特殊的平行四边形拔高题

合集下载

平行四边形拔高练习

平行四边形拔高练习

平⾏四边形拔⾼练习专题⼀平⾏四边形1.若A 、B 、C 三点不共线,则以其为顶点的平⾏四边形共有()个2.⼀个平⾏四边形的两条邻边的长分别是4cm 和5cm ,它们的夹⾓是30°,这个平⾏四边形的⾯积是().3.⼀个四边形的边长依次是a 、b 、c 、d 且,则这个四边形的形状为 .若,判定以a 、b 、c 、d 为边的四边形的形状为4.平⾏四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, EF=5. 如图,⼝ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为 .6.如图所⽰,在形状为平⾏四边形的⼀块地ABCD 中,有⼀条⼩折路EFG .?现在想把它改为经过点E 的直路,要求⼩路两侧⼟地的⾯积都不变,?请在图中画出改动后的⼩路.7.如图,为公园的⼀块草坪,其四⾓上各有⼀棵树,现园林⼯⼈想使这个草坪的⾯积扩⼤⼀倍,⼜要四棵树不动,并使扩⼤后的草坪为平⾏四边形,试问这个想法能否实现,若能请你设计出草图.8. 如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于()8. 如图所⽰,在平⾏四边形ABCD 中,∠ABC=60°,且AB=BC ,∠MAN=60°.请探索BM ,DN 与AB 的数量关系,并证明你的结论.9.如图:平⾏四边形ABCD ,在AB 的延长线上截取BE =AB ,BF =BD ,连结CE 、DF 交于G 点,试说明:CD =CG 。

10.如图将矩形纸⽚ABCD 沿AE 折叠,使点B 落在直⾓梯形AECD 的中位线FG 上,若则AE 的长为()44444a bcdabcd +++=bd ac d c b a 222222+=+++11.如图,将边长为8㎝的正⽅形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()12.如图,矩形中,过对⾓线交点作交于则的长是()13.将矩形纸⽚ABCD按如图所⽰的⽅式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为().14.如图,在矩形中,动点从点出发,沿→→→⽅向运动⾄点处停⽌.设点R运动的路程为,的⾯积为,如果关于的函数图象如图2所⽰,则当时,点R应运动到()15.如图,在平⾏四边形ABCD中,以AC为斜边作Rt△ACE,⼜∠BED=90°,则四边形ABCD 是矩形.试说明理由.16.如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD?的中点,那么MN⊥BD 成⽴吗?试说明理由.17.如图矩形中,延长到,使,是中点.求证:.18.如图所⽰,在直⾓坐标系中,矩形ABCD的顶点,A的坐标为(1,0),对⾓线的交点P的坐标为(52,1)⑴写出B、C、D三点的坐标;⑵若在线段AB上有⼀点若在AB上有⼀点E(⼆分之三,0),过E点的直线将矩形ABCD的⾯积分为相等的两部分,求直线的解析式;⑶若过C点的直线将矩形ABCD的⾯积分为4:3两部分,并与y轴交于点M,求M点的坐标.ABCD35AB BC==,.O OE AC⊥AD E,AE3MNPQ R N N P Q M Mx MNR△y y x9x=ABCD CB E CE AC=F AE BF DF⊥l1.如图,菱形OABC 的⼀边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°⾄OA ′B ′C ′的位置,若C=120°,则点B′的坐标为()2.如图是⼀个利⽤四边形的不稳定性制作的菱形晾⾐架.已知其中每个菱形的边长为20cm ,墙上悬挂晾⾐架的两个铁钉A 、B 之间的距离为20cm ,则∠1等于()A 、90°B 、60°C 、45°D 、30°3.如图,点P 是边长为1的菱形ABCD 对⾓线AC 上的⼀个动点,点M 、N 分别是AB 、BC 边上的中点,MP+NP 的最⼩值是()4.已知:如图,C 是线段BD 上⼀点,△ABC 和△ECD 都是等边三⾓形,R 、F 、G 、H 分别是四边形ABDE 各边的中点,求证:四边形RFGH 是菱形。

2020年中考数学压轴题专项训练——特殊的平行四边形(含详细解析)

2020年中考数学压轴题专项训练——特殊的平行四边形(含详细解析)

2020年中考数学压轴题专项训练——特殊的平行四边形1.已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.2.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)判断四边形ACDF的形状;(2)当BC=2CD时,求证:CF平分∠BCD.3.在菱形A BCD中,∠ABC=60°,延长BA至点F,延长CB至点E,使BE=AF,连结CF,EA,AC,延长EA交CF于点G.(1)求证:△ACE≌△CBF;(2)求∠CGE的度数.4.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)试判断四边形AEDF的形状.(2)当△ABC满足条件时,EF∥BC;当△ABC满足条件时,EF=AD.5.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.6.一个六边形的花坛被分割成7个部分,其中四边形PRBA,RQDC,QPFE为正方形.记正方形PRBA,RQDC,QPFE的面积分别为S1,S2,S3,RH⊥PQ,垂足为H.(友情提示:正方形的四个内角都等于90度,四边都相等)(1)若PR⊥QR,S1=16,S2=9,则S3=,RH=;(2)若四边形PRBA,RQDC,QPFE的面积分别为25m2、13m2、36m2①求△PRQ的面积;②请判断△PRQ和△DEQ的面积的数量关系,并证明你的结论;③六边形花坛ABCDEF的面积是m2.7.已知,如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D 不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①△BCG≌△DCE.②BH⊥DE.(2)当BH平分DE时,求GC的长.8.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.9.已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当平行四边形ABCD满足条件时,四边形GEHF是菱形;(3)若BD=2AB,探究四边形GEHF的形状,并说明理由.10.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结C E,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.11.如图,在四边形ABCD中,AD∥BC,AB=8,AD=16,BC=22,∠ABC=90°,点P 从点A出发,以每秒1单位的速度向点D运动,点Q从点C同时出发,以每秒v单位的速度向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当v=3时,若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为平行四边形,且线段PQ为平行四边形的一边,求t的值;(2)若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为菱形,且线段PQ为菱形的一条对角线,请直接写出t的值.12.如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC=°时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE=.13.如图,在矩形ABCD中,M是BC上一点,EF垂直平分AM,分别交BC,AM,AD于点E,O,F,连接AE,MF.(1)求证:四边形AEMF是菱形;(2)若AB=6,H为AB的中点,连接OH交AE于点P,OH+OA=9,求△OPE的周长.14.在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ.(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ、AC,在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.15.如图,四边形ABCD为菱形,∠BCD=60°,E为对角线AC上一点,且AE=AB,F为CE的中点,接DF、BF,BG⊥BF与AC交于点G;(1)若AB=2,求EF的长;(2)求证:CG﹣EF=BG.参考答案1.(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°=∠ECF,∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.2.(1)解:四边形ACDF是平行四边形,理由如下:∵四边形ABCD是矩形,∴AB∥CD,∠BCD=∠B=90°,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,在△F AE和△CDE中,,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,AB=CD,四边形ACDF是平行四边形,∴AF=CD,BF=BC,∴△BCF是等腰直角三角形,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.3.(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AF,∴BE+BC=AF+AB,即CE=BF,在△ACE和△CBF中,,∴△ACE≌△CBF(SAS);(2)解:由(1)可知:△ABC是等边三角形,△ACE≌△CBF,∴∠E=∠F,∵∠BAE=∠F AG,∴∠E+∠BAE=∠F+∠F AG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.4.解:(1)四边形AEDF是菱形;理由如下:∵DE∥AC交AB于点E,DF∥AB交AC于点F,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠ADF=∠F AD,∴F A=FD,∴四边形AEDF是菱形;(2)当△ABC满足AB=AC条件时,EF∥BC;当△ABC满足∠BAC=90°条件时,EF =AD.理由如下:由(1)得:四边形AEDF是菱形,∴AD⊥EF,∵AB=AC,AD是角平分线,∴AD⊥BC,∴EF∥BC;当∠ABC=90°时,四边形AEDF是正方形,∴EF=AD;故答案为:AB=AC,∠BAC=90°.5.(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠B AE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.6.解:(1)∵PR⊥QR,∴∠PRQ=90°,∴PR2+RQ2=PQ2,∵S1=16,S2=9,∴S3=16+9=25,∴PR=4,RQ=3,PQ=5,∵RH⊥PQ,∴PR•RQ=PQ•RH,∴RH==,故答案为:25,2.4;(2)①设PH=a,则QH=6﹣a,∵RH2=PR2﹣PH2=RQ2﹣HQ2,∴25﹣a2=13﹣(6﹣a)2,解得:a=4,∴RH2=PR2﹣PH2=25﹣16=9,∴RH =3,∴S △PQR =×6×3=9;②S △PRQ =S △DQE ,证明:延长RQ 到点M ,使QM =RQ ,连结PM ,∵QD =QM ,∠DQE =∠MQP ,QE =QP∴△DQE ≌△MQP (SAS ),∴S △DQE =S △MQP ,∵RQ =QM ,∴S △PRQ =S △MQP ,∴S △PRQ =S △DQE ;③六边形花坛ABCDEF 的面积=25+13+36+4×9=74+36=110m 2. 故答案为:110.7.(1)证明:∵正方形ABCD ,∴∠BCD =90°,BC =CD ,同理:CG =CE ,∠GCE =90°,∴∠BCD =∠GCE =90°,,∴△BCG ≌△DCE (SAS ),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BHE)=90°,∴BH⊥DE;(2)若BH垂直平分DE,连接BD,∴BD=BE,∵BD=,∴CG=CE=BE﹣BC=﹣1.8.解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.9.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形.10.(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.11.解:(1)∵当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB为平行四边形.此时,t=22﹣3t,t=.当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD为平行四边形.此时,16﹣t=3t,t=4,∵线段PQ为平行四边形的一边,故当t=或4时,线段PQ为平行四边形的一边.(2)当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得16﹣t=22﹣3t,解得t=3,当t=3时,PD=BQ=13,AP=AD﹣PD=16﹣13=3.在Rt△ABP中,AB=8,根据勾股定理得,BP═≠13∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意得,,解得,.故点Q的速度为2cm/s时,能够使四边形PBQD在t=6时为菱形.12.(1)证明:∵AC垂直平分BD,∴AB=AD,BF=DF,∵AB∥CD,∴∠ABD=∠CD B.∵∠AFB=∠CFD,∴△AFB≌△CFD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形;(2)①当∠ADC=60°,四边形ACEB为菱形,∵∠ADC=60°,∴∠BCE=60°,∴△BCE是等边三角形,∴CE=BE,∴四边形ACEB为菱形,故答案为:60;②当∠ADC=90°,BE=4时,DE=4,故答案为:4.13.(1)证明:∵EF垂直平分AM,∴AE=EM,OA=OM.∵四边形ABCD是矩形,∴AD∥BC.∴∠AFO=∠MEO,在△OF和△MOE中,,∴△AOF≌△MOE(AAS).∴OF=OE.∴四边形AEMF是平行四边形.∵AE=EM.∴四边形AEMF是菱形;(2)解:∵O、H分别为AM、AB的中点,∴BM=2OH,AM=2OA,∴AM+BM=2OA+2OH=18.设BM=x,则AM=18﹣x,在Rt△ABM中,由勾股定理得:62+x2=(18﹣x)2,解得:x=8,∴BM=8,AM=10.∴OA=AM=5,设EM=m,则BE=8﹣m,AE=EM=m,在Rt△ABE中,由勾股定理得:62+(8﹣m)2=m2,解得:m=,∴AE=EM=在Rt△AOE中,EO===.∵OP∥EM,∴==1,∴AP=PE,∴OP=EM=,∵PE=AE=,∴△OPE的周长=EO+PE+OP=++=10.14.证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵P、Q分别是边BC、CD的中点,∴BP=CQ,在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,(2)∵AP=AQ,∴△APQ是等腰三角形,∵BC=CD,∵P、Q分别是边BC、CD的中点,∴PC=CQ,∴△PQC是等腰三角形,∵AB=BC,AD=CD,∴△ABC,△ACD是等腰三角形,∴图中所有的等腰三角形有△ABC,△APQ,△ACD,△CPQ.15.(1)解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴∠BAD=∠BCD=60°,AC⊥BD,OB=OD,OA=OC,∠OAB=∠BAD=30°,∴OB=AB=1,OA=OB=,∴AC=2OA=2,∵AE=AB=2,∴CE=AC﹣AE=2﹣2,∵F为CE的中点,∴EF=CE=﹣1;(2)证明:设AB=2a,同(1)得:OB=AB=a,OA=OB=a,∴AC=2OA=2a,∵AE=AB=2a,∴CE=AC﹣AE=(2﹣2)a,OE=AE﹣OA=(2﹣)a,∵F为CE的中点,∴EF=CE=(﹣1)a,∴OF=OE+EF=(2﹣)a+(﹣1)a=a,∴OB=OF,∵AC⊥BD,∴△BOF是等腰直角三角形,∴∠BFG=45°,∵BG⊥BF,∴△BFG是等腰直角三角形,∴GF=BG,∵GF=CG﹣CF=CG﹣EF,∴CG﹣EF=BG.。

