气消耗量:通过测定培养前后培养基中氧气的浓度变化,计算出有机物的生物降解量。

5.计算Bod值:根据氧气消耗量,计算出水体的Bod值,用于评价水体中有机物的污染程度。

三、Bod国标检测方法的应用领域Bod国标检测方法在我国环境保护、水文地质、城市污水监测等领域具有广泛的应用。

通过Bod值的分析,可以了解水体中有机物的污染程度,为水资源管理和污染防治提供数据支持。

四、Bod国标检测方法的优缺点优点:操作简便、快速、成本低廉,能较好地反映水体中有机物的污染状况。

缺点:受水体中无机物、温度、溶解氧等因素的影响较大,对于高浓度有机物的水体,检测结果可能不准确。

五、我国在Bod国标检测方法的发展与应用近年来,我国在Bod国标检测方法的研究与应用方面取得了显著成果。

不仅在方法标准上不断完善,还研发了一系列配套设备,如便携式Bod测定仪,提高了检测效率和准确性。

溶解氧测定方法 国标

溶解氧测定方法 国标

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ñ 1.84g/mL)在不停搅动下加入到500mL 水注若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) 2mol/L3.3 碱性碘化物叠氮化物试剂注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)]溶解在大约50mL 水中单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中将上述二种溶液混合并稀释至100mL溶液贮存在塞紧的细口棕色瓶子里经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L3.6.1 配制将 2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000mL溶液贮存于深色玻璃瓶中3.6.2 标定在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色硫代硫酸钠浓度(c mmol/L)由式(1)求出= 6´20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼1Vc式中V 硫代硫酸钠溶液滴定量mL每日标定一次溶液3.7 淀粉新配制10g/L 溶液注也可用其他适合的指示剂3.8 酚酞1g/L 乙醇溶液3.9 碘约0.005mol/L 溶液溶解4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL3.10 碘化钾或碘化钠4 仪器除常用试验室设备外还有4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体积5 操作步骤5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测定或最好采用电化学探头法测定溶解氧5.2 检验氧化或还原物质是否存在如果预计氧化或还原剂可能干扰结果时取50mL 待测水加2 滴酚酞溶液(3.8)后中和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液(3.7)如果溶液呈蓝色则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶液的加入量有氧化物质存在时按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没有氧化或还原物时按照5.3 5.4 5.5 中规定处理5.3 样品的采集除非还要作其他处理样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部细口瓶注在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).5.3.1 取地表水样充满细口瓶至溢流小心避免溶解氧浓度的改变对浅水用电化学探头法更好些在消除附着在玻璃瓶上的气泡之后立即固定溶解氧(见5.4)5.3. 2 从配水系统管路中取水样将一惰性材料管的入口与管道连接将管子出口插入细口瓶的底部(4.1)用溢流冲洗的方式充入大约10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶上的空气泡之后立即固定溶解氧(见5.4)5.3.3 不同深度取水样用一种特别的取样器内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部(4.1)当溶液充满细口瓶时将瓶中空气排出避免溢流某些类型的取样器可以同时充满几个细口瓶5.4 溶解氧的固定取样之后最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡带入若用其他装置必须小心保证样品氧含量不变将细口瓶上下颠倒转动几次使瓶内的成分充分混合静置沉淀最少5min 然后再重新颠倒混合保证混合均匀这时可以将细口瓶运送至实验室若避光保存样品最长贮藏24h5.5 游离碘确保所形成的沉淀物已沉降在细口瓶下三分之一部分慢速加入 1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布注若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底部沉淀物5.6 滴定将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴定终点时加淀粉溶液(3.7)或者加其他合适的指示剂6 结果计算溶解氧含量c1(mg/L)由式(2)求出:C1=Mr*V2*C*f1/(4V1)式中Mr——氧的分子量Mr=32V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0c ——硫代硫酸钠溶液(3.6)的实际浓度mol/Lf1=V0/(V0-V')式中V0——细口瓶(4.1)的体积mLV' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。

BOD测定的几点建议

BOD测定的几点建议

BOD测定的几点建议BOD作为水处理中比较紧要的指标之一,也是大家关注的必测指标之一。

依据我所了解的学问,给大家一些建议,希望在选择bod测定仪的时候不要被一些厂家给忽悠了。

BOD一般指BOD5,也就是我们所说的生化需氧量(BOD),是一种环境监测指标,重要用于监测水体中有机物的污染情况。

一般有机物都可以被微生物分解,但是微生物在水中分解有机物时,需要消耗氧气。

假如水中的溶解氧不足以供应微生物的需要,水体就处于污染状态。

BOD是与环境保护有关的指标。

BOD的测量方法包括:先说一些流行的方法,然后介绍国标方法和一些注意要点。

1、生物传感器法一种比较流行的方法,重要是由国内一些公司开发出来的,并渐渐被认可。

原理:测量水中BOD的微生物传感器由氧电极和微生物菌膜构成,其原理是当含有饱和溶解氧的样品进入流通池中与微生物传感器接触,水样中可生化降解的有机物受到微生物菌膜中居中的作用,削减了扩散到氧电极表面的氧质量。

