七年级数学下册《三角形的三边关系》典型例题(含答案)
9.1.3 三角形的三边关系 华东师大版数学七年级下册同步练习(含解析)
9.1.3 三角形的三边关系基础过关全练知识点1 三角形的三边关系1.【教材变式·P82练习T1变式】(2022湖南邵阳中考)下列长度的三条线段能首尾顺次连结构成三角形的是( ) A.1 cm,2 cm,3 cm B.3 cm,4 cm,5 cmC.4 cm,5 cm,10 cmD.6 cm,9 cm,2 cm2.(2022河南郑州期末)已知三角形两边长分别为2 cm和3 cm,则第三边长不可能是( )A.1 cmB.2 cmC.3 cmD.4 cm3.(2022江苏徐州期中)四根长度分别为2 cm、3 cm、5 cm、7 cm的木条,以其中三根的长为边长钉成一个三角形框架,那么这个框架的周长可能是( )A.10 cmB.15 cmC.14 cmD.12 cm4.(2022湖南邵阳模拟)已知一个三角形的两边长分别为3和4,第三边的长为整数,则该三角形的周长为( )A.7B.8C.13D.145.(2021陕西西安二十三中月考)如图,为了估计一池塘岸边两点A,B 之间的距离,小颖同学在池塘一侧选取了一点P,测得PA=100 m,PB=90 m,那么点A与点B之间的距离不可能是( )A.90 mB.100 mC.150 mD.190 m6.【主题教育·生命安全与健康】【新独家原创】某电管站需要在变压器旁放置一个防触电安全警示牌,根据其位置需要做一个三角形形状的警示牌,警示牌的两边长分别为25 cm和35 cm,那么第三条边长x(cm)的范围是 .7.(2022吉林长春一模)已知一个三角形的两边长分别为2和5,若第三边的长为整数,则第三边的长可以为 .8.【新独家原创】已知a、b是三角形的两边长(a>b),第三边长为5,则化简|a+b-4|-|a-b-6|的结果为 .9.(2022湖北荆州期中)已知△ABC的三边长分别为4,9,x.(1)求x的取值范围;(2)当△ABC的周长为偶数时,求x的值.10.【学科素养·运算能力】小明和小红在一本数学资料上看到这样一道竞赛题:已知△ABC的三边的长分别为a、b、c(a>b),且满足(b+c-2a)2+|b+c-8|=0,求c的取值范围.(1)小明说:“c的取值范围,我看不出来如何求,但我能求出a的值.”你知道小明是如何计算的吗?请帮他写出求解的过程.(2)小红说:“我也看不出来如何求c的取值范围,但我能用含c的代数式表示b.”同学,你能吗?若能,请帮小红写出过程.(3)小明和小红一起去问数学老师,老师说:“根据你们二人的求解,再结合三角形的三边关系即可求出答案.”你知道答案吗?请写出过程.知识点2 三角形的稳定性11.(2022广东佛山禅城一模)如图,人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做蕴含的道理是( )A.两点之间线段最短B.三角形具有稳定性C.经过两点有且只有一条直线D.垂线段最短12.(2022四川凉山州期末)王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根能力提升全练13.(2022浙江金华中考,4,)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是( )A.2 cmB.3 cmC.6 cmD.13 cm14.(2022四川德阳中考,7,)某学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5 km和3 km,那么杨冲,李锐两家的直线距离不可能是( )A.1 kmB.2 kmC.3 kmD.8 km15.(2022广西贺州平桂二模,9,)老师布置了一份家庭作业:用老师给的三根小木棍做出一个三角形木架,三根小木棍的长度分别为5 cm、9 cm、10 cm,要求只能对10 cm的小木棍进行裁剪(裁剪后长度为整数).你认为同学们最多能做出几种不同的三角形木架?( )A.1个B.2个C.6个D.10个16.【新考法】(2022江苏南京秦淮期中,5,)如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是( )A.7B.10C.11D.1417.(2022四川成都九中期中,9,)已知a,b,c是△ABC的三边长,b、c 满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解,则△ABC的周长为( )A.4B.5C.7或11D.718.(2022广西南宁隆安期中,23,)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a-b)2+|b-c|=0,试判断△ABC的形状;(2)化简:|b-c-a|+|a-b+c|-|a-b-c|.素养探究全练19.【创新意识】(2022江西赣州期中)若三边均不相等的三角形三边长a、b、c满足a-b>b-c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如:一个三角形三边长分别为7,5,4,因为7-5>5-4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棍能组成“不均衡三角形”的有 (填序号).①4 cm,2 cm,1 cm;②13 cm,18 cm,9 cm;③19 cm,20 cm,19 cm;④9 cm,8 cm,6 cm.(2)已知“不均衡三角形”三边长分别为2x+2,16,2x-6(x为整数),求x的值.答案全解全析基础过关全练1.B 根据三角形的三边关系得,A.1+2=3,不能构成三角形;B.3+4>5,能构成三角形;C.4+5<10,不能构成三角形;D.2+6<9,不能构成三角形.故选B.2.A 设三角形第三边的长为x cm,则3-2<x<3+2,即1<x<5,四个选项中只有A不符合条件.故选A.3.B ∵2+3=5,2+3<7,2+5=7,∴2 cm,3 cm,5 cm和2 cm,3 cm,7 cm以及2 cm,5 cm,7 cm都不能组成三角形,而3 cm,5 cm,7 cm可以组成三角形,其周长为15 cm,故选B.4.C 设三角形第三边的长为x,∵三角形的两边长分别为3和4,∴4-3<x<4+3,即1<x<7,∵第三边的长为整数,∴周长为13符合要求.故选C.5.D 连结AB(图略),设AB的长度为x m.根据三角形的三边关系知,100-90<x<100+90,即10<x<190,所以AB的长度不可能为190 m.6.答案10<x<60解析 根据三角形的三边关系,得35-25<x<25+35,即10<x<60.7.答案4或5或6解析 设三角形的第三边长为x,则5-2<x<5+2,即3<x<7,∵第三边的长为整数,∴x=4或5或6.故答案为4或5或6.8.答案2a-10解析 由三角形的三边关系可得a+b>5,a―b<5,所以a+b-4>0,a-b-6<0,则|a+b-4|-|a-b-6|=(a+b-4)+(a-b-6)=2a-10.9.解析 (1)∵三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,∴9-4<x<9+4,即5<x<13,∴x的取值范围是5<x<13.(2)∵△ABC的周长=x+4+9=x+13,且周长为偶数,∴x为奇数,∵5<x<13,∴x为7,9,11.10.解析 (1)知道.由题意得b+c―2a=0,b+c―8=0,∴a=4.(2)能.由b+c-8=0,得b=8-c.(3)知道.由三角形的三边关系得a+b>c>a-b,即4+8-c>c>4-(8-c),解得c<6,由a>b得4>8-c,∴c>4,∴6>c>4.11.B 人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做的道理是三角形具有稳定性,故选B.12.B 要使这个木架不变形,利用三角形的稳定性,他至少还要再钉上1根木条,故选B.能力提升全练13.C 设三角形第三边的长为x cm,∵三角形的两边长分别为5 cm 和8 cm,∴8-5<x<8+5,即3<x<13,∴第三边的长可以是6 cm.故选C.14.A 当杨冲,李锐两家与学校在一条直线上时,杨冲,李锐两家的直线距离为2 km或8 km,当杨冲,李锐两家与学校不在一条直线上时,设杨冲,李锐两家的直线距离为x km,根据三角形的三边关系得5-3<x<5+3,即2<x<8,所以杨冲,李锐两家的直线距离不可能为1 km,故选A.15.C 设从10 cm的小木棍上裁剪的线段长度为x cm,则9-5<x<9+5,即4<x<14,∴整数x的值为5、6、7、8、9、10,∴同学们最多能做出6种不同的三角形木架,故选C.16.B 本题呈现的是四边形,需要将问题转化为三角形,考查学生应变能力.①选3+4、6、8作为三角形的三边长,则三边长为7、6、8,7-6<8<7+6,能构成三角形,此时两颗螺丝间的最大距离为8;②选6+4、3、8作为三角形的三边长,则三边长为10、3、8,8-3<10<8+3,能构成三角形,此时两颗螺丝间的最大距离为10;③选3+8、4、6作为三角形的三边长,则三边长为11、4、6,4+6<11,不能构成三角形,此种情况不成立;④选6+8、3、4作为三角形的三边长,则三边长为14、3、4,3+4<14,不能构成三角形,此种情况不成立.综上所述,任意两颗螺丝的距离的最大值为10,故选B.17.D ∵(b-2)2+|c-3|=0,∴b-2=0且c-3=0,∴b=2,c=3,∵a为方程|x-4|=2的解,∴a=2或a=6,又c-b<a<c+b,即1<a<5,∴a=2,则△ABC的周长为2+2+3=7,故选D.18.解析 (1)∵(a-b)2+|b-c|=0,∴a-b=0且b-c=0,∴a=b=c,∴△ABC为等边三角形.(2)∵a,b,c是△ABC的三边长,∴b-c-a<0,a-b+c>0,a-b-c<0,∴原式=-b+c+a+a-b+c+a-b-c=3a-3b+c.素养探究全练19.解析 (1)①∵1+2<4,∴不能组成“不均衡三角形”;②∵18-13>13-9,∴能组成“不均衡三角形”;③∵19=19,∴不能组成“不均衡三角形”;④∵9-8<8-6,∴不能组成“不均衡三角形”.故答案为②.(2)①16-(2x+2)>2x+2-(2x-6),解得x<3,由2x-6>0,得x>3,矛盾,故不合题意;②2x+2>16>2x-6,解得7<x<11,2x+2-16>16-(2x-6),解得x>9,∴9<x<11,∵x为整数,∴x=10,检验:当x=10时,2x+2=22,2x-6=14,此时22,16,14可组成三角形;③2x-6>16,解得x>11,2x+2-(2x-6)>2x-6-16,解得x<15,∴11<x<15,∵x 为整数,∴x=12或13或14,当x=12或13或14时,都可以组成三角形.综上所述,x的值为10或12或13或14.。
直角三角形三边关系练习题(含答案)
直角三角形三边关系练习题(含答案)
问题一
已知直角三角形的两条直角边分别为3 cm和4 cm,请计算斜
边的长度。
解答一
根据勾股定理,斜边的长度可以通过以下公式计算:
$$斜边长度 = \sqrt{直角边1^2 + 直角边2^2}$$
代入已知数值,可得:
$$斜边长度 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$
所以斜边的长度为5 cm。
问题二
已知直角三角形的斜边长为10 cm,其中一个直角边长为6 cm,请计算另一个直角边的长度。
解答二
根据勾股定理,直角边的长度可以通过以下公式计算:
$$直角边长度 = \sqrt{斜边^2 - 另一直角边^2}$$
代入已知数值,可得:
$$直角边长度 = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$$
所以另一个直角边的长度为8 cm。
问题三
已知直角三角形的一个直角边长为5 cm,另一个直角边长为12 cm,请计算斜边的长度。
解答三