18-1-1平行四边形的性质 解答题拔高练习

18-1-1平行四边形的性质 解答题拔高练习

18.1.1平行四边形的性质1.如图,在□ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.2.如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.3.如图,已知在□ABCD中,对角线AC、BD相交于点O,求证:OA=OC、OB= OD.AB C DO4.如图,已知四边形ABCD、ADEF、ABGF都是平行四边形,且周长分别为22,26,16,求图中所有线段的长.5.如,E是▱ABCD的CD边的中点,AE,BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.6.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.7.如图,在▱ABCD中,点E在AB上,点F在CD上,AE=CF.求证:BF∥DE.8.在□ABCD中,AD=12.(1)若BD=10,AC=26,求S▱ABCD;(2)若∠ADC=105°,∠ACD=30°,求▱ABCD的周长.9.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.10.如图,在□ABCD中,直线EF∥BD,并且与CD、CB的延长线分别交于E、F,交AD于H,交AB于G.求证:EG=FH.11.如图,在梯形ABCD中,AB∥DC,DE∥BC,如果△AED的周长为28cm,EB=9cm,求梯形ABCD的周长.12.如图,在平行四边形ABCD中,BE⊥AC,DF⊥AC,E、F分别为垂足,试说明四边形BEDF是平行四边形.13.如图,在▱ABCD中,对角线AC,BD相交于点O,若DO=1.5,AB=5,BC=4,求▱ABCD 的面积.14.如图,在□ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,且AE⊥AD.(1)若BG=2,BC= √29,求EF的长度;(2)求证:CE+ √2 BE=AB.15.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF//CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.16.已知:如图, 平行四边形ABCD, 对角线AC与BD相交于点E, 点G为AD的中点, 连接CG,CG的延长线交BA的延长线于点F, 连接FD.(1) 求证: AB=AF;(2) 若AG=AB,∠BCD=120∘,判断四边形ACDF的形状,并证明你的结论 .17.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)线段AF与CE有什么关系?请证明你的结论.18.如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A)重合在一起,连接BD和CE,交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.19.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)线段AF与CE有什么关系?请证明你的结论.20.如图(1)初步探究:如图(1),点E、F分别在正方形ABCD边AB、AD 上,DE⊥CF于点P,小芳看到该图后,发现DE=CF,这是因为∠EDA和∠FCD都是∠EDC的余角,就会由判定得出≌.(2)类比发现:小芳进一步思考,如果四边形ABCD是矩形,如图,且DE⊥CF于点P,她发现DECF =ADCD,请你替她完成证明.(3)拓展延伸:如图(3),若四边形ABCD是平行四边形,试探究:当∠B与∠EPC满足什么关系时,使得DECF =ADCD成立?并证明你的结论.。

《平行四边形的判定定理》拔高练习2(2)(有答案)

《平行四边形的判定定理》拔高练习2(2)(有答案)

初中数学精品试卷4.4平行四边形的判定定理拔高练习一、填空题1.矩形的两条对角线的一个交角是60°,一条对角线与较短边的和是12 cm,则对角线长是 _________.2.在矩形 ABCD 中, BD、 AC 相交于 O,AC=6,AB=3,则 BC=_________,BD=_________,∠ AOB=_________, S 矩形ABCD=_________.3.有三个角是 _________的四边形是矩形 .对角线 _________的平行四边形是矩形 .有一个角是 _________的平行四边形是矩形 .4.如图 1,矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边上,如果∠ BAE=50°,则∠ DAF=_________.图 15.已知矩形的两条对角线的一个交角是40°,那么对角线与矩形的边所成的角是 _________.6.矩形 ABCD 的两条对角线交于点 O,(AB>BC),AC=2BC,则∠AOB=_________.7.顺次连结矩形四边中点所得四边形是_________.顺次连结菱形四边中点所得四边形是 _________.顺次连结等腰梯形四边中点所得四边形是_________.由此猜想:顺次连结_________的四边形四边中点所得四边形是矩形,顺次连结_________的四边形四边中点所得四边形是菱形.即新四边形的形状与原四边形的 _________有关 .8.菱形的周长是 20 cm,则菱形的一边长是 _________.9.菱形的相邻两内角之比为1∶ 2,则这两个角的度数分别是_________.10.已知菱形 ABCD 的两条对角线长分别是 6 cm 和 8 cm,则菱形的周长是_________.11.对角线互相垂直平分的四边形是_________.二、选择题12.能判定一个四边形是菱形的题设是()A.有一组邻边相等B.对角线互相垂直C.有三边相等D.四条边都相等13.如图 2,在菱形 ABCD 中,若∠ ABC=120°,则 BD∶AC 等于()图 2A. 3 ∶2B.1∶2C.3∶1D.3∶314.若菱形 ABCD 的周长为 16,∠ A∶∠ B=1∶2,则菱形的面积为()A.23B.33C.43D.8315.平行四边形 ABCD 中, AC、BD 交于点 O, OM 是△ OBC 的高,若点 M 是 BC 中点,那么平行四边形 ABCD()A.一定是矩形B.一定不是矩形C.不一定是矩形D.以上答案都不对三、解答题16.如图 3,在矩形 ABCD 中, DE⊥AC,∠ADE=∠BDE,求∠ EDC 的度数 .图 417.矩形 ABCD 中 ,AD=9 cm,AB=3 cm,将其折叠使点 D 与点 B 重合,求折叠后 DE 的长.图 418.已知:如图 5,等腰△ ABC 中,AB=AC,D 是 BC 的中点,DE∥AB,DF ∥AC,求证:四边形 AFDE 是菱形 .图 519.如图 6,矩形 ABCD 中,AC、BD 相交于 O,AE 平分∠ BAD 交 BC 于 E,若∠CAE=15°,求∠ BOE 的度数 .图 6参考答案一、 1.8 cm 2.33 6 60° 9 3 3.直角相等 90° 4.20 ° 5.70 °,20 °6.120 °7. 菱形矩形菱形对角线互相垂直对角线相等对角线8.5 cm9.60 °,120 ° 10.20cm11.菱形二、 12.D 13.D14.D 15.A三、 16.60 ° 17.5cm18.略 19.75 °。