当水样中可生化降解的有机物向菌膜扩散的速度(质量)达到恒定时,此时扩散到氧电极表面上的氧气质量也达到恒定,从而产生恒定电流。

由于恒流与水样中可生化降解的有机物浓度的差值与氧气的削减量具有定量关系,因此可以相应地换算出水中的生化需氧量。

优点:维护简单,只需定期更换微生物膜和输液管;成本低,耗材价格低,结构简单,无易损件。

缺点是一般比较适合地表水,不适合重金属或其他有毒污染物。

2、活性污泥曝气降解法将温度掌控在30℃35℃,用活性污泥强制曝气降解样品2小时,用重铬酸钾消解生物降解后的样品,测定生物降解前后的化学计量需氧量,差值为BOD。

依据与标准方法的对比试验结果,可换算成BOD5值。

3、测压法在密闭的培育瓶中,水样中的溶解氧被微生物消耗掉,微生物产生的CO2相当于呼吸作用所消耗的氧气。

当CO2被汲取时,使密闭系统的压力降低,可以得到依据压力测得的压降求出水样的BOD值。

4、标准稀释法这种方法是比较经典也是较常用的方法。

BOD测定的介绍

BOD测定的介绍

BOD测定方法汇总生化需氧量(BOD)是指在常规条件下,微生物分解存在于水中的某些可氧化物质(主要是有机物质)所进行的生物化学过程中消耗溶解氧的量。

显然,微生物作用的持续时间不同,所测得的BOD值也会不同。

目前,国际上通用的测定方法是在20℃±1的条件下测定5日的生化需氧量,即BOD5。

目前BOD5的测定方法有:标准稀释法、有汞压差法、无汞压差法、微生物电极法、活性污泥法、库仑计法。

一、BOD国标方法——标准稀释法该方法是现行的国标方法,称为标准稀释法,又叫5日培养法。

是被测水样由接种水接种稀释培养5天后,再用传统的化学方法—碘量法进行滴定计算进行测定的方法。

二、其他方法目前测定BOD值常采用BOD测定仪,仪器的方法普遍具有操作简单,重现性好,并可直接读取BOD值。

(1)库仑计法BOD测定仪在密闭系统中微生物分解有机物消耗的氧气量用电解产生的氧气补给,从电解所需的氧气量来求得氧的消耗量,仪器自动显示测定结果,记录生化需氧量曲线。

(2)测压法——分为有功压差法和无汞压差法在密闭环境中微生物分解有机物消耗溶解氧会引起气压的变化,通过测定气压的变化,即可得到BOD的值。

(3)微生物电极法用微生物电极求得微生物分解有机物消耗溶解氧的量,仪器经标准BOD物质溶液校正后,可直接显示被测溶液的BOD值,并在20min 内完成一个水样的测定。

目前BOD的仪器测定方法中,与国标法最为相近的就是测压法,测压法中无汞压差法的仪器测定BOD达到了环保、准确、高效的目标。

在国外的一些比较大的仪器厂家就是应用无汞压差法来研发生产BOD测定仪器的,比如WTW、哈希水务。

国内市场可以与之相睥睨的仪器厂家是兰州连华生产的LH-BOD601。

具体如图所示:。

国标法与仪器法测定BOD5的比对实验分析

国标法与仪器法测定BOD5的比对实验分析

国标法与仪器法测定BOD5的比对实验分析摘要:通过采用国家标准方法(稀释接种法)与BOD测定仪器法(压差法)分别对标准样品、实际水样进行BOD5比对测定,对检测结果进行显著性差别验证。

基于两种方法在有机物组分单一、浓度较低时检测结果无显著性差别的结论,结合国标法存在操作繁琐、依赖操作人员经验等缺点,仪器法呈现操作简单、检测效率高等优点,提出企业开展BOD5自行监测时可选用压差法。

关键词:BOD5;稀释与接种法;压差法1 引言BOD5(Biochemical Oxygen Demand),是一种用微生物代谢作用所消耗溶解氧的量来间接表示水体被有机物污染程度的一个重要指标,通过B : C 比值(BOD与同源水体中的COD的比值)可判断水体是否具备可生化性。

