函数极值与导数解析

合集下载

高考数学知识点:函数的极值与导数的关系_知识点总结

高考数学知识点:函数的极值与导数的关系_知识点总结

高考数学知识点:函数的极值与导数的关系_知识点总结高考数学知识点:函数的极值与导数的关系极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

判别f(x0)是极大、极小值的方法:若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。

求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

对函数极值概念的理解:极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,函数的最大值和最小值:在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。

导数与函数的极值解析与归纳

导数与函数的极值解析与归纳

导数与函数的极值解析与归纳导数和函数的极值是微积分中的重要概念,对于函数的研究和应用都有着重要的意义。

在这篇文章中,我们将探讨导数与函数的极值,并对其进行解析与归纳。

一、导数的定义与性质导数可以看作是函数变化率的极限,它的定义可以用以下公式表示:\[f'(x) = \lim_{h \to 0}\frac{f(x + h) - f(x)}{h}\]其中,\(f'(x)\) 表示函数 \(f(x)\) 在点 \(x\) 处的导数。

导数具有以下性质:1. 导数存在性:当函数在某点可导时,该点的导数存在;2. 导数与函数图像:导数的值可以用来描述函数图像在某点的切线斜率;3. 导数与函数极值:导数为零的点可能是函数的极值点。

二、函数的极值与导数函数的极值可以分为最大值与最小值,即函数在某个区间内取得的最大值和最小值。

在寻找函数的极值时,我们可以利用导数的性质。

1. 极值的必要条件若函数在某点 \(x_0\) 处取得极值,则导数在该点的值为零或不存在。

2. 求导数与解析表达式要求得函数的导数,我们可以先找到函数的解析表达式,然后对其求导。

例如,对于多项式函数:\[f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0\]我们可以通过幂函数的求导法则得到:\[f'(x) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_1\]3. 导数与极值的关系当函数在某点的导数为零时,该点可能是函数的一个极值点。

根据导数的定义,我们可以得到极值点的关键条件为:\[f'(x) = 0\]我们称满足该条件的点为驻点。

4. 极值点的判断在驻点中,根据导数的一阶导数或二阶导数的正负确定极值类型:(1)一阶导数判定法:若驻点处的导数符号改变,即从正变负或从负变正,则该点为函数的极值点;(2)二阶导数判定法:当驻点处的二阶导数大于零时,该点为函数的极小值;当二阶导数小于零时,该点为函数的极大值。

求导数和求极值

求导数和求极值

求导数和求极值导数和极值是微积分中的两个基本概念,涉及到求解函数在某一点的斜率以及找到函数的最大值或最小值。

在数学中,导数是函数在某一点的切线斜率,而极值则是函数的局部最大值或最小值,它们在求解各种数学问题中都有着重要的作用。

求导数的方法求导数是微积分的基本内容之一,我们可以通过以下几种方法来求解函数的导数:1. 用导数定义式:导数定义式是求解导数的基本方法,它是将像函数一般表示出来的导数的定义进行计算和求解。

2. 用求导法则:求导法则是求解函数导数的基本规律,它可以通过不同的求导法则来求解不同函数的导数。

3. 用导数的性质:导数的性质是求解函数导数的基本辅助工具,通过导数的连续性、导数的可加性、导数的乘积规则等可以方便地求解函数的导数。

求极值的方法求极值的方法主要是通过一阶导数对函数的形状进行判断,找到函数最大值或最小值的位置,具体方法如下:1. 求解一阶导数为0的点:求解函数导数为0的点,即极值点,可以通过解一元一次方程来得到。

2. 判断二阶导数的正负:通过判断极值点处的二阶导数的正负来判断极值的类型,即判断是否为函数的最大值或最小值。

3. 绘制函数图象:将函数绘制出来,通过观察函数的图象来判断函数的极值。

求导数和求极值的应用求导数和求极值不仅是数学中的基本概念,也是各种领域中的核心应用。

以下是一些常见的应用:1. 最优化问题:在计算机科学、经济学、工程学等领域,最优化问题常出现。

求解最大值或最小值问题可以通过求导数和求极值来解决。

2. 优化控制:在自动控制领域,控制器的输出通常与系统的特性有关。

通过求解系统的导数和极值,可以对系统进行优化控制,从而实现最佳效果。

3. 物理问题:在物理学中,导数和极值可以用来求解运动物体的速度、加速度和位置,从而应用于物理问题的分析和求解。

总结求导数和求极值是微积分中的两个基本概念,它们在各个领域中都有广泛的应用。

掌握这两个重要的数学概念可以帮助我们更好地理解和解决各种数学问题,同时也可以提高我们的数学素养和解决实际问题的能力。

高三复习:导数与函数的单调性、极值最值(含解析答案)

高三复习:导数与函数的单调性、极值最值(含解析答案)

3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。

导数与函数的极值、最值问题(解析版)

导数与函数的极值、最值问题(解析版)

【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】类型一利用导数研究函数的极值使用情景:一般函数类型解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【答案】极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】试题分析:b ax x x f ++='23)(2,⎩⎨⎧=+++=++∴1010232a b a b a ⎩⎨⎧-==⇒⎩⎨⎧=----=⇒114012232b a a a a b 或⎩⎨⎧=-=33b a .?当⎩⎨⎧=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当⎩⎨⎧-==114b a 时,)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,311(<'-∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.所以⎩⎨⎧-==114b a .181622168)2(=+-+=∴f .故选C .考点:函数的单调性与极值.【变式演练2】设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为()A .()1,0-B .()1,-+∞C .()0,+∞D .()(),10,-∞-+∞【答案】B 【解析】考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】试题分析:因为x m x m x x f )1(2)1(2131)(23-++-=, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,而()20,4∈,所以只有12m -=,3m =时,()f x 在R 上单调,才合题意,故答案为3.考点:1、利用导数研究函数的极值;2、利用导数研究函数的单调性.【变式演练4】已知等比数列{}n a 的前n 项和为12n n S k -=+,则32()21f x x kx x =--+的极大值为() A .2B .52C .3D .72【答案】B 【解析】考点:1、等比数列的性质;2、利用导数研究函数的单调性及极值.【变式演练5】设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数a 的取值范围是.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+>,故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此,当1a ≤-或122a ≤≤时,不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【变式演练6】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内,则实数a 的取值范围是.2a << 【解析】考点:导数与极值.类型二求函数在闭区间上的最值使用情景:一般函数类型解题模板:第一步求出函数()f x 在开区间(,)a b 内所有极值点;第二步计算函数()f x 在极值点和端点的函数值;第三步比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例2若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)求实数m 的值;(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解析】试题分析:(1)由(1)1f e '=-解之即可;(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以()()(){}max max 1,1f x f f =-,求之即可.试题解析:(1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<,存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,()()112,1f e f e --=+=,∴()()max 1f x f e ==考点:1.导数的几何意义;2.导数与函数的单调性、最值.【名师点睛】本题考查导数的几何意义、导数与函数的单调性、最值等问题,属中档题;导数的几何意义是拇年高考的必考内容,考查题型有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,常有以下几个命题角度:已知切点求切线方程、已知切线方程(或斜率)求切点或曲线方程、已知曲线求切线倾斜角的范围. 【变式演练7】已知xe x xf 1)(+=. (1)求函数)(x f y =最值;(2)若))(()(2121x x x f x f ≠=,求证:021>+x x .【答案】(1))(x f 取最大值1)0()(max -==f x f ,无最小值;(2)详见解析. 【解析】试题解析:(1)对)(x f 求导可得x x x x e xe e x e xf -=+-='2)1()(, 令0)(=-='x exx f 得x=0. 当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增; 当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 当x=0时,)(x f 取最大值1)0()(max -==f x f ,无最小值. (2)不妨设21x x <,由(1)得当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增;当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 若)()(21x f x f =,则210x x <<,考点:1.导数与函数的最值;2.导数与不等式的证明. 【变式演练7】已知函数()ln f x x x =,2()2g x x ax =-+-. (Ⅰ)求函数()f x 在[,2](0)t t t +>上的最小值;(Ⅱ)若函数()()y f x g x =+有两个不同的极值点1212,()x x x x <且21ln 2x x ->,求实数a 的取值范围.【答案】(Ⅰ)min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;(Ⅱ)2ln 2ln 2ln()133a >--. 【解析】试题分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1t e≥时,函数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两个不同的交点,由)(x G 单调性结合函数图象可知当min 1()()ln 22a G x G >==时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122ln 210ln 210x x a x x a -++=⎧⎨-++=⎩,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值范围为2ln 2ln 2ln()133a >--.试题解析:(Ⅰ)由'()ln 10f x x =+=,可得1x e=,∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1(,2)t e+上单调递增,∴函数()f x 在[,2](0)t t t +>上的最小值为11()f e e=-,②当1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ∴==,min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; 两式相减可得1122ln2()2ln 2x x x x =-=- 214x x ∴=代入上述方程可得2144ln 23x x ==,此时2ln 2ln 2ln()133a =--,所以,实数a 的取值范围为2ln 2ln 2ln()133a >--;考点:导数的应用.【变式演练8】设函数()ln 1f x x =+. (1)已知函数()()2131424F x f x x x =+-+,求()F x 的极值; (2)已知函数()()()()2210G x f x ax a x a a =+-++>,若存在实数()2,3m ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,求实数a 的取值范围.【答案】(1)极大值为0,极小值为3ln 24-;(2)()1ln 2,-+∞.【解析】()(),'F x F x 随x 的变化如下表:当1x =时,函数()F x 取得极大值()10F =;当2x =时,函数()F x 取得极小值()32ln 24F =-.③当112a <,即12a <时,函数()f x 在10,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在1,12a ⎛⎫⎪⎝⎭上单调递减,要存在实数()2,3x ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,则()122G G a ⎛⎫< ⎪⎝⎭,代入化简得()()1ln 2ln 2104a a ++->*.令()()11ln 2ln 2142g a a a a ⎛⎫=++-> ⎪⎝⎭,因()11'104g a a a ⎛⎫=-> ⎪⎝⎭恒成立,故恒有()111ln 20,222g a g a ⎛⎫>=->∴> ⎪⎝⎭时,()*式恒成立;综上,实数a 的取值范围是()1ln 2,-+∞.考点:函数导数与不等式. 【高考再现】1.【2016高考新课标1卷】(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以222222(2)(2)x x f x x e x e --=---.设2()(2)x x g x xe x e -=---,则2'()(1)()x x g x x e e -=--. 所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<. 考点:导数及其应用2.【2016高考山东理数】(本小题满分13分) 已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】试题分析:(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性;(Ⅱ)要证()3()'2f x f x +>对于任意的[]1,2x ∈成立,即证23)()(/>-x f x f ,根据单调性求解.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f ,)(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a, 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增;当x ∈)1,2(a时,0)(/<x f ,)(x f 单调递减. 综上所述,(Ⅱ)由(Ⅰ)知,1=a 时,23312ln 1x x x x x=-++--,]2,1[∈x , 令1213)(,ln )(32--+=-=xx x x h x x x g ,]2,1[∈x . 则)()()()(/x h x g x f x f +=-, 由01)(/≥-=xx x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,因为10)2(,1)1(-==ϕϕ,考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.3.【2016高考江苏卷】(本小题满分16分)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