根据勾股定理,斜边的长度可以通过以下公式计算:
$$斜边长度 = \sqrt{直角边1^2 + 直角边2^2}$$
代入已知数值,可得:
$$斜边长度 = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$
所以斜边的长度为13 cm。
以上就是直角三角形三边关系的练习题及其答案。
希望对你有帮助!。
七年级数学下册《三角形的三边关系》典型例题(含答案)
《三角形的三边关系》典型例题例1 如图是某个蔬菜大棚的构架图,那么图中共有多少个三角形?例2 选择题:下列各组线段中能组成三角形的是( )A .cm 15,cm 8,cm 6===c b aB .cm 13,cm 6,cm 7===c b aC .cm 6,cm 5,cm 4===c b aD .cm 81,cm 41,cm 21===c b a例3 下列各组数分别表示三条线段的长度,试判断以它们为边是否能构成三角形?(1)5,8,4 (2)7,3,12 (3)2,8,6参考答案例1 分析:数图形个数时,既要不重又要不漏.数三角形个数有两种方法:(1) 按大小顺序数,其中“单个的小三角形”有四个:EFD CFD BCH ABH ∆∆∆∆、、、,含有两个小三角形的较大三角形有两个:FCE HAC ∆∆、,另外还有一个大三角形:GAE ∆.(2) 先固定一个顶点,变换另两个顶点来数.例如以A 为顶点的三有形有3个,分别是:AEG ACH ABH ∆∆∆、、,用该法时注意不要重复.解:图中共有7个三角形.例2 分析:判断三条线段能否组成三角形,就是根据:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.解:应选C .说明:在应用三角形三边之间的关系时,要注意“……大于……”“……小于……”.如上题中的选项B ,有c b a =+,也构不成三角形.例3 分析:判断三条线段能否构成三角形,可以用简便方法:将较短两边之和与较长边比较,或将最长边与最短边之差与中间线段比较.解:(1)方法一:8945>=+ ∴以5,8,4为边的三条线段能构成三角形.方法二:5448<=- ∴以5,8,4为边的三条线段能构成三角形.(2)121037<=+ ,∴以7,3,12为边的三条线段不能构成三角形.(3)862=+ ≯8,∴以2,8,6为边的三条线段不能构成三角形.。
七年级数学知识点精讲精练——三角形三边关系
多边形三边关系【知识点】三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.【典型例题】1.(2017春•鼓楼区校级期末)一个三角形的三边长分别是x cm、(x+1)cm、(x+2)cm,它的周长不超过12cm,则x的取值范围是.【考点】三角形三边关系【解答】解:根据题意,可得{x+x+1>x+2,x+x+1+x+2≤12解不等式组,得:1<x≤3.故答案为:1<x≤3.【练习】1. (2017秋•河西区校级月考)一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是.2. (2017秋•滁州期末)为估计池塘边A,B两点之间的距离,小文在池塘的一侧选取一点C,测得AC=6米,BC=10米,则A,B两点之间的距离可能是()A.20米 B.16米 C.8米D.3米3.(2015春•秦淮区期末)现有长为57cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为.4.(2012春•工业园区期末)小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2cm,3cm,4cm,和5cm,任取其中3根,可以搭成几个不同的三角形?”后,提出下列问题:长度分别为a,b,c(单位:cm)的三根小木棍搭成三角形,已知a,b,c都是整数,且a≤b<c,如果b=5,用满足上述条件的三根小木棍能够搭出几个不同的三角形?请你参与研究,并写出探究过程.5. (2014春•苏州期末)观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.【练习解析】1. 解:设第三边长为x,则8﹣3<x<8+3,即5<x<11.又∵x为奇数,∴x=7或9,故答案为7或9.2. 解:根据三角形的三边关系定理得:10﹣6<AB<6+10,即:4<AB<16,则A,B两点之间的距离在4和16之间.故选:C.3解:因为n段之和为定值57cm,故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意3段都不能拼成三角形,因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,但1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以n的最大值为8.4解:若三边能构成三角形则必有两边之和大于第三边,即a+b>c,又b<c,则b<c<a+b,又c﹣b<a≤b,故1<a≤5,从而a=2,3,4,5,当a=2时,5<c<7,此时c=6,当a=3时,5<c<8,此时c=6,7,当a=4时,5<c<9,此时c=6,7,8,当a=5时,5<c<10,此时c=6,7,8,9;故一共有1+2+3+4=10个.5 解:(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,或两点之间线段最短.(2)△BPC的周长<△ABC的周长.理由:如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC<AB+AC,于是得:△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,可得,BP1+P1P2+P2C <BM+CM<AB+AC,可得结论.或:作直线P1P2分别交AB、AC于M、N(如图),△BMP1中,BP1<BM+MP1,△AMN中,MP1+P1P2+P2M <AM+AN,△P2NC中,P2C<P2N+NC,三式相加得:BP1+P1P2+P2C<AB+AC,可得结论.(4)四边形BP1P2C的周长<△ABC的周长.理由如下:将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,即可.(5)比较四边形B1P1P2C1的周长<△ABC的周长.理由如下:如图,分别作如图所示的延长线交△ABC的边于M、N、K、H,在△BNM中,NB1+B1P1+P1M<BM+BN,又显然有,B1C1+C1K<NB1+NC+CK,及C1P2+P2H<C1K+AK+AH,及P1P2<P2H+MH+P1M,将以上各式相加,得B1P1+P1P2+P2C+B1C1<AB+BC+AC,于是得结论.。
初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(8)
章节测试题1.【答题】三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A. 10或12B. 10或14C. 12或14D. 14或16【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:设三角形第三边的长为a,∵三角形的两边长分别为3和5,∴5﹣3<a<5+3,即2<a<8,∵a为偶数,∴a=4或a=6,当a=4时,这个三角形的周长=3+4+5=12;当a=6时,这个三角形的周长=3+5+6=14.综上所述,这个三角形的周长可能是12或14.选C.方法总结:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,两边之差小于第三边.2.【答题】已知三角形两边长分别为7、11,那么第三边的长可以是()A. 2B. 3C. 4D. 5【答案】D【分析】根据三角形的三边关系进行判断.【解答】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,选D.3.【答题】以下列各组数据为边长,能构成三角形的是()A. 4,4,8B. 2,4,7C. 4,8,8D. 2,2,7【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;选C.方法总结:在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.【答题】有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为()A. 1B. 2C. 3D. 4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据等腰三角形的性质和三边关系可得:3,6,6,和3,12,12,和6,12,12,三组可以构成等腰直角三角形,选C.5.【答题】已知是△ABC的三条边长,化简的结果为()A.B.C. 0D.【答案】C【分析】根据三角形的三边关系进行判断化简即可.【解答】∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.选C.6.【答题】已知三角形两边长分别为4和6,则该三角形第三边的长可能是()A. 2B. 9C. 10D. 12【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边的长为x,∵三角形两边的长分别是4和6,∴6−4<x<6+4,即2<x<10.选B.7.【答题】下列各组数中,不可能成为一个三角形三边长的是().A. ,,B. ,,C. ,,D. ,,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形任意两边的和大于第三边,可知A. 2+3=5>4,能组成三角形;B. 5+7>7,能组成三角形;C. 5+6=11<12,不能够组成三角形;D. 6+8=14>10,能组成三角形.选A.8.【答题】若一个三角形的两边长分别为3和7,且第三边长为整数,则这样的三角形共有()A. 2个B. 3个C. 4个D. 5个【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边为a,根据三角形的三边关系,得:7-3<a<3+7,即4<a<10,因为a为整数,所以a可取5、6、7、8、9,即符合条件的三角形关于5个,选D.9.【答题】一个等腰三角形的一边长为4cm,另一边长为8cm,则该等腰三角形的周长是()A. 16cmB. 20cmC. 16cm或20cmD. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】解:∵4+4=8,0<4<8+8=16,∴腰长不能为4,只能为8,∴等腰三角形的周长=4+8+8=20cm.选B.10.【答题】以下列各组线段的长为边,能组成三角形的是()A. 2cm,4cm,10cmB. 2cm,2cm,4cmC. 2cm,3cm,4cmD. 1cm,2cm,3cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.∵2+4<10,故2cm,4cm,10cm不能构成三角形;B.∵2+2=4,故2cm,2cm,4cm不能构成三角形;C.∵2+3>4,故2cm,3cm,4cm能构成三角形;D.∵1+2=3,故1cm,2cm,3cm不能构成三角形;选C.11.【答题】下列长度的三条线段首尾连接不能组成三角形的是()A. 2,3,5B. 5,5,5C. 6,6,8D. 7,8,9【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.3+2=5,不能组成三角形;B.5+5>5,能组成三角形;C.6+6>8,能够组成三角形;D.7+8>9,能组成三角形.选A.方法总结:本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.12.