高温合金概述

合集下载

高温合金在航空航天工业中的应用

高温合金在航空航天工业中的应用

高温合金在航空航天工业中的应用一、引言随着科技的发展,航空航天工业已经成为人们生活中的重要组成部分,而高温合金则成为航空航天工业中不可或缺的材料之一。

高温合金具有很高的耐热性、抗氧化性和耐腐蚀性,因此在航空航天工业上具有广泛应用。

二、高温合金的概述高温合金是指能够在高温下承受高负荷并不断保持其机械性能、化学性能和物理性能的一类合金。

高温合金采用了一系列增强和合金化措施来增强其高温性能,如Ti、Al、Ni、Cr等元素的添加。

高温合金在高温、高压、强腐蚀和高辐射等恶劣环境下具有出色的表现。

三、高温合金在推进器中的应用航天器是推进器最典型的应用之一。

高温合金可用于火箭喷管和推进器中的轴承、轴承安装板、密封和燃烧室,因其可在2000℃以上的高温环境下正常工作。

例如,铱金属被添加到铜合金中以提高其强度和耐热性,从而实现在高温下使用。

四、高温合金在航空发动机中的应用1.烧结件烧结件是航空发动机中重要的高温合金部件之一。

烧结件分为两类:超声速前缘和涡轮喷气器。

烧结件也是支持空气流动、转子反应和燃烧气体的流动型涡轮的组成部分。

高温合金的优异性能使得烧结件具有足够的强度和刚度,且能在400℃以上的高温下保持其特性。

2.燃烧室高温合金在燃烧室中用于制造涡轮和叶轮,这些部件在高温、高压、强腐蚀和高辐射等环境下工作。

高温合金的各种性能使得其在燃烧室中具有很高的韧性和强度。

五、高温合金在航空航天领域中的挑战高温氧化、金属间腐蚀和应力腐蚀开裂是高温合金在航空航天工业中所面临的主要挑战。

高温氧化和金属间腐蚀是因为高温合金中的Al和Ti元素易氧化和反应造成的,而应力腐蚀开裂是由于高温合金材料的本身细微缺陷引起的。

六、结论高温合金具有出色的高温性能、抗氧化性和耐腐蚀性,因此在航天工业中具有广泛应用,如在火箭喷管、推进器、航空发动机烧结件和燃烧室中。

虽然高温合金在航空航天领域中面临着挑战,如高温氧化和金属间腐蚀,但是随着科技的不断发展,其应用前景十分广阔。

高温合金

高温合金

-Ta4- 4.5 ----Ta1.52 ---
粉末高温合金:"FGH"后跟阿拉伯数字表示 焊接用的高温合金丝:"HGH"后跟阿拉伯数字 MGH——机械合金化粉末高温合金 DK——定向凝固高温合金 DD——单晶铸造高温合金 70年代以前,我国高温合金牌号简单,变形高温合金只有3 位数字编号,铸造高温合金只有2位数字编号,即省略了前 缀后的表示基体类别和强化型类别的第一位数字,如 "K17",即现在的"K417","GH39"即为现在的 "GH3039"
--
8.5
--
5
1.8
--
--
K406 K409 K417ห้องสมุดไป่ตู้K417G K418 K419 K438 K640 K644
0.15 0.1 0.18 0.18 0.12 0.11 0.15 0.5 0.25
15.5 8 9 9 12.5 6 16 25.5 29.5
余 余 余 余 余 余 余 10.5 10.5
合金牌 号 K211
国外牌号
C 0.15
Cr
Ni
Co
W
Mo
Al
Ti
Fe 余
Nb
其他
BAT-45Y
20
46
--
8
--
--
--
--
--
K401
AHB-300 GMR235D B-1900 IN-100 Rene'100 IN713C TRWVIA IN738 X-40 FSX-414
0.05
15.5

高温合金的用途 航空发动机:现代航空发动机中用量占发动机总量的40%~60%, 主要用于四大热端部件:导向器,涡轮叶片,涡轮盘和燃烧室. 火箭发动机及燃气轮机高温热端部件 70年代以来,高温合金在原子能,能源动力,交通运输,石油 化工,冶金矿山和玻璃建材等诸多民用工业部门得到推广应用, 这类高温合金中一部分主要仍然利用高温合金的高温高强度特性, 而另有一大部分则主要是开发和应用高温合金的高温耐磨和耐腐 蚀性能. 目前美国高温合金总产量约为每年2.3~3.6万t,大约1/2~1 /3应用于耐蚀的材料.高温耐磨耐蚀的高温合金,由于主要目标 不是高温下的强度,因此这些合金成分上的特点是以镍,铁或钴 为基,并含有大约20%~35%的铬,大量的钨,钼等固溶强化元 素,而铝,钛等γ形成元素则要求含量甚少或者根本不加入.

