离散数学数理逻辑部分考试试
离散数学试题及答案
离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
数理逻辑考试题及答案
“离散数学”数理逻辑部分考核试题答案--------------------------- ★-----------------------------一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。
共2分)(0)小刘既不怕吃苦,又爱钻研。
解:—p ∧q ,其中,P :小刘怕吃苦;q :小刘爱钻研。
(1)只有不怕敌人,才能战胜敌人。
解:q→-p ,其中,P :怕敌人;q :战胜敌人。
(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。
解:—r→(P→P),其中,P:别人有困难;q :老张帮助别人;r:困难解决了。
(3)小王与小张是亲戚。
解:p,其中,P:小王与小张是亲戚。
2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。
共1分)(0)A :(-(p^q)_;((P -q)(.p^q))) r(1)B : (P 一9一;P))(r q)(2)C: (P -r)>(q r)(3)E : p-;(P q r)(4)F :—(q-;r) r------------------------------------------------------------------------ 解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。
3、判断推理是否正确(总共2题,完成的题号为学号尾数取.2的余,完成1题。
共2分)(0)设y=2∣x∣,X为实数。
推理如下:如y在x=0处可导,则y在x=0处连续。
发现y在x=0处连续,所以,y在x=0处可导。
解:设y=2|x|,X为实数。
令P: y在x=0处可导,q:y在x=0处连续。
由此,P为假,q为真。
本题推理符号化为:(p—;q) q—;P。
由P、q的真值,计算推理公式真值为假,由此,本题推理不正确。
(1)若2和3都是素数,则6是奇数。
2是素数,3也是素数。
《离散数学》考试试卷(试卷库20卷)及答案
《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
数理逻辑考试题及答案
“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。
共2分)(0)小刘既不怕吃苦,又爱钻研.解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研.(1)只有不怕敌人,才能战胜敌人.解:q→⌝p,其中,P:怕敌人;q:战胜敌人。
(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。
解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了.(3)小王与小张是亲戚。
解:p,其中,P:小王与小张是亲戚。
2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题.共1分)(0)A:(⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r)→(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。
3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。
共2分)(0)设y=2|x|,x为实数。
推理如下:如y在x=0处可导,则y在x=0处连续。
发现y在x=0处连续,所以,y在x=0处可导。
解:设y=2|x|,x为实数.令P:y在x=0处可导,q:y在x=0处连续。
由此,p为假,q为真。
本题推理符号化为:(p→q)∧q→p。
由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。
(1)若2和3都是素数,则6是奇数。
2是素数,3也是素数.所以,5或6是奇数。
解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。
由此,p=1,q=1,r=1,s=0.本题推理符号化为:((p ∧ q) →s)∧p ∧q) →(r ∨ s)。
计算推理公式真值为真,由此,本题推理正确.二、命题逻辑等值演算(5分)1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。
《离散数学》复习题及答案