本文基于国家标准方法(稀释接种法)与BOD测定仪器法(压差法)的实验过程、结果进行比对分析,探讨BOD测定仪器法(压差法)在企业自行监测中选用的可行性。

2 稀释接种法与压差法测定BOD5的对比实验2.1稀释接种法测定BOD5的流程稀释接种法工作原理:水样充满完全密闭的溶解氧瓶中,在(20士1)℃的暗处进行5d ±4h培养,分别测定培养前后水样中溶解氧的质量浓度之差,计算每升样品消耗的溶解氧量,以 BOD5形式表示。

[1],该方法的检出限为0.5mg/L,方法的测定下限为2mg/L,测定上限为6000mg/L。

(1)材料准备。

实验需要准备磷酸盐缓冲液、硫酸镁、氯化钙、氯化铁等营养盐溶液;Qxi7310台式溶解氧测定仪、BSP-250生化培养箱等HJ505-2009要求的器材。

(2)测试过程。

10L玻璃瓶加入去离子水,在(20±1)℃的环境下用曝气装置曝气,其次对水样的COD进行快速检测,得出目标样品的稀释倍数,确定每个样品进行3个不同浓度的稀释倍数,接种液使用未受工业污染的城市生活污水配制[2],稀释接种水按比例加入丙烯基硫脲消化抑制剂和四种盐溶液混匀,将测定溶解氧后水样放入恒温培养箱中20±1℃的暗处培养 5d,测定培养前后的溶解氧差值,根据样品的稀释倍数代入相关的计算公式可得出最终测定值。

溶解氧的测定方法

溶解氧的测定方法

1、当水样中含有亚硝酸盐时会干扰测定,可加入叠氮化钠使水中的亚硝酸盐分解而消除干扰。

其加入方法是预先将叠氮化钠加入碱性碘化钾溶液中。

2、如水样中含Fe3+达100—200mg/L 时,可加入1mL40%氟化钾溶液消除干扰。

3、如水样中含氧化性物质(如游离氯等),应预先加入相当量的硫代硫酸钠去除。

4.6硫代硫酸钠标准溶液c (Na 2S 2O 3)=0.1mol/l (0.1N )4.6.1配制称取26g 硫代硫酸钠(Na 2S 2O 3 .5H 2O)(或16g 无水硫代硫酸钠),注入1000ml 水中,缓缓煮沸10min ,冷却,放置2周后过滤备用。

4.6.2标定4.6.2.1测定方法称取0.15g 于120℃烘至恒重的基准重铬酸钾,称准至0.0001g ,置于碘量瓶中,溶于25ml 水中,加2g 碘化钾及20ml 硫酸液(20%),摇匀,于暗处放置10min ,加入150ml 水,用硫代硫酸钠标准溶液[c (Na 2S 2O 3)=0.1mol/l]滴定,近终点时加入3ml 淀粉指示剂(5g/l ),继续滴定至溶液有蓝色变为亮绿色,同时作空白试验。

4.6.2.2 计算硫代硫酸钠标准溶液浓度按式(9)计算c (21Na 2S 2O 3)=04903.0*)21(v v m (9) 式中:c (Na 2S 2O 3)—硫代硫酸钠标准溶液之物质的量浓度 mol/lM —重铬酸钾之质量gV1—硫代硫酸钠溶液之用量,mlV2—空白试验硫代硫酸钠溶液之用量,ml0.04903—与1.00ml 硫代硫酸钠标准溶液[c (Na 2S 2O 3)=1.000mol/l]相当的以克表示的重铬酸钾的质量4.6.3比较4.6.3.1、测定方法准确量取用配30.00~35.00ml 碘标准溶液[c (21I 2)=0.1mol/l]加水150ml ,用配置好的硫代硫酸钠溶液[c (21Na 2S 2O 3)=0.1mol/l]滴定,近终点时加3ml 淀粉指示剂(5g/l ),继续滴定至溶液蓝色消失。

溶解氧测定方法-国标

溶解氧测定方法-国标

水质溶解氧的测定碘量法?G B7489-87本方法等效采用国际标准I S O58131983本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(W i n k l e r)法 1范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于L和小于氧的饱和浓度两倍(约20m g/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15m g/L时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8条. 如存在能固定或消耗碘的悬浮物本方法需按附录A中叙述的方法改进后方可使用 2原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量 3试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水硫酸溶液小心地把500m L浓硫酸(ρ=m L)在不停搅动下加入到500m L水注:若怀疑有三价铁的存在则采用磷酸(H3P O4ρ=m L) 硫酸溶液c(1/2H2S O4)=2m o l/L 碱性碘化物叠氮化物试剂注:当试样中亚硝酸氮含量大于L而亚铁含量不超过1m g/L时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于L则可省去此试剂a.操作过程中严防中毒b.不要使碱性碘化物叠氮化物试剂酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中,单独地将 1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至 100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂存在下本试剂应无色.无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用 450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在 180℃干燥数克碘酸钾(KIO3) 称量± 溶解在水中并稀释到1000mL。