【答题】下列长度的三条线段能组成三角形的是()A. 1,2,3B. 4,5,10C. 8,15,20D. 5,8,15【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:由1,2,3可得,1+2=3,故不能组成三角形;由4,5,10可得,4+5<10,故不能组成三角形;由8,15,20可得,8+15>20,故能组成三角形;由5,8,15可得,5+8<15,故不能组成三角形;选C.方法总结:本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边.13.【答题】长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】4个数里选出三个不同的数共有4种选法(①10,7,3;②10,7,5;③10,5,3;④7,5,3),其中10、7、3和10、5、3不能构成三角形,所以只有3、5、7和5、7、10两种选法能够构成三角形,选B.14.【答题】下列长度的三条线段能首尾顺次相接构成三角形的是()A. 4,2,2B. 6,3,2C. 5,3,9D. 3,6,6【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+2=4,不能构成三角形;B选项2+3<6,不能构成三角形;C选项5+3<9,不能构成三角形;D选项三条边满足三角形三条边之间的关系.选D.方法总结:三角形三条边之间的关系:两边之和大于第三边,两边之差小于第三边.15.【答题】下列四组线段中,能组成三角形的是()A. 2cm,3 cm,4 cmB. 3 cm,4 cm,7 cmC. 4 cm,6 cm,2 cmD. 5cm,11 cm,5cm【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.2+3>4,能构成三角形,故本选项正确.B.3+4=7,不能构成三角形,故本选项错误.C.2+4=6,不能构成三角形,故本选项错误.D.5+5<11,不能构成三角形,故本选项错误.选A.方法总结:本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.16.【答题】下列长度的各组线段能组成三角形的是()A. 3、8、5;B. 12、5、6;C. 5、5、10;D. 15、10、7.【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形任意两边的和大于第三边,可知:A.3+5=8=8,不能组成三角形,故本选项错误;B.5+6=11<12,不能组成三角形,故本选项错误;C.5+5=10=10,不能够组成三角形,故本选项错误;D.10+7>15,能组成三角形,故本选项正确;选D.方法总结:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.17.【答题】如图,图中共有三角形的个数是()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】不在同一直线上三点可以确定一个三角形,据此即可判断.【解答】图中的三角形有:△ADO、△ADB、△AOB、△ACB、△OCB,一共5个.选C.18.【答题】下列各组长度的线段能构成三角形的是()A. 1,4,2B. 3,6,3C. 6,1,6D. 4,10,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,∵1+2<4,∴不能构成三角形;选项B,∵3+3=6,∴不能构成三角形;选项C,∵1+6>6,∴能构成三角形;选项D,∵4+4<10,不能构成三角形.选C.19.【答题】一个等腰三角形两边长分别为20和10,则周长为()A. 40B. 50C. 40或50D. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】当20为底边长时,则另两边长为10、10,由10+10=20,不符合三角形三边关系,故不能构成三角形;当10为底边长时,则另两边长为20、20,符合三角形三边关系,此时周长为10+20+20=50.选B.20.【答题】已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A. 16B. 5C. 6D. 11【答案】D【分析】根据三角形的三边关系进行判断.【解答】根据三角形的三边关系,得第三边长a的取值范围为10-4<a<10+4,即6<a<14.选项中只有11符合题意.选D.。
解三角形的必备重点学习的知识及典型例题及练习习题.doc
解三角形的必备知识和典型例题及习题一、知识必备:1.直角三角形中各元素间的关系:在△ ABC 中, C = 90°, AB = c , AC = b , BC = a 。
( 1)三边之间的关系: a 2+ b 2= c 2。
(勾股定理)( 2)锐角之间的关系: A + B = 90°;( 3)边角之间的关系: (锐角三角函数定义)sin A =cos B = a , cos A = sin B = b, tan A = a 。
c c b 2.斜三角形中各元素间的关系:在△ 中, 、 、 为其内角, 、 、 c 分别表示 、 、 C 的对边。
ABCA B C a bA B( 1)三角形内角和: A + B + C = π。
( 2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等ab c 2R ( R 为外接圆半径) sin A sin B sinC( 3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2- 2bc cos A ; b 2= c 2+ a 2- 2ca cos B ;c 2= a 2+ b 2- 2ab cos C 。
3 .三角形的面积公式:( 1) S = 1 ah a = 1 bh b = 1 ch c ( h a 、 h b 、 h c 分别表示 a 、b 、 c 上的高);2 2 2 ( 2) S = 1 ab sin C = 1 bc sin A = 1 ac sin B ;2 2 24.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:( 1)两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.( 2)两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析
BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
华师大版初中数学七年级下册《9.1.3 三角形的三边关系》同步练习卷
华师大新版七年级下学期《9.1.3 三角形的三边关系》2019年同步练习卷一.选择题(共1小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共2小题)2.若一个三角形的三边长分别是m+2,10,2m﹣1,则m的取值范围为.3.如果三角形的两边长分别是3和7,那么第三边的长应大于,而小于,如果这个三角形中有两条边相等,那么它的周长是.三.解答题(共47小题)4.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.5.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)6.已知a、b、c分别为△ABC的三边,你能判断(a2+b2﹣c2)2﹣4a2b2的符号吗?并说明理由.7.用一条长18cm的铁丝围成一个三角形,其中三边长分别为4cm,xcm,ycm,且有两边相等,求x,y的值.8.一个三角形的两条边相等,周长为18cm,三角形一边长4cm,求其它两边长?9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求△ABC三边长.10.如图,在△ABC中,∠1=∠2,点E、F、G分别在BC、AB、AC上.(1)若在△BCD中,BC=5,BD=4,设CD的长为奇数,则CD的取值是;(2)若EF⊥AB,DG∥BC,请判断CD与AB的位置关系,并说明理由.11.如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.12.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.13.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.14.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.15.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值范围.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.17.已知,a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.18.已知a、b、c是三角形三边长,化简:|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|.19.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A 的度数.20.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.21.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.22.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请尽可能地写出满足题意的a、b、c.23.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值.24.一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?25.小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?26.已知三角形的三边长分别是x,x﹣1,x+1.求x的取值范围.27.设a、b、c是△ABC的三边,化简:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|.28.若三个互不相等的数:5、3、a能作为一个三角形的三边长,求a的取值范围.29.如图所示,已知O是△ABC内的一点,是说明OA+OB+OC与AB+BC+CA之间的大小关系.30.已知a、b、c分别为△ABC的三边长,化简|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|.31.如图所示,P是△ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小.32.(1)下面两图是分别用三根、五根火材搭成的三角形,那么用九根火材你能搭成几种不同的三角形,画出示意图,并写出三角形的类型.(2)将一个正方形剖分成d个小正方形称为该正方形的d阶正方形剖分(注意:不要求分出的正方形大小一定要一样),如下面两图是一个正方形的4阶剖分(即d=4)、8阶剖分(即d=8),请你在另两个正方形中画出d=6和d=7的图形.33.已知△ABC有两边的长分别为3和7,第三边的长是关于x的方程解,求a 的取值范围.34.如图,已知线段AD是△ABC的中线,且AB=6,AD=4,AC边长为奇数.求边AC 的长.35.有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由.36.