人教版七年级数学上册 代数式专题练习(word版
代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
最新七年级上册代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。
人教版七年级上册数学3.1.1代数式练习题

2019年12月01日初中数学组卷参考答案与试题解析一.选择题(共37小题)1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定【分析】由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.【解答】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.【点评】本题考查了代数式的换算,比较简单,容易掌握.2.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应省略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.故选:A.【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.下列式子a+b,S=ab,5,m,8+y,m+3=2,中,代数式有()A.6个 B.5个 C.4个 D.3个【分析】利用代数式的定义分别分析进而得出答案.【解答】解:a+b,S=ab,5,m,8+y,m+3=2,中,代数式有:a+b,5,m,8+y,共有4个.故选:C.【点评】此题主要考查了代数式的定义,正确把握定义是解题关键.4.下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选D.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.下面用数学语言叙述代数式﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的相反数的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【分析】根据代数式的读法对各选项分析判断后利用排除法求解.【解答】解:A、﹣b表示比a的倒数小b的数正确,故本选项错误;B、1除以a的商与b的相反数的差表示为﹣(﹣b)=+b,故本选项正确;C、1除以a的商与b的相反数的和表示为﹣b,故本选项错误;D、b与a的倒数的差的相反数表示为﹣(b﹣)=﹣b,故本选项错误.故选B.【点评】本题考查了代数式,主要是代数式的读法和意义,此类问题应结合实际,根据代数式的特点解答.6.代数式x2+1,,|y|,(m﹣1)2,中一定是正数的有()A.1个 B.2个 C.3个 D.4个【分析】绝对值,平方数,算术平方根都是非负数,但未必都是正数,据此可判断得出选项.【解答】解:∵x2≥0,∴x2+1>0,∴x2+1一定是正数;而当x=0时,=0,=0,都不是正数,当y=0时,|y|=0不是正数,当m=1时,(m﹣1)2=0,不是正数,所以一定是正数的只有一个,答案为A.【点评】此题主要考查绝对值、算术平方根和平方数等的非负性,解题的关键是对0的特殊性的理解和运用,容易出错.7.下列书写符合要求的是()A.2y2B.ay•3C.﹣D.a×b【分析】直接利用代数式的书写要求分别判断得出答案.【解答】解:A.2y2,应该写为:y2,故此选项错误;B.ay•3,应该写为:3ay,故此选项错误;C.﹣,此选项正确;D.a×b,应该写为:ab,故此选项错误.故选:C.【点评】此题主要考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.【点评】本题考查了代数式,理解题意列出函数关系式是解题关键.9.下列符合代数式的书写格式的是()A.﹣aab B.2ab2C.a÷b D.(1+20%)a【分析】利用代数式书写格式判定即可.【解答】解:A、该代数式应该是﹣a2b,故本选项错误;B、该代数式应该是ab2,故本选项错误;C、该代数式应该是,故本选项错误;D、该代数式的书写符合要求,故本选项正确;故选:D.【点评】本题主要考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.10.下列式子中,不属于代数式的是()A.a+3 B.2mn C.D.x>y【分析】代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式,分别进行各选项的判断即可.【解答】解:A、是代数式,故本选项错误;B、是代数式,故本选项错误;C、是代数式,故本选项错误;D、不是代数式,是不等式,故本选项正确;故选D.【点评】本题考查了代数式的知识,注意将代数式与等式及不等式区分开来.11.一个运算程序输入x后,得到的结果是2x2﹣1,则这个运算程序是()A.先乘2,然后平方,再减去1 B.先平方,然后减去1,再乘2C.先平方,然后乘2,再减去1 D.先减去1,然后平方,再乘2【分析】直接利用各选项得出关系进而判断得出答案.【解答】解:A、先乘2,然后平方,再减去1,得到(2x)2﹣1=4x2﹣1,故此选项错误;B、先平方,然后减去1,再乘2得到2(x2﹣1)=2x2﹣2,故此选项错误;C、一个运算程序输入x后,先平方,然后乘2,再减去1,得到的结果是2x2﹣1,故此选项正确;D、先减去1,然后平方,再乘2,得到2(x﹣1)2,故此选项错误;故选C.【点评】本题考查了代数式,正确列出代数式是解题关键.12.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元【分析】首先根据x﹣10得到原价减去10元,再根据“折”的含义,可得(x﹣10)变成(x﹣10),是把原价减去10元后再打6折,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣10)元出售,是把原价减去10元后再打6折.故选:A.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.13.一个运算程序输入x后,得到的结果是4x3﹣2,则这个运算程序是()A.先乘4,然后立方,再减去2 B.先立方,然后减去2,再乘4C.先立方,然后乘4,再减去2 D.先减去2,然后立方,再乘4【分析】直接利用各选项得出关系进而判断得出答案.【解答】解:A、先乘4,然后立方,再减去2,得到(4x)3﹣2=64x3﹣2,故此选项错误;B、先立方,然后减去2,再乘4得到4(x3﹣2)=4x3﹣8,故此选项错误;C、一个运算程序输入x后,先立方,然后乘4,再减去2,得到的结果是4x3﹣2,故此选项正确;D、先减去2,然后立方,再乘4,得到4(x﹣2)3,故此选项错误;故选:C.【点评】此题主要考查了代数式,正确列出代数式是解题关键.14.2015年双十一期间,某网店对一品牌服装进行优惠促销,将原价a元的服装以(a﹣20)元售出,则以下四种说法中可以准确表达该商店促销方法的是()A.将原价降低20元之后,再打8折B.将原价打8折之后,再降低20元C.将原价降低20元之后,再打2折D.将原价打2折之后,再降低20元【分析】由代数式的运算顺序可得到问题的答案.【解答】解:代数式a﹣20的意义是比a的80%少20元.故选:B.【点评】本题主要考查的是代数式的意义,明确代数式的意义是解题的关键.15.代数式的意义是()A.a除以b加1 B.b加1除aC.b与1的和除以a D.a除以b与1的和所得的商【分析】根据代数式的意义,注意表示a除以b与1的和所得的商.【解答】解:代数式表示a除以b与1的和所得的商.故应选D.【点评】注意掌握代数式的意义,注意把运算过程表述清楚.16.设某数为m,那么代数式表示()A.某数的3倍的平方减去5除以2B.某数的3倍减5的一半C.某数与5的差的3倍除以2D.某数平方的3倍与5的差的一半【分析】根据代数式的性质得出代数式的意义.【解答】解:∵设某数为m,代数式表示:某数平方的3倍与5的差的一半.故选:D.【点评】此题主要考查了代数式的意义,根据已知得出代数式的意义是考查重点.17.下列各式符合代数式书写规范的是()A.a8 B.m﹣1元 C.D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、正确书写形式为(m﹣1)元,故本选项错误;C、书写形式正确,故本选项正确;D、正确书写形式为,故本选项错误,故选:C.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式.18.下面判断语句中正确的是()A.2+5不是代数式B.(a+b)2的意义是a的平方与b的平方的和C.a与b的平方差是(a﹣b)2D.a,b两数的倒数和为【分析】根据代数式的定义以及代数式的含义判断各项.注意单独的一个数或一个字母也是代数式.【解答】解:A、2+5是代数式;B、(a+b)2的意义是a与b的和的平方;C、a与b的平方差是a2﹣b2;D、a,b两数的倒数和为,正确.故选D.【点评】注意代数式的定义与代数式的含义,会用数学语言叙述代数式的含义.19.代数式的意义为()A.x与y的一半的差B.x与y的差的一半C.x减去y除以2的差 D.x与y的的差【分析】根据代数式的意义可知:x﹣y表示x与y的差,表示x与y的差的一半,据此解答.【解答】解:代数式的意义为x与y的差的一半.故选:B.【点评】本题考查了代数式的知识,解题的关键是将分式的分子与分母用语言叙述出来.20.代数式a﹣b2的意义表述正确的是()A.a减去b的平方的差 B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:a﹣b2的意义为a减去b的平方的差.故选:A.【点评】此题主要考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.21.下列各式:3a,1a,,a×3,3x﹣1,2a÷b,其中符合书写要求的有()A.1个 B.2个 C.3个 D.4个【分析】根据代数式的书写要求判断各项.【解答】解:3a,,3x﹣1正确;1a应书写为a;a×3应书写为3a;2a÷b 应书写为;所以符合书写要求的共3个,故选C.【点评】本题主要考查了代数式的书写,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.22.下面用数学语言叙述代数式﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差【分析】利用数学语言表述代数式即可.【解答】解:用数学语言叙述代数式﹣b为a的倒数与b的差,故选C.【点评】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.23.某商场举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是()A.原价打8折后再减10元 B.原价减10元后再打8折C.原价减10元后再打2折 D.原价打2折后再减10元【分析】根据代数式的意义,可得价格的变化.【解答】解:促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是原价打8折后再减10元,故选:A.【点评】本题考查了代数式,理解题意并结合价格的变化是解题关键.24.下列代数式的书写正确的是()A.a÷b B.3×x C.﹣1ab D.xy【分析】根据代数式的书写要求判断各项.【解答】解:A、a÷b正确的书写格式是,故选项错误;B、3×x正确的书写格式是3x,故选项错误;C、﹣1ab正确的书写格式是﹣ab,故选项错误;D、书写正确.故选:D.【点评】考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.25.下列式子中代数式的个数有()﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3,﹣6.A.2 B.3 C.4 D.5【分析】根据代数式的定义,可得答案.【解答】解:﹣2x﹣5,﹣y,4a4+2a2b3,﹣6是代数式,故选:C.【点评】本题考查了代数式,数与字母经过加减、乘除、乘方、开方运算是代数式.26.下列代数式中符合书写要求的是()A.ab2×4 B.C.D.6xy2÷3【分析】本题较为简单,对各选项进行分析,看是否符合代数式正确的书写要求,即可求出答案.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.