页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学 练习-第1部分 数理逻辑(解答)
5、下列命题公式为重言式的是( D ),为矛盾式的是( C )
A、(P→Q)⋀Q⋀R
B、(P→P)→Q
C、(Q⋁R)⋀R
D、((P→Q)⋀(Q→R))→(P→R)
6、命题公式 (P→Q) 的主合取范式中含有( D )个极大项, 主析取范式中含有( B )个极小项 A、0 B、1 C、2 D、3
7、下列式子不正确的是( D ) A、∃xA(x) ⇔ ∀xA(x) B、∃x(A→B(x)) ⇔ A→∃xB(x) C、∀xA(x) ⇔ ∃xA(x) D、∀x(A(x)→B) ⇔ ∀xA(x)→B
以下方案任选一:①A不去,B不去,C去;②A不去,B去,C不去; ③A去,B不去,C去
9、证明下列谓词公式为永真式
(xF( x) yG( y)) (yG( y) xF( x))
证明:题中的谓词公式为 (P Q) (Q P) 的代换实例
(P Q) (Q P) (P Q) (Q P) (P Q) (P Q) 1 (A A 1)
(P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) m001 m000 m011 m111 m0 m1 m3 m(7 主析取范式) M2 M4 M5 M(6 主合取范式) (P Q R) (P Q R) (P Q R) (P Q R)
命题“并不是所有汽车都比火车跑得慢”可符号化为( C )
命题“说汽车都比火车快是不对的”可符号化为( C ) A、∃x(F(x)∧∀y(G(y)→H(x,y))) B、∃x∃y(F(x)∧G(y)→H(x,y)) C、∀x∀y(F(x)∧G(y)→H(x,y)) D、∀x(F(x)∧∃y(G(y)→H(x,y)))
离散期末考试题及答案
离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
离散数学考试题及答案
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
《离散数学》题库及答案
《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
数理逻辑习题离散数学
第1章 命题逻辑一、单项选择题1. 下列命题公式等值的是( ) BB A A Q P Q Q P Q B A A B A A QP Q P ),()D (),()C ()(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝2. 设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (3. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式(B) 仅可满足式 (C) 重言式 (D) 合取范式4 命题公式)(Q P →⌝的主析取范式是( ). (A) Q P ⌝∧ (B) Q P ∧⌝ (C) Q P ∨⌝ (D) Q P ⌝∨ 5. 前提条件P Q P ,⌝→的有效结论是( ). (A) P(B)P(C) Q(D)Q6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )Q P Q P Q P PQ ⌝∨⌝↔→→)D ()C ()B ()A (二、填空题1. 设命题公式G :P⌝(Q P ),则使公式G 为假的真值指派是2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P ,Q ,R 的命题公式P Q 的主析取范式是4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨⌝↔→∧的真值是5. 命题公式P⌝P Q 的类型是 .6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么B A ↔是式(重言式、矛盾式或可满足式)三、解答化简计算题1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.3. 试作以下二题:(1) 求命题公式(PQ )(P Q )的成真赋值.(2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式))()(()(Q R Q P R P →⌝∨→⌝∧↔的真值.4. 化简下式命题公式))()((P Q P Q P ∧⌝∧⌝∨∧5. 求命题公式))()((Q P P Q P ∧⌝∧→→的主合取范式.6. 求命题公式)()(Q P Q P ⌝→∧→⌝的主析取范式,并求该命题公式的成假赋值.7. 