如图,D,E是△ABC内两点,求证:AB+AC>BD+DE+CE.37.如图,点P是△ABC内任意一点,试说明PB+PC<AB+AC.38.小明家与学校相距2千米,与少年宫相距3千米,那么学校与少年宫相距一定是5千米吗?请说明理由.39.将长度为2n(n为不小于4的自然数)的一根铅丝折成各边长均为整数的三角形.把三边长分别为α、b、c且满足a≤b≤c的三角形简记为数组(a,b,c)如当n=4时,有(2,3,3).(1)就n=5、6的情况.分别写出所有满足题意的(α,b,c).(2)根据前面的结果猜想:当铅丝的长度为2n(n为不小于4的自然数)时.对应(a,b,c)的个数是.为了检验这个的猜想是否正确,请分别写出当n=8、10时所有的(a,b,c),并判断这个猜想(选填“正确”或“不正确”)40.想一想,下面各题的三条线段能组成三角形吗?如果能,会组成什么样的三角形?(1)6cm,9cm,5cm;(2)6cm,8cm,10cm;(3)5cm,7cm,5cm;(4)12cm,3cm,7cm.41.某海军在南海某海域进行实战演习,小岛A的周围方圆12km内的区域为危险区域,有一艘渔船误入离A地7km的B处(如图),为了尽快驶离危险区域,该船应沿哪条射线方向航行?为什么?42.已知:如图,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.43.用长度相等的100根火柴,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形各边所用火柴的根数.44.有四个村庄(点)A、B、C、D,要建一所学校P,使P A+PB+PC+PD最小.画图说明P在哪里.45.①设△ABC的三边分别为a、b、c,试证明:a<(a+b+c)②设四边形的四边长依次为a、b、c、d,两条对角线分别为e、f,证明:e+f>(a+b+c+d)46.小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?47.从1,2,3,…,2004中任选K﹣1个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形三边长互不相等),试问满足条件的K的最小值是多少?48.如图,四个工厂A、B、C、D,试找一个供应站M,使它到四个工厂的距离之和为最小.49.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.50.已知三角形的一边是另一边的3倍,求证:三角形的最小边在周长的与之间.华师大新版七年级下学期《9.1.3 三角形的三边关系》2019年同步练习卷参考答案与试题解析一.选择题(共1小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7【分析】依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.【点评】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.二.填空题(共2小题)2.若一个三角形的三边长分别是m+2,10,2m﹣1,则m的取值范围为3<m<13.【分析】根据在三角形中,“任意两边之和大于第三边,任意两边之差小于第三边”列不等式组求解.【解答】解:根据三角形的三边关系,得即,解不等式组得,3<m<13.【点评】本题利用了三角形中三边的关系求解,同时还要能够熟练解不等式组.3.如果三角形的两边长分别是3和7,那么第三边的长应大于4,而小于10,如果这个三角形中有两条边相等,那么它的周长是17.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于4而小于10;如果三角形中,有两边相等,则分情况讨论:当三边是3,3,7时,3+3<7,不符合三角形的三边关系,舍去;当三角形的三边是3,7,7时,符合,此时周长是17.【点评】考查了三角形的三边关系.注意等腰三角形的时候,一定要分情况讨论.三.解答题(共47小题)4.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.【分析】(1)由四边形的周长是四条边的和,首先表示出第二条边长为(2a+3)cm,第三条边为(a+2a+3)cm,即可得到第四边的长;(2)利用组成四边形的线段的条件,即可得到.【解答】解:(1)∵第一条边长是acm,依题意得:第二条边长为(2a+3)cm,第三条边为(a+2a+3)cm,又四边形的周长是48cm,∴第四条边长为:48﹣a﹣(2a+3)﹣(3a+3),=48﹣a﹣2a﹣3﹣3a﹣3,=42﹣6a(cm);(2)当a=3时,四条边的边长分别为3,9,12,24,因为3+9+12=24.不是四边形.是四条在同一条直线上的线段.【点评】本题考查了列代数式,代数式的值,构成四边形的关系,合并同类项法则的运用.5.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.6.已知a、b、c分别为△ABC的三边,你能判断(a2+b2﹣c2)2﹣4a2b2的符号吗?并说明理由.【分析】理由公式法因式分解即可解决问题;【解答】解:(a2+b2﹣c2)2﹣4a2b2=(a2+b2﹣c2+2ab)(a2+b2﹣c2﹣2ab)=[(a+b)2﹣c2][(a﹣b)2﹣c2]=(a+b+c)(a+b﹣c)(a﹣b+c)(a﹣b﹣c)∵a+b+c>0,a+b﹣c>0,a﹣b+c>0,a﹣b﹣c<0,∴(a2+b2﹣c2)2﹣4a2b2<0【点评】本题考查三角形的三边关系、平方差公式、完全平方公式等知识,解题的关键是熟练掌握因式分解,属于中考常考题型.7.用一条长18cm的铁丝围成一个三角形,其中三边长分别为4cm,xcm,ycm,且有两边相等,求x,y的值.【分析】根据三角形的三边关系即可解决问题;【解答】解:①当x=4时,y=18﹣8=10,4+4<10,不能构成三角形,不符合题意;②当y=4时,x=18﹣8=10,4+4<10,不能构成三角形,不符合题意;③当x=y时,x=y=14÷2=7,符合题意,∴x=y=7.【点评】本题考查三角形的三边关系,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.一个三角形的两条边相等,周长为18cm,三角形一边长4cm,求其它两边长?【分析】分两种情形讨论求解即可:①若4cm为底边.②若4cm为腰长;【解答】解:①若4cm为底边,则另外两边均为(18﹣4)=7厘米;②若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.【点评】本题考查三角形的三边关系,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求△ABC 三边长.【分析】首先设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;然后根据△ABC三边长都是整数且互不相等,判断出△ABC三边长.【解答】解:根据题意,设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;∵BC为最大边,∴a最大,又∵b+c>a,∴a<6,∵△ABC三边长都是整数,∴a=5,又∵△ABC三边长互不相等,∴其他两边分别为3,4,∴三角形的三边长为AB=4,BC=5,AC=3或AB=3,BC=5,AC=4.【点评】此题主要考查了三角形三边的关系,以及勾股定理的应用,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.10.如图,在△ABC中,∠1=∠2,点E、F、G分别在BC、AB、AC上.(1)若在△BCD中,BC=5,BD=4,设CD的长为奇数,则CD的取值是3,5,7;(2)若EF⊥AB,DG∥BC,请判断CD与AB的位置关系,并说明理由.【分析】(1)根据三角形三边关系定理求出CD取值范围,再根据CD的长为奇数即可得出CD的取值;(2)由平行线的性质和已知条件可证明CD∥EF,可求得∠CDB=90°,可判断CD⊥AB.【解答】解:(1)∵在△BCD中,BC=5,BD=4,∴1<CD<9,∵CD的长为奇数,∴CD的取值是3,5,7.故答案为3,5,7;(2)CD⊥AB.理由如下:∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.【点评】本题考查了三角形三边关系定理,平行线的性质和判定,掌握定理与性质是解题的关键.11.如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是3或5或7;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.12.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.【分析】(1)根据三角形任意两边之和大于第三边得出3c﹣2>c,任意两边之差小于第三边得出|2c﹣6|<c,列不等式组求解即可;(2)由△ABC的周长为18,a+b=3c﹣2,4c﹣2=18,解方程得出答案即可.【解答】解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:2<c<6;(2)∵△ABC的周长为18,a+b=3c﹣2,∴a+b+c=4c﹣2=18,解得c=5.【点评】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.13.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.【分析】根据三角形的三边关系定理可得第三边的范围是:大于已知的两边的差,而小于两边的和.再根据范围确定a的值.【解答】解:(1)根据三角形的三边关系可得5﹣3<a<5+3,即:2<a<8,(2)∵第三边a的取值范围为2<a<8,∴它的周长L的取值范围2+3+5<L<5+3+8即10<L<16;(3)∵第三边a的取值范围为2<a<8,周长为偶数,∴第三边的长为4或6.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.14.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.【分析】(1)根据三角形的三边关系判断出a﹣b﹣c,b﹣c﹣a及c﹣a﹣b的符号,再根据绝对值的性质化简;(2)将a=5,b=4,c=3代入计算即可.【解答】解:(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=﹣a+b+c﹣b+a+c﹣c+a+b=a+b+c;(2)当a=5,b=4,c=3时,原式=5+4+3=12.【点评】本题考查的是三角形的三边关系以及绝对值的性质的运用,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.15.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值范围.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)当m=10时,三边长分别为10,28,12,根据三角形三边关系即可作出判断;(3)根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出m的取值范围.【解答】解:(1)∵第二条边长为(3m﹣2)米,∴第三条边长为50﹣m﹣(3m﹣2)=(52﹣4m)米;(2)当m=10时,三边长分别为10,28,12,由于10+12<28,所以不能构成三角形,即第一条边长不能为10米;(3)由题意,得,解得<m<9.