高考数学知识点:函数的极值与导数的关系

高考数学知识点:函数的极值与导数的关系

高考数学知识点:函数的极值与导数的关系高考数学知识点:函数的极值与导数的关系极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

判别f(x0)是极大、极小值的方法:若x0满足,且在x0的两侧f(x)的导数异号,则x0是f (x)的极值点,是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。

求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

对函数极值概念的理解:极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,函数的最大值和最小值:在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。

导数与函数的极值、最值

导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.

一轮复习--导数与函数的极值、最值

一轮复习--导数与函数的极值、最值

其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊 重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆ቤተ መጻሕፍቲ ባይዱ。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

导数与函数的极值最值理含解析

导数与函数的极值最值理含解析

课时作业15 导数与函数的极值、最值一、选择题1.当函数y =x ·2x取极小值时,x =( B ) A.1ln2B .-1ln2C .-ln2D .ln2解析:y ′=2x+x ·2xln2=0,∴x =-1ln2. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( C ) A .-2 B .0 C .2D .4解析:f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或2.∴f (x )在[-1,0)上是增函数,f (x )在(0,1]上是减函数.∴f (x )max =f (x )极大值=f (0)=2.3.若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ′(x )的图象不可能是( D )解析:若函数f (x )=ax 3+bx 2+cx +d 有极值,则此函数在某点两侧的单调性相反,也就是说导函数f ′(x )在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x 轴,观察四个选项中的图象只有D 项是不符合要求的,即f ′(x )的图象不可能是D.4.(2019·贵州黔东南州联考)已知函数f (x )=ln x -a x,若函数f (x )在[1,e]上的最小值为32,则a 的值为( A )A .- eB .-e 2C .-32D .e 12解析:由题意,f ′(x )=1x +ax2,若a ≥0,则f ′(x )>0,函数单调递增,所以f (1)=-a =32,矛盾;若-e<a <-1,函数f (x )在[1,-a ]上递减,在[-a ,e]上递增,所以f (-a )=32,解得a =-e ;若-1≤a <0,函数f (x )是递增函数,所以f (1)=-a =32,矛盾;若a ≤-e ,函数f (x )单调递减,所以f (e)=32,解得a =-e2,矛盾.综上,a =-e ,故选A.5.(2019·河北邢台质检)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则a 的取值范围为( B )A.⎣⎢⎡⎭⎪⎫32,2B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎣⎢⎡⎭⎪⎫0,32 D .(-1,0)∪⎣⎢⎡⎭⎪⎫32,+∞ 解析:对函数求导得f ′(x )=x -1+a 1-1x=x +a x -1x,因为函数存在唯一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0且f (1)=-12+a ≥1⇒a ≥32.故选B.6.(2019·江西宜春六校联考)已知函数f (x )=x ln x -a e x(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( A )A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(-∞,e) 解析:f ′(x )=ln x -a e x+1,若函数f (x )=x ln x -a e x有两个极值点,则y =a 和g (x )=ln x +1e x 在(0,+∞)上有2个交点,g ′(x )=1x -ln x -1e x(x >0).令h (x )=1x -ln x -1,则h ′(x )=-1x 2-1x<0,h (x )在(0,+∞)上递减,而h (1)=0,故x ∈(0,1)时,h (x )>0,即g ′(x )>0,g (x )递增,x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )递减,故g (x )max =g (1)=1e,而x →0时,g (x )→-∞,x →+∞时,g (x )→0.若y =a 和g (x )=ln x +1e x在(0,+∞)上有2个交点,只需0<a <1e.7.(2019·广东汕头质监)已知函数f (x )=exx-mx (e 为自然对数的底数),若f (x )>0在(0,+∞)上恒成立,则实数m 的取值范围是( C )A .(-∞,2)B .(-∞,e)C.⎝⎛⎭⎪⎫-∞,e 24 D.⎝ ⎛⎭⎪⎫e 24,+∞解析:∵f (x )=e xx -mx >0在(0,+∞)上恒成立,∴m <exx2在(0,+∞)上恒成立,令g (x )=e xx 2,x >0,∴g ′(x )=x 2-2x e x x 4=x -2e xx3,当0<x <2时,g ′(x )<0,g (x )单调递减;当x >2时,g ′(x )>0,g (x )单调递增.故当x =2时,g (x )取得最小值,且最小值为g (2)=e 24.∴m <e 24. 二、填空题8.函数f (x )=x sin x +cos x 在⎣⎢⎡⎦⎥⎤π6,π上的最大值为π2.解析:因为f ′(x )=sin x +x cos x -sin x =x cos x ,当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f ′(x )≥0,函数f (x )单调递增,当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,函数f (x )单调递减,所以f (x )max =f ⎝ ⎛⎭⎪⎫π2=π2. 9.若函数f (x )=2f ′(1)ln x -x ,则函数f (x )的极大值为2ln2-2. 解析:因为f (x )=2f ′(1)ln x -x ,所以f ′(x )=2f ′1x-1,令x =1得,f ′(1)=2f ′(1)-1,得f ′(1)=1, 故f (x )=2ln x -x ,定义域为(0,+∞).且f ′(x )=2x -1=2-xx,当x ∈(0,2)时,f ′(x )>0,当x ∈(2,+∞)时,f ′(x )<0,所以当x =2时,f (x )取得极大值,且f (x )极大值=f (2)=2ln2-2.10.(2019·安徽合肥质检)设a ∈R ,函数f (x )=ax 3-3x 2,若函数g (x )=f (x )+f ′(x ),x ∈[0,2],且在x =0处取得最大值,则a 的取值范围是⎝⎛⎦⎥⎤-∞,65.解析:g (x )=ax 3-3x 2+3ax 2-6x =ax 2(x +3)-3x (x +2),g (0)=0.若g (x )在区间[0,2]上的最大值为g (0),则g (x )≤g (0),即ax 2(x +3)-3x (x +2)≤0在[0,2]上恒成立.当x =0时,显然成立;当x ≠0时,有a ≤3x +2x x +3在(0,2]上恒成立.设h (x )=3x +2x x +3=3x +3+6x 2+3x ,显然h (x )在(0,2]上单调递减,最小值为h (2)=3×2+22×2+3=65.因此a ≤65. 三、解答题11.(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x.f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0.所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x.若a >12,则当x ∈(1a ,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是(12,+∞).12.(2019·四川内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R ),曲线y =f (x )在点⎝ ⎛⎭⎪⎫π3,f ⎝ ⎛⎭⎪⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)设k ∈R ,求函数g (x )=kx -f ⎝⎛⎭⎪⎫x +π3在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝ ⎛⎭⎪⎫π3=32a +12b =0.∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝ ⎛⎭⎪⎫π3=12a -32b =1,∴a =12,b =-32.(2)由(1)知,f (x )=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3,∴g (x )=kx -sin x ,g ′(x )=k -cos x ,①当k ≤0时,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g ′(x )≤0,故g (x )单调递减.∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g (0)=0.②当0<k <1时,∵g ′(0)=k -1<0,g ′⎝ ⎛⎭⎪⎫π2=k >0,∴存在x 0∈⎝⎛⎭⎪⎫0,π2,使g ′(x 0)=0.当x ∈[0,x 0)时,g ′(x )<0,故g (x )单调递减, 当x ∈⎝⎛⎦⎥⎤x 0,π2时,g ′(x )>0,故g (x )单调递增. ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g (0)或g ⎝ ⎛⎭⎪⎫π2.又g (0)=0,g ⎝ ⎛⎭⎪⎫π2=k π2-1,∴当0<k ≤2π时,g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g (0)=0.当2π<k <1时,g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g ⎝ ⎛⎭⎪⎫π2=k π2-1.③当k ≥1时,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g ′(x )≥0,故g (x )单调递增,∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g ⎝ ⎛⎭⎪⎫π2=k π2-1.综上所述,当k ≤2π时,g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g (0)=0,当k >2π时,g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为g ⎝ ⎛⎭⎪⎫π2=k π2-1.13.已知直线y =a 分别与函数y =e x +1和y =x -1交于A ,B 两点,则A ,B 之间的最短距离是( D )A.3-ln22 B.5-ln22 C.3+ln22D.5+ln22解析:由y =e x +1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝ ⎛⎭⎪⎫y -22⎝ ⎛⎭⎪⎫y +22y ,当0<y <22时,h ′(y )<0,当y >22时,h ′(y )>0,即函数h (y )在区间⎝ ⎛⎭⎪⎫0,22上单调递减,在区间⎝ ⎛⎭⎪⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎪⎫22=⎝ ⎛⎭⎪⎫222-ln 22+2=5+ln22,故选D. 14.(2019·河北五校联考)已知函数f (x )=x +a ln x (a >0),若∀x 1,x 2∈(12,1)(x 1≠x 2),|f (x 1)-f (x 2)|>|1x 1-1x 2|,则正数a 的取值范围是[32,+∞).解析:由f (x )=x +a ln x (a >0),得当x ∈(12,1)时,f ′(x )=1+a x >0,f (x )在(12,1)上单调递增,不妨设x 1>x 2,则|f (x 1)-f (x 2)|>|1x 1-1x 2|,即f (x 1)-f (x 2)>1x 2-1x 1,f (x 1)+1x 1>f (x 2)+1x 2,令g (x )=f (x )+1x ,则g (x )在(12,1)上单调递增,所以g ′(x )=1+a x -1x 2≥0在(12,1)上恒成立,a x ≥1x 2-1,即a ≥1x -x 在(12,1)上恒成立,令h (x )=1x -x ,x ∈(12,1),则h ′(x )=-1-1x 2<0,h (x )单调递减,故a ≥32,正数a的取值范围是[32,+∞).尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·江西南昌调研)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( D )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2,即曲线y =1+ln x 与直线y =2ax 有两个不同交点,如图.由直线y =x 是曲线y =1+ln x 的切线,可知:0<2a <1,0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12.由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, ∵当x 1<x <x 2时,f ′(x )>0, ∴f (x 2)>f (1)=-a >-12,故选D.。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