溶解氧检测方法介绍

溶解氧检测方法介绍

溶解氧检测方法介绍溶解氧(Dissolved Oxygen, DO)是指溶于水中的氧气分子的含量。

水体中的溶解氧对水生生物的生存和生长至关重要,因此准确监测和测量溶解氧的含量对于环境保护、水质监测和生态学研究等方面都具有重要意义。

溶解氧的检测方法主要有以下几种:1.传统的氧电极法:氧电极法是测量溶解氧最常用的方法之一、该方法使用氧化还原电极测量水样中的氧气分压,然后根据氧气分压和温度关系,计算出溶解氧的含量。

该方法的优点是操作简单,测量范围广,但需要校准和维护氧电极。

2. Winkler法:Winkler法是一种经典的溶解氧测量方法。

该方法使用亚硝酸铵将水样中的溶解氧气氧化为氧化亚铁离子,然后使用亚硫酸钠标准溶液滴定来测定氧化亚铁的含量,从而计算出溶解氧的含量。

该方法的优点是准确可靠,但需要较多的试剂和时间。

3.光电法:光电法使用溶解氧的强吸收特性来测量溶解氧的含量。

通过测量透过一个光阑后的入射光的强度,可以计算出溶解氧的含量。

光电法的优点是测量范围广,灵敏度高,响应快,适用性广泛,但需要光电设备和校准。

4.荧光法:荧光法是近年来发展起来的一种溶解氧测量方法。

该方法使用荧光物质和溶解氧之间的荧光猝灭现象来测定溶解氧的含量。

荧光法的优点是测量范围广,灵敏度高,响应快,可在线连续测量,但需要荧光物质和荧光测量设备。

在实际应用中,选择合适的溶解氧检测方法需考虑多个因素,如测量范围、准确度要求、响应速度、设备可用性、成本等。

此外,还需注意对水样的取样和处理,避免因采样和处理过程中的误差对测量结果产生影响。

总之,溶解氧的检测方法多种多样,每种方法都存在一定的适用范围和优缺点。

在实际应用中,需要根据具体需求选择合适的方法,并进行校准和质控,以确保测量结果的准确性和可靠性。

溶解氧(DO)的测定

溶解氧(DO)的测定

溶解氧(DO)的测定溶解与水中的氧称为“溶解氧”。

水中溶解氧的含量与大气压力,空气中氧的分压及水的温度有关,常温常压下,水中溶解氧一般为8—10mg\L。

水被还原性有机物污染时,污染物氧化需要耗用氧气,溶解氧含量降低,直到逐步耗尽,这时厌氧细菌大量繁殖,有机污染物腐败发臭,使水质严重恶化。

溶解氧对金属的作用,会侵蚀管道容器,但是如果含量低于2mg/L时,则水生动物可能因窒息而死亡。

溶解氧的测定方法有:膜电极法,比色法和碘量法等。

本节介绍的就是国标GB/T7489—1987规定的标准方法——碘量法。

1.基本原理当水样中加入固氧剂(MnSO4和碱性KI)后,溶解氧在碱性环境中迅速氧化Mn(OH)2为亚锰酸Mn(OH)2。

亚锰酸进一步和过量Mn(OH)2反应生成亚锰酸锰MnMnO3。

亚锰酸锰在酸性环境中氧化I-离子,生成一定量I2。

然后用NaS2O3标准溶液滴定生成I2。

反应按下列各式进行:2MnSO4+4Na=2Mn(OH)2↓+2NaSO42Mn(OH)2+O2=2MnO(OH)2↓(棕)MnO(OH)2+Mn(OH)2=MnMnO3+H2OMnMnO3+3H2SO4+2KI=2MnSO4+I2+3H2O+K2SO4I2+2Na2S2O3+2NaI+Na2S4O6由反应式子可以看出,在测定反应中。