求命题公式)()(Q P Q P ⌝∨⌝∧∧的真值表. 四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P Q R )(P QR )4. 05. 非永真式的可满足式6. 重言 三、1. (1) 是命题,真值为1.(2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题.1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式))(()(P Q P Q P ∨∧→→的真值表 P Q P Q Q P ∧P Q P ∨∧)())(()(P Q P Q P ∨∧→→0 0 1 0 0 0 0 1 1 0 0 0 1111 1 1 1 1 1 原式为可满足式.3. (1) (P Q )(P Q )(P Q )(P Q )(P P )Q Q可见(PQ )(P Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔0))10()01(()10(⇔→∨→∧↔⇔4.))()((P Q P Q P ∧⌝∧⌝∨∧P Q P Q P ∧⌝∧⌝∨∧⇔)()()()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔0)(∨∧⇔Q PQ P ∧⇔5. ))()((Q P P Q P ∧⌝∧→→ ))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔ )00(∧∨⌝⇔P )(Q Q P ⌝∧∨⌝⇔)()(Q P Q P ⌝∨⌝∧∨⌝⇔6. )()()()(Q P Q P Q P Q P ⌝∨⌝∧⌝∧⇔⌝→∧→⌝ Q P ⌝∧⇔因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)7. 作真值表PQ P QPQPQ (P Q )(PQ ) 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 111四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()( ①Q R P②R P③Q T ①,②析取三段论 ④P Q P ⑤P ⌝ T ③,④拒取式 ⑥PS P⑦S ⑤,⑥析取三段论 2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((.前提:Q P R S Q P ,)),((→→→ 结论:S R → 证明:① R附加前提② RP前提引入 ③ P①,②假言推理④P (Q S ) 前提引入 ⑤ Q S ③,④假言推理 ⑥ Q 前提引入⑦ S⑤,⑥假言推理3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 证明.方法1.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝⇔∨∧⌝⇔Q R P )(Q R P →∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同. 3 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.方法2.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝R Q P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔ R Q P Q R P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑一、 单项选择题1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词x 的辖域是( ) (A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q2. 谓词公式∃xA (x )∧∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型 3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀ (C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀5. 设个体域是整数集合,P 代表x y ((x y )(x y 0)),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是逻辑公式,但不是命题 (C) P 是假命题 (D) P 不是逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )R (x ,y ) (D) P (x ,y )Q (z )二、 填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .2. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)A (2)(B (1)B (2)) 2. (G (a )(H (a ,a )H (a ,b ))) (G (b )(H (b ,a )H (b ,b )))3. ))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀。
离散数学-数理逻辑测验试题
数理逻辑测验一.将下列命题符号化(有量词的用谓词符号,没有的用命题符号)1. 没有不犯错误的人。
2. 金子是闪光的,但闪光的不一定是金子。
3.每个人或者喜欢乘汽车,或者喜欢骑自行车。
4.我虽然生病但我仍然去学校。
5.仅当你走,我将留下。
二.令),,(z y x S 表示“x+y=z”,),(y x G 表示“x=y”,),(y x L 表示”x<y”, 其中个体域为自然数集,用以上符号表示命题:(1) 并非对一切x ,都存在y ,使得y x ≤。
(2) (2)对任意的x ,若x+y=x ,当且仅当y=0。
三.简答题1. 写出R Q P →→)(的析取范式,合取范式。
2. 设P :今天下雨。
Q :我去上街。
R :我有空。
用自然语言表达以下命题:)(P R Q ⌝∧↔,)(Q R ∨⌝。
3. 设Q P ,的真值为0,S R ,的真值为1,求以下命题的真值:(1))()(S R Q P∨⌝∧↔,(2))()))(((S R P R QP ⌝∨→⌝∧→∨⌝。
4.n 个原子命题变元12,,,n P P P L 可构成多少个互不等值的命题公式?5. 写出谓词公式 )),()()()(()),()()((z y Q z y P y y x Q x P x ∃∧∃→→∀的前束范式。
四.证明题1.)()(R P Q R Q P→→⇔→→。
2.Q P Q Q P∨⇒→→)(。
3.)()())()((y yQ x xP y Q x P y x ∀→∃⇔→∀∀。
五.计算题a) 求公式)()(Q P Q P ⌝↔→⌝∨⌝的主析取范式,主合取范式。
b) 设12:>P ;3:)(≤x x Q ;6:)(≥x x R ;5=a 。
而且论域为{-2,3,6},求)())()((a R x Q Px ∨→∀的值。
六.用形式推理证明 (1)S Q P S R Q R Q P →⇒→→∨⌝∨⌝),(),((2)(()(()())),()(()())x P x Q x R x xP x x P x R x ∀→∧∃⇒∃∧七.符号化下列命题,并用推理理论证明其结论是否有效。
离散数学数理逻辑期末练习题
数理逻辑1、下列解释中只有_______使公式(p q)r ↔→成假。
(A ) (p ,q ,r )=(0,0,0) (B ) (p ,q ,r )=(1,0,1) (C ) (p ,q ,r )=(0,1,0)(D ) (p ,q ,r )=(0,0,1)2、下列解释中只有_______使公式p q r ↔∨成真。
(A) (p ,q ,r )=(0,0,0) (B) (p ,q ,r )=(0,1,0) (C) (p ,q ,r )=(1,0,0)(D) (p ,q ,r )=(0,1,1)3、下列解释中只有_______使公式r q p ∨→成假。
(A ) (p ,q ,r )=(1,0,0) (B ) (p ,q ,r )=(0,1,0) (C ) (p ,q ,r )=(1,1,0)(D ) p ,q ,r )=(0,0,0)4、下列公式是重言式的是( )。
()()A. P Q P Q ⌝∧→∨ ()P P Q →∧B.()P Q Q ⌝→∧C.()P P Q →∨D.5、 下列公式是重言式的是( )。
()()A. P Q P Q ⌝∧→∨()()()()P Q P Q Q P ↔↔→∧→B. ()P Q Q ⌝→∧C.()P P Q ⌝→∨D.6、下列解释中只有_______使公式r q p ∧→成假。
(A) (p ,q ,r )=(0,0,0) (B) (p ,q ,r )=(0,1,0) (C) (p ,q ,r )=(1,1,0)(D) (p ,q ,r )=(1,1,1)7、下列解释中只有_______使公式r q p →∨成假。
(A ) (p ,q ,r )=(0,0,0)(B ) (p ,q ,r )=(0,1,1) (C ) (p ,q ,r )=(1,0,0)(D ) (p ,q ,r )=(1,1,1)8、下列解释中只有_______使公式r q p →→)(成真。
[试题]离散数学复习题(请参考课件)