【点评】本题主要考查了一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是1<BC<9;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.【分析】(1)利用三角形的三边关系确定第三边的取值范围即可;(2)首先利用平行线的性质确定∠EDB的度数,然后利用三角形内角和定理确定∠B的度数即可.【解答】解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°.∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.【点评】本题考查了三角形的三边关系及平行线的性质,解题的关键是能够了解三角形的三边关系及两直线平行同位角相等的知识,难度不大.17.已知,a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解:|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=﹣(a﹣b﹣c)+2(b﹣c﹣a)+(a+b﹣c)=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.18.已知a、b、c是三角形三边长,化简:|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|.【分析】根据三角形三边关系得到a+b﹣c>0,a﹣c﹣b<0,b+c﹣a>0,再去绝对值,合并同类项即可求解.【解答】解:∵a,b,c是一个三角形的三条边长,∴a+b﹣c>0,a﹣c﹣b<0,b+c﹣a>0,∴|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|=a+b﹣c﹣a+c+b﹣b﹣c+a=a+b﹣c.【点评】考查了三角形三边关系,绝对值的性质,整式的加减,关键是得到a+b﹣c>0,a ﹣c﹣b<0,b+c﹣a>0.19.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A 的度数.【分析】首先设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;然后根据△ABC三边长都是整数且互不相等,判断出△ABC三边长分别是5、3、4;最后根据勾股定理,判断出△ABC是直角三角形,即可求出∠A的度数是多少.【解答】解:根据题意,设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;∵BC为最大边,∴a最大,又∵b+c>a,∴a<6,∵△ABC三边长都是整数,∴a=5,又∵△ABC三边长互不相等,∴其他两边分别为3,4,∵32+42=52,∴△ABC是直角三角形,∴∠A=90°,即∠A的度数是90°.【点评】此题主要考查了三角形三边的关系,以及勾股定理的应用,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.20.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.【解答】解:如图,设AB=AC=a,BC=b,则有a+a=24且a+b=18;或a+a=18且a+b=24,得到a=16,b=10或a=12,b=18,这时三角形的三边长分别为16,16,10和12,12,18.它们都能构成三角形.【点评】三角形的中线即三角形一个顶点与对边中点所连接的线段.21.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.【分析】根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【解答】解:|a+b﹣c|﹣|b﹣c﹣a|=a+b﹣c﹣(﹣b+c+a)=a+b﹣c+b﹣a﹣c=2b﹣2c.【点评】此题主要考查了三角形的三边关系,以及绝对值的计算,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.22.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请尽可能地写出满足题意的a、b、c.【分析】三角形的分类标准有2种,一种是按角来分,一种是按边来分,列举出所有符合条件的三角形,即可解答.【解答】解:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:A(2,11,11),B(3,10,11),C(4,9,11),D(5,8,11),E(6,7,11),F(4,10,10),G(5,9,10),H(6,8,10),I(7,7,10),J(6,9,9),K(7,8,9),L(8,8,8).【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.23.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值.【分析】(1)根据三角形的三边关系求出AB的取值范围,再由AB为奇数即可得出结论;(2)根据AC﹣BC=5可知AC、BC中一个奇数、一个偶数,再由△ABC的周长为奇数,可知AB为偶数,再根据AB>AC﹣BC即可得出AB的最小值.【解答】解:(1)∵由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴6<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC﹣BC=5,得AB的最小值为6.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.24.一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?【分析】题设中已知数较少,只知道周长为12,应抓住不等边三角形的边长都是整数这一条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.【解答】解:设a<b<c,则a+b+c>2c,即2c<12,所以c<6.因为a,b,c都是正整数,所以若c=3,则其他两边必然为a=1,b=2.由于1+2=3,即a+b=c,故线段a,b,c不可能组成三角形.当然c更不可能为1或2,因而有4≤c<6.当c=4时,a=2,b=3,不符合条件;当c=5时,a=3,b=4,符合条件.于是符合条件的三角形共有1个.【点评】点拨:本题考查了三角形的三边关系,关键是根据三角形三边关系确定出最大边的取值范围.25.小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?【分析】已知两边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围;再结合整数这一条件进行分析.【解答】解:设第三根的长是xm.根据三角形的三边关系,则3<x<13.因为x是整数,因而第三根的长度是大于3m且小于13m的所有整数,共有9个数.答:小颖有9种选法.第三根木棒的长度可以是4m,5m,6m,7m,8m,9m,10m,11m,12m.【点评】本题就是利用三角形的三边关系定理解决实际问题.26.已知三角形的三边长分别是x,x﹣1,x+1.求x的取值范围.【分析】根据三角形的三边关系列出关于x的不等式组,求出x的取值范围即可;【解答】解:∵三角形的三边长分别是x,x﹣1,x+1,∴x+1﹣(x﹣1)<x<x+1+(x﹣1),解得:x>2,∴x的取值范围是x>2.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.27.设a、b、c是△ABC的三边,化简:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|.【分析】首先根据三角形的三边关系可得a+b﹣c>0,a﹣c﹣b<0,b﹣c+a>0,再根据绝对值的性质去掉绝对值符号,然后合并同类项即可.【解答】解:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|=a+b﹣c+(﹣a+c+b)+(b﹣c+a)=a+b﹣c﹣a+c+b+b﹣c+a=a+3b﹣c.【点评】此题主要考查了三角形的三边关系,以及绝对值和整式的加减,关键是掌握三角形的三边关系.28.若三个互不相等的数:5、3、a能作为一个三角形的三边长,求a的取值范围.【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解答】解:∵三个互不相等的数:5、3、a能作为一个三角形的三边长,∴5﹣3<a<5+3,且a≠3,a≠5,即2<a<8且a≠3,a≠5.【点评】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.29.如图所示,已知O是△ABC内的一点,是说明OA+OB+OC与AB+BC+CA之间的大小关系.【分析】直接根据三角形的三边关系进行解答即可.【解答】解:∵在△ABO中,OA+OB>AB;同理可得,OA+OC>CA;OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.30.已知a、b、c分别为△ABC的三边长,化简|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|.【分析】根据三角形的任意两边之和大于第三边可得a+b﹣c>0,b﹣c﹣a<0,c﹣a+b>0,再根据绝对值的性质去掉绝对值符号,然后利用整式的加减运算进行计算即可得解.【解答】解:∵a、b、c分别为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,c﹣a+b>0,∴|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|=a+b﹣c+b﹣c﹣a﹣c+a﹣b=a+b﹣3c.【点评】本题考查了三角形的三边关系,绝对值的性质,整式的加减运算,熟记性质并去掉绝对值符号是解题的关键.31.如图所示,P是△ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小.【分析】首先需要作辅助线(延长BP交AC于点D),根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得:在△ABD中,AB+AD>PB+PD;在△PCD中,PD+DC >PC,即可得:AB+AC>PB+PC.【解答】解:如图,延长BP交AC于点D,。
2020版七年级数学下册第四章三角形试题(新版)北师大版及参考答案