1molO2相当于4molNa2S2O3反应。

对于一般天然水,可以直接使用碘量法。

但是,对于被还原性杂质(例如Fe2+,S2-,SO2-3,NO-2,Y有机物等)污染的水,则必须除去还原性杂质后,再用碘量法测定。

测定溶解氧,要特别注意切勿水样过多的接触空气,以防溶解氧损失或增加,导致含量改变。

因此。

最好是使用专用的溶解氧测定瓶(图1-1)另外取样。

如果没有测定瓶,也可以用250ml玻璃塞磨口瓶代替。

2试剂(1)硫酸锰溶液550g硫酸锰(MnSO4.5H2O)溶解后,稀释为1L。

(2)碱性碘化钾溶液500g氢氧化钠溶解于400ml的水中,150g 碘化钾溶解于200ml水中,合并两溶液后稀释1L静置。

废水中溶解氧的测定数据处理

废水中溶解氧的测定数据处理

废水中溶解氧的测定数据处理测定废水中的溶解氧是为了评估水体的水质状况,溶解氧是水体中生物生存所必需的气体之一。

溶解氧的浓度可以反映水体中的氧气供应情况,对于评估废水的处理效果和水体环境质量具有重要意义。

一般来说,测定废水中的溶解氧可以使用溶解氧电极法或氧电极法。

溶解氧电极法是通过测量溶解氧电极在废水中产生的电流来确定溶解氧浓度。

氧电极法则是利用氧电极和参比电极在废水中的电势差来测量溶解氧的浓度。

在进行测定时,需注意以下几个方面:1. 样品的采集:应选择代表性的样品进行测定,避免受到外界因素的干扰。

采样时应避免接触空气,以防止氧气的溶解或逸出。

2. 仪器的校准:在测定之前,需要校准溶解氧电极或氧电极,以确保测量结果的准确性。

3. 测量条件的控制:测定时应控制好温度、pH值等条件,以保证测量的准确性和可重复性。

4. 数据的处理:测量得到的溶解氧浓度需要进行数据处理,可以计算平均值、标准偏差等统计参数,以评估测量结果的可靠性。

对于溶解氧的数据处理,常用的方法包括:1. 数据的平均值计算:将多次测量的结果求平均值,可以减小随机误差的影响。

2. 数据的标准偏差计算:通过计算数据的标准偏差,可以评估测量结果的离散程度,判断数据的可靠性。

3. 数据的比较和分析:可以将不同样品或不同时间点的测量结果进行比较和分析,以评估废水处理的效果或水体环境质量的变化趋势。

需要注意的是,在进行数据处理时,应考虑到测量误差以及数据的可靠性。

同时,还应结合其他水质指标的测量结果进行综合分析,以全面评估水体的水质状况。

废水中溶解氧的测定和数据处理是评估水质状况的重要步骤。

正确选择测定方法、合理控制测量条件,并进行数据处理和分析,可以为废水处理和水体环境保护提供科学依据。

通过合理的数据处理,可以获得准确、可靠的测量结果,为保护水体环境质量提供支持。

溶解氧的测定国标

溶解氧的测定国标

溶解氧的测定国标
溶解氧是水中的一种重要指标,它对水体的生态环境和水生生物的生存繁衍有着重要的影响。

因此,对水中溶解氧的测定是水质监测和水环境保护的重要内容之一。

我国制定了一系列的国家标准,规定了溶解氧的测定方法和标准限值,以保障水质的安全和可持续发展。

国家标准GB/T 5750-2018《水质标准》规定了水中溶解氧的标准限值。

其中,一类水体的溶解氧标准限值为6mg/L,二类水体的溶解氧标准限值为5mg/L,三类水体的溶解氧标准限值为4mg/L。

这些标准限值是根据水体的用途和水生生物的需求而制定的,不同的水体类型有不同的标准限值。

国家标准GB/T 11914-2012《水质-溶解氧的测定》规定了溶解氧的测定方法。

该标准规定了两种测定方法:氧电极法和亚硝酸盐还原法。

其中,氧电极法是目前应用最广泛的测定方法,它的原理是利用氧电极测定水中溶解氧的浓度。

亚硝酸盐还原法则是通过还原亚硝酸盐来消耗水中的溶解氧,从而测定水中溶解氧的浓度。

在实际的水质监测中,溶解氧的测定是非常重要的。

通过对水中溶解氧的测定,可以了解水体的富营养化程度、水生生物的生存状况、水体的污染程度等信息。

同时,也可以为水环境保护和水资源管理提供科学依据。

国家标准GB/T 5750-2018和GB/T 11914-2012为我们提供了溶解氧测定的标准限值和测定方法,为水质监测和水环境保护提供了重要的技术支持。

我们应该认真遵守这些标准,保障水质的安全和可持续发展。

BOD测量方法

BOD测量方法

BOD测量方法一、稀释接种法将水样稀释至肯定浓度后,在20℃恒温条件下培育5天,测定培育前后水中的溶解氧量,然后计算出BOD值(即BOD5)。

该方法是国标方法,也是国际公认的经典分析方法,是一种仲裁方法。

二、有汞压差法在密闭的培育瓶中,水样中的溶解氧被微生物消耗,微生物产因呼吸作用产生与耗氧量相当的CO2,当CO2被汲取剂汲取后,使密闭系统的压力降低,使汞柱显示出压差,依据压差测得的压降,可得到水样的BOD值。