离散数学Part1_数理逻辑部分1.将下列命题符号化。
P48(1)豆沙包是由面粉和红小豆做成的.(2)苹果树和梨树都是落叶乔木.(3)王小红或李大明是物理组成员.(4)王小红或李大明中的一人是物理组成员.(5)由于交通阻塞,他迟到了.(6)如果交通不阻塞,他就不会迟到.(7)他没迟到,所以交通没阻塞.(8)除非交通阻塞,否则他不会迟到.(9)他迟到当且仅当交通阻塞.分清复合命题与简单命题分清相容或与排斥或分清必要与充分条件及必要充分条件答案:(1)是简单命题(2)是合取式(3)是析取式(相容或)(4)是析取式(排斥或)请分别写出(1)—(4)的符号化形式设p: 交通阻塞,q: 他迟到(5)p→q, (6)⌝p→⌝q或q→p(7)⌝q→⌝p或p→q, (8)q→p或⌝p→⌝q(9)p↔q或⌝p↔⌝q可见(5)与(7),(6)与(8)相同(等值)3.用真值表判断下面公式的类型P51(1)p r (q p)(2)((p q) ( q p)) r(3)(p q) (p r)按层次写真值表,由最后一列判类型答案:(1)为矛盾式,(2)为重言式,(3)为可满足式例用等值演算法判断下列公式的类型P59(1)q (p q)(2)(p q) ( q p)(3)((p q) (p q)) r)解(1)q (p q)q ( p q) (蕴涵等值式)q (p q) (德摩根律)p (q q) (交换律,结合律)p 0 (矛盾律)0 (零律)由最后一步可知,(1)为矛盾式.(2)(p q) ( q p)( p q) (q p) (蕴涵等值式)( p q) ( p q) (交换律)1由最后一步可知,(2)为重言式.问:最后一步为什么等值于1?说明:(2)的演算步骤可长可短,以上演算最省.(3)((p q) (p q)) r)(p (q q)) r(分配律)p 1 r(排中律)p r(同一律)由最后一步可知,(3)不是矛盾式,也不是重言式,它是可满足式,其实101, 111是成真赋值,000, 010等是成假赋值.总结:从此例可看出A为矛盾式当且仅当A 0A为重言式当且仅当A 1例求公式A=(p q) r的主析取范式与主合取范式. P71(1)求主析取范式(p q) r(p q) r(析取范式)①(p q)(p q) ( r r)(p q r) (p q r)m6 m7②r( p p) ( q q) r( p q r) ( p q r) (p q r) (p q r)m1 m3 m5 m7 ③②, ③代入①并排序,得(p q) r m1 m3 m5 m6 m7 (主析取范式)(2)求A的主合取范式(p q) r(p r) (q r) (合取范式)①p rp (q q) r(p q r) (p q r)M0 M2 ②q r(p p) q r(p q r) ( p q r)M0 M4 ③②, ③代入①并排序,得(p q) r M0 M2 M4 (主合取范式1.设A与B均为含n个命题变项的公式,判断下列命题是否为真?P85(1)A B当且仅当A与B有相同的主析取范式(2)若A为重言式,则A的主合取范式为0(3)若A为矛盾式,则A的主析取范式为1(4)任何公式都能等值地化成{ , }中的公式(5)任何公式都能等值地化成{ , , }中的公式(1)为真,这是显然的(2)为假. 注意, 任何公式与它的主范式是等值的,显然重言式不能与0等值。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学考试试题及答案
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
离散数学(1-4章)自测题(答案)
《离散数学》题库答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q5.答:(1)6.答:2不是偶数且-3不是负数。
7.答:(2)8.答:⌝P ,Q→P9.答:P(x)∨∃yR(y)10.答:⌝∀x(R(x)→Q(x))11、a、(P→Q)∧R解:(P→Q)∧R⇔(⌝P∨Q )∧R⇔(⌝P∧R)∨(Q∧R) (析取范式)⇔(⌝P∧(Q∨⌝Q)∧R)∨((⌝P∨P)∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧R)∨(P∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(P∧Q∧R)⇔m3∨ m1∨m7 (主析取范式)⇔m1∨ m3∨m7⇔M0∧M2∧M4∧M5∧M6 (主合取范式)b、Q→(P∨⌝R)解:Q→(P∨⌝R)⇔⌝Q∨P∨⌝R⇔M5(主合取范式)⇔ m0∨ m1∨ m2∨m3∨ m4∨m6 ∨m7 (主析取范式)c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式)12、a、P→Q,⌝Q∨R,⌝R,⌝S∨P=>⌝S证明:(1) ⌝R 