北师大版九年级数学上册 第一章 特殊的平行四边形 培优、拔高专题讲义专题训练

北师大版九年级数学上册  第一章 特殊的平行四边形  培优、拔高专题讲义专题训练
第 9 页 共 11 页
19、如图所示,点 坐标为 藰‫ ڹ‬,点 坐标为 藰‫ ڹ‬藰 ,动点 从点 开始沿 以每秒 个单位长
度的速度向点 移动,动点 从点 开始沿 以每秒 藰 个单位长度的速度向点 移动.如果 、
分别从 、 同时出发,用 (秒)表示移动的时间 ‫ ڹ‬藰 ,那么,
当 为何值时,四边形
第 2 页 共 11 页
(Ⅰ)求证:四边形 PBQD 是平行四边形; (Ⅱ)若 AD=6cm,AB=4cm,点 P 从点 A 出发,以 1cm/s 的速度向点 D 运动(不与点 D 重合),设点 P 运 动的时间为 ts,请用含 t 的代数式表示 PD 的长,并求出当 t 为何值时四边形 PBD 是菱形,并求出此时菱 形的周长.
以矩形 A1B1C1D1 的中点为顶点作菱形 A2B2C2D2 ,……,如此下去,得到四边形 A2019B C D 2019 2019 2019 的面积用
含 a,b 的代数式表示为

3、如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角
线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为
北师大版九年级数学上册 第一章 特殊的平行四边形 培优、拔高专题讲义及练习 1、已知,R△ABC 中,∠C=90°,AC=3,BC=4,P 为 AB 上任意一点,PF⊥AC 于 F,PE⊥BC 于 E,则 EF 的最 小值是___________.
2、如图,菱形 ABCD 的对角线长分别为 a、b,以菱形 ABCD 各边的中点为顶点作矩形 A1B1C1D1 ,然后再
沿着
y
轴向上平移
2 3
个单位交
x
轴于点
M ,交直线 l1 于点 N ,求 NMF 的面积.

北师大版2019-2020初中数学特殊的平行四边形提升训练题1(附答案)

北师大版2019-2020初中数学特殊的平行四边形提升训练题1(附答案)

北师大版2019-2020初中数学特殊的平行四边形提升训练题1(附答案)3.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于( )A.4 cm B.8 cm C.6 cm D.4 cm或8 cm11.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否为直角D.测量两组对边是否相等,再测量对角线是否相等12.菱形的两条对角线长为6 cm 和8 cm,那么这个菱形的周长为A.40 cm B.20 cm C.10 cm D.5 cm13.在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD的面积是()A.12 B.16 C.24 D.3214.顺次连接平行四边形各边中点所得的四边形是( )A.平行四边形B.长方形C.任意四边形D.正方形15.如图,在矩形ABCD中,AB=2,E在BC的延长线上,且BD=CE,连接AE,则∠E的度数为()A.15°B.20°C.30°D.45°16.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A .4B .3C .2D .117.矩形,菱形,正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直18.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .52B .2C .72D .519.如图,矩形ABCD 中, AC 、BD 相较于点O ,若60AOB ∠=︒, 6AC =,则BC 的长为( ).A .3B .C .D .620.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下列结论:①AC =5;②∠A+∠C =180°;③AC ⊥BD ;④AC =BD .正确的有( )A .①②③B .①②④C .②③④D .①③④21.设二次函数y=x 2+ax+b 图像与x 轴有2个交点,A(x 1,0),B(x 2,0);且0< x 1<1;1< x 2<2,那么(1)a 的取值范围是___________;b 的取值范围是________;则(2)的取值范围是_______.31.如图,在矩形ABCD 中,对角线AC 和BD 相交于点O ,点E 、F 分别是DO 、AO 的中点.若AB=8cm ,BC=4cm ,则△OEF 的周长为 cm .32.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;则点C 2的坐为 .33.如图,在矩形ABCD 中,35ABBC =,以点B 为圆心,BC 长为半径画弧,交边AD于点E ,若8AE ED ⋅=,则矩形ABCD 的面积为_______.34.如图,A ,B 两点的坐标分别为(6,0),(0,6),点P 从点A 出发,沿AB 个单位的速度向终点B 运动;同时动点Q 从点B 出发沿BO 方向以每秒1个单位的速度向终点Q 运动,将△PQO 沿BO 翻折,点P 的对应点为点C ,若四边形QPOC 为菱形,则点C 的坐标为________.35.如图,在菱形ABCD中,,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则的度数为______.36.如图,正方形ABCD,点P是对角线AC上一点,连结BP,过P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,则四边形PBCQ的面积为_______.37.已知一个菱形的周长为,有一个内角为,则这个菱形较短的一条对角线长为________.38.如图,已知边长为2的正三角形ABC,两顶点A,B分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC长的最大值是.39.如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则△AEC的面积是cm2。

特殊平行四边形拔高复习

特殊平行四边形拔高复习

第一章特殊平行四边形拔高复习一特殊平行四边形知识汇总矩形1如定义:有一个角是直角的平行四边形叫做矩形2.性质:(1)矩形的四个角都是直角亠(2)矩形的对角线相等(3)具备平行四边形的性质3.判定:(1 )有一个角是直角的平行四边形是矩形(定义)(2)对角线相等的平行四边形是矩形(3)有三个角是直角的四边形是矩形養形1如定义:有一组邻边相等的平行四边形叫做菱形厶•性质:(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角a (3)具备平行四边形的性质丄3.判定:(1)一组邻边相等的平行四边形是菱形亠(2)对角线互相垂直的平行四边形是菱形(3)四边相等的四边形是菱形正方形1.定义:有一组邻边相等且有一个角是直角的平行四边形是正方形鼻2 •性质:(I )边:两组对边分别平行;四条边都相等;相邻边互相垂直亠(2 )内角:四个角都是90°;(3)对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;鼻(4)对称性:既是中心对称图形,乂是轴对称图形(有四条对称轴)。

(5)形状:正方形也属于长方形的一种。

6(.)正方形具有平行四边形、菱形、矩形的一切性质。

3.判定:(1)对角线相等的菱形是正方形。

鼻(2)有一个角为直角的菱形是正方形。

鼻(3)对角线互相垂直的矩形是正方形。

(4)一组邻边相等的矩形是正方形。

鼻(5)-组邻边相等且有一个角是直角的平行四边形是正方形。

(6)对角线互相垂直且相等的平行四边形是正方形。

人(7)对角线互相垂直,平分且相等的四边形是正方形。

•(8)一组邻边相等,有三个角是直角的四边形是正方形。

(9)既是菱形乂是矩形的四边形是正方形。

二专题整合与拔高专题一特殊四边形的综合应用1、(2013・白银)如图,在△ ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当厶ABC满足什么条件时,四边形AFB D是矩形?并说明理由.考点:矩形的判定;全等三角形的判左与性质.专题:证明题.分析:(1)根据两直线平行,内错角相等求出Z AFE=zDCE,然后利用“角角边”证明A AEF和ADEC全等,根拯全等三角形对应边相等可得A F=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知Z ADB=90\由等腰三角形三线合—的性质可知必须是AB=AC.解答:解:(1 )BD=CD.理由如下:T AFII BC.・•. Z AFE=z DCE»•••E是AD的中点,AE = DE,r ZxOT=ZDCEAEF 和厶DEC 屮「上AEF二ZDEC •AE=DE・・・△AEF更△ DEC (A AS),.•・AF =CD,・・• AF= B D ,・・・BD = C D;(2)当A ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:V AFII BD, AF=BD>四边形AF BD是平行四边形,・・• A B=AC, BD=C D,/. Z ADB=9 0\/. -AFBD是矩形.点评:本题考査了矩形的判曲全等三角形的判定与性质,平行四边形的判曲是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.2、(13年山东靑岛、2 1 )已知:如图,在矩形A B CD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点(1 )求证:AA BM^ADCM(2)判断四边形MENF是什么特殊四边形,并证明你的结论:(3)当AD:AB= ____________ 时,四边形MEN F是正方形(只写结论,不需证明)解析:(U)因为四边形A BCD是矩形,所以,ZA=ZD=90c,人M DAB=DC,又MA二HD,所以CM⑵四边形MEN F是菱形;理由:因为CE=EM/CN=NB,所以,FN〃MB,同理可得:EN〃MC, 所以,四边形MENF为平行四边形,又厶ABM^AD CM・:平行四边形畑'胪是菱形(3)2: 13.( 2 012珠海,1 8 , 7分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A8CD,(此时,点B,落在对角线AC上,点/V落在CD的延长线上),A8交AD于点E, 连结AA'、CE.求证:(1 )AA DA f ^ACI) E;(2 )直线CE是线段AA,的垂直平分线.【解析】(1)由题设可得AD二DC, ZADA' =ZCDE=90° > DA'二DE.•••△ADA' ^ACDE.(2)证CE是ZACA'的角平分线,由等腰三角形的“三线合一”可得CE是线段AA,的垂直平分线.【答案】(1)由正方形的性质及旋转,得AD=DC, ZADC=90° , A C二A' C, ZDA' E=45° , ZADA Z =ZCD E=90° , A ZD EA r =ZDA r E=4 5 ° . ADA,二DE.•••△ADA' ^ACDE・(2)由正方形的性质及旋转,得CD=CB r , ZCB f E=ZC D E=90 ° ,CE二CE,ARtACB r E ^Rt ACD E ••:心2 C, /.直线CE是线段AA'的垂直平分线.【点评】本题要求综合应用正方形的性质,旋转变换,三角形全等的判左,等腰三角形的“三线合一S 线段垂直平分线的判左等知识解决问题,是一道证线段垂直平分线的典型范例.专题二构造特殊四边形解决问1 •如图?RtA ABC 中,ZC=90。