第四章三角形1.应用三角形的三边关系的方法技巧(1)已知三角形的两边长求第三边的范围,解答这类问题的关键是求两边之和、两边之差,第三边大于两边之差小于两边之和.【例】若三角形的两边长分别为6 cm,9 cm,则其第三边的长可能为( )A.2 cmB.3 cmC.7 cmD.16 cm【标准解答】选C.设第三边长为xcm.由三角形三边关系定理得9-6<x<9+6,解得3<x<15.(2)已知三条线段,判断以这三条线段为边能否构成三角形,解答的关键是只求两较短边之和,与最长边去比较.【例】下列长度的三条线段,不能组成三角形的是( )A.3,8,4B.4,9,6C.15,20,8D.9,15,8【标准解答】选A.分析各选项:A.∵3+4<8∴不能构成三角形;B.∵4+6>9∴能构成三角形;C.∵8+15>20∴能构成三角形;D.∵8+9>15∴能构成三角形.(3)在解决三角形中线段比较大小的问题时,我们经常会用到三角形的“三边关系定理”来解决问题,它是我们初中阶段经常用于比较线段大小的重要依据.【例】如图,点P是△ABC内任意一点,试说明PB+PC<AB+AC.【标准解答】延长BP交AC于点D,在△ABD中,PB+PD<AB+AD ①,在△PCD中,PC<PD+CD ②,①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC.1.下列长度的三条线段,能组成三角形的是( )A.1,1,2B.3,4,5C.1,4,6D.2,3,72.如果一个三角形的两边长分别为2和5,则第三边长可能是( )A.2B.3C.5D.83.某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是( )A.1,3,5B.1,2,3C.2,3,4D.3,4,54.各边长度都是整数、最大边长为8的三角形共有个.5.如图,△ABC三边的中线AD,BE,CF的公共点G,若S△ABC=12,则图中阴影部分面积是.2.求一个角的度数的方法(1)当所求角是一个三角形的内角时,可先求出这个三角形另外两个内角的度数,再根据三角形内角和定理计算.【例】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于( )A.40°B.65°C.75°D.115°【标准解答】选B.∵∠A=40°,∠AOB=75°.∴∠B=180°-∠A-∠AOB=180°-40°-75°=65°,∵AB∥CD,∴∠C=∠B=65°.(2)当所求角是一个三角形的外角时,可利用三角形外角的性质结合三角形的内角和定理计算. 【例】将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为( )A.75°B.95°C.105°D.120°【标准解答】选C.∵∠ACO=45°-30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.(3)当条件中含有平行线时,可利用平行线的性质将其转化为其他易求的角.【例】如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )A.40°B.60°C.80°D.100°【标准解答】选D.如图,方法一:∵l1∥l2,∴∠1=∠ABC=60°,∴∠2=∠A+∠ABC=60°+40°=100°;方法二:∵l1∥l2,∴∠2=∠3.∵∠1=∠4=60°,∠A=40°.∴∠2=∠3=∠A+∠4=60°+40°=100°.1.一副三角板如图叠放在一起,则图中∠α的度数为( )A.75°B.60°C.65°D.55°2.如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )A.17°B.34°C.56°D.124°3.如图,在△ABC中,∠B,∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ( )A.118°B.119°C.120°D.121°4.如图,在△ABC中,点D,E,F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD= ( )A.80°B.75°C.70°D.65°5.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B= °.6.如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.3.确定全等三角形的对应边、对应角的方法(1)在全等三角形中找对应边和对应角,关键是先找出对应顶点,然后按对应顶点字母的顺序记两个三角形全等,再按顺序写出对应边和对应角.(2)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角.两条对应边所夹的角是对应角.(3)全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角.(4)最大边是对应边,最小边是对应边,最大角是对应角,最小角是对应角.【例】如图,△ABC≌△DEF,点A与点D是对应顶点,则BC的对应边是,∠BAC的对应角是.【标准解答】因为点A与点D是对应顶点,对应顶点所对的边是对应边,所以BC的对应边是EF;又因为以对应点为顶点的角是对应角,所以∠BAC的对应角是∠EDF.答案:EF ∠EDF如图所示,∠1=∠2,∠B=∠D,△ABC和△AED全等应表示为( )A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△ADED.△ABC≌△DEA4.全等三角形(1)判定基本思路:在证明两个三角形全等时,往往题目中已知某些边或角的条件,常根据以下思路来寻找三角形全等的条件.(2)常见的全等三角形的基本模型:①平移变换型②轴对称变换型③旋转变化型【例1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【标准解答】∵AD∥CB,∴∠A=∠C,∵AD=CB,∠D=∠B,∴△ADF≌△CBE,∴AF=CE,∴AE=CF.【例2】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D. 求证:△BEC≌△CDA.【标准解答】∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,∵BC=AC,∴△BEC≌△CDA.1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°2.如图,B,E,C,F在同一直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .3.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.4.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED.(2)AC=BD.5.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E点,使DE=AB.求证:(1)∠ABC=∠EDC.(2)△ABC≌△EDC.6.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.5.尺规作图用尺规作图作出图形的三个步骤:(1)分析图形,明确作图顺序.(2)选择合适的基本作图.(3)验证所作图形是否符合要求.【例1】如图所示,已知线段AB,∠α,∠β,分别过A,B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)【标准解答】如图所示:.【例2】作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.【标准解答】如图所示:1.画△ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法)2.如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC沿AD剪开,拼成如图2的四边形ABDC′.(1)四边形ABDC′具有什么特点?(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).跟踪训练答案解析第四章三角形1.应用三角形的三边关系的方法技巧【跟踪训练】1.【解析】选 B.如果满足较小的两条线段之和大于最长的线段,那么这三条线段就能组成三角形.因为1+1=2,1+4<6,2+3<7,而3+4>5.2.【解析】选C.设第三边长为x,则由三角形三边关系定理得5-2<x<5+2,即3<x<7.故选C.3.【解析】选C.设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4.4.【解析】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.答案:205.【解析】由中线性质,可得AG=2GD,则S△BGF=S△CGE=S△ABG=×S△ABD=××S△ABC=×12=2,∴阴影部分的面积为4.答案:42.求一个角的度数的方法【跟踪训练】1.【解析】选A.如图,∵∠1=60°,∠2=45°,∴∠α=180°-45°-60°=75°.2.【解析】选C.∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°-∠DCE=90°-34°=56°.3.【解析】选C.∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠B,∠C的平分线为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.4.【解析】选B.∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°-60°-45°=75°.5.【解析】∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°, ∴∠B=70°.答案:706.【解析】∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.3.确定全等三角形的对应边、对应角的方法【跟踪训练】【解析】选C.由于∠1=∠2,∠B=∠D,所以点C与点E,点B与点D是对应点,故应表示为△ABC≌△ADE,所以选C.4.全等三角形【跟踪训练】1.【解析】选C.A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选C.2.【解析】∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,∵AB=DE,∴△ABC≌△DEF,∴DF=AC=6.答案:63.【解析】在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.4.【证明】(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED.(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,∴△AEC≌△BED(SAS),∴AC=BD.5.【证明】(1)在四边形ABCD中,∵∠A=∠BCD=90°,∴∠B+∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC=∠EDC.(2)连接AC.∵在△ABC和△EDC中∴△ABC≌△EDC.6.【证明】∵AE∥BD,∴∠EAC=∠ACB, ∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,∴△ABD≌△CAE,∴AD=CE.5.尺规作图【跟踪训练】1.【解析】已知:线段a,b和∠β.求作:△ABC,使BC=a,AC=b,∠C=β(也可以使任意两边分别等于a和b,夹角为β).2.【解析】(1)四边形ABDC′中,AB=DC′,∠B=∠C′(或四边形ABDC′中,一组对边相等,一组对角相等).(2)作法:①延长NP;②以点M为圆心,MN为半径画弧,交NP的延长线于点G;③以点P为圆心,MN为半径画弧,以点M为圆心,PG为半径画弧,两弧交于点Q;④连接MQ,PQ;⑤四边形MNPQ是满足条件的四边形.。
七年级数学下册直角三角形的边长关系综合练习题
七年级数学下册直角三角形的边长关系综合练习题直角三角形是一种特殊的三角形,其中一个角是直角(即为90度)。
在直角三角形中,边长之间存在着一些特殊的关系,我们可以通过运用一些定理和公式来求解直角三角形的边长。
本文将综合练习一些直角三角形的边长关系题目,帮助七年级学生加深对这些概念的理解和应用。
题目一:已知直角三角形ABC中,∠B = 90°,BC = 5cm,AC = 12cm,求AB的长度。
解析一:根据勾股定理,直角三角形中的两个直角边的平方和等于斜边的平方。
即AB² + BC² = AC²。