【点评】本题考查代数式的书写规则,根据书写规则对各项进行判定即可.27.下列说法正确的是()A.2a是代数式,1不是代数式B.代数式表示3﹣b除aC.当x=4时,代数式的值为0D.零是最小的整数【分析】根据代数式的定义、表示的意义、求值等知识点判断各项.【解答】解:单独的数或字母都是代数式,故A不正确;代数式表示3﹣b除以a或3﹣b与a的商,故B不正确;C正确;整数包括正整数、0、负整数,故D不正确.故选C.【点评】此题综合考查代数式的定义、表示的意义、求值等知识点.28.下列代数式书写规范的是()A.8x2y B.C.ax3 D.2m÷n【分析】根据代数式的书写要求判断各项即可得出正确答案.【解答】解:选项A正确,B正确的书写格式是b,C正确的书写格式是3ax,D正确的书写格式是.故选A.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.29.下列写法正确的是()A.x5 B.4m×n C.x(x+1)D.﹣ab【分析】根据字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面可分别进行判断.【解答】解:A、x与5的积表示为5x,所以A选项错误;B、4m与n的积表示为4mn,所以B选项错误;C、x与(x+1)的积的表示为x(x+1),所以C选项错误;D、﹣ab书写正确,所以D选项正确.故选D.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式.30.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣15)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价降价15元后再打8折B.原价打8折后再降价15元C.原价降价15元后再打2折D.原价打2折后再降价15元【分析】根据题意给出的等量关系即可求出答案.【解答】解:x表示原价打了8折,﹣15表示打折后再将15元,故选(B)【点评】本题考查列代数式,需要根据题意理解代数式的意义.31.下列判断错误的是()A.多项式5x2﹣2x+4是二次三项式B.单项式﹣a2b3c4的系数是﹣1,次数是9C.式子m+5,ab,﹣2,都是代数式D.多项式与多项式的和一定是多项式【分析】利用多项式的系数与次数定义,单项式次数与系数定义判断即可.【解答】解:A、多项式5x2﹣2x+4是二次三项式,正确;B、单项式﹣a2b3c4的系数是﹣1,次数是9,正确;C、式子m+5,ab,﹣2,都是代数式,正确;D、多项式与多项式的和不一定是多项式,错误,故选D.【点评】此题考查了代数式,熟练掌握各自的定义是解本题的关键.32.代数式“a2+b2”用文字语言叙述,其中叙述不正确的是()A.a、b两数的平方和B.a与b的和的平方C.a2与b2的和D.边长为a的正方形与边长为b的正方形的面积和【分析】根据代数式的结构即可判断.【解答】解:(B)a与b的和的平方,应表示为(a+b)2,故B错误,故选(B)【点评】本题考查代数式的概念,属于基础题型.33.在下列式子中:3xy﹣2、3÷a、(a+b)、a•5、﹣3abc中,符合代数式书写要求的有()A.1个 B.2个 C.3个 D.4个【分析】根据代数式的书写要求对各个式子依次进行判断即可解答.【解答】解:3xy﹣2符合书写要求;3÷a应写成分数的形式;(a+b)符合书写要求;a•5数字要写在字母的前面;﹣3abc中带分数要写成假分数.故选:B.【点评】本题主要考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.34.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式【分析】根据代数式的定义分别进行分析,即可得出答案.【解答】解:A、0是代数式是正确的,不符合题意;B、a是整式是正确的,不符合题意;C、x的3倍与y的的差表示为3x﹣y是正确的,不符合题意;D、S=πr2不是代数式,原来的说法是错误的,符合题意;故选D.【点评】此题考查了代数式,关键是掌握好代数式的定义即代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.35.下列代数式书写规范的是()A.a4 B.C.x2÷y D.【分析】根据代数式的书写要求判断各项.【解答】解:A、正确的书写格式是4a,错误;B、正确的书写格式是,错误;C、正确的书写格式是,错误;D、正确的书写格式是,正确;故选D【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.36.下列代数式书写正确的是()A.b÷2a2B.1a2C.﹣a2×b D.【分析】根据代数式的书写要求判断各项.【解答】解:A、b÷2a2正确的书写格式是,故选项错误;B、1a2正确的书写格式是a2,故选项错误;C、﹣a2×b正确的书写格式是﹣a2b,故选项错误;D、书写正确.故选:D.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.37.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣15)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去15元后再打9折B.原价打9折后再减去15元C.原价减去15元后再打1折D.原价打1折后再减去15元【分析】首先根据“折”的含义,可得x变成x,是把原价打9折后,然后再用它减去15元,即是x﹣15元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣15)元出售,是把原价打9折后再减去15元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.二.解答题(共13小题)38.说出下列代数式的意义:(1)a2﹣b2;(2)(a﹣b)2.【分析】结合实际情境作答,答案不唯一.【解答】解:(1)a的平方与b的平方的差.(2)a与b的差的平方.【点评】此类问题应结合实际,根据代数式的特点解答.39.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元,说明代数式500﹣3a﹣2b表示的意义.【分析】由于一个足球a元,一个篮球b元,则3a表示3个足球的钱,2b表示两个蓝球的钱,则他余下的钱可表示为500﹣3a﹣2b.【解答】解:∵一个足球a元,一个篮球b元,∴500﹣3a﹣2b表示的意义为体育委员买了3个足球,2个篮球b元后所剩下的钱.【点评】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.40.说出下列各式的意义.(1)(2)6(8﹣a)(3)(3x﹣2y)2.【分析】根据式子可以表示出它们的意义,本题得以解决.【解答】解:(1)表示x的2倍与3的和与a的商;(2)6(8﹣a)表示8与a的差的6倍;(3)(3x﹣2y)2表示x的3倍与y的2倍的差的平方.【点评】本题考查代数式,解题的关键是根据式子可以说出它们的意义.41.请按代数式lOx+30y编写一道与实际生活相关的应用题.【分析】结合实际情境作答,答案不唯一.【解答】解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是10x+30y.【点评】此类问题应结合实际,根据代数式的特点解答.42.用字母表示图中阴影部分的面积.【分析】(1)读图可得,阴影部分的面积=大长方形的面积﹣小长方形的面积;(2)阴影部分的面积=正方形的面积﹣扇形的面积.【解答】解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.【点评】解决问题的关键是读懂图,找到所求的阴影部分的面积和各部分之间的等量关系.43.指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x﹣1(2)a=1(3)S=πR2(4)π(5)(6)>.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【点评】此题考查代数式的辨别,注意掌握代数式的定义.44.下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y 【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:(1)、(2)中的“>”、“=”它们不是运算符号,因此(1)、(2)不是代数式.(3)、(4)中a、3是代数式,因为单个数字和字母是代数式.(5)中是加减运算符号把5、4、1连接起来,因此是代数式.(6)m米含有单位名称,故不是代数式.(7)5x﹣3y中由乘、减两种运算联起5、x、3、y,因此是代数式.答:代数式有(3)(4)(5)(7);(1)(2)(6)不是代数式.【点评】注意掌握代数式的定义.45.(1)下列代数式哪些书写不规范,请改正过来.①3x+1;②m×n﹣3;③2×y;④am+bn元;⑤a÷(b+c);⑥a﹣1÷b(2)说出下列代数式的意义:①2(a+3);②a2+b2;③.【分析】(1)根据代数式的书写要求判断.(2)根据代数式的书写写出其意义.【解答】解:(1)①3x+1书写规范;②m×n﹣3应该是mn﹣3;③2×y应该是2y;④am+bn元应该是(am+bn)元;⑤a÷(b+c)应该是;⑥a﹣1÷b应该是a﹣;(2)①2(a+3)表示a与3的和的2倍;②a2+b2表示a、b的平方的和;③表示n与1的和除以n与a的差.【点评】本题考查了代数式.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.46.(1)指出下列各小题中的两个代数式的意义有什么不同?①5(x﹣3),5x﹣3;②,.(2)根据生活经验,试对下列各式作出解释:①;②2πx;③πR2;④.【分析】(1)根据运算顺序和运算法则说出代数式的意义;(2)赋予代数实际意义即可.【解答】解:(1)①5(x﹣3)表示5与x﹣3的积;5x﹣3表示x的5倍与3的差;②表示x与y的差的倒数;表示x、y的倒数的差;(2)①三角形的底边长为a,高为b,则三角形的面积为;②圆的半径为x,则它的周长为2πx;③半径为R的圆的面积为πR2;④有一堆煤,重量为x吨,平均分给41个家庭,每个家庭可分得吨.【点评】本题主要考查的是代数式,依据代数式的算顺序和运算法则说出代数式的意义是解题的关键.47.指出下列各代数式的意义:(1)3a+2b;(2)3(a+2b);(3);(4)a﹣.【分析】结合代数式,说出代数式的意义即可.【解答】解:(1)a的3倍与b的2倍的和;。
人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
2-1整式—列代数式专项练习题人教版七年级数学上册