人教版八年级数学下《平行四边形的性质》拔高练习

人教版八年级数学下《平行四边形的性质》拔高练习

《平行四边形的性质》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD的面积是()A.8B.C.2D.42.(5分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是()A.B.2C.2D.43.(5分)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E 点,CF平分∠BCD交AD于F点,则EF的长为()A.1cm B.2cm C.3cm D.4cm4.(5分)如图,在▱ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2:3,▱ABCD的周长为40,则AB的长为()A.8B.9C.12D.155.(5分)如图,在平行四边形ABCD中,BC=7,CE平分∠BCD交AD边于点E ,且AE =3,则AB 的长为( )A .5B .4C .3D .二、填空题( 本大题共5小题,共25.0分)6.(5分)如图,在平行四边形ABCD 中,已知点E 在边BC 上,∠BAE =∠DAC ,AB =7,AD =10,则CE = .7.(5分)如图,平行四边形ABCD 的周长为20,对角线AC 的长为5,则△ABC的周长为 .8.(5分)如图,在平行四边形ABCD 中,BC =10,AC =8,BD =14,△AOD的周长是 .9.(5分)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 交于点P ,BF 与CE 交于点Q ,若S △APD =20cm 2,S △BQC =30cm 2,则图中阴影部分的面积为 cm 2.10.(5分)如图,平行四边形ABCD 中,AB =5,BC =3,∠ADC 与∠BCD 的平分线分别交AB 于F ,E ,则EF = .三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.12.(10分)如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N.(1)若BM=4,MC=3,AC=,求AM的长度;(2)若∠ACB=45°,求证:AN+AF=EF.13.(10分)如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?14.(10分)如图,平行四边形ABCD的对角线AC、BD相交于点O,且AC=10,BD=16,AB=6,求△OCD的周长.15.(10分)如图,在平行四边形ABCD中,AB=10,AD=8,AC⊥BC.求BC,CD,AC,OA的长,以及平行四边形ABCD的面积.《平行四边形的性质》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.(5分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是()A.B.2C.2D.4【分析】根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2.故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.3.(5分)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E 点,CF平分∠BCD交AD于F点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4.(5分)如图,在▱ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2:3,▱ABCD的周长为40,则AB的长为()A.8B.9C.12D.15【分析】根据平行四边形的对边相等,可知一组邻边的和就是其周长的一半.根据平行四边形的面积,可知平行四边形的一组邻边的比和它的高成反比.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=40÷2=20,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=12,CD=8,∴AB=CD=8,故选:A.【点评】本题主要考查了平行四边形的性质,平行四边形的一组邻边的和等于周长的一半,平行四边形的一组邻边的比和它的高的比成反比.5.(5分)如图,在平行四边形ABCD中,BC=7,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.5B.4C.3D.【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=BC=7,AE=3,∴DE=DC=AB=4.故选:B.【点评】此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC =AB是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在平行四边形ABCD中,已知点E在边BC上,∠BAE=∠DAC,AB=7,AD=10,则CE= 5.1.【分析】由▱ABCD的性质及∠BAE=∠DAC可得∠BAE=∠BCA,进而可判定△BAE∽△BCA,可得,可BE的长,即可得CE的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC=10,∴∠DAC=∠BCA,又∵∠BAE=∠DAC,∴∠BAE=∠BCA,∵∠B=∠B,∴△BAE∽△BCA,∴,∵AB=7,BC=10,∴BE=4.9,∴EC=5.1.故答案为:5.1.【点评】本题主要考查相似三角形的判定及性质、平行四边形的性质,根据平行四边形的性质得到∠BAE=∠BCA是判定三角形相似的前提,熟练运用相似形的性质是解题的关键.7.(5分)如图,平行四边形ABCD 的周长为20,对角线AC 的长为5,则△ABC 的周长为 15 .【分析】因为ABCD 是平行四边形,由题意得AB +BC =10,而AC 知道,那么△ABC 的周长就可求出.【解答】解:∵平行四边形中对边相等,∴AB +BC =20÷2=10,∴△ABC 的周长=AB +BC +AC =10+5=15.故答案为:15.【点评】本题考查了平行四边形的性质,三角形的周长等知识,灵活应用性质是解题的关键.8.(5分)如图,在平行四边形ABCD 中,BC =10,AC =8,BD =14,△AOD的周长是 21 .【分析】根据平行四边形的性质可得AD =BC =10,AO =CO =AC =4,BO =DO =BD =7,即可求△AOD 的周长.【解答】解:∵四边形ABCD 是平行四边形∴AD =BC =10,AO =CO =AC =4,BO =DO =BD =7∴△AOD 的周长=AD +AO +DO =21故答案为21【点评】本题考查了平行四边形的性质,熟练运用平行四边形的性质解决问题是本题的关键.9.(5分)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 交于点P ,BF 与CE 交于点Q ,若S △APD =20cm 2,S △BQC =30cm 2,则图中阴影部分的面积为 50 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =20cm 2,S △BQC =30cm 2,∴S 四边形EPFQ =50cm 2,故答案为:50.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.10.(5分)如图,平行四边形ABCD 中,AB =5,BC =3,∠ADC 与∠BCD 的平分线分别交AB 于F ,E ,则EF = 1 .【分析】由题意可得AD =AF =3,BC =BE =3,即可求EF 的长.【解答】解:∵四边形ABCD是平行四边形∴DC∥BA,AD=BC=3∵DF平分∠ADC∴∠ADF=∠CDF∵DC∥AB∴∠CDF=∠DF A∴∠ADF=∠AFD∴AD=AF=3同理可得BE=BC=3∵EF=AF+BE﹣AB∴EF=3+3﹣5=1故答案为:1【点评】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.【分析】(1)利用平行四边形的性质以及直角三角形的性质得出CE的长,进而得出答案;(2)利用全等三角形的判定得出△AEM≌△DNM(ASA),根据全等三角形的性质得到EM=MN,根据直角三角形的性质得到MN=MC,根据等腰三角形和三角形的外角的性质即可得到结论.【解答】(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=CD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,熟练应用平行四边形的性质是解题关键.12.(10分)如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N.(1)若BM=4,MC=3,AC=,求AM的长度;(2)若∠ACB=45°,求证:AN+AF=EF.【分析】(1)如图1中,连接AE,在Rt△ACE中,求出AE,再在Rt△AEM中求出AM即可;(2)如图,连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.由Rt △EHA≌Rt△EGC(HL),推出AH=CG,由Rt△EHF≌Rt△EGF(HL),推出FH=FG,由△AON≌△COF(ASA),推出AN=CF,推出AN+AF=FC+AF =FG﹣CG+FH+AH=2FH,由EF=FH,即可解决问题;【解答】(1)解:如图1中,连接AE.∵AB=AM,BE=EM,∴AE⊥BM,在Rt△ACE中,∵AC=,EC=EM+CM=5,∴AE==,在Rt△AEM中,AM==.(2)如图,连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.∵∠AEC=∠AFC=90°,∴∠AEC+∠AFC=90°,∴A,E,C,F四点共圆,∴∠AFE=∠ACE=45°,∴∠EF A=∠EFG=45°,∵EH⊥F A,EG⊥FG,∴EH=EG,∵∠ACE=∠EAC=45°,∴AE=EC,∴Rt△EHA≌Rt△EGC(HL),∴AH=CG,∵EF=EF,EH=EG,∴Rt△EHF≌Rt△EGF(HL),∴FH=FG,∵AB∥CD,∴∠OAN=∠OCF,∵∠AON=∠COF,OA=OC,∴△AON≌△COF(ASA),∴AN=CF,∴AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,∵EF=FH,∴AN+AF=EF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、四点共圆、角平分线的性质定理、等腰直角三角形的判定和性质的等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.13.(10分)如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?【分析】根据AE⊥BC于E,AF⊥CD于F,∠EAF=60°,可以得到∠C的度数,由四边形ABCD是平行四边形可以得到∠B、∠D的度数,然后根据解直角三角形的相关知识可以求得AB、BC的长,根据特殊角的三角函数可以求得AE的长,由平行四边形的面积等于底乘以高,可以求得四边形ABCD的面积.【解答】解:∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90∵∠EAF=60°,∴∠C=360﹣∠AEC﹣∠AFC﹣∠EAF=120,∴∠B=60°∴∠BAE=30°,∴AB=2BE=4;cm.∵∠D=∠B=60°,∴∠DAF=30°.∴AD=2DF=6cm.∴BC=AD=6cm在Rt△ADF中,AF==3(cm),∴ABCD的面积=CD•AF=4×3=12(cm2).【点评】本题考查平行四边形的性质、平行四边形的面积,30°角所对的直角边和斜边的关系,解题的关键是明确题意,找出所求问题需要的条件.利用数形结合的思想解答问题.14.(10分)如图,平行四边形ABCD的对角线AC、BD相交于点O,且AC=10,BD=16,AB=6,求△OCD的周长.【分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,OA=OC=5,OB=OD=8,∴△OCD的周长=6+5+8=19.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.15.(10分)如图,在平行四边形ABCD中,AB=10,AD=8,AC⊥BC.求BC,CD,AC,OA的长,以及平行四边形ABCD的面积.【分析】根据平行四边形的性质得到AD=BC=8,OA=OC=AC,根据勾股定理求出AC的长,根据平行四边形的面积公式即可求出平行四边形ABCD 的面积.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD=10,OA=OC=AC,∵AB=10,BC=8,由勾股定理得:AC==6,∴OA=3;∴▱ABCD的面积是BC×AC=8×6=48.答:BC=8,CD=10,AC=6,OA=3,▱ABCD的面积是48.【点评】本题主要考查对平行四边形的性质,勾股定理等知识点的理解和掌握,能求出AC的长度是解此题的关键.。