带入已知条件:AB² + 5² = 12²AB² + 25 = 144AB² = 144 - 25AB² = 119AB = √119因此,直角三角形ABC中,AB ≈ 10.92cm。
题目二:已知直角三角形XYZ中,∠Z = 90°,YZ = 9cm,XZ = 15cm,求XY的长度。
解析二:同样利用勾股定理,我们可以得到XY² + YZ² = XZ²。
带入已知条件:XY² + 9² = 15²XY² + 81 = 225XY² = 225 - 81XY² = 144XY = √144因此,直角三角形XYZ中,XY = 12cm。
题目三:已知直角三角形PQR中,∠R = 90°,PQ = 8cm,RP = 10cm,求RQ的长度。
解析三:应用勾股定理,我们有RQ² + PQ² = RP²。
带入已知条件:RQ² + 8² = 10²RQ² + 64 = 100RQ² = 100 - 64RQ² = 36RQ = √36因此,直角三角形PQR中,RQ = 6cm。
华东师大初中数学七年级下册三角形的三边关系(基础)知识讲解【精编】.doc
三角形的三边关系(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.2. 理解并会应用三角形三边间的关系.3. 理解三角形的高、中线、角平分线的概念,学会它们的画法.4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示. 要点二、三角形的三边关系定理:三角形任意两边之和大于第三边. 推论:三角形任意两边的之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系. 要点三、三角形的分类【高清课堂:与三角形有关的线段 三角形的分类】 1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形. 要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】对比三角形的相关概念分析和思考.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重复、不遗漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE 上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定在以B为一个顶点组成的三角形中.举一反三:【变式】如图,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. (四川南充)三根木条的长度如图所示,能组成三角形的是()【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值. 【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A 、B 、C 三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形. 【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】判(2015•泉州)已知△ABC 中,AB=6,BC=4,那么边AC 的长可能是下列哪个值( ) A .11 B .5 C .2 D .1 【答案】B .解:根据三角形的三边关系, 6﹣4<AC <6+4, 即2<AC <10, 符合条件的只有5, 故选:B .类型三、三角形中重要线段4. (2016春•江苏月考)在△ABC 中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .【答案】C ; 【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部. 举一反三:【变式】如图所示,已知△ABC ,试画出△ABC 各边上的高.【答案】解:所画三角形的高如图所示.5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比 △ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD -(AC+CD+AD )=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC -AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm . 【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB 、CD ),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.。
三角形-知识点 考点 典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
七年级数学下册《三角形的三条主要线段》典型例题(含答案)
七年级数学下册《三⾓形的三条主要线段》典型例题(含答案)《三⾓形的三条主要线段》典型例题例1 如图,ABC ?中AE 是⾓平分线,且?=∠?=∠78,52C B ,求AEB ∠的度数.例2 在Rt ABC ?中,?=∠90BAC ,AD 是ABC ?的⾼,找出图中相等的⾓.例3 如图,AD 是ABC ?的⾼,AE 是ABC ?的⾓平分线,AF 是ABC ?的中线,给出图中所有相等的⾓和相等的线段.例4 作出ABC ?中CB 边上的⾼,AB 边上的中线,AC 边上的⾓平分线.参考答案例1 分析:已知?=∠?=∠78,52C B ,可求得?=∠50BAC ,所以?=?=∠25250BAE ,故可求出AEB ∠.解:因为?=∠?=∠78,52C B ,由三⾓形内⾓和等于180°可求得?=∠-∠-?=∠50180C B BAC .⼜因为AE 平分BAC ∠,所以?=∠25BAE .由三⾓形内⾓和等于180°,得=--=∠-∠-?=∠1032552180180BAE B AEB .说明:BAC ∠不要写成A ∠.例 2 分析:根据题意可知,图中有三个直⾓三⾓形,分别是Rt ABC ?、Rt ABD ?、Rt ADC ?,根据“直⾓三⾓形的两个锐⾓互余”可以得出三组互为余⾓的⾓,再根据“同⾓(或等⾓)的余⾓相等”可以找出相等的⾓.解:∵在Rt ABC ?中,?=∠90BAC∴?=∠+∠90B C (直⾓三⾓形的两个锐⾓互余)⼜∵在Rt ABD ?中,?=∠90BDA ,∴?=∠+∠90B BAD∴C BAD ∠=∠(同⾓的余⾓相等)同理可得:B CAD ∠=∠.例3 分析:三⾓形的⾓平分线、中线、⾼线常常⽤⼀些数学关系式(即数学中的符号语⾔)来体现,这样明确、⽅便.(其中“?”表⽰由左边可以推出右边,同时由右边也可以推出左边)AE 是ABC ?的⾓平分线?BAC CAE BAE ∠=∠=∠2/1AF 是ABC ?的中线?BC CF BF 2/1==AD 是ABC ?的⾼??=∠=∠?⊥90CDA BDA BC AD解:相等的⾓有:CAE BAE CDA BDA ∠=∠?=∠=∠,90相等的线段有:CF BF =例4 分析:作三⾓形的⾼线可以⽤三⾓尺的直⾓作垂线,值得注意的是:是从三⾓形的⼀个顶点向它的对边所在直线作垂线.作三⾓形的⾓平分线、中线,可以分别⽤量⾓器、直⾓测量作图.另外,任意三⾓形的中线、⾓平分线和锐⾓三⾓形的⾼线均可以⽤折纸法作出.解:∴AD是CB边上的⾼,CE是AB边上的中线,BF是AC边上的⾓平分线.。
七年级数学下册9.1三角形(第3课时)三角形三边关系同步跟踪训练华东师大版(2021-2022学年)
9。
1。
3三角形三边关系一.选择题(共8小题)1.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是( )A.ﻩ两点之间线段最短B.矩形的对称性C.ﻩ矩形的四个角都是直角ﻩ D. 三角形的稳定性2.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.ﻩ1种B.2种ﻩC.3种D.4种3.下列线段能构成三角形的是()A. 2,2,4ﻩB.3,4,5 C.1,2,3ﻩ D. 2,3,64.已知三角形两边长分别为3和8,则该三角形第三边的长可能是( )A.ﻩ5 B.10ﻩC.11 D. 125.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()1,2,1B.1,2,2ﻩC.1,2,3 D.ﻩ1,2,4A.ﻩ6.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是( )A. 12米 B.10米ﻩ C.15米D.ﻩ8米7.已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为( ) A.8cm B.10cm C.8cm或10cm D.8cm或9cm8.已知三角形的三边长分别为3、8、x,若x的值为偶数,则x的值有( )A.ﻩ6个ﻩB.5个C.4个D.3个二.填空题(共6小题)9.若一个三角形三边长分别为2,3,x,则x的值可以为_________ (只需填一个整数)10.等腰三角形两边长分别是3和6,则该三角形的周长为 _________.11.三角形的三条边长分别是2,2x﹣3,6,则x的取值范围是_________ .12.已知三角形的两边长为3,5,则第三边的长度可以是 _________(写出一个即可).13.已知四条线段的长分别为2,3,4,5,用其中的三条线段构成的三角形的周长是_________ .14.已知a、b、c是△ABC的三边,且满足+(b﹣4)2=0,则第三边c的取值范围是 _________ .三.解答题(共6小题)15.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.16.已知,a、b、c为△ABC的三边长,b、c满足(b﹣2)2+|c﹣3|=0,且a为方程|a﹣4|=2的解,求△ABC的周长,并判断△ABC的形状.17.若三角形的两边长分别为7cm和10cm,则第三边的取值范围是多少?如果第三边的取值的取值是正整数,那么所取的边长有没有可能围成一个等腰三角形,此时的三角形腰长应为多少?18.△ABC中,AB=5,BC=3,第三边AC的长可以取哪些整数值?19.已知a,b,c是三角形ABC三边之长,化简:|a+b﹣c|+|a﹣b﹣c|﹣|b﹣a﹣c|﹣|c+b﹣a|. 20.如图,点P是△ABC内一点,比较BP+CP与AB+AC的大小.9.1.3三角形三边关系参考答案与试题解析一.选择题(共8小题)1.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.ﻩ两点之间线段最短ﻩB. 矩形的对称性C. 矩形的四个角都是直角ﻩD.三角形的稳定性考点: 三角形的稳定性.分析:ﻩ用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.解答:ﻩ解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.2.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A. 1种ﻩB.2种ﻩC3种D.4种考点: 三角形三边关系.专题:ﻩ常规题型.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:ﻩ解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.点评: 本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.下列线段能构成三角形的是( )A. 2,2,4 B.3,4,5ﻩ C.1,2,3 D.ﻩ2,3,6ﻬ考点: 三角形三边关系.专题:ﻩ常规题型.