函数的求导与极值

函数的求导与极值

函数的求导与极值函数的求导与极值是微积分中的重要内容。

通过求导,我们可以研究函数的变化趋势,找到函数的极值点。

本文将介绍函数求导的基本概念和求导公式,以及如何利用求导寻找函数的极值点。

一、求导的基本概念函数的导数描述了函数在某一点的变化率,也可以理解为函数的切线斜率。

对于函数y=f(x),记f'(x)或dy/dx为函数f(x)的导数。

导数可以用以下极限定义求得:f'(x) = lim[h→0] (f(x+h) - f(x)) / h其中h为无穷小量。

导数值的正负表示函数在该点的增减性,导数值为零的点可能是函数的极值点。

二、基本求导公式1. 常数函数求导:如果y=c,其中c为常数,则f'(x) = 0,即常数函数的导数为零。

2. 平方函数求导:如果y=x^2,则f'(x) = 2x,即平方函数的导数为2x。

3. 常见初等函数求导:常见的初等函数求导公式包括常数函数、幂函数、指数函数、对数函数、三角函数等。

通过这些公式,我们可以求得不同类型函数的导数。

三、高阶导数与导数法则高阶导数是指函数的导数的导数。

通过不断求导,我们可以得到函数的不同阶导数。

导数法则包括和差法则、积法则和商法则,通过这些法则,我们可以便捷地求得复杂函数的导数。

四、函数的极值点函数的极值点包括极大值点和极小值点。

极大值点是指在某一点函数取得最大值,极小值点则是函数取得最小值的点。

根据求导的方法,我们可以找到函数的极值点。

1. 寻找函数的极值点的步骤:- 求函数的导数;- 解导数等于零的方程,得出函数的驻点(导数为零的点);- 求得驻点的二阶导数,判断是极大值点、极小值点还是拐点;- 确定驻点的极值性,得出函数的极值点。

2. 举例:求函数f(x) = x^3 - 3x^2 + 2x + 1的极值点。

- 求导得到f'(x) = 3x^2 - 6x + 2;- 解方程3x^2 - 6x + 2 = 0,得到x = 1/3或x = 2;- 求解得到f''(x) = 6x - 6;- 当x = 1/3时,f''(x) = -4,为极大值点;- 当x = 2时,f''(x) = 6,为极小值点。

专题3.2.2 重难点之导数与函数的极值最值(重难点突破)(解析版)

专题3.2.2 重难点之导数与函数的极值最值(重难点突破)(解析版)

专题3.2.2 重难点之导数与函数极值、最值重难点突破一、考情分析1、结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;2、会用导数求不超过三次的多项式函数的极大值、极小值,3、会用导数求给定区间上不超过三次的多项式函数的最大值、最小值.二、经验分享三、考点梳理知识点1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.知识点2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.知识点3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.三、题型分析重难点题型突破1 求函数的极大值与极小值例1、 (1)函数f(x)=13x 3-4x +13的极大值是____,极小值是____.【答案】173,-5【解析】 f′(x)=x 2-4,令f′(x)=0,解得x 1=-2,x 2=2.当x 变化时,f(x),f′(x)的变化情况如下表:因此,当x =-2时,f(x)有极大值f(-2)=173;当x =2时,f(x)有极小值f(2)=-5.(2)、f (x )=2x +1x 2+2的极小值为________.【答案】-12【解析】f ′(x )=2222(2)2(21)(2)x x x x +-++=222(2)(1)(2)x x x -+-+. 令f ′(x )<0,得x <-2或x >1;令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数,∴f (x )极小值=f (-2)=-12.【变式训练1】、(一题两空)(2019·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)=________,f (x )的极小值为________. 【答案】:0 -e【解析】由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e. 【变式训练2】、已知函数f(x)=1x+ln x ,求函数f(x)的极值.【解析】 ∵f(x)=1x +ln x ,∴f′(x)=-1x 2+1x =x -1x2,令f(x)=0,得x =1,列表:∴x =1是f(x)的极小值点,f(x)的极小值为1,无极大值. 重难点题型突破2 已知函数的极(最)值求参数的取值范围例2、. 已知函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是(B )A . (-1,2)B . (-∞,-3)∪(6,+∞)C . (-3,6)D . (-∞,-1)∪(2,+∞) 【答案】B【解析】 ∵f(x)=x 3+mx 2+()m +6x +1,∴f′(x)=3x 2+2mx +()m +6, 由于函数y =f(x)既有极大值,又有最小值,则导函数y =f′(x)有两个零点, ∴Δ=4m 2-12()m +6>0,即m 2-3m -18>0,解得m<-3或m>6. ∴实数m 的取值范围是()-∞,-3∪()6,+∞.故选B .【变式训练1】、(2020·湖南省五市十校联考)已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.【解析】 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1), 又f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x ,当a ≤0时,因为x >0,所以g ′(x )>0.所以g (x )在(0,+∞)上是增函数,函数g (x )无极值点.当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a (x -1a)(x +1)x,令g ′(x )=0得x =1a .所以当x ∈⎪⎭⎫⎝⎛a1,0时,g ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞,1a 时,g ′(x )<0. 因为g (x )在⎪⎭⎫ ⎝⎛a 1,0上是增函数,在⎪⎭⎫⎝⎛+∞,1a 上是减函数.所以x =1a 时,g (x )有极大值⎪⎭⎫⎝⎛ag 1=ln 1a -a 2×1a 2+(1-a )·1a +1=12a -ln a .综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值.【变式训练2】、设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围. 【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x , 所以f ′(x )=[ax 2-(a +1)x +1]e x .f ′(2)=(2a -1)e 2. 由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0,所以f ′(x )>0. 所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). 重难点题型突破3 利用导数研究函数的最值 例3、函数f (x )=x 2-ln x 的最小值为( )A .1+ln 2B .1-ln 2 C.1+ln 22D.1-ln 22【答案】C【解析】 因为f (x )=x 2-ln x (x >0),所以f ′(x )=2x -1x ,令2x -1x =0得x =22,令f ′(x )>0,则 x >22;令f ′(x )<0,则0<x <22.所以f (x )在⎝⎛⎭⎫0,22上单调递减,在⎝⎛⎭⎫22,+∞上单调递增,所以f (x )的极小值(也是最小值)为⎝⎛⎭⎫222-ln22=1+ln 22,故选C. 例4、已知函数f(x)=x -ax -ln x ,a>0.(1)求函数f(x)的单调区间和极值点;(2)若f(x)>x -x 2在(1,+∞)恒成立,求实数a 的取值范围.【解析】 (1)函数f(x)=x -a x -ln x ,a>0的定义域为(0,+∞),f′(x)=1+a x 2-1x =x 2-x +ax 2,①Δ=1-4a≤0,即a≥14时,f′(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点;②Δ=1-4a>0,即0<a<14时,令f′(x)=0,解得x 1=1-1-4a 2,x 2=1+1-4a 2,列表,x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f′(x) + 0 - 0 + f(x)单调递增极大值单调递减极小值单调递增∴函数f(x)的增区间是⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞,减区间是⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2,极大值点是x 1=1-1-4a 2,极小值点是x 2=1+1-4a2.(2)f(x)>x -x 2,即x 2-ax -ln x>0,∵x ∈(1,+∞),∴a<x 3-x ln x ,令g(x)=x 3-x ln x ,则h(x)=g′(x)=3x 2-ln x -1,h′(x)=6x -1x =6x 2-1x>0在(1,+∞)上恒成立, ∴h(x)在(1,+∞)上递增,h(x)>h(1)=2,即g′(x)>0,故g(x)=x 3-x ln x 在(1,+∞)上为增函数,g(x)>g(1)=1,∴0<a≤1.【变式训练1】、已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解析】(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者.而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5. 重难点题型突破4 利用导数求解最优化问题 例5、(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0⇒0<x <1,f ′(x )<0⇒x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f(e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.【变式训练1】、设直线x t = 与函数2()f x x =,()ln g x x = 的图像分别交于点,M N ,则当MN 达到 最小时t 的值为( )A .1B .12 C 5 D 2【答案】D【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得2x =,因2x ∈时,'()0h x <,当2()x ∈+∞时,'()0h x >,所以当2x =即2t =||MN 达到最小.【变式训练2】、设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 【解析】(Ⅰ)函数()y f x =的定义域为(0,)+∞242221()()x x e x xe f x k x x x ⋅-'=--+3(2)()(0)x x e kx x x --=>由0k ≤可得0x e kx ->所以当(0,2)x ∈时,()0f x '<,函数()y f x =单调递减, 所以当(2,)x ∈+∞时,()0f x '>,函数()y f x =单调递增, 所以 ()f x 的单调递减区间为(0,2),()f x 的单调递增区间为(2,)+∞ (Ⅱ)由(Ⅰ)知,0k ≤时,()f x 在(0,2)内单调递减, 故()f x 在(0,2)内不存在极值点;当0k >时,设函数()xg x e kx =-,[0,)x ∈+∞,因此ln ()x x k g x e k e e =-=-.当01k <≤时,(0,2)x ∈时()0x g x e k '=->,函数()y g x =单调递增 故()f x 在(0,2)内不存在两个极值点; 当1k >时,函数在(0,2)内存在两个极值点当且仅当(0)0(ln )0(2)00ln 2g g k g k >⎧⎪<⎪⎨>⎪⎪<<⎩,解得22e e k <<,综上函数()f x 在()0,2内存在两个极值点时,k 的取值范围为2(,)2e e .四、迁移应用1、若函数()f x =22(1)()x x ax b -++的图像关于直线x =-2对称,则()f x 的最大值是______. 【答案】16【解析】由()f x 图像关于直线x =-2对称,则0=(1)(3)f f -=-=22[1(3)][(3)3]a b ----+,0=(1)(5)f f =-=22[1(5)][(5)5]a b ----+,解得a =8,b =15, ∴()f x =22(1)(815)x x x -++,∴()f x '=222(815)(1)(28)x x x x x -+++-+=324(672)x x x -++- =4(2)(25)(25)x x x -++++-当x ∈(-∞,25--)∪(-2, 25-+)时,()f x '>0, 当x ∈(25--,-2)∪(25-+,+∞)时,()f x '<0,∴()f x 在(-∞,25--)单调递增,在(25-2)单调递减,在(-2,25-在(25-+∞)单调递减,故当x =25-x =25-+(25)f -=(25)f -=16. 2、(I)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】(I )证明:()2e 2x x f x x -=+()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++> (Ⅱ)33(2)(2)2()(())x x e a x x g x f x a x x-+++'==+, 由(Ⅰ)知,()f x a +单调递增,对任意的[)01a ∈,,(0)10f a a +=-<, (2)0f a a+=,因此,存在唯一(0,2]a x ∈,使得()0a f x a +=,即()0a g x '=当0a x x <<时,()0f x a +<,()0g x '<,()g x 单调递减; 当a x x >时,()0f x a +>,()0g x '>,()g x 单调递增. 因此()g x 在a x x =处取得最小值,最小值为22(1)()(1)()2a a ax x x a a a a a a a e a x e f x x e g x x x x -+-+===+. 于是()2ax a e h a x =+,由2(1)()02(2)x x e x e x x +'=>++,得2x e x +单调递增.所以,由(0,2]a x ∈,得0221()2022224ax a e e e e h a x =<==+++, 因为2x e x +单调递增,对任意的21(,]24e λ∈,存在唯一的(0,2]a x ∈,()[0,1)a a f x =-∈,使得()h a λ=,所以()h a 的值域为21e 24⎛⎤ ⎥⎝⎦,.综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域为21e 24⎛⎤⎥⎝⎦,.3. 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>, 记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【解析】(Ⅰ)()2sin 2(1)sin f x a x a x '=---. (Ⅱ)当1a时,|()||sin2(1)(cos 1)|f x a x a x '=+-+2(1)a a +-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. (ⅰ)当105a<时,()g t 在[1,1]-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a --+--=>,所以2161|()|48a a a A g a a-++==.综上,2123,05611,18532,1a a a a A a a a a ⎧-<⎪⎪++⎪=<<⎨⎪-⎪⎪⎩. (Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---+-.当105a<时,|()|1242(23)2f x a a a A '+-<-=. 当115a <<时,131884a A a =++,所以|()|12f x a A '+<.当1a 时,|()|31642f x a a A '--=,所以|()|2f x A '.4、已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.【解析】(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-x x, 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ; 令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e. 从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e,∴a =-e 2为所求. 故实数a 的值为-e 2.5、已知函数f (x )=ln x +12x 2-ax +a (a ∈R ). (1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.【解析】(1)∵f ′(x )=1x+x -a (x >0), 又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0,即1x+x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2 x ·1x=2,当且仅当x =1时取“=”, ∴a ≤2.即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2].(2)∵f (x )在x =x 1和x =x 2处取得极值,且f ′(x )=1x +x -a =x 2-ax +1x(x >0), ∴x 1,x 2是方程x 2-ax +1=0的两个实根,由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0, ∴h (t )在[e ,+∞)上是减函数,∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +e e , 故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +e e .。