特殊的平行四边形能力提升卷及参考答案

特殊的平行四边形能力提升卷及参考答案

八年级下册特殊的平行四边形 能力提升卷一、选择题1.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于( ) A.20 B.15 C.10 D.52.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为: 若MN ⊥EF ,则MN =EF .你认为( ) A.仅小明对 B.仅小亮对 C.两人都对 D.两人都不对3.如图(1),把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.2m n B.m -n C.2mD.2n4.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞, 则纸片展开后是( )5.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E , 则AE 的长是( ) A.1.6 B.2.5 C.3 D.3.46.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两 邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2 B.20cm 2 C.40cm2 D.80cm2 7.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC 则点B 的坐标为( ) ,1)B.(1) +1,1) 8.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕, ∠BAE =30°,AB C 落在AD 边上的C 1处, 并且点B 落在EC 1边上的B 1处.则BC 的长为( )B.2C.3 9.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A.2B.4-πC.πD.π-1 10.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的 和最小,则这个最小值为( )C.3二、填空题11.长方形一条边长为3cm ,面积为12cm 2,则该长方形另一条边长为___cm. 12.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落 在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线 段CN 的长是___. 13.如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,BA C D A .B .C .D . A D EPBCmn nn (2) (1)EDC BAOABDRN F ECO BAH CCH 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于___. 14.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件:___,使得该菱形为正方形.15.如图,将两张长为8,宽为2最小值8,那么菱形周长的最大值是___.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在___点.17.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是___.18.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为___. 19.如图,菱形ABCD 的对角线长分别为a 、b ,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,…,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 a 、b 的代数式表示为___.20.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点 记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边 的中点,则A ′N =___;若M 、N 分别是AD 、BC 边的 上距DC 最近的n 等分点(n ≥2,且n 为整数),则A ′N =___(用含有n 的式子表示).三、解答题 21.已知:如图,在矩形ABCD 中,AF =BE .求证:DE =CF .22.两个完全相同的矩形纸片ABCD 、BFDE 如图放置,AB =BF ,求证:四边形BNDM 为菱形.23.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. 求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .24.如图菱形ABCD 的边长为2,对角线BD =2,E 、F 分别是AD 、CD 上的两个动点,且满足AE +CF =2.(1)求证:△BDF ≌△BCF ; (2)判断△BEF 的形状,并说明理由.同时指出△BCF 是由△BDE 经过如何变换得到?A B D D C B A OO ED CA FN M DC B A E A ′ 第20题图3A CB D PQ BC D A E F C D EM A B FN25.(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为E G(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.26.问题解决如图1,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当CE CD=12时,求AMBN的值.EDCFBA图③E DCAB F G'D'A DECBα图④图⑤ACD图①ACD图②FEG图2NAB CDEFMN图1AB CEFM类比归纳 在图1中,若CE CD =13,则AM BN 的值等于___;若CE CD =14,则AM BN 的值等于___;若CE CD =1n(n 为整数),则AMBN的值等于___. (用含n 的式子表示) 联系拓广如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN ,设ABBC=1m(m >1),CE CD =1n ,则AM BN 的值等于___.(用含m ,n 的式子表示)参考答案1.D.点拨:利用菱形和等边三角形的性质;2.C ;3.A.点拨:利用整式的运算及特殊平行四边形的面积求解;4.D ;5.D.点拨:利用矩形的性质、勾股定理求解;6.A.点拨:菱形的面积等于对角线乘积的一半;7.C.点拨:利用菱形的性质与判定、直角三角形的有关计算、平面内点的坐标的意义; 8.C ; 9.B ;10.A.点拨:易求得正方形的边长等于,由于正方形是轴对称图形,所以点D 与点B 是关于AC 对称,所以BE 与AC 的交点即为使PD +PE 的和最小的点P 位置,此时PD +PE 的和最小等于BE ,即为正方形的边长. 11.4;12.3cm.点拨:设CN =x cm.因为正方形的边长为8cm ,点E 是BC 中点,所以EC =4cm ,又因为由折叠的原理可知EN =DN =8-x ,在Rt △ECN 中,由勾股定理,得EN 2=EC 2+CN 2,即(8-x )2=42+x 2,解得x =3.即线段CN 的长是3cm ; 13.3.点拨:利用菱形的性质和直角三角形斜边上中线的性质求解,或利用菱形的性质和三角形中位线性质求解; 14.答案不惟一.如,AB ⊥BC ,或AC =BD ,或AO =BO 等; 15.17;16.B.点拨:因为有两个全等菱形,则周长和等于8,所以微型机器人由A 点开始行走,每运动8米,则又回到A 点,而2009÷8=251…1,所以微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米时则在点B 处停下;17.14,或16,或26.点拨:①长为4,宽为3;②长为12,宽为1;③长为6,宽为2;18.52,或125.点拨:分两种情况:若点F 在DC 上,因为BF =AE ,且AB =BC ,则△ABE ≌△BCF ,则∠BAE =∠BFC ,则∠BME =90°,则AB ×BE =AE ×BM ,则BM =512;若点F 在AD 上,此时可连接FE ,则可证明四边形ABEF 这矩形,则对角线互相平分,则BM =25; 19.201012⎛⎫ ⎪⎝⎭ab .点拨:利用矩形、菱形的面积及归纳法求解;.点拨:由折叠,得BA ′=AB =1,若M 、N 分别是AD 、BC 边的中点,BN =12,则A ′N2.若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(n ≥2,且n 为整数),BN =1n n-,则A ′N. 21.因为AF =BE ,EF =EF ,所以AE =BF .因为四边形ABCD 是矩形,所以∠A =∠B =90°,AD =BC ,所以△DAE ≌△CBF ,所以DE =CF .22.因为四边形ABCD 、BFDE 是矩形,BM ∥DN ,DM ∥BN ,所以四边形BNDM 是平行四边形.又因为AB =BF =ED ,∠A =∠E =90°∠AMB =∠EMD ,所以△ABM ≌△EDM ,所以BM =DM ,所以平行四边形BNDM 是菱形. 23.(1)因为四边形ABCD 是矩形,所以∠ABC =∠BCD =90°.因为△PBC 和△QCD 是等边三角形,所以∠PBC =∠PCB =∠QCD =60°,所以∠PBA =∠ABC -∠PBC =30°,∠PCD =∠BCD -∠PCB =30°,所以∠PCQ =∠QCD -∠PCD =30°,即∠PBA =∠PCQ =30°.(2)因为AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,所以△P AB ≌△PQC ,所以P A =PQ . 24.(1)因为菱形ABCD 的边长为2,BD =2,所以BD =BC ,且∠BDE =∠BCF =60°.因为AE +CF =2,而AE +DE =AD =2,所以DE =CF ,所以△BDE ≌△BCF .(2)△BEF 是等边三角形.理由如下:由(1)得△BDE ≌△BCF ,所以BE =BF ,∠CBF =∠DBE ,即∠EBF =∠EBD +∠DBF =∠CBF +∠DBF =60°,所以△BEF 是等边三角形.△BCF 是由△BDE 绕点B 顺时针旋转60°得到.25.(1)同意.如图②,设AD 与EF 交于点G .由折叠知,AD 平分∠BAC ,所以∠BAD =∠CAD .又由折叠知,∠AGE =∠DGE =90°,所以∠AGE =∠AGF =90°,所以∠AEF =∠AFE ,所以AE =AF ,即△AEF 为等腰三角形.(2)由折叠知,四边形ABFE 是正方形,∠AEB =45°,所以∠BED =135°,又由折叠知,∠BEG =∠DEG ,所以∠DEG =67.5°,所以∠α=90°-67.5°=22.5°.26.问题解决:如图1,连接BM ,EM ,BE .由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称,所以MN 垂直平分BE ,所以BM =EM ,BN =EN .因为四边形ABCD 是正方形,所以∠A =∠D =∠C =90°,AB =BC =CD =DA =2.因为CE CD =12,所以CE =DE =1.设BN =x ,则NE =x ,NC =2-x .在Rt △CNE 中,由勾股定理,得NE 2=CN 2+CE 2,即x 2=(2-x )2+12,解得x =54.即BN =54.在Rt △ABM 和Rt △DEM 在中,分别由勾股定理,得BM 2=AM 2+AB 2,EM 2=DM 2+DE 2,所以AM 2+AB 2=DM 2+DE 2.设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+12,解得y =14,即AM =14.所以AM BN =15.类比归纳:设正方形的边长为2,仿照问题解决,当CE CD =13时,则CE =23,DE =43.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+223⎛⎫ ⎪⎝⎭,解得x =109,BN =109;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+243⎛⎫⎪⎝⎭,解得y =49,即AM =49.所以AM BN =410=25.当CE CD =14时,则CE =24,DE =64.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+224⎛⎫ ⎪⎝⎭,解得x =1716,BN =1716;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+264⎛⎫ ⎪⎝⎭,解得y =916,即AM =916.所以AM BN =917.…当CE CD =1n 时,则CE =2n ,DE =22n n-.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x)2+22n⎛⎫⎪⎝⎭,解得x=221nn+,BN=221nn+;设AM=y,则DM=2-y,所以y2+22=(2-y)2+222nn-⎛⎫⎪⎝⎭,解得y=()221nn-,即AM=()221nn-.所以AMBN=()2211nn-+.联系拓广:因为ABBC=1m(m>1),所以设AB=a,则BC=ma,于是仿照上面求解过程,由CECD=1n,得CE=an,DE=a-an,设BN=x,则NE=x,NC=ma-x.在Rt△CNE中,由勾股定理,得NE2=CN2+CE2,即x2=(ma-x)2+2an⎛⎫⎪⎝⎭,解得x=22212m nmn+a.即BN=22212m nmn+a;同样,在Rt△ABM和Rt△DEM在中,分别由勾股定理,得BM2=AM2+AB2,EM2=DM2+DE2,所以AM2+AB2=DM2+DE2.设AM=y,则DM=ma-y,所以y2+a2=(ma-y)2+2aan⎛⎫-⎪⎝⎭,解得y=222212m n nmn-+a,即AM=222212m n nmn-+a.所以AMBN=2222211n m nn m-++.。