高温合金牌号 国标

高温合金牌号 国标

高温合金牌号国标摘要:1.高温合金概述2.高温合金牌号国标分类3.各类高温合金的特点及应用4.国标高温合金牌号的选择与实用建议正文:高温合金是指在高温环境下具有良好的抗氧化性、热疲劳性、蠕变性等性能的合金。

它们广泛应用于航空航天、电力、石油化工等高温环境中。

根据我国国家标准,高温合金牌号分为以下几类:1.镍基高温合金:以镍为主要基体的合金,具有优良的抗氧化性、热疲劳性和蠕变性能。

常见的牌号有IN718、IN738、IN925等。

2.铁基高温合金:以铁为主要基体的合金,具有良好的高温强度和抗氧化性。

常见的牌号有Fecralloy、Fe-Cr-Al等。

3.钴基高温合金:以钴为主要基体的合金,具有优异的耐热腐蚀性和高温强度。

常见的牌号有CoCrMo、CoNiCr等。

4.铜基高温合金:以铜为主要基体的合金,具有良好的导热性和抗氧化性。

常见的牌号有Cu-Al-Mn、Cu-Ni-Mn等。

在选择高温合金牌号时,需根据实际应用场景和性能要求进行筛选。

以下是一些实用建议:1.针对高温环境,优先选择具有良好抗氧化性、热疲劳性和蠕变性能的合金。

例如,镍基高温合金在高温下具有优异的抗氧化性,适用于高温氧化性环境。

2.考虑合金的力学性能和使用寿命。

不同牌号的高温合金具有不同的力学性能,如强度、硬度等。

在满足使用要求的前提下,选择具有较高使用寿命的合金。

3.关注合金的加工性能。

高温合金的加工性能较差,选择时应充分考虑生产工艺的可行性。

如铁基高温合金较易加工,适用于生产制造。

4.考虑合金的焊接性能。

部分高温合金在焊接过程中易产生裂纹、变形等问题,选择时应注意其焊接性能。

如镍基高温合金焊接性能较好,可用于焊接结构件。

5.结合实际应用场景,参照国标牌号表进行选择。

国标中详细列出了各类高温合金牌号及其性能参数,可根据实际需求进行筛选。

总之,在选择高温合金牌号时,应充分考虑使用环境、性能要求、加工焊接等因素。

各种高温合金特性的介绍

各种高温合金特性的介绍

各种高温合金特性的介绍高温合金是指在高温环境下具有良好性能的合金材料。

它们具有耐高温、抗氧化、抗蠕变等特性,在航空航天、能源、化工等领域具有广泛应用。

下面将介绍几种常见的高温合金及其特性。

1.镍基高温合金镍基高温合金是目前应用最为广泛的一类高温合金。

它们的主要特性如下:-耐高温性能优异:镍基高温合金能在高温下保持良好的力学性能,能在1000℃以上长期使用。

-抗氧化:镍基高温合金能在高温气氛中形成致密的氧化层,防止进一步氧化。

-耐蠕变性能优异:镍基高温合金具有优异的抗蠕变性能,能在高温下长期承受较大的应力而不发生塑性变形。

-抗化学侵蚀能力强:镍基高温合金能够抵抗大多数腐蚀介质的侵蚀,适用于复杂的化工环境。

2.钛基高温合金钛基高温合金是一类新兴的高温合金材料,其主要特性如下:-耐高温性能优异:钛基高温合金可以在600℃以上长期使用,一些类型的钛基高温合金甚至可以在900℃以上使用。

-轻质高强度:钛基高温合金具有较低的密度和高的强度,适用于高温结构轻量化的需求。

-抗氧化:钛基高温合金通过表面氧化处理形成一层致密、防氧化的外层,具有很好的抗氧化性能。

-耐腐蚀性:钛基高温合金在酸碱、盐等腐蚀介质中的耐蚀性能较强,适用于复杂化学环境。

3.铝基高温合金铝基高温合金是一类用铝为基础元素的高温合金。

其主要特性如下:-耐高温性能优异:铝基高温合金一般在500℃以上能够长期使用,一些铝基高温合金甚至在900℃以上也有应用。

-轻质高强度:铝基高温合金的密度较低,但强度较高,适用于高温结构轻量化和高载荷需求。

-抗氧化:铝基高温合金能在高温下形成致密的氧化层,具有较好的抗氧化性能。

-耐蠕变性能优异:铝基高温合金能在高温下保持较好的力学性能,抗蠕变性能突出。

4.铂基高温合金铂基高温合金是一类以铂为基础元素的高温合金-高温稳定性:铂基高温合金在高温下具有较高的稳定性,具有较好的抗氧化性能。

-耐蠕变性能优异:铂基高温合金具有优异的抗蠕变性能,可以在高温高应力下使用。

高温合金简述

高温合金简述
缺点:组织不够稳定;抗氧化性差;工作温度较低
镍基高 温合金
优点:可溶解较多的元素,具有良好的组织稳定性、高温强 度和抗腐蚀性,工作温度较高。 缺点:疲劳性能稍差,塑性较低
优点:较高温度下仍具有高强度和抗热疲劳性能
钴基高 温合金
缺点:中低温工作性能不如前两种高温合金
4
2. 镍基高温合金

图2.1为20世纪40年代后的镍基高温合金及其工艺的发展过程[1]。
Fig. 2.1 Development of Ni-base superalloys
5
镍基高温合金的基本组织类型有:奥氏体基体(高度合金化固溶体);
弥散分布于基体中的碳化物或金属间化合物相,如γ′相[Ni3(Al,Ti)]和γ"
相(NiNb,NiTa);或高熔点稳定化合物质点(由粉末冶金或机械合金 化方法制得)[2]。图2.2为GH4169的金相显微组织结构图。
Fig.2.2 Microstructure of super alloy GH4169
6
镍元素具有独特的原子结构和稳定的晶体结构,其晶体结构从室温 至熔点的温度区间内始终保持面心立方结构不变,同时,许多合金元素 都可以固溶到镍基材料中进行充分的合金化,因此镍具有作为高温合金 基体元素的优越属性,同时镍基高温合金中可以析出 L12结构γ′相,这是 镍基高温合金中最有效的强化方式,使得镍基高温合金具有优良的综合 性能。


13
14
[5] Jian Zhang. Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792. Scripta Materialia, 2003, 48(6): 677~681. [6] D. Leidermark, J.J. Moverare, S. Johansson, K. Simonsson, S. Sj ö str ö m. Tension/compression asymmetry of a single-crystal superalloy in virgin and degraded condition. Acta Materialia, 2010,58(15): 4986~4997.