2.1整式——列代数式专项练习题一.选择题1.下列代数式书写正确的是()A.a4 B.m÷n C.D.x(b+c)2.代数式的意义是()A.x除以y加3B.y加3除xC.y与3的和除以xD.x除以y与3的和所得的商3.代数式x﹣y2的意义为()A.x的平方与y的平方的差B.x与y的相反数的平方差C.x与y的差的平方D.x减去y的平方的差4.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格5.下列代数式中符合书写要求的是()A.ab4 B.4x C.x÷y D.﹣a6.代数式的正确解释是()A.a与b的倒数的差的立方B.a与b的差的倒数的立方C.a的立方与b的倒数的差D.a的立方与b的差的倒数7.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元8.小明、小亮参加学校运动会800米赛跑:小明前半程的速度为2x米/秒,后半程的速度为x米秒,小亮则用米/秒的速度跑完全程,结果是()A.小明先到终点B.小亮先到终点C.同时到达D.不能确定9.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位.若点A表示数a,点D表示数d,且d=﹣2a,则与数轴的原点重合的点是()A.A B.B C.C D.D10.某水果批发市场规定,批发苹果重量不多于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg 时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)二.填空题11.若商场去年的总销售量为n,预计今年增加20%的销售量,则今年的销售量为.12.九年级某班同学,每人都会打篮球或踢足球,其中会打篮球的人数比会踢足球的人数多12人,两种都会的有8人,设会踢足球的有a人,则该班同学共有人(用含a的代数式表示).13.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a的代数式表示该公司这两周共生产医用护目镜个.14.《孙子算经》是中国南北朝时期重要的数学专著,其中包含了“鸡兔同笼”“物不知数”等许多有趣的数学问题.《孙子算经》中记载:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”其译文为:“有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.”请用含有k的代数式表示满足条件的所有正整数.15.今年5月1日,历时8年修复的太原古县城正式开城迎客.统计结果显示,太原古县城第一时段a天内共接待游客m万人次,第二时段b天内共接待游客3m万人次,则这两个时段内平均每天接待游客万人次.16.如图,一块长为m,宽为n的长方形草坪,上下开辟的花园,都是由等半径的两个四分之一圆和一个半圆组成,那么中间草坪的面积是.三.解答题17.如图是用总长为12米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC=EB=x米.(1)用含x的代数式表示AB=米、BC=米;(2)用含x的代数式表示长方形ABCD的面积(要求化简).18.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.19.已知a,b,c,d四个数,a<b<c<d,满足|a﹣b|=|c﹣d|,其中n≥2且为正整数.(1)若n=2.①当b﹣a=1,d=5,求c的值;②给定有理数e,满足|b﹣e|=|c﹣d|,请用含a,b的式子表示e;(2)若f=|a﹣c|,g=|b﹣c|且|f﹣g|=|c﹣d|,求n的值.20.已知数轴上有A、B、C三点,分别表示有理数:﹣22,﹣2,8,动点P从A点出发,以每秒1个单位长度的速度向终点C运动,设点P运动时间为t秒.(1)填空:AB=,PA=,PC=.(可用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向终点C运动,请用含t的代数式表示P、Q两点之间的距离.21.求两位数的平方,可以用“列竖式”的方法进行速算,求解过程如图1.(1)仿照图1,补全图2的竖式;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3,若这个两位数的十位数是a,用含a的代数式表示这个两位数.22.今年春季,三元土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙两种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一土特产,且必须装满,设装运甲种土特产的汽车有x辆,根据如表提供的信息,解答以下问题:土特产种类甲乙每辆汽车运载量4 3(吨)100 90每吨土特产利润(元)(1)装运乙种土特产的车辆数为辆(用含有x的式子表示);(2)求这10辆汽车共装运土特产的数量(用含有x的式子表示);(3)求销售完装运的这批土特产后所获得的总利润(用含有x的式子表示).。
人教版七年级上册数学 第三章 代数式 单元检测题

人教版七年级上册数学第三章代数式单元检测题一.单选题1.下列代数式表示“a 的3倍与7的差”的是()A.27a +B.37a +C.27a -D.37a -2.以下列各式中:①12,②210a -=,③ab a =,④()2212a b -,⑤a,⑥0.是代数式的有()A.1个B.2个C.3个D.4个3.“△”表示一种运算符号,其意义是:2a b a b =-V ,那么13 等于()A.1B.1-C.5D.5-4.当2x =-时,代数式32x +的值是()A.7-B.7C.1D.1-5.已知x ,y 都是自然数,如果133515x y +=,那么x y +的结果是()A.3B.5C.136.苹果原价是每斤x 元,按八折优惠出售,列代数式表示现价正确的是()元A.8xB.0.8xC.2xD.0.2x7.如果2a +与()21b -互为相反数,那么代数式()2017a b +的值是()A.1B.1-C.1±D.20088.若2x =,y 的相反数是3-,则x y -的值为()A.5-或1-B.5-或1C.5或1-D.5或19.若a,b 是互为倒数,m,n 是互为相反数,则()25ab m n -++的值是()A.2B.2-C.0D.310.如图,是一个用四块形状和大小都一样的长方形纸板拼成的一个大正方形,中间空的部分是一个小正方形,已知长方形纸板的长为a ,宽为()b a b >,则中间空白部分(小正方形)的周长是()A.a b +B.a b-C.()4a b -D.()4b a -11.琪琪今年n 岁,爸爸今年35岁,10年后爸爸比琪琪大()岁.A.35n-B.3510n -+C.10D.2512.婷婷从家去学校然后又按原路返回,去时每分钟行a 米,回来时每分钟行b 米,求婷婷来回的平均速度的正确算式是()A.()2a b +÷B.2()a b ÷+C.111a b ⎛⎫÷+ ⎪⎝⎭D.112a b ⎛⎫÷+ ⎪⎝⎭二.填空题13.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c ++=.14.已知22120+x y --=,则22x y +的值等于.15.如果关于x 的多项式4242mx x +-与多项式35n x x +的次数相同,则2234n n -+-的值为.16.设甲数是m ,乙数是n ,用代数式表示:甲、乙两数平方的和为,甲、乙两数和的立方为.17.冬天天气寒冷,羽绒服的销量很火爆,已知一件羽绒服的标价为a 元,现将标价打8.5折出售,则现在的售价为元.(用含a 的代数式表示)18.军训期间,学校搭建如图1所示的单顶帐篷需要17根钢管,这样的帐篷按图2、图3的方式串起来搭建,则串起来搭建6顶帐篷需要根钢管,有171根钢管可以串起来搭建顶帐篷,如果想串起来搭建n 顶帐篷,需要根钢管.三.解答题19.如图是学校图书馆的一个活动教室的平面图,请你计算这个活动教室的面积和周长(单位:米,不计损耗)20.已知有理数a ,b ,c ,d ,e ,其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c dab e +++的值.21.如图,长方形窗户上遮光窗帘(阴影部分)的下沿是由半径均为a 的两个四分之一圆组成,已知没被窗帘遮挡部分的面积为3平方米,请用a 的代数式表示窗户的高度h.22.某校七(2)班的3名老师决定带领本班a 名学生(学生人数不少于3人)在十一期间去北京旅游,咨询甲、乙两个旅行社,甲旅行社说:“若老师买全票,则学生可享受半价优惠”,乙旅行社说:“老师和学生全部按全票的六折优惠”.已知甲、乙旅行社的全票票价均为400元/人.(1)用含a 的式子分别表示甲、乙旅行社的收费金额;(2)如果这个班的学生有30人,他们选择哪家旅行社较为合算?23.整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如21x x +=,求22022x x ++的值,我们将2x x +作为一个整体代入,则原式120222023+==.仿照上面的解题方法,完成下面的问题:(1)若2210x x +-=,则222022x x +-=_____.(2)若222523a ab b ab +=-+=,,求22232a b ab --的值.24.列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2,则这个三位数可以用含m的代数式表示为:______;(2)某电影院第一排有15个座位,后面每排比前一排多2个座位,则第n排的座位数可以表示为:______;(3)如图,将长为4m的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,那么每个小长方形的周长用含m的式子表示为______.。
第三章 代数式全章综合训练 2024—2025学年人教版数学七年级上册

第三章代数式全章综合训练一、选择题(每小题5分,共40分)1[2024湖南湘潭期末]下列代数式中,书写规范的是 ( )A.112a B.a÷b C. a;3 D.-lab2[2024四川泸州龙马潭区质检]苹果原价是每千克x元,按八折优惠出售,下列代数式中表示现价正确的是 ( )A.8x元/千克B.0.8x元/千克C.2x元/千克D.0.2x元/千克3[2024河南郑州金水区校级调研]x,y是两种相关联的量,下面能表示x,y成正比例关系的是( )A.y=611x B.x12=1yC. x+y=10D.5x=y4[2024甘肃张掖校级期末]一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩(单位:分)为 ( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)5[2024江苏徐州期末]下列代数式,满足表中条件的是 ( )x 0 1 2 3代数式的值-3 -1 1 3A.-x-3.B.x²+2x−3C.2x-3D.x²−2x−36[2024辽宁抚顺期末]下列能用2a+4表示的是( )7[2024安徽合肥期末]如图是计算机程序的一个流程图,现定义:“x←x+2”表示把x+2的值作为x的值输入程序再次计算.比如:当输入x=2时,依次计算作为第一次“传输”,可得2×2=4,4-1= 3,3²=9,,9 不大于 2 024,所以2+2=4,把x=4输入程序,再次计算作为第二次“传输”,可得4×2=8,8-1=7,…,直到计算结果大于2 024时输出结果y.若输入x=1,则经过几次“传输”后可以输出结果,结束程序 ( )A.11B.12C.21D.235[2024 重庆万州区期末]下列图形都是由相同的小正方形按照一定规律摆放而成的,第1 个图形中小正方形的个数是3,第2个图形中小正方形的个数是8,第3个图形中小正方形的个数是15,…,照此规律排列下去,则第6个图形中小正方形的个数是 ( )A.24B.30C.35D.48二、填空题(每小题5分,共10分)[2024江苏扬州期中]体育委员带了100元钱去买体育用品,已知一个足球a元,一个篮球b元,则代数式100–3a–2b 表示的意义为10[2024河北承德期末]如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数).设半圆形条钢的总个数为x(x为正整数).(1)当a=50,x=2时,护栏总长度为厘米;(2)当a=60时,护栏总长度为厘米(用含x的代数式表示,结果要求化简);(3)若护栏的总长度为15米,为尽量减少条钢用量,a的值应为 .三、解答题(共50分)的值.11[2024四川成都调研]当a取下列值时,求代数式a2−3a+15.1)a=4;(2)a=−1312[2024河北石家庄期末]现有甲、丙两种正方形和乙一种长方形卡片各若干张,如图(1)所示(a>1).小明分别用6张卡片拼出了如图(2)和图(3)的两个长方形(不重叠且无缝隙),其面积分别为S₁,S₂.(1)请用含a的式子分别表示 S₁,S₂;(2)当a=3 时,通过计算比较 S₁与 S₂的大小.13[2024山东青岛调研]如图是某居民小区的一块长为a米、宽为2b米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余地方种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)填空:种花的面积为平方米,种草的面积为平方米.(用含有a,b,π的式子表示)(2)当a=6,b=2,π取3.14时,美化这块空地共需多少元?14[2024河南周口期末]某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆放方式,可坐多少人?用第二种摆放方式,可坐多少人?(2)用含有n的代数式表示:有n张桌子,用第一种摆放方式可坐多少人?用第二种摆放方式可坐多少人?(3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌?并说明理由.1. C 【解析】A 选项, 112a 应该写为 32a,故A 错误,不符合题意;B 选项,( a ÷b 应该写为 a b ,故B 错误,不符合题意;C 选项, a 3书写规范,故C 正确,符合题意;D 选项, −1ab 应该写为 −ab,,故D 错误,不符合题意.故选C.2.B 【解析】苹果原价是每千克x 元,按八折优惠出售,现价是0.8x 元/千克,故选B.3. A 【解析】A 选项, y =611x,x ,y 成正比例关系,故此选项符合题意;B 选项, x 12=1y ,则 xy =12,x 和γ成反比例关系,故不符合题意;C 选项, x +y =10,x 和y 不成正比例关系,故此选项不符合题意;D 选项, y =5x ,x 和y 成反比例关系,故此选项不符合题意.故选 A.4.D 【解析】由题意可得他的成绩是[ [3x −(24−x)]分.故选 D.5. C 【解析】因为: x =0时,代数式的值为 −3; x =1时,代数式的值为 −1;x =2时,代数式的值为1,所以只有: 2x −3满足条件.故选C.6. C 【解析】A 选项,线段AB 的长为 2+3+4=9,则A 不符合题意;B 选项,组合图形的面积为 2×(3+4)=14,则B 不符合题意;C 选项,长方形的周长为 2(a +2)=2a +4,则 C 符合题意;D 选项,圆柱的体积为4a ,则D 不符合题意.故选 C.7.B 【解析】由题可知每次输入的数应该是1,3,5,7,9,…,所以第n 次输入的数应该是 2n −1.每次算出的数为|[2(2n −1)−1]².因为 45²=2025>2024,程序结束,所以 2(2n −1)− 1=45,解得 n =12..故选 B.8.D 【解析】由所给图形可知,第1个图形中小正方形的个数为 3=1²+1×2;第2个图形中小正方形的个数为 8=2²+2×2;第3 个图形中小正方形的个数为 15=32+3×2;⋯,依次类推,第n 个图形中小正方形的个数为 n²+2n.所以第6个图形中小正方形的个数是 6²+2×6=48,故选 D.9.买了3个足球,2个篮球,还剩多少元【解析】因为一个足球a 元,一个篮球b 元,所以100-3a-2b 表示的意义为体育委员买了3个足球,2个篮球后所剩下的钱,故答案为买了3个足球,2个篮球,还剩多少元.10.(1)130 (2)(60x+20) (3)71【解析】(1)由题意得护栏的总长度为[80+(x-1)a]厘米,所以当a=50,x=2时,80+(x-1)a=80+(2-1)×50=130,故答案为 130.(2)当a=60时,80+(x-1)a=80+60x-60=60x+20,所以当a=60时,护栏总长度为(60x+20)厘米,故答案为(60x+20).(3)15 米=1 500 厘米.令 80+(x-1)a=1 500,所以(x-1)a=1 420=71×20.因为a 为正整数且a<80,x 为正整数,所以为尽量减少条钢用量,a=71,x=21时符合题意. 故答案为 71.11.【解】(1)当( a =4时,原式 =16−12+15=1.=19+1+15=1945.(2)当 a =−13时,原式 12.【解】(1)根据题意得, S₁=a²+3a +2,S₂= 5a +1.(2)当( a =3时, S₁=3²+3×3+2=20,S₂=5×3+ 1=16..因为 20>16,所以 S₁>S₂.13.【解】(1)因为一个花台为 14圆,所以四个花台的面积为一个圆的面积,即种花的面积为 πb²平方米,所以种草的面积为 (2ab −πb²)平方米,故答案为 πb²,(2ab −πb²). (2)依题意,得美化这块空地共需的费用为 100×πb²+50×(2ab −πb²)=(100ab +50πb²)元.当 a =6,b =2,π=3.14时, 100ab + 50πb²=100×6×2+50×3.14×2²=1828(元),所以美化这块空地共需 1 828 元.14.【解】(1)有 4 张桌子,用第一种摆放方式,。
第三章++代数式++单元训练++++2024-2025学年人教版七年级数学上册

第三章代数式综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.下列是代数式的是()A.0<2B.x2-1≠0C.-3D.x+y=12.已知语句“b比a的3倍多1”,下列关于甲、乙的判断正确的是()甲:用a表示b的代数式是3a+1;乙:用b表示a的代数式是b+13.A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对3.一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为()A.abcB.a+b+cC.100a+10b+cD.100abc4.已知甲、乙两数的和为30,若甲数为x,则甲数的3倍与乙数的23的和用含有x的式子表示正确的是()A.3(30-x)+23B.23(3x+30-x)C.3x+23(30-x) D.3(30-x)+235.代数式a2+b2可以表示不同实际问题中的数量关系,下列举例恰当的是()A.长是a,宽是b的长方形的周长B.购买(a+b)本单价为(a+b)元的笔记本的总价钱C.买a支单价为a元的钢笔和b支单价为b元的铅笔的总价钱D.边长是a+b的正方形的面积6.下列四个说法:①书的总页数一定,未读的页数与已读的页数成正比例;②如果圆的半径不变,圆的周长与圆周率成正比例;③小麦的总产量一定,每公顷产量与公顷数成反比例;④圆柱的体积一定,圆柱的底面积与高成反比例.其中正确说法的个数是()A.1B.2C.3D.47.规定新运算:x◎y=xy-y2,则12◎(-2)=()A.-5B.3C.-3D.18.若2 024×7=x,则下列代数式可以表示2 024×5的是()A.x+4 048B.x-2 024C.x-2D.57x9.某商场针对一款服装给出两个调价方案:①先提价10%,再降价10%;②先降价20%,再提价20%.下列说法正确的是()A.①②两种方案的调价结果相同B.方案①的售价比方案②的售价低C.方案①的售价比方案②的售价高D.无法比较,调整后的售价高低取决于服装原售价10.某窗户的形状如图所示,其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a cm,长方形的长和宽分别为b cm和c cm.给出下面四个结论:①窗户外围的周长是(πa+3b+2c)cm;②窗户的面积是(πa2+2bc+b2)cm2;③b+2c=2a;④b=3c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②④D.③④二、填空题(将结果填在题中横线上)11.一支铅笔的价格是a元,一块橡皮的价格是b元,买3支铅笔和7块橡皮应付元.12.一个长方体容器的底面是长为a,宽为b的长方形,将体积为V的水倒入这个长方体容器,则水面的高度为.(用含a,b,V的式子表示)的4倍为z,则x+y+z=. 13.若比-2大3的数为x,-5的绝对值为y,-1414.已知甲、乙两种书的售价分别为12元/本、20元/本,现购买a本甲书和b本乙书,共付款W元.(1)W=;(用含a,b的式子表示)(2)若|a-2|+(b-1)2=0,则W的值为.15.一组数-2,5,-8,11,-14,17……按这样的规律排列下去,则第10个数为.16.某超市以m元/袋的价格购进了200袋相同的酱料,加价50%卖出了180袋,剩余每袋比进价增加n元后全部卖出,卖完这批酱料该超市可获得利润元.(用含m,n的代数式表示)三、解答题(解答应写出文字说明、证明过程或演算步骤)17.用代数式表示:(1)长为x,宽为y的长方形的面积;(2)棱长为a的正方体的表面积;,该班男生人数;(3)某班总人数为m,女生人数是男生人数的35(4)a的相反数与b的倒数的和(b≠0);(5)x,y两数的平方和减去它们积的2倍;(6)底面半径为r,体积为V的圆锥的高.18.下图是一个“数值转换机”的示意图.输入x→乘4→减6→除以2→输出(1)输出的结果用含x的代数式表示为;时,求输出的值.(2)当输入x=1319.已知m是6的相反数,n比-m的相反数大3.(1)直接写出m=,n=.(2)求-n-m+7的值.20.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带的定价打九折付款.现有某客户要到该服装厂购买西装50套,领带x条(x>50).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若该客户购买西装50套,领带60条,请通过计算说明按哪种方案购买较为合算.(3)若该客户购买西装50套,领带200条,请通过计算说明按哪种方案购买较为合算.21.观察、探究、应用(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)通过拼图,你发现前3个图形的面积与第4个图形的面积之间有什么关系?请用数学式子表示:(用含字母a,b的等式表示).(3)利用(2)的结论计算:①172+2×17×3+32;②1992+398+1的值.1.C2.C3.C4.C5.C6.B7.A 解析:因为x ◎y=xy-y 2,所以12◎(-2)=12×(-2)-(-2)2=-1-4=-5.8.D 9.C10.B 解析:根据题干图形,可知窗户的周长是12×2π×a+b+c+b+c+b=(πa+3b+2c )cm,故①正确;窗户的面积是12πa 2+2bc+b 2,故②错误;由题干图形可知b+2c=2a ,故③正确;由b+2c=2a ,得不出b 和c 之间的关系,故④错误.故选B .11.(3a+7b )12.V ab13.514.(1)(12a+20b ) (2)4415.2916.(90m+20n )17.解:(1)xy ;(2)6a 2;(3)58m ;(4)-a+1b ;(5)x 2+y 2-2xy ;(6)3V πr 2. 18.解:(1)2x-3(2)当x=13时,2×13-3=-73, 即当输入x=13时,输出的值为-73.19.解:(1)-6 -3 因为m 是6的相反数,所以m=-6,-m=6,所以-m 的相反数是-6.因为n 比-m 的相反数大3,所以n=-6+3=-3.(2)由(1)知m=-6,n=-3,-n-m+7=-(-3)-(-6)+7=3+6+7=16.20.解:(1)13 000+40x 13 500+36x方案一:[300×50+40(x-50)]=13 000+40x ;方案二:90%(300×50+40x )=13 500+36x.(2)当x=60时,方案一应付:13 000+40×60=15 400(元),方案二应付:13 500+36×60=15 660(元),15 400<15 660.答:方案一较合算.(3)当x=200时,方案一应付:13 000+40×200=21 000(元).方案二应付:13 500+36×200=20 700(元).20 700<21 000.答:方案二较合算.21.解:(1)①a2;②2ab;③b2;④(a+b)2.(2)(a+b)2=a2+2ab+b2根据拼图可知第4个图形是由前3个图形拼成的,即第4个图形的面积等于前3个图形面积的和.(3)①172+2×17×3+32=(17+3)2=202=400.②1992+398+1=1992+2×1×199+1=(199+1)2=2002=40 000.。
【精选】人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
(2)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况分别根据图表的收费标准列出代数式并计算即可得解。
2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
人教版七年级数学知识点试题精选-代数式的习题