特殊的平行四边形拔高题

特殊的平行四边形拔高题

特殊的平行四边形拔高题一、选择题(题型注释)1如图,在菱形ABCD中,AB=13,对角线BD=24,若过点C作CEL AB,垂足为E,贝U CE的120 240A. 13 B . 10 C . 12 D . 132. 如图,正方形ABCB中,AB=1, AB与直线I的夹角为30°,延长CB交直线I于点A , 作正方形A1BC1B,延长C1B2交直线I于点A2,作正方形A2B2GR,延长C2B3交直线I于点A3, 作正方形A3B3C3B4,…,依此规律,贝U A2015A2016=.3. 如图,在菱形ABCD中, AB=2 / BAD=60 , 点,贝U PE+PB的最小值为()E是AB的中点,P是对角线AC上的一个动A. 1B. 、、3C. 2D. \ 54. 如图,正方形ABCD和正方形CEFG中, 点,那么CH的长是()(第 4 题)D在CG上,BC= 2 , CE=3 2 , H是AF 的中Jf J5 •菱形具有而矩形不一定具有的性质是A 、内角和等于360° BC 对边平行且相等D 6.( 2016?石峰区模拟)矩形 ABCD 中,DM 的长是()A 、3.5 BC 、.10 2 £ 1 二-V C() 、对角线相等 、对角线互相垂直 AB=2 AD=1,点 M 在边CD 上,若 AM 平分/ DMB 贝UA•卑B •寺C •翻送D-l2-^7.如图,四边形ABCD中,对角线相交于点O, E、F、G H分别是要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A. AB=AD B . AC=BD C . AD=BC D . AB=CD&如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以 B FA. 11 B . 6 C . 8 D . 109. 如图,正方形ABCD的边长为4,点E在对角线BD上,且/ BAE=22.5 , EF丄AB垂足为F,贝U EF的长为()A. 1 B .卜目C . 4 - 2■: D . 3. 410. 如图,在正方形ABCD中,点P在AC上, PE丄AB, PF丄BC,垂足分别为、填空题(题型注释)11. 如图,正方形ABCD勺对角线长为8-一2 , E为AB上一点,若EF丄AC于F, EG丄BD于G 则EF+EG= .为圆心,大于2 BF的长为半径画弧,两弧相交于点(第7题图)AD BD BC AC的中点,E、F, EF=3,则PD的长为()D12. 如图,在正方形ABCD中, AC 为对角线,点E 在AB 边上,EF 丄AC 于点F ,连接EC, AF=3, △ EFC 的周长为12,贝U EC 的长为13.将矩形ABCD 按如图所示的方式折叠,得到菱形 AECF 若AB=3,则菱形AECF 的周长为15. _______________________________________________________ 如图,折叠矩形纸片ABCD 使点B 落在边AD 上,折叠EF 的两端分别在 AB BC 上 (含 端点),且AB=8cm BC=10cm 则折痕EF 的最大值是 ___________________________________________ .三、计算题(题型注释)16. (本小题满分8分)如图,在正方形 ABCD 中, BE (1)求证: BAE BCF ;(2)若 ABE 35,求 EGC 的大小.(第12题图)BF , BE BF , EF 交 BC 于点 G.17. 已知E为平行四边形ABCD外一点,AE丄CE BE丄DE,求证:平行四边形ABCD是矩形.18. 如图,已知点 E,F 分别是口 ABCD 勺边BC,AD 上的中点,且/ BAC=90 .四、解答题19. 如图1所示,在正方形 ABCD 和正方形CGE 冲,点B 、C G 在同一条直线上, M 是线段 AE 的中点,DM 的延长线交 EF 于点N,连接FM 易证:DM=FM DM L FM (无需写证明过程)(1) 如图2,当点B C F 在同一条直线上,DM 的延长线交EG 于点N,其余条件不变,试 探究线段DM 与 FM 有怎样的关系?请写出猜想,并给予证明;(2) 如图3,当点E 、B C 在同一条直线上,DM 的延长线交CE 的延长线于点 N,其余条件 不变,探究线段DM 与 FM 有怎样的关系?请直接写出猜想.(1) 求证:四边形 (2) 若/ B=30°, AECF 是菱形;求菱形AECF 面积.。

特殊平行四边形拔高题含答案

特殊平行四边形拔高题含答案

第II 卷(非选择题)一、解答题(题型注释)1.如图.在平面直角坐标系中.正方形OABC 的边长为a .直线y=bx+c 交x 轴于E.交y 轴于F.且a 、b 、c 分别满足-(a-4)2≥0.228c b b =-+-+(1)求直线y=bx+c 的解析式并直接写出正方形OABC 的对角线的交点D 的坐标;(2)直线y=bx+c 沿x 轴正方向以每秒移动1个单位长度的速度平移.设平移的时间为t 秒.问是否存在t 的值.使直线EF 平分正方形OABC 的面积?若存在.请求出t 的值;若不存在.请说明理由; 点P 为正方形OABC 的对角线AC 上的动点(端点A 、C 除外).PM ⊥PO.交直线AB 于M.求PCBM的值2.如图.矩形OABC 摆放在平面直角坐标系xOy 中.点A 在x 轴上.点C 在y 轴上.OA=3.OC=2.P 是BC 边上一点且不与B 重合.连结AP.过点P 作∠CPD=∠APB.交x 轴于点D.交y 轴于点E.过点E 作EF ∥AP 交x 轴于点F . (1)若△APD 为等腰直角三角形.求点P 的坐标;(2)若以A.P.E.F 为顶点的四边形是平行四边形.求直线PE 的解析式.3.把一个含45°角的直角三角板BEF 和一个正方形ABCD 摆放在一起.使三角板的直角顶点和正方形的顶点B 重合.联结DF.点M.N 分别为DF.EF 的中点.联结MA.MN .(1)如图1.点E.F 分别在正方形的边CB.AB 上.请判断MA.MN 的数量关系和位置关系.直接 写出结论;(2)如图2.点E.F 分别在正方形的边CB.AB 的延长线上.其他条件不变.那么你在(1)中得到的两个结论还成立吗?若成立.请加以证明;若不成立.请说明理由.BFNME CDA FCBEMNAD图1 图24.如图.已知正方形ABCD.AC 、BD 相交于点O.E 为AC 上一点.AH ⊥EB 交EB 于点H.AH 交BD 于点F . (1)若点E 在图1的位置.判断OE 与OF 的数量关系.并证明你的结论;(2)若点E 在AC 的延长线上.请在图2中按题目要求补全图形.判断OE 与OF 的数量关系.并证明你的结论.5.已知一个矩形纸片OACB.将该纸片放置在平面直角坐标系中.点A (11.0).点B (0.6).点P 为BC 边上的动点(点P 不与点B 、C 重合).经过点O 、P 折叠该纸片.得点B′和折痕OP .设BP=t .(Ⅰ)如图①.当∠BOP=30°时.求点P 的坐标;(Ⅱ)如图②.经过点P 再次折叠纸片.使点C 落在直线PB′上.得点C′和折痕PQ.若AQ=m.试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下.当点C′恰好落在边OA 上时.求点P 的坐标(直接写出结果即可). 6.阅读下列材料:已知:如图1.在Rt △ABC 中.∠C=90°.AC=4.BC=3.P 为AC 边上的一动点.以PB.PA 为边构造□APBQ .求对角线PQ 的最小值及此时APAC的值是多少.在解决这个问题时.小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中.垂直于平行线的线段最短.进而.小明构造出了如图2的辅助线.并求得PQ的最小值为3.参考小明的做法.解决以下问题:(1)继续完成阅读材料中的问题:当PQ的长度最小时.APAC= ;(2)如图3.延长PA到点E.使AE=nPA(n为大于0的常数).以PE.PB为边作□PBQE.那么对角线PQ的最小值为.此时APAC= ;(3)如图4.如果P为AB边上的一动点.延长PA到点E.使AE=nPA(n为大于0的常数).以PE.PC为边作□PCQE.那么对角线PQ的最小值为.此时APAC= .7.在图1、图2、图3、图4中.点P在线段BC上移动(不与B、C重合).M在BC的延长线上.(1)如图1.△ABC和△APE均为正三角形.连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2.若四边形ABCD和四边形APEF均为正方形.连接CE.则∠ECM的度数为°.②如图3.若五边形ABCDF和五边形APEGH均为正五边形.连接CE.则∠ECM的度数为°.(3)如图4.n边形ABC…和n边形APE…均为正n边形.连接CE.请你探索并猜想∠ECM的度数与正多边形边数n 的数量关系(用含n的式子表示∠ECM的度数).并利用图4(放大后的局部图形)证明你的结论.8.已知O是坐标原点.点A的坐标是(5.0).点B是y轴正半轴上一动点.以OB.OA为边作矩形OBCA.点E.H分别在边BC和边OA上.将△BOE沿着OE对折.使点B落在OC上的F点处.将△ACH沿着CH对折.使点A落在OC上的G 点处。