高温合金十大品牌

高温合金十大品牌
Chapter
前三名品牌的市场份额与竞争力分析
• 总结词:高温合金市场的领头羊,市场份额大, 竞争力强,技术实力雄厚,研发能力强。
前三名品牌的市场份额与竞争力分析
• 详细描述 • 品牌A:作为高温合金市场的领导者,品牌A的市场份额一直稳居首位,显示
出强大的竞争力。他们拥有先进的技术实力和强大的研发能力,不断推出新产 品以满足市场需求。此外,品牌A的产品质量可靠,性能稳定,得到了用户的 广泛认可。 • 品牌B:品牌B是高温合金市场上的重要参与者,市场份额和竞争力均较强。 他们注重技术创新和研发投入,拥有多项专利技术,为产品的升级换代提供了 有力保障。同时,品牌B在市场营销方面也表现出色,拥有广泛的客户群体和 品牌知名度。 • 品牌C:品牌C是高温合金市场的一匹黑马,近年来市场份额不断增长,竞争 力逐渐增强。他们凭借创新的产品设计和优质的服务赢得了客户的青睐,逐渐 在市场上占据了一席之地。此外,品牌C还注重与客户的合作,根据客户需求 定制产品,满足不同用户的需求。
04
高温合金品牌的研发与技术进 步
Chapter
前三名品牌的研发与技术进步
• 总结词:领头羊地位、研发投入大、技术成果突
前三名品牌的研发与技术进步
• 详细描述 • 品牌A:作为高温合金领域的领头羊,该品牌长期以来一直保持着技术领先地
位。公司投入大量研发经费,专注于新型高温合金材料的研发,并取得了多项 技术成果,如高强度高温合金、耐腐蚀高温合金等。 • 品牌B:该品牌在高温合金领域的研发实力和技术成果仅次于品牌A。公司注 重技术创新和产品升级,不断推出适应市场需求的新型高温合金材料,如轻质 、高强度、高导热性等。 • 品牌C:该品牌在高温合金领域的技术实力较强,拥有多项核心专利和技术成 果。公司注重研发投入,与高校和研究机构合作,不断推进高温合金材料的研 发和应用。

高温合金概述

高温合金概述

1.1 高温合金1.1.1 高温合金及其发展概况高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。

具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。

高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。

高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。

如今先进航空发动机中高温合金用量已超过50%。

此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。

高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。

高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。

高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。

然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。

除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。

具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。

除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

高温合金牌号 国标

高温合金牌号 国标

高温合金牌号国标摘要:1.高温合金概述2.高温合金牌号国标分类3.常见高温合金及其应用领域4.高温合金的选材原则与加工工艺5.我国高温合金产业的发展现状与展望正文:一、高温合金概述高温合金是指在高温环境下具有良好抗氧化性、热疲劳性、蠕变性等性能的金属材料。

高温合金通常由铁、镍、钴、钛等金属元素组成,并添加了铬、铝、钨、硼等合金元素。

高温合金广泛应用于航空航天、电力、石油化工、核工业等高温、高压、高氧化性环境下。

二、高温合金牌号国标分类根据我国国家标准GB/T 15000-2017《高温合金和耐热钢分类》,高温合金牌号分为以下几类:1.铁基高温合金:如GH系列、Fecralloy等;2.镍基高温合金:如IN718、IN738、IN939等;3.钴基高温合金:如CoCrAlY、CoNiCrAlY等;4.钛基高温合金:如Ti-6Al-4V、Ti-5Al-2.5Sn等;5.铜基高温合金:如Cu-Ni-Fe、Cu-Al等。

三、常见高温合金及其应用领域1.铁基高温合金:广泛应用于涡轮叶片、涡轮盘、热交换器、螺栓等部件;2.镍基高温合金:应用于涡轮叶片、涡轮盘、燃烧室、喷嘴等高温高压环境;3.钴基高温合金:主要应用于航空航天、核工业等领域的高温部件;4.钛基高温合金:应用于航空航天、化工、医疗等领域的耐磨、耐腐蚀部件;5.铜基高温合金:应用于导热、导电、耐磨等高温环境。

四、高温合金的选材原则与加工工艺1.选材原则:根据使用环境、力学性能、加工性能等方面进行选择;2.加工工艺:包括熔炼、铸造、锻造、焊接、热处理等。

加工过程中应注意控制晶粒度、组织形态、杂质含量等,以保证高温合金的性能。

五、我国高温合金产业的发展现状与展望1.发展现状:我国高温合金产业已具备一定的规模,产品种类日益丰富,部分产品达到国际先进水平;2.发展趋势:高端化、轻质化、环保化、智能化。