考点14 导数与函数的极值、最值

考点14 导数与函数的极值、最值

考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值.变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.① 在(-∞,0)上为减函数 ② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23. 7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20),∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。

导数与函数的函数极值定理详解

导数与函数的函数极值定理详解

导数与函数的函数极值定理详解函数的极值是函数在某个区间上最大或最小的值。

函数的极值点则是函数取得极值的点。

函数的极值点与导数息息相关,导数可以帮助我们确定函数的极值点所在位置。

在本文中,我们将详细讨论导数与函数的函数极值定理,揭示其中的原理和应用。

一、导数的定义和性质在我们深入探讨导数与函数的函数极值定理之前,我们先来回顾一下导数的定义和性质。

1. 导数的定义给定函数$f(x)$,若极限$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$ 存在,则称该极限为函数$f(x)$在$x$处的导数,记作$f'(x)$。

2. 导数的几何意义导数的几何意义是函数曲线在某一点处的切线斜率。

通过导数的概念,我们可以研究函数的变化趋势和曲线的形状。

3. 导数的性质(1)常数的导数为零:$\frac{d}{dx}c=0$,其中$c$为常数。

(2)幂函数的导数:$\frac{d}{dx}x^n=nx^{n-1}$,其中$n$为实数。

(3)指数函数的导数:$\frac{d}{dx}a^x=\ln a\cdot a^x$,其中$a>0$,$a\neq 1$。

(4)对数函数的导数:$\frac{d}{dx}\ln x=\frac{1}{x}$。

二、函数的极值定理函数的极值定理是导数与函数极值之间的重要联系。

它指出,若函数在某个区间内可导,且导数在该区间内既大于零又小于零,那么函数在该区间内必然存在极值点。

具体而言,如果函数在某个区间上连续,且在该区间某一点$x_0$处导数大于零,在该点左侧导数小于零,在该点右侧导数又大于零,那么函数在点$x_0$处必然存在极小值。

同理,如果函数在某个区间上连续,且在该区间某一点$x_0$处导数小于零,在该点左侧导数大于零,在该点右侧导数又小于零,那么函数在点$x_0$处必然存在极大值。

三、导数的应用导数不仅用于求函数的极值,还可以应用于解决其他数学问题。

下面介绍几个常见的导数应用。

导数与函数的级数展开解析

导数与函数的级数展开解析

导数与函数的级数展开解析在微积分中,导数和级数展开是两个基本且重要的概念。

导数描述了函数在某一点的瞬时变化率,而级数展开则是将函数表达为无穷级数的形式。

本文将对导数与函数的级数展开进行详细解析。

一、导数的定义及计算导数是函数在某一点的变化率,可以用极限的概念进行定义。

设函数y=f(x),则在点x处的导数为:f'(x) = lim┬(h→0)⁡ (f(x+h) - f(x))/h这个公式表示了函数在点x处的瞬时变化率。

我们可以通过这个公式来计算函数在某一点的导数。

例如,对于多项式函数f(x) = 2x^3 - 4x^2 + 3x,可以通过求导得到导函数:f'(x) = 6x^2 - 8x + 3二、级数展开的概念及应用级数展开是将函数表达为无穷级数的形式,可以用于近似计算和函数性质研究。

级数展开的基本思想是使用一组基函数来逼近原函数,通过不断增加基函数的项数,逐渐接近原函数。

常用的级数展开包括泰勒级数和傅里叶级数。

泰勒级数是一种将函数表达为无穷多项式的展开形式,通常用于近似计算。

而傅里叶级数是将周期函数表达为正弦函数和余弦函数的无穷级数,可以用于信号处理和振动分析等领域。

三、泰勒级数展开泰勒级数是将函数在某个点处展开成无穷多项式的形式。

设函数f(x)在点a处具有各阶导数,其泰勒级数展开为:f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...在实际计算中,我们通常只考虑前几项的展开,并且使用函数在某个特定点的导数来进行计算。

四、傅里叶级数展开傅里叶级数将周期函数展开为正弦函数和余弦函数的无穷级数。

设函数f(x)的周期为2π,则其傅里叶级数展开为:f(x) = a₀/2 + Σ[┬(n=1)ⁿ⁺⁽⁺⁾]⁡(aₙcos(nx) + bₙsin(nx))其中,a₀、aₙ和bₙ为系数,可以通过函数的积分计算得到。

函数的极值与导数

函数的极值与导数

极大值 和_______ 极小值 统称为极值. 极值点,_______
练习1:指出下图中的极大值、极小值、极 值点、极值
y y=f(x) P(x1,f(x1)) Q(x2,f(x2)) o a x1 x2 x3 b x
4
2、上图的左右端点是极值点吗?极值点 在图像的什么地方出现? 3、一个函数只有一个极大值和一个极小 值吗?它的极大值一定大于它的极小值吗?
• 1.理解极大值、极小值的概念. • 2.会用导数求最高次幂不超过三次的 多项式函数的极大值、极小值. 重点: 利用导数求函数的极大值、极小值.
(一)导学案自主探究(一) 在点t=a附近的图像有什么特点(自左向右上 升还是下降)?此点附近的导数符号有什么 变化?在t=a时,函数h(t)在此点的导数是多少?
∴a=-6,b=9. ………………………6 分
• (2)f′(x)=-18x2+18x=-18x(x-1) ……… ……… 8分 • 当f′(x)=0时,x=0或x=1. • 当f′(x)>0时,0<x<1; • 当f′(x)<0时,x<0或x>1. ……… ……… ……… ……… 10分 • ∴函数f(x)=-6x3+9x2的极小值为 f(0)=0. ……… 12分
3
当 x 变化时,f′(x)、f(x)的变化情况如下表:
x