专题19 平行四边形、矩形、菱形--拔高题

专题19 平行四边形、矩形、菱形--拔高题

专题19 平行四边形、矩形、菱形阅读与思考平行四边形、矩形、菱形的性质定理与判定定理是从对边、对角、对角线三个方面探讨的,矩形、菱形都是特殊的平行四边形,矩形的特殊性由一个直角所体现,菱形的特殊性是由邻边相等来体现,因此它们除兼有平行四边形的一般性质外,还有特有的性质;反过来,判定一个四边形为矩形或菱形,也就需要更多的条件.连对角线后平行四边形、矩形、菱形就与特殊三角形联系在一起,所以讨论平行四边形、矩形、菱形相关问题时,常用到特殊三角形性质、全等三角形法;另一方面,又要善于在四边形的背景下思考问题,运用平行四边形、矩形、菱形的丰富性质为解题服务,常常是判定定理与性质定理的综合运用.熟悉以下基本图形:例题与求解【例l】如图,矩形ABCD的对角线相交于O,AE平分∠BAD,交BC于E,∠CAE=15°,那么∠BOE=________.D(“祖冲之杯”邀请赛试题)解题思路:从发现矩形内含的特殊三角形入手.【例2】下面有四个命题:①一组对边相等且一组对角相等的四边形是平行四边形;②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所连结的对角线平分另一条对角线的四边形是平行四边形;④一组对角相等且这一组对角的顶点所连结的对角线被另一条对角线平分的四边形是平行四边形;其中,正确的命题的个数是( ) B. 2 C. 3 (全国初中数学联赛试题)解题思路:从四边形边、角、对角线三类元素任意选取两类,任意组合就产生许多判定平行四边形的命题,关键在于对假命题能突破正规的、标准位置的图形构造反例否定.【例3】如图,菱形ABCD 的边长为2,BD =2,E ,F 分别是边AD ,CD 上的两个动点且满足AE +CF =2.(1)判断△BEF 的形状,并说明理由; (2)设△BEF 的面积为S ,求S 的取值范围.DACB(烟台中考试题)解题思路:对于(1)由数量关系发现图形特征;对于(2),只需求出BE 的取值范围.【例4】如图,设P 为等腰直角三角形ACB 斜边AB 上任意一点,PE ⊥AC 于点E ,PF ⊥BC 于点F ,PG ⊥EF 于点G ,延长GP 并在春延长线上取一点D ,使得PD =PC .求证:BC ⊥BD ,BC =BD .AB(全国初中数学联赛试题)解题思路:只需证明△CPB ≌△DPB ,关键是利用特殊三角形、特殊四边形的性质.【例5】在□A BCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F .图3图2图1DFC(1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB ,DG (如图3),求∠BDG 的度数.(北京市中考试题)解题思路:对于(1),由角平分线加平行线的条件可推出图中有3个等腰三角形; 对于(2),用测量的方法可得∠BDG =45°,进而想到等腰直角三角形,连CG ,BD ,只需证明△BGC ≌△DGF ,这对解决(3),有不同的解题思路. 对于(3)【例6】如图,△ABC 中,∠C =90°,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 与BN 相交于点P . 求证:∠BPM =45°.NMB(浙江省竞赛试题)解题思路:条件给出的是线段的等量关系,求证的却是角度等式,由于条件中有直角和相等的线段,因此,可想到等腰直角三角形,解题的关键是平移AN 或AC ,即作ME ⊥AN ,ME =AN ,构造平行四边形.,能力训练A 级1. 如图,□ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,若CE =2,DF =1,∠EBF =60°,则□ABCD 的面积为________.第1题A2. 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,若△CDM 周长为a ,那么□ABCD 的周长为 ________.第2题MB(浙江省中考试题)3. 如图,在Rt△ABC 中,∠B =90°,∠BAC =78°,过C 作CF ∥AB ,连结AF 与BC 相交于G ,若GF =2AC ,则∠BAG 的大小是________.第3题FA(“希望杯”竞赛试题)4. 如图,在菱形ABCD 中,∠B =∠EAF =60°,∠BAE =20°,则∠CEF 的大小是________.第4题BDC(“希望杯”邀请赛试题)5. 四边形的四条边长分别是a ,b ,c ,d ,其中a ,c 为对边,且满足222222a b c d ab cd +++=+,则这个四边形一定是( )A.两组角分别相等的四边形B. 平行四边形C. 对角线互相垂直的四边形D. 对角线相等的四边形6.现有以下四个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③有一个角为直角且对角线互相平分的四边形为矩形;④菱形的对角线的平方和等于边长的平方的4倍.其中,正确的命题有( )A. ①②B.③④C. ③D. ①②③④7. 如图,在矩形ABCD 中,AB =1,AD AF 平分∠DAB ,过点C 作CE ⊥BD 于E ,延长AF ,EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是( )A. ②③B.③④C. ①②④D. ②③④HB(齐齐哈尔中考试题)8. 如图,矩形ABCD 的长为a ,宽为b ,如果12341(S S )2S S ==+,则4S =( )A.38abB. 34abC. 23abD. 12ab第8题AB E F(“缙云杯”竞赛试题)9. 已知四边形ABCD ,现有条件:①AB ∥DC ;②AB =DC ;③AD ∥BC ;④AD =BC ;⑤∠A=∠C ;⑥∠B =∠D .从中取两个条件加以组合,能推出四边形ABCD 是平行四边形的有哪几种情形请具体写出这些组合.(江苏省竞赛试题)10. 如图,△ABC 为等边三角形,D 、F 分别是BC 、AB 上的点,且CD =BF , 以AD 为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)当D 在线段BC 上何处时,四边形CDEF 为平行四边形,且∠DEF =30°,证明你的结论.EACD(江苏省南通市中考试题)11. 如图,在Rt△ABC 中,AB =AC ,∠A =90°,点D 为BC 上任一点,DF ⊥AC 于F ,DE ⊥AC 于E ,M 为BC 中点,试判断△MEF 是什么形状的三角形,并证明你的结论.MBCD(河南省中考试题)12. 如图,△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,求四边形AEFD 的面积.E(山东省竞赛试题)B 级1. 如图,已知ABCD 是平行四边形,E 在AC 上,AE =2EC ,F 在AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则□ABCD 的面积是________.第1题B(“希望杯”竞赛试题)2. 如图,已知P 为矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB =________.第2题BC(山东省竞赛试题)3. 如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,现将矩形折叠,使B 点与D 点重合,则折痕EF 长为________.第3题F B C(武汉市竞赛试题)4. 如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,使点D 落在点D '处,CD '交AB 于点F ,则重叠部分△AFC 的面积为 ________.第4题AB(山东省竞赛试题)5. 如图,在矩形ABCD 中,已知AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD 于E ,PF ⊥AC 于F ,那么PE +PF 的值为________.第5题C(全国初中数学联赛试题)6. 如图,菱形ABCD 的边长为4 cm ,且∠ABC =60°,E 是BC 的中点,P 点在BD 上,则PE+PC 的最小值为________.第6题EDB(“希望杯”邀请赛试题)7. 如图,△ABC 的周长为24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )A. 30B. 24C.16第7题BC(全国初中数学联赛试题)8. 如图,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED的大小是( )A. 60°B. 65° ° °第8题B9. 如图,已知∠A =∠B ,1AA ,1PP ,1BB 均垂直于11A B ,1AA =17,1PP=16,1BB =20,11A B =12,则AP+PB 的值为( )A. 15B.14C. 13第9题B A1P 1(全国初中数学联赛试题)10. 如图1,△ABC 是直角三角形,∠C =90°,现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可画出两个:矩形ACBD 和矩形AEFB (如图2).图1图3EDBACB解答问题:(1)设图2中矩形ACBD 和矩形AEFB 的面积分别为1S ,2S ,则1S ________2S (填“>”、“=”或“<”).(2)如图3,△ABC 是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出________个,利用图3画出来.(3)如图4,△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出________个,利用图4画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小为什么图4ABC(陕西中考试题)11.四边形ABCD 中,AB =BC =CD =DA ,∠BAD =120°,M 为BC 上一点,N 为CD 上一点.求证:若△AMN 有一个内角等于60°,则△AMN 为等边三角形.12. 如图,六边形ABCDEF 中,AB ∥DE ,BC ∥EF ,CD ∥AF ,对边之差BC -EF =ED -AB=AF -CD >0.求证:该六边形的各角相等.EB(全俄数学奥林匹克试题)。

特殊平行四边形拔高题含答案

特殊平行四边形拔高题含答案

第II 卷(非选择题)一、解答题(题型注释)1.如图.在平面直角坐标系中.正方形OABC 的边长为a .直线y=bx+c 交x 轴于E.交y 轴于F.且a 、b 、c 分别满足-(a-4)2≥0.228c b b =-+-+(1)求直线y=bx+c 的解析式并直接写出正方形OABC 的对角线的交点D 的坐标;(2)直线y=bx+c 沿x 轴正方向以每秒移动1个单位长度的速度平移.设平移的时间为t 秒.问是否存在t 的值.使直线EF 平分正方形OABC 的面积?若存在.请求出t 的值;若不存在.请说明理由; 点P 为正方形OABC 的对角线AC 上的动点(端点A 、C 除外).PM ⊥PO.交直线AB 于M.求PCBM的值2.如图.矩形OABC 摆放在平面直角坐标系xOy 中.点A 在x 轴上.点C 在y 轴上.OA=3.OC=2.P 是BC 边上一点且不与B 重合.连结AP.过点P 作∠CPD=∠APB.交x 轴于点D.交y 轴于点E.过点E 作EF ∥AP 交x 轴于点F . (1)若△APD 为等腰直角三角形.求点P 的坐标;(2)若以A.P.E.F 为顶点的四边形是平行四边形.求直线PE 的解析式.3.把一个含45°角的直角三角板BEF 和一个正方形ABCD 摆放在一起.使三角板的直角顶点和正方形的顶点B 重合.联结DF.点M.N 分别为DF.EF 的中点.联结MA.MN .(1)如图1.点E.F 分别在正方形的边CB.AB 上.请判断MA.MN 的数量关系和位置关系.直接 写出结论;(2)如图2.点E.F 分别在正方形的边CB.AB 的延长线上.其他条件不变.那么你在(1)中得到的两个结论还成立吗?若成立.请加以证明;若不成立.请说明理由.BFNME CDA FCBEMNAD图1 图24.如图.已知正方形ABCD.AC 、BD 相交于点O.E 为AC 上一点.AH ⊥EB 交EB 于点H.AH 交BD 于点F . (1)若点E 在图1的位置.判断OE 与OF 的数量关系.并证明你的结论;(2)若点E 在AC 的延长线上.请在图2中按题目要求补全图形.判断OE 与OF 的数量关系.并证明你的结论.5.已知一个矩形纸片OACB.将该纸片放置在平面直角坐标系中.点A (11.0).点B (0.6).点P 为BC 边上的动点(点P 不与点B 、C 重合).经过点O 、P 折叠该纸片.得点B′和折痕OP .设BP=t .(Ⅰ)如图①.当∠BOP=30°时.求点P 的坐标;(Ⅱ)如图②.经过点P 再次折叠纸片.使点C 落在直线PB′上.得点C′和折痕PQ.若AQ=m.试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下.当点C′恰好落在边OA 上时.求点P 的坐标(直接写出结果即可). 6.阅读下列材料:已知:如图1.在Rt △ABC 中.∠C=90°.AC=4.BC=3.P 为AC 边上的一动点.以PB.PA 为边构造□APBQ .求对角线PQ 的最小值及此时APAC的值是多少.在解决这个问题时.小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中.垂直于平行线的线段最短.进而.小明构造出了如图2的辅助线.并求得PQ的最小值为3.参考小明的做法.解决以下问题:(1)继续完成阅读材料中的问题:当PQ的长度最小时.APAC= ;(2)如图3.延长PA到点E.使AE=nPA(n为大于0的常数).以PE.PB为边作□PBQE.那么对角线PQ的最小值为.此时APAC= ;(3)如图4.如果P为AB边上的一动点.延长PA到点E.使AE=nPA(n为大于0的常数).以PE.PC为边作□PCQE.那么对角线PQ的最小值为.此时APAC= .7.在图1、图2、图3、图4中.点P在线段BC上移动(不与B、C重合).M在BC的延长线上.(1)如图1.△ABC和△APE均为正三角形.连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2.若四边形ABCD和四边形APEF均为正方形.连接CE.则∠ECM的度数为°.②如图3.若五边形ABCDF和五边形APEGH均为正五边形.连接CE.则∠ECM的度数为°.(3)如图4.n边形ABC…和n边形APE…均为正n边形.连接CE.请你探索并猜想∠ECM的度数与正多边形边数n 的数量关系(用含n的式子表示∠ECM的度数).并利用图4(放大后的局部图形)证明你的结论.8.已知O是坐标原点.点A的坐标是(5.0).点B是y轴正半轴上一动点.以OB.OA为边作矩形OBCA.点E.H分别在边BC和边OA上.将△BOE沿着OE对折.使点B落在OC上的F点处.将△ACH沿着CH对折.使点A落在OC上的G 点处。