未来我国高温合金产业将加大对新材料、新技术的研发投入,提高产品质量,拓宽应用领域。

高温合金钛合金

高温合金钛合金

Power Cables Power Cables
Compact Vacuum Induction Melting ( VIM) Furnace Type VIDP
Vacuum Induction Degassing and Pouring
VIDP Schematic During Pouring
VIDP Melt Chamber During Tilting
Comparison:
22 t VIM - Chamber Type / 22 t VIDP
Melt Chamber Volume 350 m3 11 m3 Small Vacuum Pumping System necessary
Big Vacuum Pumping System necessary
Continuous Casting out of the VIDP Furnace
8 ton VIDP furnace at DONCASTERS, Ross & Catherall, UK
First industrial employed horizontal continuous casting system for vacuum melted superalloy bar-sticks. - High yield, no central porosity, no surface cleaning, ... - Higher cleanliness by flotation of nonmetallic inclusions
VIM / VIDP
德国推荐的不同合金冶炼工艺路线
高质量镍基合金的熔炼
成份控制
真 空 感 应 熔 炼 电 渣 重 熔

高温合金方面的经典著作

高温合金方面的经典著作

高温合金方面的经典著作(实用版)目录一、高温合金的概述二、高温合金的性能要求三、高温合金的典型应用领域四、经典著作介绍五、总结正文一、高温合金的概述高温合金是指在高温环境下具有良好的抗氧化性、热疲劳性、蠕变性和耐磨性等综合性能的合金。

这类合金在航空航天、能源、汽车等领域具有广泛的应用。

高温合金的发展与新型发动机技术的突破密切相关,对于提高发动机的热效率、降低排放和延长使用寿命具有重要意义。

二、高温合金的性能要求高温合金在高温环境下需要具备以下性能:1.高温强度:在高温下保持足够的强度,以承受应力。

2.抗氧化性:在高温氧化环境下,具有良好的抗腐蚀性能。

3.热疲劳性:在高温循环应力作用下,具有较高的疲劳寿命。

4.蠕变性:在长时间高温作用下,具有较低的蠕变速率。

5.耐磨性:在高温摩擦环境中,具有较高的耐磨性能。

三、高温合金的典型应用领域1.航空航天:发动机、涡轮、叶片等关键部件。

2.能源:燃气轮机、锅炉、核电等高温环境。

3.汽车:涡轮增压器、排气管等部件。

4.军事:火箭、导弹等高技术武器。

四、经典著作介绍在高温合金领域,有许多经典的著作为研究者和工程师提供了宝贵的理论知识和实践经验。

以下是一些值得推荐的经典著作:1.《高温合金学》:该书详细讲述了高温合金的基本原理、性能、工艺和应用,是高温合金领域的经典之作。

2.《高温合金材料及应用》:该书从高温合金的性能要求、组织结构、合金设计等方面进行了系统阐述,对高温合金研究和应用具有较高的参考价值。

3.《高温合金手册》:该书是一本权威的高温合金工具书,涵盖了高温合金的种类、性能、工艺和应用等方面的内容,对相关领域的研究和工作者具有较大的实用价值。

五、总结高温合金在航空航天、能源、汽车等领域具有广泛的应用,其性能要求和应用领域对其研究和发展提出了较高的要求。

高温合金

高温合金

1. 高温合金的定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定盈利作用下长期工作的一类金属材料。

2. 高温合金的命名方法:变形高温合金以“GH”加4位阿拉伯数字表示。

前缀后第一位数字表分类号,1、2表铁基或铁镍基,3、4表镍基,5、6表钴基;1、3、5表固溶强化型合金,2、4、6表时效沉淀型合金。

前缀后的第2、3、4位表合金编号。

铸造高温合金以“K”加3位阿拉伯数字表示。

前缀后第一位数字表分类号,含义与变形合金相同,第2、3位表合金编号。

粉末高温合金以“FGH”加阿拉伯数字表示。

3. 高温合金主要用于四大热端部件:导向器、涡轮叶片、涡轮盘、燃烧室。

4. 常见的高温合金基体有哪几种? 铁基 镍基 钴基5. 高温合金的固溶强化机制:固溶度小的合金元素较之固溶度大的合金元素,会产生更强烈的固溶强化作用,但其溶解度小却又限制其加入量。

6. 合金元素的固溶强化能力排序:Cr<Mo<W<V<Nb<Ta<Al<Ti<Be7. 影响蠕变的重要因素:层错能8. 合金元素对层错能的影响规律:合金元素对镍的层错能的影响按下列次序递减:W Ti Cr Co Cu Fe。

对于奥氏体铁,合金元素对层错能的影响也很显著,低层错能合金的高温强度较高。

9. 第二相强化的本质:第二相质点与位错的交互作用是合金第二相强化的本质。

10. 第二相强化机制:第二相质点强化是由两个相晶格错配产生的弹性应力场对位错运动施加的阻力,其作用完全与固溶强化中由溶质原子尺寸不同引起的弹性应力场的作用相似。