分析:根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.解答:ﻩ解:A、2+2=4,不能构成三角形,故A选项错误;B、3、4、5,能构成三角形,故B选项正确;C、1+2=3,不能构成三角形,故C选项错误;D、2+3<6,不能构成三角形,故D选项错误.故选:B.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()ﻩB.10ﻩ C.11ﻩ D. 12A.ﻩ5考点:ﻩ三角形三边关系.专题:ﻩ常规题型.分析:ﻩ根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择. 解答: 解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B .点评: 本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.5.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .ﻩ1,2,1ﻩB .1,2,2 C.1,2,3ﻩD .ﻩ1,2,4考点:ﻩ三角形三边关系.分析: 根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:ﻩ解:A 、1+1=2,不能组成三角形,故A 选项错误;B 、1+2>2,能组成三角形,故B 选项正确;C 、1+2=3,不能组成三角形,故C 选项错误;D 、1+2<4,不能组成三角形,故D 选项错误;故选:B .点评:ﻩ此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.ﻬ6.如图,为估计池塘岸边A 、B两点的距离,小方在池塘的一侧选取一点O ,测得OA=8米,OB=6米,A、B 间的距离不可能是( )A.ﻩ12米B.10米ﻩC.15米ﻩ D. 8米考点:ﻩ三角形三边关系.专题:ﻩ计算题.分析:ﻩ根据三角形的三边关系定理得到2<AB <14,根据AB 的范围判断即可.解答: 解:连接AB ,根据三角形的三边关系定理得:8﹣6<A B<8+6,即:2<A B<14,∴AB 的值在2和14之间.故选C.点评:ﻩ本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.7.已知不等边三角形的两边长分别是2cm 和9cm,如果第三边的长为整数,那么第三边的长为( )A.ﻩ8cmB.10c m C .8cm 或10cm D. 8cm 或9cm考点: 三角形三边关系.专题: 应用题.分析:ﻩ根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再根据第三边为整数即可得出答案.解答:ﻩ解:根据三角形的三边关系,得7cm<第三边<11cm,故第三边为8,9,10,又∵三角形为不等边三角形,∴第三边≠9.故选C.点评:ﻩ本题主要考查了三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,难度适中.8.已知三角形的三边长分别为3、8、x,若x的值为偶数,则x的值有( )A.ﻩ6个ﻩB.5个C.4个ﻩD.3个考点:三角形三边关系.分析:ﻩ根据三角形的三边关系“第三边应大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是偶数这一条件,求得第三边的值.解答:解:根据三角形的三边关系,得:第三边x的取值范围:5<x<11,又∵第三边的长是偶数,则第三边的长为6、8或10共三个.故选D.点评:本题主要考查了三角形的三边关系,考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.还要注意偶数这一条件.二.填空题(共6小题)9.若一个三角形三边长分别为2,3,x,则x的值可以为4 (只需填一个整数)考点:ﻩ三角形三边关系.专题:ﻩ开放型.分析:根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得x的取值范围.解答: 解:根据三角形的三边关系可得:3﹣2<x<3+2,即:1<x<5,故答案为:4.点评:ﻩ此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.10.等腰三角形两边长分别是3和6,则该三角形的周长为 15 .考点:ﻩ三角形三边关系;等腰三角形的性质.专题:ﻩ计算题.分析: 由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边.解答: 解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.点评:ﻩ本题主要考查了三角形的三边关系问题,能够利用三角形的三边关系求解一些简单的计算、证明问题.11.三角形的三条边长分别是2,2x﹣3,6,则x的取值范围是 3.5<x<5。
三角形三边的关系 (2)
第三课时教学内容三角形的特性(三),教材第62页的例3及第66页练习十五的第7-8题。
教学目标1.通过操作、探索,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
2.掌握判断三条线段能否构成一个三角形的方法,并能解决有关的问题。
3.提高学生逻辑思维能力,以及培养学生“猜测—验证—总结”的学习习惯。
重点难点重点: 通过操作、探索,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
难点:会判断三条边是否组成三角形。
教具学具多媒体课件、剪刀、白纸。
教学过程一、情景导入1.这是一个钝角三角形,你能作出它的三条高吗?2.小明画了三角形的一条高,你说他画的对吗?为什么?3.谈话引入,板书课题:三角形的特性(三)二、自主探究1.验证三角形的两边之和大于第三边。
剪出下面4组长度的纸条。
(单位:厘米)(1)6、7、8 (2)4、5、9 (3)3、6、10 (4)8、11、11用每组纸条摆三角形,哪些能摆出三角形?哪些不能摆出三角形?(学生拼摆三角形,小组讨论,全班交流)2.学生汇报:能摆成三角形的是(1)和(4),不能摆成三角形的是(2)和(3)。
3.对比摆三角形的三根纸条的长度你能发现什么?4.归纳概括:三角形任意两边之和大于第三边。
三、探究结果汇报1.通过前面的探究学习,你又知道了哪些三角形的知识?2.下面每组中的三条线段能否围成一个三角形?说明理由。
(1)3cm、7cm、5cm (2)6cm、2cm、2cm (3)8cm、4cm、4cm3.从长度分别为3厘米、5厘米、8厘米、4厘米的4根小棒中选出3根,围成一个三角形。
你准备怎么选?为什么?四、师生总结收获1.通过这节课的学习,你有什么收获?你对自己有什么评价?2.如果三角形的两条边长分别是7厘米和3厘米,那么第三条边可能是几厘米?(结果取整厘米数)3.同学们,老师这有一个活动角,角的两边长分别是9cm、7cm,要加一根多长的小棒能够组成一个三角形?最小是多少,最大是多少?(结果取整厘米数)五、作业设计板书设计三角形的特性(三)三角形任意两边之和大于第三边。
数学华东师大版七年级下册9.1.3三角形的三边关系.1.3三角形的三边关系课后作业
《9.1.3 三角形的三边关系》课后作业东北师大附中 孙维静一、选择题1.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A 、B 间的距离不可能是( )(A )20米 (B )15米(C )10米 (D )5米 2.下列各组数据分别是三条线段的长度,其中可以构成三角形的一组线段是 ( )(A )5,3,9 (B )5,3,7(C )5,3,8 (D )6,4,13.等腰三角形的两边长分别是4cm ,7cm ,则此三角形周长为 ( )(A )15cm (B )18cm (C )15cm 或18cm (D )不能确定4.如果三角形的两条边长分别为3和5,那么这个三角形的周长可能是 ( )(A )15 (B )16 (C )8 (D )75.长度分别为12,10,5,4的四条线段任选三条线段组成三角形的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6.已知等腰三角形的两边长分别为8cm ,3cm ,则这三角形的周长为 ( )(A ) 14cm (B )19cm (C ) 14cm 或19cm (D ) 不确定7.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )(A )14 (B )15 (C )16 (D )17二、填空题8.已知两条线段的长分别是3cm 、5cm ,要想拼成一个三角形,且第三条线段a 的长为奇数,则第三条线段a 的长度可能为 .9.若等腰三角形的两边长分别为3和7,则它的周长为_______________; 若等腰三角形的两边长分别是3和4,则它的周长为____________.10.已知三角形两边a 、b 长为 9、5,则第三边长c 的取值范围是____________________.11.以长为3cm 、5cm 、7cm 、10cm 的四条线段中的三条线段为边,可构成_________个三角形.12.已知线段3cm ,5cm ,x cm ,x 为偶数,以3,5,x 为边能组成_________个三角形三、解答题13.一个三角形有两条边相等,且周长为24,三角形的一边长为6,求其他两边长.OA B 第1题图答案:1.D 2.B 3.C 4.A 5.B 6.B 7.B 8.3cm 、5cm 、7cm9.17,10或11 10.414c << 11.2 12.213.解:如果以6为腰长,则另一边长为24-6×2=12,因为6+6=12,所以6,6,12不能组成三角形; 如果以6为底边长,则腰长为(24-6)÷2=9.答:其他两边长分别为9,9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的三边关系》典型例题
例1 如图是某个蔬菜大棚的构架图,那么图中共有多少个三角形?
例2 选择题:下列各组线段中能组成三角形的是( )
A .cm 15,cm 8,cm 6===c b a
B .cm 13,cm 6,cm 7===c b a
C .cm 6,cm 5,cm 4===c b a
D .cm 8
1,cm 41,cm 21===c b a
例3 下列各组数分别表示三条线段的长度,试判断以它们为边是否能构成三角形?
(1)5,8,4 (2)7,3,12 (3)2,8,6
参考答案
例1 分析:数图形个数时,既要不重又要不漏.数三角形个数有两种方法:
(1) 按大小顺序数,其中“单个的小三角形”有四个:
EFD CFD BCH ABH ∆∆∆∆、、、,含有两个小三角形的较大三角形有
两个:FCE HAC ∆∆、,另外还有一个大三角形:GAE ∆.
(2) 先固定一个顶点,变换另两个顶点来数.例如以A 为顶点的三有形有
3个,分别是:AEG ACH ABH ∆∆∆、、,用该法时注意不要重复.
解:图中共有7个三角形.
例2 分析:判断三条线段能否组成三角形,就是根据:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.
解:应选C .
说明:在应用三角形三边之间的关系时,要注意“……大于……”“……小于……”.如上题中的选项B ,有c b a =+,也构不成三角形.
例3 分析:判断三条线段能否构成三角形,可以用简便方法:将较短两边之和与较长边比较,或将最长边与最短边之差与中间线段比较.
解:(1)方法一:8945>=+ ∴以5,8,4为边的三条线段能构成三角形.
方法二:5448<=- ∴以5,8,4为边的三条线段能构成三角形.
(2)121037<=+ ,∴以7,3,12为边的三条线段不能构成三角形.
(3)862=+ ≯8,∴以2,8,6为边的三条线段不能构成三角形.。