中考数学专题训练:特殊平行四边形(附参考答案)

中考数学专题训练:特殊平行四边形(附参考答案)

中考数学专题训练:特殊平行四边形(附参考答案)1.如图,在矩形ABCD和△BDE中,点A在BE上.若矩形ABCD的面积为20,△BDE的面积为24,则△ADE的面积为( )A.10 B.12C.14 D.162.如图,矩形ABCD的对角线AC,BD交于点O,AB=3,BC=4,过点O作OM⊥AC,交BC于点M,过点M作MN⊥BD,垂足为点N,则OM+MN的值为( )A.245B.165C.125D.653.如图,在四边形ABCD中,AB∥CD,AB⊥BD,AB=5,BD=4,CD=3,E是AC 的中点,则BE的长为( )A.2 B.52C.√5D.34.关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形5.下列选项中能使□ABCD成为菱形的是( )A.AB=CD B.AB=BCC.∠BAD=90°D.AC=BD6.如图,在菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC-CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形7.如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连接OE.若AC=6,BD=8,则OE=( )A.2 B.52C.3 D.48.如图,在菱形ABCD中,E,F分别是边BC,CD的中点,连接AE,AF,EF.若菱形ABCD的面积为8,则△AEF的面积为( )A.2 B.3C.4 D.59.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )A.2 B.4C.5 D.610.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d ②b→d→c ③a→b→c,则正确的是( )A.仅①B.仅③C.①②D.②③11.如图,在正方形ABCD中,点E,F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则CG的长是( )A.2 B.√5C.3√22D.12512.如图,已知F,E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P,则下列结论成立的是( )A.BE=12AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC13.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )A.1 B.√2C.√3D.214.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.√6B.√62C.2√2D.2√315.如图,在△ABC中,D,E,F分别是边AB,BC和AC的中点,请添加一个条件________________________,使四边形BEFD为矩形.(填一个即可)16.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.若AC=12,BD=16,则OE的长为______.17.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点,点FAC,连接EF.若AC=10,则EF=______.在对角线AC上,且AF=1418.如图,E是矩形ABCD边AD上一点,F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为_____.19.如图,菱形ABCD的对角线AC,BD相交于点O,OE⊥AD,垂足为点E,AC=8,BD=6,则OE的长为______.20.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2√3 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为_____cm.21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于______.22.如图,将边长为1的正方形ABCD绕点A顺时针旋转30°得到正方形AB1C1D1,则阴影部分的面积是_________.23.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于______.24.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是_______.参考答案1.C 2.C 3.C 4.B 5.B 6.C 7.B 8.B 9.B 10.C 11.D 12.C 13.C 14.B15.AB⊥BC(答案不唯一) 16.10 17.52 18.3 19.12520.221.√19422.2-2√3323.2α 24.8√5。

特殊平行四边形提高题

特殊平行四边形提高题

特殊平行四边形1.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.2.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形3.如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PF⊥BD于F,PE⊥AC于E,则PE+PF的值为()A. B. C. D.24.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P 到矩形的两条对角线AC和BD的距离之和是()5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.6.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()7.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个9.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD 上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为() A.2 B.3 C.4 D.510.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.11.在△ABC中,D是BC边上的一点,E是AD的中点,过A 点作BC的平行线交CE的延长线于点F,且AF=BD,连结BE (1)求证:BD=CD:(2)如果AB=AC,判断四边形AFBD的形状并证明.(3)如果∠BAC=90°,试判断四边形AFBD的形状,并13.如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明当旋转角为90°时,ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( )
A .10
B .12
C .14
D .16
2.在矩形ABCD 中,AB=1,AD=3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF=FH ;②B0=BF ;③CA=CH ;④BE=3ED ;正确的个数为( )
A .1个
B .2个
C .3个
D .4个 3.如图,
E 、
F 分别为正方形ABCD 的边CD 、CB 上的点,
DE=CE ,∠1=∠2,EG ⊥AF ,以下结论: ①AF=BC+CF ; ②∠CGD=90°; ③AF=BF+DE ; ④2
2
2
EF AE AF +=。

其中正确的结论是( )
A 、①②③④
B 、①③④
C 、②③④
D 、②④
4.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S 1,第二个正方形与第二个等腰直角三角形的面积和为S 2,…,则第n 个正方形与第n 个等腰直角三角形的面积和S n = .
5.如图,矩形ABCD 的面积为6,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为 .
6.矩形ABCD 中,对角线AC 、
BD
交于点O ,
AE BD
⊥于E ,若13OE ED =∶∶, 3AE =, 则
BD = .
7.如图,正方形ABCD 的面积为18 ,△ABE 是等边三角形,点E 在正方形ABCD ,在对角线AC 上有一动点P ,则PD+PE 的最小值为__________.
8.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE=30°,EB= 3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为_________.
9.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45o
,且AE+AF =22则平行四边形ABCD
的周长是 .
10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 .
11.如图11,一矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G.
(1)求证:AG=C ′G ;
(2)如图12,再折叠一次,使点D 与点A 重合,折痕EN 交AD 于M ,求EM 的长.
A
B
C
1O D
1C
2O
2C

N
12.如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线M N∥BC,设MN 交∠BCA 的平分线于点E ,
交∠BCA 的外角平分线于点F . (1)求证:PE =PF ;
(2)当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由;
(3)若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3
2.求此时∠A 的大小.
专题:构造平行四边形(特殊的平行四边形)
1.在∆ABC 中,已知AB=6,AC=4,则中线AD 的取值围是 。

2.如图,ABC ∆中,90C ∠=︒,点M 在BC 上,且BM AC =,点N 在AC 上,且AN MC AM =,与BN 相交于点P ,求证:45BPM ∠=︒
B
P
N M
C
B
A
3. 已知平行四边形ABCD ,2BC AB =,M 为AD 的中点,CE AB ⊥.求证:3EMD AEM ∠=∠.
E
M
D
C
B
A
“2”倍的证明转化为等腰直角的证明
4.如图,在∆ABC 中,∠C=90°,CA=CB ,E ,F 分别为CA ,CB 上一点,CE=CF ,M ,N 分别为AF ,BE 的中点,求证:
MN
如图,一个直角三角形的直角顶点P 在正方形ABCD 的对角线AC 所在的直线上滑动,并使得一条直角边始终经过B 点. (1)如图1,当直角三角形的另一条直角边和边CD 交于Q 点,
PQ
PB
= ; (2)如图2,当另一条直角边和边CD 的延长线相交于Q 点时,
PQ
PB
= ; (3)如图3或图4,当直角顶点P 运动到AC 或CA 的延长线上时,请你在图3或图4中任选一种情形,求
PQ
PB
的值,并说明理由.
课后作业
1.如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE PF
=,且AP AE CP CF
+=+.求证:四边形ABCD是平行四边形.
2.如图,正方形ABCD中,点E为AB上一点,点F为CB延长线上一点,且BE=BF,CE的延长线交AF于N,CM⊥NB于M.
(1)求证:CN⊥AF;
(2)求证:∠MNC=45°;
(3)求证:AN=2BM.
2
1
N M F
D
C
B
A
H
N
M
O F
E D
C
B
A
G
F E
D
C
B
A 3.如图1,在四边形ABCD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长
线交于点M 、N ,则∠BME=∠CNE (不需证明)。

(温馨提示:在图1中,连接BD ,取BD 的中点H ,连接HE 、HF ,根据三角形中位线定理,证明HE=HF ,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE 。


问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB=CD ,E 、F 分别是BC 、AD 的中点,连接
EF ,分别交DC 、AB 于点M 、N ,判断△OMN 的形状,请直接写出结论。

问题二:如图3,在△ABC 中,AC AB ,D 点在AC 上,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF 并
延长,与BA 的延长线交于点G ,若∠EFC=600
,连接GD ,判断△AGD 的形状并证明。

图① 图② 图③。

相关文档
最新文档