11. 高温合金γ’是如何强化其性能的?γ’相本身既有较好的强度又是可以产与变形的,不会由于吸出大量γ’或存在 大块γ’相而造成严重的脆性。

所以使得γ’相成为高温合金的主要强化相。

12. 碳化物时效强化的条件?1)具有高温下可以溶解和低温下析出的可能性。

2)碳化物的结构与奥氏体基体相似,具有均匀析出的条件。

高温合金的名词解释是什么意思

高温合金的名词解释是什么意思

高温合金的名词解释是什么意思高温合金,顾名思义,就是指能够在高温环境下保持稳定性能的一类特殊合金材料。

随着现代工业的不断发展和技术的进步,对材料在高温环境下的性能要求也越来越高,而高温合金正是为了满足这一需求而产生的。

高温合金的主要特点是其在高温下具有较高的强度、抗氧化性和抗腐蚀性。

通过合金化的方式以及独特的微观结构设计,高温合金能够保持相对稳定的力学性能,并防止材料在高温环境下的破裂、变形和蠕变等问题。

同时,高温合金还能够有效地防止氧化和腐蚀,从而延长材料在高温环境下的使用寿命。

高温合金的发展历史可以追溯到20世纪初,当时主要以镍为基础的合金被广泛应用在航空发动机中,用于提高发动机的工作温度和性能。

随着高温工作环境的拓展,高温合金的种类也不断增加,包括镍基合金、钴基合金、铁基合金和钛基合金等多种类型。

镍基合金是目前应用最广泛的高温合金之一。

它主要由镍、铬和铁等元素组成,通过合金中稀有金属和其他元素的添加,可以进一步提升其高温下的性能。

镍基合金具有良好的高温强度、抗氧化性和耐腐蚀性,被广泛应用于航空航天、石油化工、发电和船舶等领域。

钴基合金是另一类重要的高温合金。

相较于镍基合金,钴基合金具有更高的熔点和更好的高温强度,因此在某些特殊领域具有独特的应用优势。

钴基合金主要应用于航空航天、能源和化工等领域,用于制造高温部件和耐磨耗零部件。

铁基合金通常被称为耐磨铸铁,是一种具有高温强度和耐磨性能的铸铁合金。

由于其低成本、易加工和良好的耐磨性能,铁基合金在冶金、机械制造、矿山和建筑等领域得到广泛应用。

钛基合金是一类由钛和其他金属元素组成的合金材料。

钛基合金具有低密度、高强度和优良的耐高温性能,因此被广泛应用于航空航天、汽车和医疗等领域。

钛基合金在高温环境下能够保持较好的力学性能,同时还具有良好的耐腐蚀性能和生物相容性。

总结而言,高温合金是一类在高温环境下具有较高强度、抗氧化性和抗腐蚀性的特殊合金材料。

通过合金化的手段和微观结构设计,高温合金能够满足现代工业对材料在高温环境下的各种要求。

高性能金属结构材料-高温合金1.pdf

高性能金属结构材料-高温合金1.pdf
(Ni,Co,Fe)3(Al,Ti,Nb,Ta) 4 碳化物:MC,M6C,M23C6,Cr7C3 4 硼化物:M3B2 4γ”-Ni3Nb (BCT) 在高Nb合金如718中存在 4σ相 (BCT): (Cr,Mo)x(Ni,Co)y (x,y=1~7)针状相, 对
中、高温性能有害 (Nv>2.5,中温长期时效) 4μ-A7B6相 (三角晶系): 高W,Mo合金中出现 4 不常见的相:Laves相,R相,δ相
镍、铁、钴的合金化能力不同,镍具有最好的相稳定 性,铁最差,这是最重要的特性。镍或镍铬基体可以 固溶更多的合金元素而不生成有害的相,而铁或铁镍 基体却只能固溶较少的合金元素,有强烈的析出各种 有害相的倾向。这一特性为改善镍的各种性能提供了 潜在的可能性,而铁、钴则受到了一定的限制。
镍、铁、钴的这种特性与其各自的电子结构有关。
a 常规铸造等轴晶合金 b 定向凝固合金
c 单晶合金
左图为高温 合金的光学 显微镜照 片,通常为 枝晶组织, 枝晶间白色 大块为共晶 γ′相。
左图为高温 合金的扫描 电镜照片, 黑色块状为 γ′相,白色 编篮状为 γ,白色块 状为碳化 物。
形成筏排结构的过程可以分为以下几步:①γ′相的部分 溶解;②溶解的γ′相形成元素扩散;③扩散的元素在γ′颗 粒外延生长。
铸造合金:CC:K (28) DS:DZ(~10) SX:DD
粉末合金:FGH(95,96)
四、高温合金的应用背景与发展历史
¾主要应用领域
航空、航天、核工业、能源动力、交通运 输、石油化工、冶金等
¾航空上的应用
航空发动机(叶片、涡轮盘、燃烧室等) 高温合金用量>50%(高性能发动机上 60%)
航空发动机构造
高温合金的应用背景与发展历史

高温合金是什么

高温合金是什么

高温合金是什么高温合金是什么凡在应力及高温(一般指600~650摄氏度以上)同时作用下,具有长时间抗蠕变能力与高的持久强度和高的抗蚀性的金属材料,称为耐热合金或高温合金。

常用的有铁基合金、镍基合金、钴基合金,还有铬基合金、钼基合金及其他合金等。

高温合金是制造燃汽轮机、喷气式发动机等高温下工作零部件的重要材料。

高温合金是在高温严酷的机械应力和氧化、腐蚀环境下应用的一类合金。

随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。

一、变形高温合金变形高温合金是指可以进行热、冷变形加工,工作温度范围-253,1320?,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。