1
(1,+
∞)
f ′ (x )

0

0

f(
x)

大值

小值
2 ∴f(x)的递增区间为-∞,-3和(1,+∞),递减区间 2 为-3,1. 2 49 2 当 x=-3时,f(x)有极大值,f-3=27;

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 概念方法微思考1.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的________条件.(填“充要”“充分不必要”“必要不充分”) 提示 必要不充分2.函数的最大值一定是函数的极大值吗?提醒 不一定,函数的最值可能在极值点或端点处取到.1.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解析】(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-,y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---==, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.2.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M . 【解析】(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---.令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+.令2()3(22)0f x x b x b '=-++=.解得:21111(0,]3b b b x +--+=,2211b b b x ++-+=.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,令11(0,]3x t =∈,可得:23221t tb t -=-.43211112()()(1)()(1)21t t t M f x x x b x t t b t t -+-∴==--=--=-, 432261282(21)t t t tM t -+-+'=-. 令32()61282g t t t t =-+-+,22()182482(32)0g t t t t '=-+-=--<,∴函数()g t 在1(0,]3t ∈上单调递减,14()039g =>. ()0t g t ∴>.0M ∴'>.∴函数()M t 在1(0,]3t ∈上单调递增,14()()327M t M ∴=. 3.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意;若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.4.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意; 若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.5.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解析】(1)当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-.()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x '',(0,)x ∈+∞时,()0f x '' ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a ,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.6.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a 时,讨论方程()0f x =实根的个数. 【解析】2()36(1)123(2)(2)f x ax a x ax x '=-++=--. (1)当0a >时,令()0f x '=,得2x =或2x a=; ①当01a <<时,有22>,列表如下: x(,2)-∞2 2(2,)a 2a 2(,)a+∞ ()f x ' +0 -0 +()f x极大值极小值故极小值为22124()a f a a -=.②当1a =时,有22a=,则2()3(2)0f x x '=-,故()f x 在R 上单调递增,无极小值; ③当1a >时,有22<,列表如下: x2(,)a-∞2a 2(,2)a 2 (2,)+∞()f x ' +0 -0 +()f x极大值极小值故极小值为f (2)124a =-.(Ⅱ)解法一:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,令()0f x '=,得2x =或2x =,有202<<,列表如下: x2(,)a -∞2a2(,2)a2 (2,)+∞ ()f x ' -0 +0 -()f x极小值极大值故极大值为f (2)1240a =->,极小值22124()0a f a a -=<,因此()0f x =有三个根.解法二:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,2()[3(1)12]f x x ax a x =-++,对于二次函数23(1)12y ax a x =-++,0x =不是该二次函数的零点,△29(1)240a a =+->,则该二次函数有两个不等的非零零点, 此时,方程()0f x =有三个根.7.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中 2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【解析】2()()2I f ππ=-.()22sin f x x x '=-,()2f ππ∴'=.∴曲线()y f x =在点(π,())f π处的切线方程为:2(2)2()y x πππ--=-.化为:2220x y ππ---=.()()II h x g =()x a -2()(cos sin 22)(2cos )x f x e x x x a x x =-+--+()(cos sin 22)(sin cos 2)(22sin )x x h x e x x x e x x a x x '=-+-+--+-- 2(sin )()2(sin )()x x lna x x e a x x e e =--=--.令()sin u x x x =-,则()1cos 0u x x '=-,∴函数()u x 在R 上单调递增. (0)0u =,0x ∴>时,()0u x >;0x <时,()0u x <.(1)0a 时,0x e a ->,0x ∴>时,()0h x '>,函数()h x 在(0,)+∞单调递增;0x <时,()0h x '<,函数()h x 在(,0)-∞单调递减. 0x ∴=时,函数()h x 取得极小值,(0)12h a =--.(2)0a >时,令()2(sin )()0x lna h x x x e e '=--=. 解得1x lna =,20x =.①01a <<时,(,)x lna ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (,0)x lna ∈时,0x lna e e ->,()0h x '<,函数()h x 单调递减; (0,)x ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. ②当1a =时,0lna =,x R ∈时,()0h x ',∴函数()h x 在R 上单调递增. ③1a <时,0lna >,(,0)x ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (0,)x lna ∈时,0x lna e e -<,()0h x '<,函数()h x 单调递减; (,)x lna ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 综上所述:0a 时,函数()h x 在(0,)+∞单调递增;0x <时,函数()h x 在(,0)-∞单调递减. 0x =时,函数()h x 取得极小值,(0)12h a =--.01a <<时,函数()h x 在(,)x lna ∈-∞,(0,)+∞是单调递增;函数()h x 在(,0)x lna ∈上单调递减.当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 当1a =时,0lna =,函数()h x 在R 上单调递增.1a >时,函数()h x 在(,0)-∞,(,)lna +∞上单调递增;函数()h x 在(0,)lna 上单调递减.当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++.8.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.【解析】(Ⅰ)解:因为32()1f x x ax bx =+++, 所以2()()32g x f x x ax b ='=++,()62g x x a '=+, 令()0g x '=,解得3ax =-.由于当3a x >-时()0g x '>,()()g x f x ='单调递增;当3ax <-时()0g x '<,()()g x f x ='单调递减;所以()f x '的极小值点为3ax =-,由于导函数()f x '的极值点是原函数()f x 的零点,所以()03af -=,即33102793a a ab -+-+=,所以223(0)9a b a a=+>.因为32()1(0,)f x x ax bx a b R =+++>∈有极值, 所以2()320f x x ax b '=++=有实根,所以24120a b ->,即222903a a a-->,解得3a >,所以223(3)9a b a a=+>.(Ⅱ)证明:由(1)可知h (a )42332245913(427)(27)81381a a b a a a a a=-=-+=--, 由于3a >,所以h (a )0>,即23b a >;(Ⅲ)解:由(1)可知()f x '的极小值为2()33a a fb '-=-,设1x ,2x 是()y f x =的两个极值点,则1223ax x +=-,123b x x =,所以332212121212()()()()2f x f x x x a x x b x x +=++++++22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3422273a ab=-+,又因为()f x ,()f x '这两个函数的所有极值之和不小于72-,所以23242372327392a a ab a b a -+-+=--, 因为3a >,所以3263540a a --, 所以22(36)9(6)0a a a -+-, 所以2(6)(2129)0a a a -++, 由于3a >时221290a a ++>, 所以60a -,解得6a , 所以a 的取值范围是(3,6].9.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x . (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【解析】(1)因为2()()(0)f x ax ax xlnx x ax a lnx x =--=-->, 则()0f x 等价于()0h x ax a lnx =--,求导可知1()h x a x'=-. 则当0a 时()0h x '<,即()y h x =在(0,)+∞上单调递减, 所以当01x >时,0()h x h <(1)0=,矛盾,故0a >. 因为当10x a <<时()0h x '<、当1x a>时()0h x '>, 所以1()()min h x h a=,又因为h (1)10a a ln =--=, 所以11a=,解得1a =; 另解:因为f (1)0=,所以()0f x 等价于()f x 在0x >时的最小值为f (1), 所以等价于()f x 在1x =处是极小值, 所以解得1a =;(2)由(1)可知2()f x x x xlnx =--,()22f x x lnx '=--, 令()0f x '=,可得220x lnx --=,记()22t x x lnx =--,则1()2t x x'=-,令()0t x '=,解得12x =, 所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102min t x t ln ==-<,又2212()0t e e=>,所以()t x 在1(0,)2上存在唯一零点,所以()0t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正, 所以()f x 必存在唯一极大值点0x ,且00220x lnx --=, 所以222200000000000()22f x x x x lnx x x x x x x =--=-+-=-, 由012x <可知20002111()()224max f x x x <-=-+=; 由1()0f e '<可知0112x e <<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 10.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 【解析】(1)由()f x ln '= 22x ax a -+, 可得()g x ln = 22x ax a -+,(0,)x ∈+∞, 所以112()2axg x a x x-'=-=, 当0a ,(0,)x ∈+∞时,()0g x '>,函数()g x 单调递增; 当0a >,1(0,)2x a∈时,()0g x '>,函数()g x 单调递增, 1(2x a∈,)+∞时,()0g x '<,函数()g x 单调递减. 所以当0a 时,()g x 的单调增区间为(0,)+∞; 当0a >时,()g x 的单调增区间为1(0,)2a,单调减区间为1(2a ,)+∞.