七年级上册代数式的习题一.选择题(共20小题)1.下列语句正确的是()A.1+a不是一个代数式 B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式2.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方3.若每100kg小麦可出akg面粉,bkg小麦可出面粉千克数为()A. B.C.D.4.某商场进了一批衬衣,每件售价为a元,若每件获利20%,则每件衬衣的进价是()A.(1+20%)a B.(1﹣20%)a C.D.5.代数式用语言叙述为()A.a与b的差的倒数B.a与b的倒数差C.a、b两数倒数的差D.a的倒数与b的差的倒数6.为了测算一捆粗细均匀的电线的总长度,小明先称出它的质量为akg,然后从中剪出一段1m长的电线,称得质量为bkg,这样可求得这捆电线原来的总长度为(单位:m)()A.B.C.D.7.下列说法正确的是()A.x的倍列代数式表示是x或B.与的读法都是a加b分之cC.5不是代数式D.x≠b不是代数式8.在某月的日历表上,任意圈出一整列相邻的三个数,这三个数的和不可能是()A.24 B.20 C.51 D.729.x是大于﹣2.5的负整数,y为绝对值最小的有理数,x3+x2y﹣y3的值()A.﹣8 B.﹣8或﹣1 C.1 D.8或110.如果a,b互为相反数,x,y互为倒数,则(a+b)+2xy的值是()A.2 B.3 C.3.5 D.411.已知|a|=3,|b|=4且a>b,则2a﹣b的值为()A.﹣10 B.10 C.2或﹣10 D.﹣2或1012.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B.2 C.3 D.413.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m14.下列各式:a,0,3x﹣1,a+b=b+a,7>6.9,xy,,其中代数式有()个.A.4 B.5 C.6 D.715.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2n B.mn+2 C.m+2(n﹣1)D.m+n+216.某商品的原价是m元,现降价30%,现价是()A.(m﹣30%)元B.30%m元C.(1﹣30%)m元D.(1+30%)m元17.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(1﹣10%)(1+15%)x万元D.(x﹣10%)(x+15%)万元18.一个长方形的宽为a,长方形的长比宽的2倍少3,则长方形的周长为()A.2a﹣3 B.3a﹣3 C.3a﹣6 D.6a﹣619.若代数式x2﹣x的值是2,则代数式3x2﹣3x﹣9的值是()A.﹣15 B.﹣9 C.﹣6 D.﹣320.已知x2+3x+5的值是7,那么多项式3x2+9x﹣2的值是()A.6 B.4 C.2 D.0二.填空题(共20小题)21.结合生活实际,代数式5m+2n可以解释为.22.如果a的实际意义是表示某线段的长度,那么2a+12的实际意义是.23.被x除,商是x,余数是2的数为.24.代数式3a2的实际意义可解释为.25.当a=1,b=2时,代数式a2﹣ab的值是.26.新华社3月16日授权发布了《中华人民共和国经济和社会发展第十二个五年规划纲要》明确规定收入增幅要超过GDP增幅,某公司决定给员工加薪,月工资在m元的基础上增长10%,那么加薪后员工的月工资为.27.当x=1时,代数式﹣5x+1的值是.28.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是.29.规定符号⊗的意义为:a⊗b=ab﹣a2+|﹣b|+1,那么﹣3⊗4=.30.给出下列各式:①x2+2x;②xyz;③(x≥);④m+n=n+m.其中是代数式的有.31.代数式““可用语言表述为.32.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.33.甲、乙两名工人铺地板砖,甲铺100m2需5小时,乙铺100m2需4小时,那么甲、乙合铺100m2,先让甲铺a(a<5)小时,剩下的乙铺需小时.34.设a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,则b ﹣c+a的值是.35.如果mkg苹果的售价为a元.则代数式表示的实际意义是.36.a的3倍的相反数可表示为,系数为,次数为.37.x的2倍与3的差(用代数式表示):.38.某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有千克(用含a、b的代数式表示).39.已知代数式ax7+bx5+cx3﹣8,当x=﹣3时ax7+bx5+cx3﹣8的值为6,那么当x=3时,代数式ax7+bx5+cx3+4=.40.如图,若开始输入的x的值为正分数,最后输出的结果为13,则满足条件的x的值为.三.解答题(共10小题)41.指出下列各项中哪些是代数式,并说明原因.①x3﹣3;②;③m﹣4=8;④2a﹣b>5;⑤;⑥73.42.说出下列代数式的意义(1)2a+3;(2)(a+3)x;(3);(4).43.请按代数式lOx+30y编写一道与实际生活相关的应用题.44.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”小彭说:“代数式a2+b2表示的意义是a与b的和的平方”依次判断四位同学的说法是否正确,如不正确,请帮他们修正,写出正确的说法.45.从176.4m 的高处有一石头由静止开始自由下落,石头下落的高度h与时间t(0≤t≤6)有面的关系:时间t(s)123456高度h(m) 4.9×1 4.9×4 4.9×9 4.9×16 4.9×25 4.9×36(1)写出用时间t表示下落高度h的公式;(2)当t=3.5s时,求石头下落的高度.46.已知a、b、c、d是整数,且满足a+b=c,b+c=d,c+d=a.(1)若a与b互为相反数,求a+b+c+d的值;(2)若b是正整数,求a+b+c+d的最大值.47.某商场一种商品的成本是销售收入的50%,税款和其他费用(不列入成本)合计为销售收入的10%,若该种商品的销售收入为x万元,则该商场获利润多少万元?48.已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,求a5﹣a4+a3﹣a2+a1﹣a0的值.49.人的身高很大程度是由遗传决定的,从父母的身高一定程度可以预测子女成年后能达到的身高,科学家经研究得出了人的身高与父母身高的一组相关数据,如下表所示.(1)请你根据表中提供的信息,写出人的遗传基因长高公式;(2)初一某学生的父亲身高175cm,母亲身高160cm,请你预测该学生成年后的身高.(精确到1cm)50.某工人上午7点上班至11点下班,一开始他用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)他加工完第一个零件是几点?(2)求他加工完零件x个零件时的时间(用x表示)(3)8点整他加工完几个零件?(4)这个工人上午最多加工几个零件?七年级上册代数式的习题参考答案与试题解析一.选择题(共20小题)1.下列语句正确的是()A.1+a不是一个代数式 B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式【分析】代数式是用运算符号把数和字母连接而成的式子,根据定义即可判断.【解答】解:A、1+a是一个代数式,故本选项不符合题意;B、0是代数式,故本选项符合题意;C、S=πr2是等式,不是一个代数式,故本选项不符合题意;D、单独一个字母a是代数式,故本选项不符合题意.故选B.【点评】本题考查了代数式的定义,注意:代数式不含等号,也不含不等号,单独的一个数或字母也是代数式.2.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、2x+3y表示2x与3y的和,说法正确,不符合题意;B、表示5x除以2y所得的商,说法正确,不符合题意;C、9﹣y表示9减去y的所得的差,说法正确,不符合题意;D、a2+b2表示a的平方与b的平方的和,原来的说法错误,符合题意.故选D.【点评】此题主要考查了代数式的表示方法,题目比较简单.3.若每100kg小麦可出akg面粉,bkg小麦可出面粉千克数为()A. B.C.D.【分析】表示出1kg小麦可出的面粉,再乘b即可.【解答】解:1kg小麦可出的面粉数为kg,bkg小麦可出面粉千克数为:kg.故选A.【点评】本题考查了列代数式,比较简单,主要利用了出粉率的问题.4.某商场进了一批衬衣,每件售价为a元,若每件获利20%,则每件衬衣的进价是()A.(1+20%)a B.(1﹣20%)a C.D.【分析】每件售价为a元,若每件获利20%,即进价的(1+20%)倍就是a元,据此即可求解.【解答】解:每件售价为a元,若每件获利20%,即进价的(1+20%)倍就是a 元,则进价是:.故选C.【点评】本题考查了列代数式,正确理解增长率的含义是关键.5.代数式用语言叙述为()A.a与b的差的倒数B.a与b的倒数差C.a、b两数倒数的差D.a的倒数与b的差的倒数【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、a与b的差的倒数:,故本选项错误;B、a与b的倒数差:a﹣,故本选项错误;C、a、b两数倒数的差:,故本选项正确;D、a的倒数与b的差的倒数:,故本选项错误.故选C.【点评】此题考查了用语言表达代数式的意义,注意一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.6.为了测算一捆粗细均匀的电线的总长度,小明先称出它的质量为akg,然后从中剪出一段1m长的电线,称得质量为bkg,这样可求得这捆电线原来的总长度为(单位:m)()A.B.C.D.【分析】这捆电线的总长度=这捆电线总的质量÷这捆电线1m长的质量,依此列出代数式.【解答】解:根据题意可得这捆电线的总长度为.故选A.【点评】本题比较简单,主要考查了电线的长度与质量的关系.7.下列说法正确的是()A.x的倍列代数式表示是x或B.与的读法都是a加b分之cC.5不是代数式D.x≠b不是代数式【分析】根据代数式的定义和书写要求判断各项.【解答】解:A中的带分数应写成假分数,B中的读法是a加b分之c,而的读法是c除以a与b的和,5是代数式,所以选项A,B,C都错误,正确的是D.故选D.【点评】注意:含“≠”号的式子一定不是代数式.还要注意代数式的语言叙述,简明准确即可.8.在某月的日历表上,任意圈出一整列相邻的三个数,这三个数的和不可能是()A.24 B.20 C.51 D.72【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3的倍数.【解答】解:设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和不可能是20.故选:B.【点评】此题主要考查根据日历表中的数字规律列代数式,解题的关键是:(1)根据竖排“第一数比第二数小7,第三数比第二数大7”列代数式并化简;(2)根据代数式的值是3的整数倍,确定选项.9.x是大于﹣2.5的负整数,y为绝对值最小的有理数,x3+x2y﹣y3的值()A.﹣8 B.﹣8或﹣1 C.1 D.8或1【分析】根据x是大于﹣2.5的负整数,y为绝对值最小的有理数可知x=﹣2或﹣1;y=0,再把x、y的值代入所求代数式即可求出代数式的值.【解答】解:∵x是大于﹣2.5的负整数,y为绝对值最小的有理数可知x=﹣2或﹣1;y=0,∴当x=﹣2,y=0时,原式=(﹣2)3=﹣8;当x=﹣1,y=0时,原式=(﹣1)3=﹣1.故选B.【点评】本题考查的是代数式求值的相关知识,解答此题的关键是根据已知条件求出未知数的值,再进行计算.10.如果a,b互为相反数,x,y互为倒数,则(a+b)+2xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数概念,可得a、b;x、y的等量关系,把所得的等量关系整体代入可求出代数式的值.【解答】解:∵a,b互为相反数,x,y互为倒数;∴a+b=0,xy=1;原式=0+2×1=2.故选A.【点评】本题运用了相反数和倒数概念,以及整体代入的思想.11.已知|a|=3,|b|=4且a>b,则2a﹣b的值为()A.﹣10 B.10 C.2或﹣10 D.﹣2或10【分析】利用绝对值的代数意义求出a与b的值,即可确定出2a﹣b的值.【解答】解:∵|a|=3,|b|=4且a>b,∴a=﹣3,b=﹣4;a=3,b=﹣4,则2a﹣b的值为﹣2或10.故选D【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B.2 C.3 D.4【分析】首先将x=1代入得:a3+a2+a1+a0=0①,然后将x=0代入得:a0=﹣1②,①﹣②即可求得a3+a2+a1的值.【解答】解:将x=1代入得:a3+a2+a1+a0=0①,将x=0代入得:a0=﹣1②,①﹣②得:a3+a2+a1=1.故选:A.