按其热处理工艺可分为固溶强化型合金和时效强化型合金。

1、固溶强化型合金使用温度范围为900,1300?,最高抗氧化温度达1320?。

例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000?拉伸强度为140MPa、延伸率为85%,1000?、30MPa应力的持久寿命为200小时、延伸率40%。

固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2、时效强化型合金使用温度为-253,950?,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。

制作,700?,要求具有良好的高低温强度和抗疲劳性能。

例如:涡轮盘的合金工作温度为-253GH4169合金,在650?的最高屈服强度达1000MPa;制作叶片的合金温度可达950?,例如:GH220合金,950?的拉伸强度为490MPa,940?、200MPa的持久寿命大于40小时。

变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。

二、铸造高温合金铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。

其主要特点是:1. 具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。

高温合金

高温合金

2.4.3.2 涡轮盘合金成分、组织和性能
• 涡轮盘的性能要求
– 高强度 – 高断裂韧性 – 抗初始裂纹能力 – 低的疲劳裂纹扩展能力。 – 抗蠕变?
Distribution of Contributing Factors to the Strength
Matrix (pure Ni) ~20% Solid solution + Tertiary γ ’ ~30% Secondary γ’ ~35% Grain Boundary + Primary γ’ ~15%
• FGH4095
– 镍基沉淀硬化型粉末高温合金,可在1050°C以下长 期使用
镍基高温合金中 的主要相
Typical nickel-base superalloys are variations of an austenitic nickel-chromiumtungsten (or molybdenum) matrix, further hardened by coherent particles of γ’(Ni3Al,Ti) with optional additions of cobalt, niobium, tantalum, zirconium, boron, hafnium, carbon, and iron. Single-crystal superalloys do not require grain boundary strengthening elements so that boron, carbon, zirconium, and hafnium are eliminated.
高温合金的微观组织
• γ相: 基体相 • γ’ 相: 主要强化相 • 镍基高温合金的典型组织是在基

高温合金材料的应用 ppt课件

高温合金材料的应用  ppt课件
课件
高温合金材料的简介
1. 高温合金概述 2. 高温合金的切削加工性
课件
1. 高温合金概述
高温合金的定义: 高温合金是指以铁、镍、钴为基体,能在600℃以上的高温
及一定应力作用下长期工作的一类金属材料。
性能特点:
⑴高温合金具有较高的高温强度; ⑵良好的抗氧化和抗热腐蚀性能; ⑶良好的疲劳性能、断裂韧性、塑性。
课件
课件
变形高温合金:涡轮/高压压气机盘、鼓、轴、环 类零部件广泛采用的GH169合金和封严环形用的 GH90X系列低膨胀高温合金
高温合金涡轮外 环
发动机异型环
发动机涡轮外环
课件
2. 高温合金的切削加工性
高温合金的切削加工特点: 1.切削加工性差 2.切削变形大 3.加工硬化倾向大 4.切削力大且波动大 5.切削温度高 6.刀具易磨损 7.表面质量和精度不易保证
FWP14
FWP14
FWS10
WP7系列、WP13系列 WZ9、WJ9、WS11、WZ6、WP8 WP7系列、WP13系列
WP7、WP13系列、WZ9、WS11、WZ6、WP6甲、FWP14
WZ9、WP6、WZ6、WP7甲、WP7系列、WP13系列、FWP14、FWS10、WZ6
FWP14、FWS10、FWS10、YGY
课件
3.合理设置切削参数
在高温合金加工过程中,随着切削速度的增加,切削温度将会升高。 为避免切削温度过高,应采用较低的切削速度。
4.正确选择切削液
一般加工高温合金,宜选用极压油类,以降低刀具一切屑接触面产生 的粘结磨损。但为防应力腐蚀降低疲劳强度,加工镍基高温合金不宜用硫 (s)系极压切削液,可用乳化液、透明水基切削液。

高温合金的种类

高温合金的种类

高温合金的种类高温合金是一种能够在高温环境下保持稳定性能的合金材料。

它们通常包含铬、钼、钨、铂、镍等元素,这些元素可以提高材料的耐热性和耐腐蚀性。

高温合金广泛应用于航空航天、石油化工、电力等领域。

一、镍基高温合金镍基高温合金是最常见的一种高温合金,具有优异的耐热性和耐腐蚀性。

它们通常由镍、钼、钨等元素组成,同时加入少量的铬和铁。

其中,Inconel系列是最为知名的镍基高温合金之一,具有优异的耐磨性和抗氧化性能。

二、钴基高温合金钴基高温合金也称为超级合金,以其出色的机械强度和抗氧化性能而闻名。

它们通常由钴、铬、镍等元素组成,并加入少量的铝和钛。

此外,Haynes系列也是一种广泛应用于航空航天领域的钴基高温合金。

三、铁基高温合金铁基高温合金通常由铁、铬、铝等元素组成,具有优异的耐高温和抗氧化性能。

它们通常应用于电力行业,如汽轮机叶片和燃烧器等部件。

其中,Incoloy系列是一种著名的铁基高温合金。

四、钨基高温合金钨基高温合金以其极高的熔点和优异的耐高温性能而闻名。

它们通常由钨、铜等元素组成,并加入少量的镍和铬。

钨基高温合金广泛应用于航空航天领域和核工业领域。

五、其他高温合金此外,还有许多其他类型的高温合金,如钛基高温合金、铂基高温合金等。

这些材料具有不同的特性和应用领域。

结语:总之,各种类型的高温合金都是在特殊环境下发挥作用的材料。

它们具有优异的耐热性、耐腐蚀性和机械强度,在航空航天、石油化工、电力等领域得到了广泛应用。

不同类型的高温合金具有不同的特点和应用领域,选择合适的高温合金材料对于提高产品性能和延长使用寿命具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 高温合金1.1.1 高温合金及其发展概况高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。