前提(2) ⌝Q∨R 前提(3)⌝Q (1),(2)析取三段论(4) P→Q 前提(5)⌝P (3),(4)拒取式(6)⌝S∨P 前提(7) ⌝S (5),(6)析取三段论b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理c、A,A→B, A→C, B→(D→⌝C) => ⌝D证明:(1) A 前提(2) A→B 前提(3) B (1),(2) 假言推理(4) A→C 前提(5) C (1),(4) 假言推理(6) B→(D→⌝C) 前提(7) D→⌝C (3),(6) 假言推理(8)⌝D (5),(7) 拒取式d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确13.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学形成性考核作业(四)数理逻辑部分本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第四次作业,大家要认真及时地完成数理逻辑部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
第6章命题逻辑1.判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题.(1)8能被4整除.(2)今天温度高吗?(3)今天天气真好呀!(4)6是整数当且仅当四边形有4条边.(5)地球是行星.(6)小王是学生,但小李是工人.(7)除非下雨,否则他不会去.(8)如果他不来,那么会议就不能准时开始.解:此题即是教材P.184习题6(A)1(1)、(4)、(5)、(6)、(7)、(8)是命题,(2)、(3)不是命题。
其中(1)、(5)是简单命题,(4)、(6)、(7)、(8)是复合命题。
2.翻译成命题公式(1)他不会做此事.(2)他去旅游,仅当他有时间.(3)小王或小李都会解这个题.(4)如果你来,他就不回去.(5)没有人去看展览.(6)他们都是学生.(7)他没有去看电影,而是去观看了体育比赛.(8)如果下雨,那么他就会带伞.解:此题即是教材P.184习题6(A)2会带伞。
:如果下雨,那么他就:他会带伞。
:天下雨。
)(。
是去观看了体育比赛。
:他没有去看电影,而。
:他去观看了体育比赛:他去看电影。
)(:他们都是学生。
)(:没有人去看展览。
:有人去看展览。
)(去。
:如果你来,他就不回:他回去。
:你来。
)(道题。
:小王或小李都会解这:小李会解这道题。
:小王会解这道题。
)(时间。
:他去旅游,仅当他有:他有时间。
:他去游泳。
)(:他不会做此事。
:他会做此事。
)(Q P Q P Q P Q P P P P Q P Q P Q P Q P Q P Q P P P →∧⌝⌝⌝→∧→⌝876543213.设P ,Q 的真值为1;R ,S 的真值为0,求命题公式(P ∨Q )∧R ∨S ∧Q 的真值. 解:此题即是教材P.184习题6(A )4(2)(P ∨Q )真值为1,(P ∨Q )∧R 真值为0,S ∧Q 真值为0, 从而(P ∨Q )∧R ∨S ∧Q 真值为0。
4.试证明如下逻辑公式(1) ┐(A ∧┐B )∧(┐B ∨C )∧┐C ⇒ ┐(A ∨C ) (2) (P →Q )∧(Q →R )∧┐R ⇒⌝P(此题即是教材P.185习题6(A )5(1)、(4)))7()()8()6)(5()7()4)(2()6()4)(3()5()4()3()1()2()()1()(),(),(由由由由由证明:结论:前提:T B A T B A T A T B PC P C B T B A P B A B A CC B B A ∨⌝⌝∧⌝⌝⌝⌝∨⌝∨⌝⌝∧⌝∨⌝⌝∨⌝⌝∧⌝)4)(3()5()4()2)(1()3()2()1(),(),(由由证明:结论:前提:T PP R T R P PR Q P Q P P RR Q Q P ⌝⌝→→→⌝⌝→→5.试求下列命题公式的主析取范式,主合取范式. (1) (P ∨(Q ∧R ))→(P ∧Q ) (2) ┐(P →Q )∧Q(此题即是教材P.185习题6(A )6(2)、(4))))()()())()()())()()(()()()()()()()()()()()()()()())(())(())(()())()()())()())()())(()())((1R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P AA R Q P R Q P R Q P A A R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R R Q P