⋯(6分)(2)由(1)知,f '(1)0=.①当102a <<时,112a >,由(1)知()f x '在1(0,)2a内单调递增, 可得当(0,1)x ∈时,()0f x '<,当1(1,)2x a∈时,()0f x '>. 所以()f x 在(0,1)内单调递减,在1(1,)2a内单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当12a =时,112a=,()f x '在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,()0f x ',()f x 单调递减,不合题意. ③当12a >时,1012a <<,()f x 在1(0,)2a上单减, 当1(2x a∈,1)时,()0f x '>,()f x 单调递增, 当(1,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以()f x 在1x =处取极大值,符合题意.综上可知,正实数a 的取值范围为1(2,)+∞.⋯(12分)11.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.【解析】(1)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 可得曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--=, 切点为0(0,cos00)e -,即为(0,1),曲线()y f x =在点(0,(0))f 处的切线方程为1y =;(2)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 令()(cos sin )1x g x e x x =--,则()g x 的导数为()(cos sin sin cos )2sin x x g x e x x x x e x '=---=-,当[0x ∈,]2π,可得()2sin 0x g x e x '=-,即有()g x 在[0,]2π递减,可得()(0)0g x g =,则()f x 在[0,]2π递减,即有函数()f x 在区间[0,]2π上的最大值为0(0)cos001f e =-=;最小值为2()cos 2222f e πππππ=-=-.1.(2020•道里区校级一模)已知函数21()(1)2f x xlnx m x x =-+-有两个极值点,则实数m 的取值范围为( ) A .1(e-,0)B .1(1,1)e--C .1(,1)e-∞-D .(1,)-+∞【答案】B【解析】由21()(1)2f x xlnx m x x =-+-,得()(1)f x lnx m x '=-+,0x >.要使21()(1)2f x xlnx m x x =-+-有两个极值点,只需()(1)0f x lnx m x '=-+=有两个变号根,即1lnxm x+=有两个变号根. 令()lnxg x x=,(0)x >,则21()lnx g x x -'=,由()0g x '=得x e =,易知当(0,)x e ∈时,()0g x '>,此时()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,此时()g x 单调递减. 所以1()()max g x g e e==, 而1()0g e e=-<,1lim lim 01x x lnx x x →+∞→+∞==,作出()y g x =,1y m =+的图象,可知:101m e <+<,解得111m e-<<-+. 故选B .2.(2020•内江三模)函数2()(12)22ax f x a x lnx =+--在区间1(2,3)内有极小值,则a 的取值范围是( ) A .1(2,)3--B .1(2,)2--C .(2-,11)(33--⋃,)+∞D .(2-,11)(22--⋃,)+∞【答案】D【解析】22(12)2(1)(2)()(12)ax a x ax x f x ax a x x x+--+-'=++-==, 当0a =时,()2f x x '=-,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a >时,令()0f x '=,得1x a=-,2x =,且102a -<<,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a <时,令()0f x '=,得1x a=-,2x =,且102a <-<,若()f x 在1(2,2)有极小值,只需12112a a ⎧-<⎪⎪⎨⎪->⎪⎩或12a ->,解得122a -<<-,或102a -<<,综上所述,122a -<<-,或12a -<,故选D .3.(2020•德阳模拟)已知函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,若不等式1212()()f x f x x x t +<++恒成立,那么t 的取值范围是( )A .[1-,)+∞B .[222ln --,)+∞C .[32ln --,)+∞D .[5-,)+∞【答案】D【解析】函数()f x 的定义域为(0,)+∞,2221()ax x f x x-+'=(0)x >, 因为函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,所以方程22210ax x -+=在(0,)+∞上有两个不相等的正实数根, 则121248010102a x x a x x a ⎧⎪=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.因为222121211122212121212122()()()22[()2]3()()12f x f x x x ax x lnx ax x lnx x x a x x x x x x ln x x ln a a+-+=-++-+--=+--++=---,设h (a )212ln a a=---,h '(a )22aa-=,易知h '(a )0>在1(0,)2上恒成立, 故h (a )在1(0,)2上单调递增,故h (a )1()52h <=-,所以5t -,所以t 的取值范围是[5-,)+∞. 故选D .4.(2020•汕头校级三模)已知函数21()(1)2x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( )A .(-∞,10][2,)+∞B .(-∞,10][3,)+∞C .(-∞,10][4,)+∞D .(-∞,1][03-,)+∞【答案】A 【解析】21()(1)2x x f x x e ae ax =--+,2()x xf x xe ae a '∴=-+,()f x 只有一个极值点,()f x '∴只要一个变号零点.(1)当0a =时,()x f x xe '=,易知0x =是()f x 的唯一极值点; (2)当0a ≠时,方程2()0x x f x xe ae a '=-+=可化为1x x x e e a-=-, 令1()g x x a=,()x xh x e e -=-,可得两函数均为奇函数, ∴只需判断0x >时,两函数无交点即可.①当0a <时,1()0g x x a=<,()0x x h x e e -=->,所以()g x 与()h x 有唯一交点0x =,且当0x >时,()()g x h x <;当0x <时,()()g x h x >. 0x ∴=是()f x 的唯一极值点;②当0a >时,()0x x h x e e -'=+>,即()h x 在(0,)+∞上单调递增,且(0)0h =,lim ()x h x →+∞=+∞,设()h x 过原点的切线为y kx =,切点为(m ,)(0)km m >, 则m m m me e k km e e --⎧+=⎨=-⎩,解得0m =,2k =, 如图所示,当1y x a=在直线2y x =下方(第一象限)或与2y x =重合时,0x =是唯一交点,能满足()0f x '=的变号零点,即函数()f x 的极值点, 12a∴.综上所述,实数a 的取值范围为(-∞,10][2,)+∞.故选A .5.(2020•山西模拟)已知函数3()(2)x e f x t lnx x x x=-++仅有一个极值点1,则实数t 的取值范围是( ) A .1(,]33e ⎧⎫-∞⎨⎬⎩⎭B .1(,]3-∞C .1(,]23e ⎧⎫-∞⎨⎬⎩⎭ D .1(,]2-∞【答案】B 【解析】由题意知函数()f x 的定义域为(0,)+∞,222(1)(23)()(1)1323()(2)xx e x x t x e x f x t x x x x -+--+'=-+-=, 因为函数恰有一个极值点1,所以023xe t x -=+无解,令()(0)23x e g x x x =>+,则2(21)()0(23)x e x g x x +'=>+,所以()g x 在(0,)+∞上单调递增,从而1()(0)3g x g >=,所以13t 时,023x e t x -=+无解,3()(2)x e f x t lnx x x x =-++仅有一个极值点1,所以t 取值范围是1(,]3-∞.故选B .6.(2020•南平三模)函数3211()(2)(0)32f x x a x x a =-++>在(,)e +∞内有极值,那么下列结论正确的是( )A .当1(0,2)a e e ∈+-时,11a e e a -->B .当1(2,)2ea e e ∈+-时,11a e e a --<C .当(,)2ea e ∈时,11a e e a -->D .当1(,)a e e e∈+时,11a e e a --<【答案】B【解析】令2()()(2)1(0)g x f x x a x a ='=-++>,则△2(2)40a =+->, 若()f x 在(,)e +∞内仅有一个极值点,即()g x 在(,)e +∞内有一个零点, 则20()(2)10a g e e a e >⎧⎨=-++<⎩,解得12a e e >+-; 若()f x 在(,)e +∞内仅有两个极值点,即()g x 在(,)e +∞内有两个零点, 则20()(2)1022a g e e a e a e ⎧⎪>⎪=-++>⎨⎪+⎪>⎩,无解, ∴当12a e e>+-时,函数()f x 在(,)e +∞内有极值, 现考查不等式11a e e a --<,两边同时取对数可得,1(1)a e lna -<-,即1(1)0a e lna ---<, 令1()1(1),2h a a e lna a e e=--->+-,则1()1e h a a-'=-,令h '(a )0>,解得1a e >-, ∴函数h (a )在1(2,1)e e e+--上单调递减,在(1,)e -+∞上单调递增, 又111(2)3(1)(2)h e e e ln e e e e+-=+---+-112(1)10e e lne e e<+---=-<,h (e )(1)(1)0e e lne =---=,∴当1(2)a e e e∈+-时,h (a )0<成立,即11a e e a --<,∴选项B 正确. 故选B .7.(2020•龙岩模拟)已知函数()xf x ax lnx=-在(1,)+∞上有极值,则实数a 的取值范围为( ) A .1(,]4-∞B .1(,)4-∞C .1(0,]4D .1[0,)4【答案】B 【解析】21()()lnx f x a lnx -'=-,设22111()()()lnx g x lnx lnx lnx -==-, 函数()f x 在区间(1,)+∞上有极值,()()f x g x a ∴'=-在(1,)+∞上有变号零点,令1t lnx=,由1x >可得0lnx >,即0t >, 得到22111()244y t t t =-=--+, ∴14a <. 故选B .8.(2020•武汉模拟)设函数2()(32)()f x lnx a x x a R =+-+∈在定义域内只有一个极值点,则实数a的取值范围为( ) A .8(,)9+∞B .8(0,)9C .(,0)-∞D .(0,)+∞【答案】C【解析】2()(32)f x lnx a x x =+-+,定义域为(0,)+∞,21231()(23)ax ax f x a x x x-+'=+-=, 设2()231g x ax ax =-+,①当0a =时,()1g x =,故()0f x '>, ()f x ∴在(0,)+∞上为增函数,所以无极值点.②当0a >时,△298a a =-, 若809a<时△0,()0g x ,故()0f x ', 故()f x 在(0,)+∞上递增,所以无极值点. 若89a >时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <, 且1232x x +=,而(0)10g =>,则12304x x <<<, 所以当1(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递增; 当1(x x ∈,2)x ,()0g x <,()0f x '<,()f x 单调递减; 当2(x x ∈,)+∞,()0g x >,()0f x '>,()f x 单调递增. 所以此时函数()f x 有两个极值点;③当0a <时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <,但(0)10g =>,所以120x x <<,所以当2(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递増; 当2(x x ∈,)+∞,()0g x <,()0f x '<,()f x 单调递减. 所以此时函数()f x 只有一个极值点. 综上得:当0a <时()f x 有一个极值点. 故选C .9.(2020•昆明一模)已知函数221()(44)(4)2x f x e x x k x x =--++,2x =-是()f x 的唯一极小值点,则实数k 的取值范围为( ) A .2[e -,)+∞ B .3[e -,)+∞ C .2[e ,)+∞ D .3[e ,)+∞【答案】D【解析】由题可知,21()(4424)(24)(2)[(4)]2x x f x e x x x k x x e x k '=--+-++=+-+,2x =-是()f x 的唯一极小值点,(4)0x e x k ∴-+恒成立,即(4)x k e x --,令()(4)x g x e x =-,则()(3)x g x e x '=-,当3x <时,()0g x '<,()g x 单调递减;当3x >时,()0g x '>,()g x 单调递增,∴3()(3)min g x g e ==-,3k e ∴--,即3k e .