三、无汞压差法BOD快速测定仪模拟了自然界有机物降解过程:测试瓶上方空气中的氧气不断补充水中消耗的溶解氧,有机物降解过程中产生的CO2被密封盖中的氢氧化钠汲取,压力传感器时时监测样品瓶中压力的变化。

生化需氧量BOD(即对应于测试瓶中消耗的氧气量)与气体压力之间建立相关性,通过仪器对这种相关性进行处理,进而在仪器屏幕上直接显示降生化需氧量BOD的值。

四、微生物电极法其原理是以肯定的流量使水样及空气进入流通测量池中与微生物传感器接触,水样中溶解性可生化降解的有机物受菌膜中微生物的作用,使扩散到氧电极表面上氧的质量削减,当水样中可生化降解的有机物向菌膜的扩散速度达到恒定时,扩散到氧电极表面上的氧的质量也达到恒定并产生一恒定电流,由于该电流与水样中可生化降解的有机物的差值与氧的削减量存在定量关系,据此可换算出水样的生化需氧量。

通常采纳BOD5标准样品比对,以换算出水样的BOD5值。

五、活性污泥曝气降解法掌控温度为30℃~35℃,利用活性污泥强制曝气降解样品2h,经重铬酸钾消解生物降解前后的样品,测定生物降解前后的化学需氧量,其差值即为BOD。

依据与标准方法的对比试验结果,可换算为BOD5值。

活性污泥曝气降解法也是一种快速测定BOD5的方法。

应用活性污泥曝气降解法最大的优点在于活性污泥中含适应特定成分废水的微生物,针对某种特定废水的测定具有较高的牢靠性。

对于未阅历证的废水则需同一水样做BOD5和BOD,经统计回归,再进行换算。

水质检测指标国标法综合版

水质检测指标国标法综合版

水质各种项目检测国标方法综合版关键字:水质监测,国标法,汇总1 【pH值】 水质 pH值的测定 玻璃电极法GB/T6920-19862 【溶解氧】 水质 溶解氧的测定 电化学探头法 GB/T11913-1989碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年3 【臭和味】 文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年4 【侵蚀性二氧化碳】 甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年5 【酸度】 酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年6 【碱度(总碱度、重碳酸盐和碳酸盐)】 酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年7 【色 度】 水质 色度的测定GB/T11903-19898 【浊 度】 水质 浊度的测定GB/T13200-19919 【悬浮物(SS)】 水质 悬浮物的测定 重量法GB/T11901-198910【总可滤残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年11【总残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年12【全盐量(溶解性固体)】 水质 全盐量的测定 重量法 HJ/T51-199913【总硬度(钙和镁总量)】 水质 钙和镁总量的测定 EDTA滴定法 GB/T7477-198714【高锰酸盐指数】 水质 高锰酸盐指数的测定 GB/T11892-198915【化学需氧量(COD)】 水质 化学需氧量的测定 重铬酸盐法 GB/T11914—198916【生物需氧量】 水质 生物需氧量的测定 稀释与接种法 GB/T7488—198717【氨 氮】 水质 铵的测定 纳氏试剂比色法 GB/T7479-1987水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年18【硝酸盐氮】 水质 硝酸盐氮的测定 酚二磺酸分光光度法》GB/T7480-1987水质 硝酸盐氮的测定 紫外分光光度法》HJ/T346-200719【亚硝酸盐氮】 《水质 亚硝酸盐氮的测定 分光光度法》GB/T7493-198720【六价铬】 水质 六价铬的测定 二苯碳酸二肼分光光度法 GB/T7467-198721【总氮】 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》 GB/T11894-198922【总磷】 水质 总磷的测定 钼酸铵分光光度法》 GB/T11893-198923【磷酸盐】 钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)24【硝基苯类】 还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)25【苯胺类】 水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T11889-198926【游离氯】 水质游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-198927【总氯】 水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-198928【氟化物】 水质 氟化物的测定 离子选择电极法GB/T7484-198729【氯化物】 水质 氯化物的测定 硝酸银滴定法 GB/T11896-1987930【硫酸盐】 水质 硫酸盐的测定 重量法 GB/T11899-89铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)31【硫化物】 水质 硫化物的测定 亚甲基兰分光光度法 GB/T16489-199632【阴离子表面活性剂】 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-198733【石油类】水质 石油类和动植物油的测定 红外光度法 GB/T 16488-199634【动植物油】水质 石油类和动植物油的测定 红外光度法 GB/T 16488-199635【总铬】 水质 总铬的测定 高锰酸钾氧化-二苯碳酰二肼分光光度法 GB/T7466-1987 火焰原子吸收分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 36【铜】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198737【锌】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198738【铅】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198739【镉】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198740【镍】 水质 镍的测定 火焰原子吸收分光光度法 GB/T 11912-198941【钾】 水质 钾、钠的测定 火焰原子吸收分光光度法 GB/T 11904-198942【钠】 水质 钾、钠的测定 火焰原子吸收分光光度法 GB/T 11904-198943【钙】 水质 钙、镁的测定 原子吸收分光光度法 GB/T 11905-198944【镁】 水质 钙、镁的测定 原子吸收分光光度法 GB/T 11905-198945【铁】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198946【锰】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198947【溶解性铁】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198948【银】 水质 银的测定 火焰原子吸收分光光度法 GB/T 11907-198949【甲 醛】 水质 甲醛的测定 乙酰丙酮分光光度法GB/T13197-1991。