Q Q R P R R Q P Q P R P Q P Q P R Q P Q P R Q P Q P R Q P Q P R Q P ∨∨⌝∧⌝∨∨⌝∧⌝∨⌝∨⇔⌝∧⌝∧⌝∧∧⌝∧⌝∧∧∧⌝⌝⇔⌝∧⌝∧∨∧⌝∧∨∧∧⌝⌝⇔⌝⌝⇔⌝∧⌝∧∨∧⌝∧∨∧∧⌝⇔⌝⌝∧∧∨∧∧∨⌝∧∧⌝∨⌝∧⌝∧⌝∨∧⌝∧⌝⇔⌝∧∧∨∧∧∨⌝∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝∨∧⌝∧⌝⇔⌝∨∧∧∨⌝∨∧⌝∧⌝∨⌝∨∧⌝∧⌝⇔∧∨⌝∧⌝∨⌝∧⌝⇔∧∨⌝∨⌝∧⌝⇔∧∨∧⌝∧⌝⇔∧∨∧∨⌝⇔∧→∧∨)式为再求主合取范式(令公补齐法已成为析取范式已成为限定性公式)先求主析取范式解:()()()()()()()()(2Q P Q P Q P Q P QQ P FF P Q Q P Q Q P Q Q P QQ P ⌝∨⌝∧∨⌝∧⌝∨∧∨⇔∧→⌝⇔∧⇔∧⌝∧⇔∧⌝∧⇔∧∨⌝⌝⇔∧→⌝公式的主合取范式为式。
为永假式,无主析取范已成为限定性公式)先求主析取范式解:(6.利用求公式的范式的方法,判断下列公式是否永真或永假. (2)(P ∨Q )→R(此题即是教材P.186习题6(A )7(2))假式,是可满足式。
不是永真式,也不是永所以;为时,取,取,取当;为时,取,取,取:事实上,当注意假式,是可满足式。
不是永真式,也不是永所以解:R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P R Q P Q Q R P Q Q R P R Q P R Q P R P R P R Q P R Q P R P R P R R Q P R P P Q P RQ P RQ P →∨→∨→∨→∨∧⌝∧⌝∨∧∧⌝∨∧⌝∧∨∧∧∨⌝∧⌝∧⌝∨∧⌝∧⌝⇔⌝∨∧∧⌝∨⌝∨∧∧∨⌝∧⌝∧⌝∨∧⌝∧⌝⇔∧⌝∨∧∨⌝∧⌝∧⌝∨∧⌝∧⌝⇔∧⌝∨∧∨⌝∨∧⌝∧⌝⇔∧⌝∨∨⌝∧⌝⇔∨∨⌝⇔→∨)(0)(0111)(111][)(,)()()()()()())(())(()()()()()()()()())(())(()()()(7.试证明C ∨D ,( C ∨D )→┐H ,┐H →(A ∧┐B ),(A ∧┐B )→(R ∨S )}蕴含R ∨S . (此题即是教材P.186习题6(A )8)))(由()()())(由()()())(由()()()证明:(结论:,前提:657643)()(5)()(421)()(3)(2)(1)()(),(,)(T SR PD C T S R D C PS R B A T B A D C PB A H P H DC SR S R B A B A H H D C D C ∨∨∨→∨∨→⌝∧⌝∧→∨⌝∧→⌝⌝→∨∨∨→⌝∧⌝∧→⌝⌝→∨∨8.设P :昨天天晴,Q :前天下雨,则命题“昨天天晴,但前天下雨”可符号化为( A ). A .P ∧Q B .P →Q C .P ∨Q D .Q → P(此题即是教材P.186习题6(B )1)9.可以确定下述推理的步骤( D )是正确的. A .(1) ┐P ∧QP (2) P T (1)IB .(1) P →QP (2) QT (1)IC .(1) P ∨QP (2) PT (1)ID .(1) P ∧QP (2) PT (1)I(此题即是教材P.186习题6(B )3)第7章 谓词逻辑1.将下列命题翻译成谓词公式(1) 有人能做这件事,但不是所有人都能做。
(2) 每个人都不会来。
(3) 没有人能做这件事。
(4) 所有的整数都是实数。
(5) 有些人能去,但不是所有人都能去。
(6) 如果每人都这样做,那么就没有什么事做不了。
(7) 没有什么非做不可的事。
(8) 不是每个人都愿意做这件事。
(9) 所有人都需要不断地努力学习,争取进步。
(10) 如果x 大于y ,那么x +4大于y +1。
(此题即是教材P.208习题7(A )1)概念。
:本题用到了二元谓词注意于是,命题符号化为。
大于:,)(于是,命题符号化为争取进步。
:需要不断地努力学习。
:是人。
:)(于是,命题符号化为愿意做这件事。
:是人。
:)(于是,命题符号化为必须做。
:是事。
:)(于是,命题符号化为能被做。
:是一件事。
:这样做事,:是人。
:)(于是,命题符号化为能去。
:是人。
:)(于是,命题符号化为是实数。
:是整数。
:)(于是,命题符号化为能做这件事。
:是人。
:)(于是,命题符号化为会来。
:是人。
:)(于是,命题符号化为能做这件事。
:是人。