【点评】本题主要考查的是求代数式的值,将x=1和x=0代入求得:a3+a2+a1+a0=0,a0=﹣1是解题的关键.13.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应省略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.故选:A.【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.14.下列各式:a,0,3x﹣1,a+b=b+a,7>6.9,xy,,其中代数式有()个.A.4 B.5 C.6 D.7【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式可得答案.【解答】解:a,0,3x﹣1,xy,是代数式,共5个.故选:B.【点评】此题主要考查了代数式,关键是掌握代数式的定义.15.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2n B.mn+2 C.m+2(n﹣1)D.m+n+2【分析】此题要根据题意列出相应代数式,可推出2、3排的座位数分别为m+2,m+2+2,然后通过推导得出其座位数与其排数之间的关系.【解答】解:第n排座位数为:m+2(n﹣1).故选C.【点评】此类题在分析时不仅要注意运算关系的确定,同时要注意其蕴含规律性.这是分析的关键点.16.某商品的原价是m元,现降价30%,现价是()A.(m﹣30%)元B.30%m元C.(1﹣30%)m元D.(1+30%)m元【分析】用原价减去降低的价钱得出现价即可.【解答】解:现价是m﹣30%m=(1﹣30%)m元.故选:C.【点评】此题考查列代数式,掌握销售问题中的基本数量关系是解决问题的关键.17.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(1﹣10%)(1+15%)x万元D.(x﹣10%)(x+15%)万元【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选C【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.18.一个长方形的宽为a,长方形的长比宽的2倍少3,则长方形的周长为()A.2a﹣3 B.3a﹣3 C.3a﹣6 D.6a﹣6【分析】首先根据长方形的宽表示出长方形的长,然后利用长方形的周长计算方法表示出长方形的周长即可.【解答】解:∵长方形的宽为a,长比宽的2倍少3,∴长方形的长为2a﹣3,∴长方形的周长为2×(a+2a﹣3)=6a﹣6,故选:D.【点评】本题考查了列代数式的知识,解题的关键是用长方形的宽表示出长方形的长.19.若代数式x2﹣x的值是2,则代数式3x2﹣3x﹣9的值是()A.﹣15 B.﹣9 C.﹣6 D.﹣3【分析】把代数式3x2﹣3x﹣9变形为代数式3(x2﹣x)﹣9,再把x2﹣x的值代入求值即可.【解答】解:∵x2﹣x的值是2,∴x2﹣x=2,∴3x2﹣3x﹣9=3(x2﹣x)﹣9=3×2﹣9=﹣3,故选D.【点评】此题考查了代数式求值,整体代入是解本题的关键.20.已知x2+3x+5的值是7,那么多项式3x2+9x﹣2的值是()A.6 B.4 C.2 D.0【分析】根据题意,可求得x2+3x=2,再将3x2+9x﹣2变形可得:3(x2+3x)﹣2,然后把(x2+3x)作为一个整体代入变形后的代数式即可求解.【解答】解:已知x2+3x+5=7,∴x2+3x=2,则多项式3x2+9x﹣2=3(x2+3x)﹣2=3×2﹣2=4.故选B.【点评】本题是求多项式的值,其难点在于需要突破原来先求出x的值再代入多项式求解的思维定势,较有挑战性.二.填空题(共20小题)21.结合生活实际,代数式5m+2n可以解释为5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.【分析】代数式5m+2n为整式,再结合实际,解释代数式即可.【解答】解:代数式5m+2n可以解释为:5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.故答案为:5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.【点评】此题考查了代数式的实际意义,同学们应当在日常学习中加以积累,观察生活.22.如果a的实际意义是表示某线段的长度,那么2a+12的实际意义是一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度.【分析】根据代数式的特点,结合具体情境解答此类问题.【解答】解:一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度;故答案为:一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度;【点评】考查了代数式的特点,结合具体情境解答此类问题.开放型试题可以考查你的数学应用能力,我们要把知识学活.23.被x除,商是x,余数是2的数为x2+2.【分析】根据被除数=商×除数+余数即可作答.【解答】解:被x除,商是x,余数是2的数为:x•x+2=x2+2.故答案为x2+2.【点评】此题考查了列代数式;解决问题的关键是读懂题意,找到所求的量的等量关系.24.代数式3a2的实际意义可解释为长为3a,宽为a的长方形的面积(答案不唯一).【分析】因为3a2=3a×a,所以3a,a可表示为长方形的边长,相乘的结果是长方形的面积.【解答】解:∵3a2=3a×a,∴代数式3a2的实际意义可解释为长为3a,宽为a的长方形的面积(答案不唯一).【点评】解决本题的关键是把3a2先进行分解,用常见的量解释.25.当a=1,b=2时,代数式a2﹣ab的值是﹣1.【分析】直接代入求值即可.【解答】解:∵a=1,b=2,∴a2﹣ab=1﹣1×2=﹣1.【点评】考查了代数式求值的方法.26.新华社3月16日授权发布了《中华人民共和国经济和社会发展第十二个五年规划纲要》明确规定收入增幅要超过GDP增幅,某公司决定给员工加薪,月工资在m元的基础上增长10%,那么加薪后员工的月工资为 1.1m元.【分析】根据题意月工资在m元的基础上增长10%可直接列出代数式.【解答】解:∵月工资在m元的基础上增长10%,∴加薪后员工的月工资为m(1+10%)=m(1+0.1)=1.1m,故答案为1.1m.【点评】本题考查了列代数式,解题的关键是认真审题,弄清题意,此题比较简单,易于掌握.27.当x=1时,代数式﹣5x+1的值是﹣4.【分析】将x的值代入所求式子中计算,即可求出值.【解答】解:∵x=1,∴﹣5x+1=﹣5+1=﹣4.故答案为:﹣4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.28.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.【分析】本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y 的意义,最后得出正确答案即可.【解答】解:∵买一个足球x元,一个篮球y元,∴3x表示体育委员买了3个足球,2y表示买了2个篮球,∴代数式500﹣3x﹣2y:表示体育委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球后剩余的经费.【点评】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.29.规定符号⊗的意义为:a⊗b=ab﹣a2+|﹣b|+1,那么﹣3⊗4=﹣16.【分析】首先需要看懂新定义的运算,再根据运算,把﹣3、4转化成a、b展开,再根据有理数的元算法则计算即可.【解答】解:∵a⊗b=ab﹣a2+|﹣b|+1,∴﹣3⊗4=(﹣3)×4﹣(﹣3)2+|﹣4|+1=﹣12﹣9+4+1=﹣16.故答案是﹣16.【点评】本题考查了代数式求值,解题的关键是看懂新定义的运算,能代入展开.30.给出下列各式:①x2+2x;②xyz;③(x≥);④m+n=n+m.其中是代数式的有①②③.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:根据代数式定义可知④中含有“=”,不是运算符号,不是代数式,是代数式的为:①②③,故答案为:①②③.【点评】此题考查了代数式的概念.注意代数式中不含有关系符号.31.代数式““可用语言表述为x与1的和的平方的与3的差.【分析】依据有理数的运算顺序,可表述出代数的意义.【解答】解:代数式““可用语言表述为:x与1的和的平方的与3的差.故答案为:x与1的和的平方的与3的差.【点评】本题主要考查的是代数式的意义,明确代数式中各种运算的先后顺序是解题的关键.32.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为:h.故答案是:.【点评】本题考查了列代数式的知识,熟练掌握顺水速度、逆水速度、静水速度、水流速度之间的关系是解题的关键.33.甲、乙两名工人铺地板砖,甲铺100m2需5小时,乙铺100m2需4小时,那么甲、乙合铺100m2,先让甲铺a(a<5)小时,剩下的乙铺需4﹣a小时.【分析】首先求得甲铺a(a<5)小时完成100÷5×a=20am2,剩下的面积为(100﹣20a)m2,再除以以每小时完成的即可得出答案.【解答】解:(100﹣100÷5×a)÷(100÷4)=(100﹣20a)÷25=4﹣a(小时)答:剩下的乙铺需4﹣a小时.故答案为:4﹣a.【点评】此题考查列代数式,掌握工作总量、工作时间、工作效率之间的关系是解决问题的关键.34.设a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,则b ﹣c+a的值是﹣2.【分析】先依据有理数的相关概念求得a、b、c的值,然后代入计算即可.【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,∴a=﹣1,b=0,c=1.∴b﹣c+a=0﹣1+(﹣1)=﹣2.故答案为:﹣2.【点评】本题主要考查的是求代数式的值,求得a、b、c的值是解题的关键.35.如果mkg苹果的售价为a元.则代数式表示的实际意义是nkg苹果的售价.【分析】根据mkg苹果的售价为a元可得表示每千克的售价,进而可得代数式表示的实际意义是nkg苹果的售价.【解答】解:由mkg苹果的售价为a元,则每千克售价为元,故代数式表示的实际意义是nkg苹果的售价.故答案为:nkg苹果的售价.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.36.a的3倍的相反数可表示为﹣3a,系数为﹣3,次数为1.【分析】首先a的3倍为3a,再进一步根据相反数的意义和单项式的意义,直接填出答案即可.【解答】解:a的3倍的相反数可表示为﹣3a,系数为﹣3,次数为1.故答案为:﹣3a,﹣3,1.【点评】此题考查列代数式,相反数的意义,单项式的意义等知识点.37.x的2倍与3的差(用代数式表示):2x﹣3.【分析】x的2倍即2x,然后求出其与3差即可.【解答】解:x的2倍与3的差用代数式表示为2x﹣3,故答案为:2x﹣3【点评】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系.38.某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有ab千克(用含a、b的代数式表示).【分析】先求出这批苹果总数,再乘以,列出代数式即可得出答案.【解答】解:∵共a箱,每箱b千克,∴这批苹果共有ab千克,∵将这批苹果的放在大商场销售,∴放在大商场销售的苹果有ab千克.故答案为:ab.【点评】此题考查了列代数式,读懂题意,找出题目中的数量关系,列出代数式是本题的关键.39.已知代数式ax7+bx5+cx3﹣8,当x=﹣3时ax7+bx5+cx3﹣8的值为6,那么当x=3时,代数式ax7+bx5+cx3+4=﹣10.【分析】将x=﹣3代入代数式值为6,列出关系式,将x=3代入所求式子,把得出的代数式代入计算即可求出值.【解答】解:将x=﹣3代入ax7+bx5+cx3﹣8得:﹣a•37﹣b•35﹣c•53﹣8=6,即a•37+b•35+c•53=﹣14,则当x=3时,ax7+bx5+cx3+4=a•37+b•35+c•53+4=﹣14+4=﹣10.故答案为:﹣10【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.40.如图,若开始输入的x的值为正分数,最后输出的结果为13,则满足条件的x的值为或.【分析】根据结果为13,由程序框图得符合条件x的值即可.【解答】解:根据题意得:2x+1=13,解得:x=6;可得2x+1=6,解得:x=;可得2x+1=,解得:x=,则符合条件x的值为或,故答案为:或.【点评】本题考查了求代数式的值,能求出符合的所有情况是解此题的关键.三.解答题(共10小题)41.指出下列各项中哪些是代数式,并说明原因.①x3﹣3;②;③m﹣4=8;④2a﹣b>5;⑤;⑥73.【分析】根据代数式的概念即可求出答案.【解答】解:由数和表示数的字母经有限次加、减、乘、除、乘方和开方运算所得的式子,或含有字母的数学表达式称代数式,故x3﹣3;、、73是代数式【点评】本题考查代数式的概念,属于基础题型.42.说出下列代数式的意义(1)2a+3;(2)(a+3)x;(3);(4).【分析】结合代数式的特点作答即可.【解答】解:(1)a的2倍与3的和;(2)a+3与x的积或a与3的和的x倍;(3)的意义是c除以ab的商;(4)x与(x﹣y)的商.【点评】此类问题应结合实际,根据代数式的特点解答.43.请按代数式lOx+30y编写一道与实际生活相关的应用题.【分析】结合实际情境作答,答案不唯一.【解答】解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是10x+30y.【点评】此类问题应结合实际,根据代数式的特点解答.44.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”。