故选D .10.(2020•江西模拟)已知定义在(0,)+∞上的函数()()x a f x e ln x a -=-+,其中0a >,e 为自然对数的底数.(1)求证:()f x 有且只有一个极小值点; (2)若不等式()212f x x a ln ++-在(0,)+∞上恒成立,求实数a 的取值范围.【解析】(1)证明:由于1()x a f x e x a-'=-+ 21()0()x a f x e x a -''=+>+,则()f x ' 在(0,)+∞ 上单调递增.令()x g x e x =-,则()1x g x e '=-,故当(,0)x ∈-∞时,()0g x '<,()g x 单调递减 当(0,)x ∈+∞ 时,()0g x '>,()g x 单调递增, 则()(0)1min g x g ==,即1x e x x +>,由于1(0)0aaa a e f e a e a --'=-=<,1(1)021f a e a '+=->+,故0(0,1)x a ∃∈+,使得0()0f x '=,且当0(0,)x x ∈时0()0f x '<,()f x 单调递减; 当0(x x ∈,)+∞时,0()0f x '>,()f x 单调递增.因此()f x 在(0,)+∞ 有且只有一个极小值点0x ,无极大值点. (2)由于不等式()212f x x a ln ++- 在(0,)+∞ 上恒成立,()i 必要性:当1x = 时,不等式成立,即 1(1)312a e ln a a ln --++--令1()(1)312,()0a g a ln a a e ln g a -=+++--, 由于11()0123a g a e a a -'=++>++,则g (a ) 在 (0,)+∞ 上单调递增,又由于g (1)0=,则g (a )0 的解为01a <. ()ii 充分性:下面证明当01a < 时, ()212f x x a ln ++- 在(0,)+∞ 上恒成立令()()2112x a h x e ln x a x a ln -=-++++, 由于01a <,01a >--,1x a x --,1x a x e e --,01a x x <++,()(1)ln x a ln x ++,()(1)ln x a ln x -+-+,12,2122,2122,2122a x a x x a x x a x +++++++-++-+,则1()(1)2212x h x e ln x x ln --+++令1()(1)2212x m x e ln x x ln -=-+++,则 11()122x m x e x x -'=-++,1231()0(1)(22)x m x e x x -''=++>++, ()m x ' 在(0,)+∞ 上单调递增,由于m '(1)0=,则当(0,1)x ∈时,()0m x '<,()m x 单调递减, 当(1,)x ∈+∞ 时,()0m x '>,()m x 单调递增, 故()m x m =(1)0=,即()0m x 恒成立, 因此,当01a < 时,()212f x x a ln ++- 在(0,)+∞ 上恒成立.故a 的取值范围为(0,1].11.(2020•红河州三模)已知函数()()1af x lnx a R x =-∈+. (1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数()f x 存在两个极值点1x ,2x ,求实数a 的取值范围,并证明:1()f x ,f (1),2()f x 成等差数列.【解析】(1)由()1af x lnx x =-+得21()(1)a f x x x '=++,故切线斜率k f ='(1)14a=+, 又f (1)2a =-,故切线方程为:(1)(1)24a ay x +=+-,即(4)4430a x y a +---=;(2)2221(2)1()(0)(1)(1)a x a x f x x x x x x +++'=+=>++,由题意知:1x ,2x 是方程()0f x '=在(0,)+∞内的两个不同实数解, 令2()(2)1(0)g x x a x x =+++>,注意到(0)10g =>,其对称轴为直线2x a =--, 故只需220(2)40a a -->⎧⎨=+->⎩,解得:4a <-, 即实数a 的取值范围是(,4)-∞-,由1x ,2x 是方程2(2)10x a x +++=的两根,得:122x x a +=--,121x x =,故12()()f x f x + 1212()()11a a lnx lnx x x =-+-++ 121212122()1x x ln x x a x x x x ++=-+++22121a aa --+=---+a =-,又f (1)2a=-,即12()()2f x f x f +=(1),故1()f x ,f (1),2()f x 成等差数列.12.(2020•启东市校级模拟)已知函数()(0)f x alnx a =≠与212y x e=的图象在它们的交点(,)P s t 处具有相同的切线. (1)求()f x 的解析式;(2)若函数2()(1)()g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求21()g x x 的取值范围. 【解析】(1)根据题意,函数()(0)f x alnx a =≠与212y x e= 可知()af x x'=,1y x e '=,两图象在点(,)P s t 处有相同的切线,所以两个函数切线的斜率相等, 即1as e s=,化简得s ae =, 将(,)P s t 代入两个函数可得22s alns e=②,综合上述两式①②可解得1a =,所以()f x lnx =.(2)函数22()(1)()(1)g x x mf x x mlnx =-+=-+,定义域为(0,)+∞,222()2(1)m x x mg x x x x-+'=-+=, 因为1x ,2x 为函数()g x 的两个极值点,所以1x ,2x 是方程2220x x m -+=的两个不等实根, 由根与系数的关系知121x x +=,122mx x =,(*), 又已知12x x <,所以121012x x <<<<,222211()(1)g x x mlnx x x -+=,将(*)式代入得22222222212()(1)2(1)121g x x x x lnx x x lnx x x -+-==-+-, 令()12h t t tlnt =-+,1(2t ∈,1),()21h t lnt '=+,令()0h t '=,解得:t e=,当1(2t ∈)e 时,()0h t '<,()h t 在1(2e 单调递减;当(t e ∈,1)时,()0h t '>,()h t 在(e,1)单调递增;所以2()(11min eh t h ee===-, 1(){()2h t max h <,h (1)},11()2022h ln h =-<=(1),即21()g x x 的取值范围是2[1e -0). 13.(2020•河南模拟)设函数()f x xlnx =,()()x g x ae a R =∈.(1)若曲线()y f x =在1x =处的切线也与曲线()y g x =相切,求a 的值. (2)若函数()()()G x f x g x =-存在两个极值点. ①求a 的取值范围;②当22ae 时,证明:()0G x <. 【解析】(1)()f x xlnx =,()1f x lnx '=+,(0,)x ∈+∞,f ∴(1)0=,f '(1)1=,故曲线()f x 在1x =处的切线方程是1y x =-; 设直线1y x =-与()y g x =相切于点0(x ,01)x -,()x g x ae '=,00()x g x ae ∴'=,由00011x x ae ae x ⎧=⎪⎨=-⎪⎩,得022x a e -=⎧⎨=⎩; (2)()1x G x lnx ae '=+-, ①()G x 在(0,)+∞上存在两个极值点等价于()0G x '=在(0,)+∞上有2个不同的根,由10x lnx ae +-=,可得1xlnx a e +=,令1()xlnx t x e +=, 则11()xlnx x t x e --'=,令1()1h x lnx x =--,可得211()0h x x x'=--<, 故()h x 在(0,)+∞递减,且h (1)0=, 当(0,1)x ∈时,()0h x >,()0t x '>,()t x 递增, 当(1,)x ∈+∞时,()0h x <,()0t x '<,()t x 递减, 故t (1)1e=是极大值也是最大值,又当0x →时,()t x →-∞,当x →+∞时,()0t x >且趋向于0, 要使()0G x '=在(0,)+∞有2个根,只需10a e<<, 故a 的取值范围是1(0,)e;②证明:设()()xG x ae F x lnx x x==-, 2(1)()xx a x e F x x--'=, 当01x <时,22a e,()0F x ∴'>,则()F x 在(0,1)递增,()F x F ∴(1)0ae =-<,当1x >时,2(1)()[](1)x a x xF x e x a x -'=---, 令()(1)x x H x e a x =--,则21()0(1)x H x e a x '=+>-,22a e ,H ∴(2)22220ae e a a -=-=, 取(1,2)m ∈,且使2(1)m e a m >-,即2211ae m ae <<-, 则22()0(1)m mH m e e e a m =-<-=-,()H m H (2)0,故()H x 存在唯一零点0(1,2)x ∈, 故()F x 有唯一的极大值点0(1,2)x ∈, 由0()0H x =,可得000(1)x x e a x =-,故0001()1F x lnx x =--,0(1,2)x ∈,020011()0(1)F x x x '=+>-,故0()F x 为(1,2)上的增函数, 0()F x F ∴<(2)222102ae ln ln =--<, 综上,当22a e 时,总有()0G x x<,即()0G x <.14.(2020•河南模拟)已知函数21()22f x x ax lnx =-+,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,212()x x x <,求21()2()f x f x -的取值范围. 【解析】(1)()f x 的定义域是(0,)+∞,2121()2x ax f x x a x x-+'=-+=,令221y x ax =-+, 当△2440a =-即11a -时,0y ,此时()f x 在(0,)+∞递增, 当1a <-时,2210x ax -+=有2个负根,此时()f x 在(0,)+∞递增,当1a >时,2210x ax -+=有2个正根,分别是211x a a =-221x a a =+- 此时()f x 在1(0,)x 递增,在1(x ,2)x 递减,在2(x ,)+∞递增, 综上,1a 时,()f x 在(0,)+∞递增,1a >时,()f x 在2(0,1)a a -递增,在2(1a a --21)a a +-递减,在2(1a a +-)+∞递增;(2)由(1)得:122x x a +=,121x x =,1a >,21121ax x =+,22221ax x =+, 1a >,1(0,1)x ∴∈,2(1,)x ∈+∞, 222122211111()2()22(2)22f x f x x ax lnx x ax lnx ∴-=-+--+ 2221211212x x lnx lnx =-++-+222222111()212x lnx ln x x =-++-+2222211312x lnx x =-+++,令22t x =,则1t >,113()122g t t lnt t =-+++,则222211332(1)(2)()2222t t t t g t t t t t -+----'=--+==,当12t <<时,()0g t '>,当2t >时,()0g t '<, 故()g t 在(1,2)递增,在(2,)+∞递减,g (2)13222ln =+, 21()2()f x f x ∴-的取值范围是(-∞,132]22ln +. 15.(2020•运城模拟)设函数()f x xlnx =.(1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数2()()F x f x ax =-有两个极值点,求实数a 的取值范围; (3)当120x x >>时,221212()()()2m x x f x f x ->-恒成立,求实数m 的取值范围. 【解析】(1)()1f x lnx '=+,()f x 在点(1,f (1))处的切线斜率k f ='(1)1=,则切线方程为1y x =-,(2)()()212F x f x ax lnx ax '='-=+-.()F x 有两个极值点. 即()F x '有两个零点,即120lnx ax +-=有两个不等实根,12lnxa x+=, 令21()()lnx lnxg x g x x x+-='=, 在(0,1)上()0g x '>,()g x 在(0,1)上单调递增.在(1,)+∞上单调递减,()max g x g =(1)1=.x →+∞时,()0g x →. 即12(0,1),(0,)2a a ∈∈.(3)221212()()()2m x x f x f x ->-可化为222211()()22m m f x x f x x ->-. 设2()()2m Q x f x x =-,又120x x >>. ()Q x ∴在(0,)+∞上单调递减,()10Q x lnx mx ∴'=+-在(0,)+∞上恒成立,即1lnxmx+. 又1()lnxh x x+=在(0,1)上单调递增,在(1,)+∞上单调递减. ()h x ∴在1x =处取得最大值.h (1)1=.1m ∴.16.(2020•鹿城区校级模拟)已知函数2()(3)1()f x axlnx x a x a R =-+-+∈. (Ⅰ)当1a =时,求曲线()f x 在(1,f (1))处的切线方程; (Ⅱ)若()f x 存在两个极值点1x ,212()x x x <. ①求a 的取值范围;。