具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。

高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。

高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。

如今先进航空发动机中高温合金用量已超过50%。

此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。

高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。

高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。

高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。

然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。

除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。

具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。

除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

1956年我国正式开始研究高温合金,第一种高温合金是GH3030,用作WP-5火焰筒。

上个世纪60年代先后研制成功GH4037、K417等。

至70年代初,我国高温合金的生产研究已经初具规模,在这一阶段,主要是仿制、发展苏联高温合金及其工艺,质量达到了相当水平。

70年代后,我国开始引进和试制了一批欧美体系的高温合金,研究生产了一批新型镍基合金,如GH4133、GH4133B、K405等。

几十年来,我国已经研究生产了100多种高温合金,形成了较为完备的研究生产体系,同时发展了一系列具有特色的工艺技术,为我国航空事业提供了有力的保障。

高温合金的发展主要经历了几个阶段:二十世纪40年代以前提出概念,40-50年代实现在喷气发动机的应用,50-60年代在真空熔炼技术取得重大进展,60-70年代集中在合金化方面,70年代后主要在工艺研究方面,定向凝固、单晶合金、粉末冶金、机械合金化和陶瓷过滤等新工艺成为高温合金发展的主要动力,其中定向凝固工艺制备的单晶合金尤为重要,在航空发动机涡轮叶片中应用尤为广泛。

二十世纪80年代以来,国内外广泛开展数值模拟研究,取得了重要进展,并在此基础上开展了显微组织及冶金缺陷预测研究。

1.1.2 高温合金的种类(一)铁基高温合金铁基高温合金的定义是,这些合金的主要组分为铁,并含有相当数量的铬和镍,通常镍含量大约为25%-55%,Ni+Fe≥65%为基,尽可能含有少量的钼和钨。

因为铁基高温合金中镍含量较高,所以也称铁-镍基高温合金。

其强化方式为碳化物或金属间化合物沉淀强化和固溶强化。

金属间化合物通常为Ni3(Al,Ti)即 ’相。

铁基高温合金是由奥氏体不锈钢演化而来的。

各种合金元素的加入对合金带来一种或多种所期望的性能。

对于具有面心立方母体的合金,最有效地强化是由像Ni、Al、Ti、Nb这样的元素实现的。

这类合金也可通过加入相对大量的碳(约0.5%)以形成碳化物沉淀来强化,有时加入氮和磷以增加这种作用。

(二)钴基高温合金钴基高温合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧。

偶然也还含有铁的一类合金,与其他高温合金不同,它不是由与基体牢固结合的有序沉淀相来强化,而是由已被固溶强化的奥氏体fcc母体和母体中分布少量碳化物组成。

铸造钴基高温合金却是在很大程度上依靠碳化物强化。

纯钴晶体在417℃以下是密排六方(hcp)晶体结构,在更高温度下转变为fcc。

为了避免钴基合金在使用时发生这种转变,实际上所有钴基合金由镍合金化,以便在室温到熔点温度范围内使组织稳定化。

钴基合金具有平坦的断裂应力-温度关系,但在1000℃以上却显示出比其他高温下具有优异的抗热腐蚀性能,这可能是因为该合金含铬量较高,这是这类合金的一个特征。

钴基合金比镍基合金的焊接性能和抗热疲劳性能更好。

(三)镍基高温合金镍基高温合金是指在650℃-1200℃范围内使用,以镍为基体的奥氏体型合金。

具有在使用温度下较高的强度,优良的抗氧化和抗腐蚀性,是应用最广泛的高温合金。

镍基高温合金广泛地应用于制造航空发动机、各类燃气轮机热部件,如涡轮部分的工作叶片、导向热片、涡轮盘和燃烧室等,由于镍基高温合金的工作温度高、组织稳定,有害相少,抗氧抗热腐蚀性好,能在较高温度和应力条件下工作,因此在高温合金中占重要地位。

目前先进的发动机上镍基高温合金已占总量重的一半左右,不仅涡轮叶片和燃烧室,而且涡轮盘甚至压气机叶片也开始使用镍基合金。

镍基高温合金按工艺分为变形、铸造(定向、单向、共晶)、弥散强化机械合金化,快速凝固粉末合金四类,依靠新工艺开发不仅可提高高温合金性能,还相应开发出多种新合金。

1 镍基变形高温合金镍基变形高温合金是以镍为基体(大于50%)的可塑性变形的高温合金。

在650℃-1200℃温度下具有较高的强度,良好的抗氧化和抗燃气腐蚀能力。

分为固溶体强化和沉淀强化两类。

自1941年英国发明第一种Nimonic75合金以来,由于其基体稳定,合金化强化潜力大,综合性能优异等,得到系列发展和广泛应用。

⑴固溶强化型合金。

通过添加与Ni原子尺寸不同的W,Mo,Cr等使基体晶格畸变;加入降低合金层错能元素Co;减缓基体扩散速率元素W,Mo等,可获得一定高温强度、抗氧化、抗燃气腐蚀,冷热疲劳性能好,具有良好冷成型和焊接性能的系列合金。