第三章 代数式 单元训练(含简单答案)2024-2025学年人教版数学七年级上册

第三章 代数式 单元训练2024-2025学年人教版数学七年级上册(1)一、单选题1.用表示的数一定是( )A .负数B .正数或负数C .负整数D .以上全不对2.李爷爷今年岁,杨伯伯今年岁,过年后,他们相差( )岁.A .x B .20C .D .3.当,时,代数式的值是( )A .6B .C .9D .4.在式子,,,,中属于代数式的有( )A .3B .4C .5D .65.下列各式中,书写正确的是( )A .B .C .D .6.某商场出售一件商品,在原标价基础上实行以下四种调价方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价10%,再打八折C .先提价30%,再降价35%D .先打七五折,再提价10%7.按照如图所示的程序计算,若开始输入的值为,则最后输出的结果可能是( )A .B .C .D .128.已知和互为相反数,则的值为( )A .B .C .D .09.已知 ,那么代数式的是( )A .B .0C .3D .910.观察下列代数式:,,,,….按此规律,则第n 个代数式是( )a -a ()20a -x 20x -20x +2m =-5n =()3m n -+6-9-5a a b +0m n +>223x y 112mn x y ÷1()4a b +3-6-15-42-5m +52n -2m n +5-52-52122a b a c +=+=-,()()2924b c c b ----1-12a -54a98a -1316aA .B .C .D .二、填空题11.某工程队要修路,计划平均每天修,则计划完成此项工程的时间为 天.12.为了丰富班级的课余活动,王老师预购置副羽毛球拍和个羽毛球,已知买一副羽毛球拍要元,买一个羽毛球要元.王老师一共要花 元(用含、的式子表示).13.已知,代数式的值为 .14.若代数式,则的最小值是.三、解答题15.如图,是一个“数值转换机”的示意图.(1)输出的结果用代数式表示为________;(2)计算当输入时,输出的值.16.边长分别为a 和的两个正方形按如图的样式摆放,求图中阴影部分的面积.17.如图所示,在数轴上有三个点A ,B ,C ,回答下列问题:(1)A ,C 两点间的距离是(2)若点E 与点B 的距离是4,则点E 表示的数是 .(3)若点F 与点B 的距离是 (>0),请你求出点F 表示的数是 . (用含字母 的代数()14312n n na +--()14312n n n a +--()4312n n na --()4312n n n a--m a m b 520a b a b 23a b -=-()32243b a b a +---312410x x y y -+++++-=23x y +13x =2a a a a式表示).(4)如果点G 表示的数是 ,将点G 向右移动 个单位长度,再向左移动个单位长度,那么终点H 表示的数是 ;G 、H 两点间的距离是 _____________.(用含绝对值符号“| |”的代数式表示).18.为了培养德智体美劳全面发展的学生,某校为了增强学生的体质,准备购买足球50个,实心球x 个,足球定价80元/个,实心球定价20元/个,甲、乙两商店向学校提供了各自的优惠方案:商店甲:买一个足球送一个实心球;商店乙:足球和实心球都按定价的付款.(1)若该校到甲、乙商店分别购买,分别需付款多少元?(用含x 的代数式表示)(2)若时,通过计算说明此时哪间商店购买较为合算?(3)当时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并把付款的钱算出来.m n p ()50x >90%200x =300x =参考答案:1.D2.B3.D4.B5.D6.D7.B8.D9.D10.D11.12.13.3014.15.(1);(2).16.17.(1)5;(2)-6或2;(3)-2-或-2+;(4)+-;18.(1)元,元(2)去甲商店购买较为合算(3) 解: x=300时甲: 20×300+3000=9000 (元) ,乙: 18×300+3600=9000 (元),更省钱的方案为: 去甲商店买50个足球 (送50个实心球) 去乙商店买250个实心球.50×80+250×20×90%=4000+4500=8500 (元) .ab()520a b +8-23x -73-22a a a m n p n p -()203000+x ()183600+x。
最新人教版数学七年级上册 代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
【精选】数学七年级上册 代数式单元达标训练题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.某超市在春节期间对顾客实行优惠,规定如下:(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款________元,当x大于或等于500元时,他实际付款________元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?【答案】(1)530(2)0.9x;0.8x+50(3)解:0.9a+0.8(820﹣a﹣500)+450=0.1a+706【解析】【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;【分析】(1)王老师一次性购物600元,超过500元,因此得出其中500元给予九折优惠,100元给予八折优惠,列式计算即可。
(2)根据已知当x小于500元但不小于200时,九折优惠,即可列出代数式;当x大于或等于500元时,其中500元部分给予九折优惠,(x-500)元给予八折优惠,即可列出代数式。
(3)根据已知可知,第二次购物超过500元,由已知200<a<300,得出两次购物王老师实际付款=第一次购物款乘以0.9+500乘以0.9+(800-a-500),计算即可。
2.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________(2)数轴上表示x和﹣2的两点之间的距离表示为________.(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.【答案】(1)3;5(2)|x+2|(3)6(4)解:∵|x+3|+|x﹣5|=8,∴﹣3≤x≤5,∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;故答案为:3,5;|x+2|;6.【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.3.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。
【人教版】七年级数学代数式练习题及答案

代数式 同步练习一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .198.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−10.当2x=时,38ax bx++=;那么当2x=−时,3ax bx++的值为() A.8−B.2C.2−D.8二.填空题(共9小题)11.已知23a b−=,则代数式241a b−+的值为.12.根据如图所示的计算程序,若输入的值3x=−,则输出y的值为.13.如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为元.14.m的2倍与n的差大于0表示为:.15.将下列各式按照列代数式的规范要求重新书写:(1)5a⨯,应写成;(2)S t÷应写成;(3)123a a b⨯⨯−⨯,应写成;(4)413x,应写成.16.每件a元的上衣,降价20%后的售价是.17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小明共花费元(用含a,b的代数式表示).18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△523511=⨯+=,2△(1)23(1)5−=⨯+−=,6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为.19.已知有理数x、y满足2|3|(24)0x y−++=,则代数式x y+的值为.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶. (1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?21.当2x =,5y =−时,求多项式223x y x y +−+−的值.22.根据下列语句列出代数式: (1)x 与y 的和乘以3的积的倒数; (2)x 、y 两数的平方差; (3)x 、y 两数和的平方的2倍.23.阅读下列例题:计算:23456102222222++++++⋯+. 解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−. 所以原式1122=−. 仿照上面的例题计算: 234201833333++++⋯+.24.当2a =−,3b =时,求下列代数式的值. (1)2(2)a b +; (2)222a b ab −−.代数式 巩固练习 答案一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −【解答】解:“m 与n 差的3倍”用代数式可以表示为:3()m n −. 故选:D .2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷【解答】解:A 、正确书写格式为:18b ,故此选项不符合题意; B 、正确书写格式为:54x ,故此选项不符合题意;C 、是正确的书写格式,故此选项符合题意;D 、正确书写格式为:2mn,故此选项不符合题意. 故选:C .3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x【解答】解:.15abA +,故A 不符合题意; 3.4B ab ,故B 符合题意; .2C ab ,故C 不符合题意;5.3D x ,故D 不符合题意; 故选:B .4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【解答】解:某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是:原价打8折后再减去10元, 故选:B .5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差【解答】解:字母表达式2x y −的意义为x 与y 的平方的差. 