DO测定(碘量法)

DO测定(碘量法)

碘量法测定‎溶解氧碘量法(国标GB/T 7489-87)测定水中溶‎解氧(DO)一、原理水样中加入‎硫酸锰和碱‎性碘化钾,水中溶解氧‎将低价锰氧‎化成高价锰‎,生成四价锰‎的氢氧化物‎棕色沉淀。

加酸后,氢氧化物沉‎淀溶解,并与碘离子‎反应而释放‎出游离碘。

以淀粉为指‎示剂,用硫代硫酸‎钠标准溶液‎滴定释放出‎的碘,据滴定溶液‎消耗量计算‎溶解氧含量‎。

二、实验用品1、仪器:溶解氧瓶(250ml‎)、锥形瓶(250ml‎)、酸式滴定管‎(25ml)、移液管(50ml)、吸耳球、1000m‎l容量瓶、100ml‎容量瓶、棕色容量瓶‎、电子天平2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠‎三、试剂的配置‎1、硫酸锰溶液‎:称取48g‎分析纯硫酸‎锰(MnSO4‎•H2O)溶于蒸馏水‎,过滤后用水‎稀释至10‎0mL于透‎明玻璃瓶中‎保存。

此溶液加至‎酸化过的碘‎化钾溶液中‎,遇淀粉不得‎产生蓝色。

2、碱性碘化钾‎溶液:称取50g‎分析纯氢氧‎化钠溶解于‎30—40mL蒸‎馏水中;另称取15‎g碘化钾溶‎于20mL‎蒸馏水中;待氢氧化钠‎溶液冷却后‎,将上述两溶‎液合并,混匀,加蒸馏水稀‎释至100‎m L。