导数的应用函数极值与最值课件

导数的应用函数极值与最值课件

极值计算示例
01
02
03
步骤
1. 定义域:全体实数
2. 一阶导数:f'(x)=3x^212x+9
极值计算示例
3. 二阶导数:f''(x)=6x-12
4. 令一阶导数为0,解出对应的x值:x=1或x=3
5. 判断导数在x值附近的符号变化:在x=1附近, f'(x)<0;在x=3附近,f'(x)>0
04
计算得f(-2)=0为最
小值,f(2)=16为
03
最大值
判断f(-2)和f(2)为 极值点,且为单调
性改变的点
04
导数在优化问题中的应用
优化问题的概念与分类
01
优化问题定义:在满足一定条件下,寻求某个 函数的最优值。
03
静态优化:目标函数和束缚条件都不随时间变化。
02
分类
04
动态优化:目标函数或束缚条件随时间变化。
经济模型
导数可以用于建立经济模型,例 如在需求函数中,对价格求导可 以得到需求弹性。
导数在其它领域的应用
工程领域
导数可以用于优化设计、控制过程、 预测趋势等。例如,在机械设计中, 对结构强度进行导数分析可以找到最 优设计方案。
科学计算
导数可以用于数值计算、插值、拟合 等技术中。例如,在数值积分中,对 函数进行离散化求导可以得到数值积 分的结果。
中,物体的平衡状态通常可以通过求导来找到极值点。
曲线斜率
03
导数可以用来计算曲线的斜率,例如在光学中,反射和折射定
律可以用导数来描述。
导数在经济学中的应用
边际分析
导数可以用于边际分析,例如在 成本函数中,对产量求导可以得 到单位产量的成本变化。

函数极值与导数的关系

函数极值与导数的关系

函数极值与导数的关系
函数极值与导数的关系在高等教育中起着重要的作用。

函数极值可以用来反映
函数在其区间上的最大值或最小值,是复习数学分析的重要一环,而数学分析也是大学数学课程的常见内容。

导数可以定义为函数的变化率,它能反映函数在每点的斜率,它的定义也是基础数学学科的核心内容。

因此,函数极值与导数的关系不可忽视,它也是其他学科如物理等的基础内容。

函数极值与导数的关系可以被简单地表述为:函数极值是函数弯曲变化的条件,而导数是求函数极值的重要方法。

因此,如果我们希望求函数的极值,则必须首先找出函数的导数,然后根据导数判断函数弯曲变化的情况,最后再求出函数极值的值和位置。

同样,我们也可以通过对导数的研究,将函数极值的值和位置反推到导数的表达式中,从而解决更多复杂的问题。

总而言之,函数极值与导数的关系在高等教育中起着至关重要的作用。

任何涉
及函数分析的研究,都必须把握好函数极值与导数的相互关系,以保证我们的研究在分析的准确性。

函数极值与导数的关系也定义了许多数学规律,从来无止境地活跃着,鼓舞着数学研究的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的极值与导数练习基础篇1.函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图1-3-10所示,则函数f(x)在开区间(a,b)内的极大值点有()图1-3-10A.1个B.2个C.3个D.4个【答案】B[依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x<b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值,选B.]2.函数y=x3-3x2-9x(-2<x<2)有()A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值【答案】C[由y′=3x2-6x-9=0,得x=-1或x=3.当x<-1或x>3时,y′>0;由-1<x<3时,y′<0.∴当x=-1时,函数有极大值5;3∉(-2,2),故无极小值.]3.已知a是函数f(x)=x3-12x的极小值点,则a=()A.-4 B.-2C.4 D.2【答案】D [∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.]4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) 过(1,4)f ′(1)=0 过(3,0)f ′(3)=0A .y =x 3+6x 2+9xB .y =x 3-6x 2+9xC .y =x 3-6x 2-9xD .y =x 3+6x 2-9x【答案】B [∵三次函数过原点,故可设为 y =a x 3+bx 2+cx , ∴y ′=3x 2+2bx +c .又x =1,3是y ′=0的两个根, ∴⎩⎪⎨⎪⎧1+3=-2b 31×3=c 3,即⎩⎪⎨⎪⎧b =-6,c =9∴y =x 3-6x 2+9x ,又y ′=3x 2-12x +9=3(x -1)(x -3) ∴当x =1时,f (x )极大值=4 ,当x =3时,f (x )极小值=0,满足条件,故选B.]5.函数f (x )=x 3-3bx +3b 在(0,1)) A .0<b <1 B .b <1 C .b >0D .b <12【答案】A [f ′(x )=3x 2-3b ,要使f (x )在(0,1)内有极小值,则⎩⎪⎨⎪⎧f ′(0)<0,f ′(1)>0,即⎩⎪⎨⎪⎧-3b <0,3-3b >0,解得0<b <1.]D . 二、填空题6.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________.【答案】 -2∵f ′(x )=3x 2+2ax +b ,∴⎩⎨⎧f ′(1)=3,f ′⎝ ⎛⎭⎪⎫23 =0,即⎩⎨⎧3+2a +b =3,43+43a +b =0.解得a =2,b =-4, ∴a +b =2-4=-2.7.设a ∈R ,若函数y =e x +ax (x ∈R )有大于零的极值点,则a 的取值范围为________. 导函数有大于零的解【答案】 (-∞,-1) ∵y =e x +ax ,∴y ′=e x +a ,令y ′=e x +a =0,则e x =-a , 即x =ln(-a ),又∵x >0,∴-a >1,即a <-1.8.若直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是_______.【答案】 (-2,2)令f ′(x )=3x 2-3=0,得x =±1,则极大值为f (-1)=2,极小值为f (1)=-2.如图,观察得-2<a <2时恰有三个不同的公共点. a=2或-2两个点 a>2或a<-2一个点 -2<a <2三个点 改:方程x 3-3x=a 解的个数三、解答题9.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极大值点还是极小值点,并说明理由. 【答案】 f ′(x )=3ax 2 +2bx +c , (1)法一:∵x =±1是函数的极值点, ∴x =±1是方程3ax 2+2bx +c =0的两根. 由根与系数的关系知 ⎩⎪⎨⎪⎧-2b 3a =0, ①c 3a =-1,②又f (1)=-1,∴a +b +c =-1, ③由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0, ① 3a -2b +c =0,② 又f (1)=-1,∴a +b +c =-1,③由①②③解得a =12,b =0,c =-32. (2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1). 当x <-1或x >1时f ′(x )>0, 当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数.∴当x =-1时,函数取得极大值,x =-1为极大值点;当x =1时,函数取得极小值,x =1为极小值点.10.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值.【答案】 (1)因为f (x )=a ln x +12x +32x +1, 故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0, 即f ′(1)=0, 从而a -12+32=0, 解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32 =3x 2-2x -12x 2 =(3x +1)(x -1)2x 2. 令f ′(x )=0,解得x 1=1,x 2=-13因x 2=-13不在定义域内,舍去. 当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值,且f (1)=3. 提升篇1.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .不存在【答案】A [∵f ′(x )=3x 2+2ax +b 且f (x )在x =1处取得极大值10, ∴f ′(1)=3+2a +b =0,f (1)=1+a +b -a 2-7a =10, ∴a 2+8a +12=0,∴a =-2,b =1或a =-6,b =9. 当a =-2,b =1时,f ′(x )=3x 2-4x +1=(3x -1)(x -1). 当13<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极小值,与题意不符.当a =-6,b =9时,f ′(x )=3x 2-12x +9=3(x -1)(x -3); 当x <1时,f ′(x )>0,当1<x <3时,f ′(x )<0, ∴f (x )在x =1处取得极大值,符合题意; ∴a b =-69=-23.]2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x )的图象如图1-3-11所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)f ′(2)=0 f ′(-2)=0B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)【答案】D [由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.]3.函数y =x e x 在其极值点处的切线方程为________. 【答案】 y =-1e由题知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝ ⎛⎭⎪⎫-1,-1e ,k=0 ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e .4.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________. 【答案】[1,5)∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点, 即f ′(x )=0在(-1,1)内恰有一个根. 又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13.∴应满足⎩⎪⎨⎪⎧f ′(-1)≤0,f ′(1)>0,∴⎩⎪⎨⎪⎧3-2-a ≤0,3+2-a >0,∴1≤a <5. 改:有两个极值点5.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 改:方程x 3-x 2-x +a .=0有一个解改:函数f (x )=x 3-x 2-x 与直线y=-a 有一个交点 【答案】(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫-∞,-13-13 ⎝ ⎛⎭⎪⎫-13,1 1 (1,+∞) f ′(x ) +0 -0 + f (x )极大值极小值f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时,有f (x )>0, x 取足够小的负数时,有f (x )<0, 所以曲线y =f (x )与x 轴至少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点, ∴f (x )极大值<0或f (x )极小值>0,即527+a <0或a -1>0,∴a <-527或a >1,∴当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.。

相关文档
最新文档