:)解:(][))1,4(),()()(()(10))()()()(()()()(9))()()(())()()(()()(8))()()(())()()(()()(7))()()(())()()(())()()(())()()(()()()()(6))()()(())()()(())()()(())()()(()()(5))()()(()()(4))()()(())()()(()()(3))()()(())()()(()()(2))()()(())()()(())()()(())()()(()()(1++→∃∃∧→∀⌝∧∃⇔→∀⌝⌝→∀⇔∧∃⌝→∀→→∀⇔⌝∧∃⌝→→∀⌝∧∃∧∧∃⇔→∀⌝∧∧∃→∀⌝→∀⇔∧∃⌝∧∃⌝⇔⌝→∀⌝∧∃∧∧∃⇔→∀⌝∧∧∃y x A y x A y x y x y x A x C x B x A x x x C x x B x x A x B x A x x B x A x x x B x x A x B x A x x B x A x x x B x x A x D x C x x B x A x x D x C x x B x A x y y D y y C x x B x x A x B x A x x B x A x x B x A x x B x A x x x B x x A x B x A x x x B x x A x B x A x x B x A x x x B x x A x B x A x x B x A x x x B x x A x B x A x x B x A x x B x A x x B x A x x x B x x A2.设谓词A (x ):x 是偶数,B (x ):x 是奇数,x 的取值为1至10之间的正整数,试求出下列谓词公式的值.(1)(∃x )A (x )∧(∃x )B (x ). (2)⌝(∃x )(A (x )→B (x )).(此题即是教材P.208习题7(A )5(2)、(3))。
真值为。
从而真值为,真值为,为时,为,例如,取真值为因为。
真值为)(。
真值为,从而真值为,真值为因为。
真值为解:F x B x A x T x B x A T x B F x A x T x B x A x F x B x A x T x B x x A x T x B x T x A x T x B x x A x ))()()(())()(()()(3))()()(())()()((2)()()()()()()()()()()())(1(→∃⌝→→∃→∃⌝∃∧∃∃∃∃∧∃3.试证明下列公式 (1)(∀ x ) A (x )⇒(∃x )A (x ). (2)(∃x )(P (x )∧R (x ))⇒ (∃x )P (x )∧(∃x )R (x ). (3)⌝(∃x )A (x )∨B ⇒(∀x )(A (x )→B ). (此题即是教材P.209习题7(A )9(1)、(3)、(5)))3()()()4()1()()3()1()()2()()()1()()()()(由由由证明:结论:前提:EG x A x T b A US a A P x A x x A x x A x ∃∀∃∀)6)(5()()()()()2()4()()()6()3()()()5()2()()4()2()()3()1()()()2())()()(()1()()()()())()()((由由由由由由证明:结论:前提:T x R x x P x EG x R x EG x P x T c R T c P ES c R c P P x R x P x x R x x P x x R x P x ∃∧∃∃∃∧∧∃∃∧∃∧∃)3())()(()4()2())()(()3()1()()()2()()()1())()(()()(由由由证明:结论:前提:T B x A x T B x A x T B x A x P B x A x B x A x B x A x →∀∨⌝∀∨⌝∀∨∃⌝→∀∨∃⌝4.试证明(∀x )(⌝P (x )→R (x )),(∀x )⌝R (x )可逻辑推出(∃x )P (x ). (此题即是教材P.209习题7(A )10))由()()由()())(由()()由()()()由()()证明:(结论:前提集合:6)()(75)(632)(53)(4)()(31)()(2))()()((1)()()()()),()()((EG x P x T b P T c P US c R P x R x US c R c P Px R x P x x P x x R x x R x P x ∃⌝⌝∀→⌝→⌝∀∃⌝∀→⌝∀5.设A (x ):x 是人,B (x ):x 犯错误,则命题“没有不犯错误的人”可符号化为(D ). A .(∀x )(A (x )∧B (x )) B .┐(∃x )(A (x ) → ┐B (x ))C .┐(∃x )(A (x )∧B (x ))D .┐(∃x )(A(x )∧┐B(x ))(此题即是教材P.209习题7(B )1)))()()(())()()(())()(()())()()((x B x A x x B x A x x B x A x x B x A x x x x x →∀⇔∨⌝∀⇔⌝∧⌝∀⇔⌝∧∃⌝必犯错误。