如有沉淀(如氢氧化钠‎溶液表面吸‎收二氧化碳‎生成碳酸钠‎),则放置过夜‎后,倾出上层清‎液,贮于棕色瓶‎中,用橡皮塞塞‎紧,避光保存。

此溶液酸化‎后,遇淀粉应不‎呈蓝色。

3、1+5硫酸溶液‎。

4、1%(m/V)淀粉溶液:称取1g可‎溶性淀粉,用少量水调‎成糊状,再用刚煮沸‎的水稀释至‎100mL‎。

现用现配,或者冷却后‎加入0.1g水杨酸‎或0.4g氯化锌‎防腐。

5、0.0250m‎o l/L(1/6K2Cr‎2O7)重铬酸钾标‎准溶液:称取于10‎5—110℃烘干2h,并冷却的分‎析纯重铬酸‎钾1.2258g‎,溶于水,移入100‎0mL容量‎瓶中,用水稀释至‎标线,摇匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ñ1.84g/mL)在不停搅动下加入到500mL 水注若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) 2mol/L3.3 碱性碘化物叠氮化物试剂注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中将上述二种溶液混合并稀释至100mL溶液贮存在塞紧的细口棕色瓶子里经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L3.6.1 配制将2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000mL溶液贮存于深色玻璃瓶中3.6.2 标定在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色硫代硫酸钠浓度(c mmol/L)由式(1)求出= 6´20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼1Vc式中V 硫代硫酸钠溶液滴定量mL每日标定一次溶液3.7 淀粉新配制10g/L 溶液注也可用其他适合的指示剂3.8 酚酞1g/L 乙醇溶液3.9 碘约0.005mol/L 溶液溶解4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL3.10 碘化钾或碘化钠4 仪器除常用试验室设备外还有4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体积5 操作步骤5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测定或最好采用电化学探头法测定溶解氧5.2 检验氧化或还原物质是否存在如果预计氧化或还原剂可能干扰结果时取50mL 待测水加2 滴酚酞溶液(3.8)后中和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液(3.7)如果溶液呈蓝色则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶液的加入量有氧化物质存在时按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没有氧化或还原物时按照5.3 5.4 5.5 中规定处理5.3 样品的采集除非还要作其他处理样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部细口瓶注在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).5.3.1 取地表水样充满细口瓶至溢流小心避免溶解氧浓度的改变对浅水用电化学探头法更好些在消除附着在玻璃瓶上的气泡之后立即固定溶解氧(见5.4)5.3. 2 从配水系统管路中取水样将一惰性材料管的入口与管道连接将管子出口插入细口瓶的底部(4.1)用溢流冲洗的方式充入大约10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶上的空气泡之后立即固定溶解氧(见5.4)5.3.3 不同深度取水样用一种特别的取样器内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部(4.1)当溶液充满细口瓶时将瓶中空气排出避免溢流某些类型的取样器可以同时充满几个细口瓶5.4 溶解氧的固定取样之后最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡带入若用其他装置必须小心保证样品氧含量不变将细口瓶上下颠倒转动几次使瓶内的成分充分混合静置沉淀最少5min 然后再重新颠倒混合保证混合均匀这时可以将细口瓶运送至实验室若避光保存样品最长贮藏24h5.5 游离碘确保所形成的沉淀物已沉降在细口瓶下三分之一部分慢速加入1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布注若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底部沉淀物5.6 滴定将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴定终点时加淀粉溶液(3.7)或者加其他合适的指示剂6 结果计算溶解氧含量c1(mg/L)由式(2)求出:C1=Mr*V2*C*f1/(4V1)式中Mr——氧的分子量Mr=32V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0c ——硫代硫酸钠溶液(3.6)的实际浓度mol/L f1=V0/(V0-V')式中V0——细口瓶(4.1)的体积mLV' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。

7 精密度分别在四个实验室内自由度为10 对空气饱合的水(范围在8.5~9mg/L)进行了重复测定得到溶解氧的批内标准差在0.03~0.05mg/L 之间8 特殊情况8.1 存在氧化性物质8.1.1 原理通过滴定第二个试验样品来测定除溶解氧以外的氧化性物质的含量以修正第6 条中得到的结果8.1.2 步骤8.1.2.1 按照5.3 中规定取二个试验样品8.1.2.2 按照5.4 5.5 5.6 中规定的步骤测定第一个试样中的溶解氧。

8.1.2.3 将第二个试样定量转移至大小适宜的锥形瓶内加1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 然后再加2mL 碱性试剂(3.3)和1mL 二价硫酸锰溶液(3.4) 放置5min用硫代硫酸钠(3.6)滴定在滴定快到终点时加淀粉(3.7)或其他合适的指示剂8.1.3 结果计算溶解氧含量c2(mg/L)由式(4)给出:C2=MrV2*C*f/(4v1)-MrV4C/(4V3)式中Mr V1 V2 c 和f1 与第6 条中含义相同V3 ——盛第二个试样的细口瓶体积mLV4 ——滴定第二个试样用去的硫代硫酸钠的溶液(3.6)的体积mL8.2 存在还原性物质8.2.1 原理加入过量次氯酸钠溶液氧化第一和第二个试样中的还原性物质测定一个试样中的溶解氧含量测定另一个试样中过剩的次氯酸钠量8.2.2 试剂在第三条中规定的试剂和8.2.2.1 次氯酸钠溶液约含游离氯4g/L 用稀释市售浓次氯酸钠溶液的办法制备用碘量法测定溶液的浓度8.2.3 操作步骤8.2.3.1 按照5.3 中规定取二个试样8.2.3.2 向这二个试样中各加入1.00mL(若需要可加入更多的准确体积)的次氯酸钠溶液(8.2.2.1)(见5.2 注) 盖好细口瓶盖混合均匀一个试样按5.4 5.5 和5.6 中的规定进行处理另一个按照8.1.2.3 的规定进行8.2.4 结果计算溶解氧的含量c3(mg/L)由式(5)给出C3=Mr*V2*C*f2/(4*V1)-Mr*V4*C/[4(V3-V5)]式中Mr V1 V2 和c 与第6 条含义相同V3 和V4 与8.1.3 含义相同V5 加入到试样中次氯酸钠溶液的体积mL(通常V5 1.00mL);f2=V0/(V0-V5-V')式中V'与第6 条含义相同V0 ——盛第一个试验样品的细口瓶的体积mL 9 试验报告试验报告包括下列内容a. 参考了本国家标准b. 对样品的精确鉴别c. 结果和所用的表示方法d. 环境温度和大气压力e. 测定期间注意到的特殊细节f. 本方法没有规定的或考虑可任选的操作细节。

(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

相关文档
最新文档