⑵沉淀强化型合金。

主要是通过固溶处理进行时效处理;从过饱和固溶体γ中沉淀出γ’相,阻碍位错运动而实现强化合金。

其次辅助以固溶强化和晶界强化。

具有较高的高温蠕变强度、抗疲劳性能与抗氧化、抗腐蚀性能。

2 镍基铸造高温合金镍基铸造高温合金是以镍为基体,用铸造工艺成型的高温合金。

在600℃-1100℃的氧化和燃气腐蚀气氛中,可承受复杂应力长期可靠的使用。

广泛应用于制造燃气涡轮发动机导向叶片、涡轮转子叶片以及航天、能源、石油化工等领域的高温结构件。

固溶强化是通过向基体中添加不同量的Cr,Co,W,Mo,Ta,Nb等元素,提高原子间结合力,使晶格畸变,降低堆垛层错能,产生短程有序及其原子偏聚,阻止位错运动,降低固溶体中元素扩散系数,强化合金基体。

沉淀强化是通过添加Al,Ti,Nb,Ta,Hf,Re等元素,形成稳定的γ’相;加入C,B等元素与Cr,Ti,Nb,Hf,W,Mo等形成各类碳化物,强化合金及晶界,强化作用取决于强化相的类型、数量、形态、大小和分布。

晶界强化通过加入微量B,Zr稀土元素添补原子空位,提高晶界合金化程度,净化晶界,减缓晶界扩散,强化在高温应力作用下合金的薄弱环节晶界。

1.1.3 高温合金的强化(一)强化原理1 固溶强化固溶强化是将一些合金元素加入到铁、镍或钴基高温合金中,而仅形成单相奥氏体来达到强化的目的。

高温合金中,合金元素的固溶强化作用首先是与溶质和溶剂原子尺寸因素差别相关联,此外两种原子的电子因素差别和化学因素差别都有很大影响,而这些因素也是决定合金元素在基体中的溶解度的因素。

固溶强化提高热强性主要反映在两方面:(1)通过原子结合力的提高和晶格的畸变,使在固溶体中的滑移阻力增加,(熔点的绝对温度)时是相也就是使滑移变形困难而强化,这在温度T≤0.6T熔当重要的。

(2)在高温使用条件下(T≥0.6T)更为突出的是通过原子结合力的提高,熔晶温度,阻碍扩散式形变过程的进行,降低固溶体中元素的扩散能力,提高再结熔因而直接影响滑移变形对形变量的贡献。

2 第二相强化(1)内应力场的作用以γ’相强化为例,由于γ’相在基体中共格析出,而在γ’相周围造成高的弹性应力场。

显然γ’相与基体的点阵错配度越大,内应力场也越强,相应得强化效果也应该是越显著,同时也增大了γ’相本身的不稳定性。

(2)位错在第二相前受阻,通过扩散机构绕过第二相障碍的作用(3)位错与第二相颗粒的交互作用铁、镍及高温合金中析出的γ’相,由于它与基体共格,具有与基体γ相同的晶体点阵,所以它能够被在基体滑移面上移动的位错所切割,形成超点阵位错和反相畴界。

第二相质点的大小、间距、数量及分布,直接影响其强化机制。

3 晶界强化与室温强化相反,晶界在高温形变时表现为薄弱环节,因而在破断时呈现晶间断裂的特征。

晶界的晶体结构不规则,原子排列杂乱,晶格歪扭,同时又有各种晶体缺陷(如位错、空洞等)存在。

在室温快速形变下,由于晶界不参与形变,并且可阻止晶内滑移的贯穿,因而有利于合金的强化。

但是,在高温蠕变时,晶界弱化并参与变形,有时晶界形变量甚至可占总形变量的50%。

在某种程度上可以认为,在常温下,晶界强度比晶内高,但晶界强度随温度升高下降的很快,在某一温度区间,晶内强度与晶界强度大致相当。

温度再升高,晶界强度就比晶内强度低。

晶界通过多种途径对多晶材料产生重大的影响(1)位向的作用。

这里仅指晶界两边的晶粒位向不同而造成的影响;(2)晶界区结构的作用。

这里不仅指晶界去本身的结构和缺陷特点,而且还指在晶界区存在的第二相质点的状态,及晶界区的其它组织结构特点;(3)晶界区化学成分(偏析)的作用。

由于晶界区的结构和缺陷特点,会带来杂质元素或其它元素(特别是微量元素)的偏析;由于晶界区的某些动力学现象,造成元素的局部贫富。

晶界的强化方式:①添加有益的合金化元素,主要包括稀土元素,镁、钙、钡、硼、锆等元素。

这些元素往往通过净化合金及微合金化两个方面来改善合金。

稀土元素和碱土元素净化合金的作用比较明显,而硼、锆、镁等主要起强化晶界作用。

②控制晶界,常采用弯曲晶界以及取消横向晶界的手段来提高高温合金的晶界性能。

4 碳化物强化及质点弥散强化作用对于以碳化物析出沉淀硬化的铁基和钴基高温合金,由于碳化物硬而脆的本质及其非共格析出的特点,其强化作用有以下特点:(1)低温下位错以Orowan绕过方式通过碳化物第二相。

相关文档
最新文档