故选:B .6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +【解答】解:第1个图形中,有2个正方形和4个三角形,44(21)=⨯−; 第2个图形中,有3个正方形和8个三角形,84(31)=⨯−; 第3个图形中,有4个正方形和12个三角形,124(41)=⨯−; ⋯⋯,∴第n 个图形中,三角形的个数为4n 或44x −.故选:A .7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .19【解答】解:11623=⨯, 111234=⨯, 112045=⨯, ⋯⋯∴第n 个数为:1(1)(2)n n ++,∴第9个数为:111011110=⨯. 故选:B .8.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a【解答】解:矩形的宽为:2la −. 故选:A .9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−【解答】解:35m n +=, ∴原式3()2m n =−+−52=−−7=−.故选:B .10.当2x =时,38ax bx ++=;那么当2x =−时,3ax bx ++的值为( ) A .8−B .2C .2−D .8【解答】解:当2x =时,3ax bx ++的值是8, 2238a b ∴++=,即225a b +=,∴当2x =−时,3(22)3532ax bx a b ++=−++=−+=−.故选:C .二.填空题(共9小题)11.已知23a b −=,则代数式241a b −+的值为 7 . 【解答】解:23a b −=,∴原式2(2)1617a b =−+=+=.故答案为:7.12.根据如图所示的计算程序,若输入的值3x =−,则输出y 的值为 10 .【解答】解:当3x =−时,由程序图可知:221(3)19110y x =+=−+=+=. 故答案为:10.13.如果某种商品每8千克的售价为32元,那么这种商品m 千克的售价为 4m 元. 【解答】解:这种商品的单价为3284÷=元,∴这种商品m 千克的售价为4m 元.故答案为:4m .14.m 的2倍与n 的差大于0表示为: 20m n −> . 【解答】解:m 的2倍为2m ,与n 的差为:2m n −,m ∴的2倍与n 的差大于0表示为:20m n −>.故答案为:20m n −>.15.将下列各式按照列代数式的规范要求重新书写: (1)5a ⨯,应写成 5a ; (2)S t ÷应写成 ;(3)123a a b ⨯⨯−⨯,应写成 ;(4)413x ,应写成 .【解答】(1)55a a ⨯=, 故答案为:5a ; (2)SS t t÷=. 故答案为:S t; (3)212233ba ab a ⨯⨯−⨯=−,故答案为:223b a −; (4)47133x x =,故答案为:73x .16.每件a 元的上衣,降价20%后的售价是 (120%)a −元/件 . 【解答】解:每件a 元的上衣降价20%后,出售的价格为(120%)a −(元/件). 故答案为:(120%)a −(元/件).17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费 (610)a b + 元(用含a ,b 的代数式表示). 【解答】解:依题意得:小明共花费(610)a b +元, 故答案是:(610)a b +.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式: 2△523511=⨯+=,2△(1)23(1)5−=⨯+−=, 6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为 4044− . 【解答】解:根据前几个数可以找到规律,a △3b a b =⨯+, 故(2022)−△20222022320224044=−⨯+=−, 故答案为:4044−.19.已知有理数x 、y 满足2|3|(24)0x y −++=,则代数式x y +的值为 1 .【解答】解:2|3|(24)0x y −++=, 30x ∴−=,240y +=,解得:3x =,2y =−, 则321x y +=−=. 故答案为:1.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶.(1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?【解答】解:(1)购进7个大垃圾桶和10个小垃圾桶,共付款71050(7500)m m +⨯=+(元);(2)当110m =时,750071105001270m +=⨯+=(元),12001270<,1200∴元不够用.21.当2x =,5y =−时,求多项式223x y x y +−+−的值.【解答】解:当2x =,5y =−时,223x y x y +−+−222(5)2(5)3=+−−+−−425253=+−−−19=.22.根据下列语句列出代数式:(1)x 与y 的和乘以3的积的倒数;(2)x 、y 两数的平方差;(3)x 、y 两数和的平方的2倍.【解答】解:(1)由题意可得,13()x y +; (2)由题意可得,22x y −;(3)由题意可得,22()x y +.23.阅读下列例题:计算:23456102222222++++++⋯+.解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−.所以原式1122=−.仿照上面的例题计算:234201833333++++⋯+.【解答】解:设234201833333S =++++⋯+,①那么23420182019333333S =+++⋯++.②(②−①)2÷,得2019332S −=. 所以原式2019332−=. 24.当2a =−,3b =时,求下列代数式的值.(1)2(2)a b +;(2)222a b ab −−.【解答】解:(1)2a =−,3b =,2(2)a b ∴+2(223)=−+⨯2(26)=−+24=16=;(2)2a =−,3b =,222∴−−a b ab22=−−−⨯−⨯(2)32(2)3 4912=−+=.7。
人教版七年级数学上册《第三章代数式》单元检测卷及答案

人教版七年级数学上册《第三章代数式》单元检测卷及答案(时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是( )xyA.x×5B.72ab D.m-1÷nC.2142.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为( ))t B.(L-t)tA.(L-t2C.(L-t)t D.(L-2t)t25.下面各选项中的两个量成正比例关系的是( )A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与xD.已知xy=3,y与x6.若2m-n-4=0,则-2m+n-9的值是( )A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多( )A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为( )A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= .11.如果A×B=4.5,那么A和B成比例关系;如果x÷y=3.5,那么x和y成比例关系;如果m∶1.2=1.5∶n,那么m和n成比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, .三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?参考答案一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是(B)xyA.x×5B.72C.21ab D.m-1÷n42.用代数式表示“a的3倍与b的差的平方”,正确的是(C)A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为(D)A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为(D))t B.(L-t)tA.(L-t2-t)t D.(L-2t)tC.(L25.下面各选项中的两个量成正比例关系的是(D)A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与x=3,y与xD.已知xy6.若2m-n-4=0,则-2m+n-9的值是(A)A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多(D)A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为(D)A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是-1 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= 110.11.如果A×B=4.5,那么A和B成反比例关系;如果x÷y=3.5,那么x和y成正比例关系;如果m∶1.2=1.5∶n,那么m和n成反比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, 881.三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?解:(1)4×15=60(cm3).答:这个圆柱的体积是60 cm3.(2)如果用S表示圆柱的底面积,h表示圆柱的高,因为“圆柱的底面积×高=圆柱的体积”,体积一定,也就是积一定,所以S与h成反比例关系,sh=60.(3)60÷20=3(cm).答:如果圆柱的底面积是20 cm2,那么圆柱的高是3 cm.14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?解:(1)因为+25-15-22+24-21+14-12=-7所以经过这7天,仓库里的水泥减少了,减少了7 t.(2)因为100-(-7)=100+7=107(t)所以那么7天前,仓库里存有水泥107 t.(3)依题意,得进库的装卸费为[(+25)+(+24)+(+14)]a=63a出库的装卸费为(|-15|+|-22|+|-21|+|-12|)b=70b所以这7天要付(63a+70b)元装卸费.15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.解:(1)根据题意,1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m.(2)依题意有0.8x+2=0.3x+10解得x=16.故出发16 s 1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.解:(1)顾客购买电器的价格是x=800元时,甲购物平台没有优惠,需要付费800元,乙购物平台有优惠,需要付费500+90%×(800-500)=770(元)所以顾客应选择在乙购物平台下单比较划算.(2)选择甲购物平台下单比较划算.理由如下:顾客购买电器的价格是x>2 000元时,甲购物平台需要付费1 000+80%(x-1 000)=(0.8x+200)(元)乙购物平台需要付费500+90%(x-500)=(0.9x+50)(元).(3)当x=3 500时,甲购物平台需要付费0.8×3 500+200=3 000(元)乙购物平台需要付费0.9×3 500+50=3 200(元)因为3 000<3 200所以该顾客应该选择甲购物平台下单比较划算.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?解:①货仓P在A,B之间时,距离点A有x km,则距离点B有(50-x)km,距离点C 有(130-x)km.运费为50x×1.5+10×(50-x)×1+60×(130-x)×1=(5x+8 300)元.由题意,得0≤x≤50所以x=0时,运费最低,为8 300元.②货仓P在B,C之间时,距离点C有y km,则距离点B有(80-y)km,距离点A有(130-y)km.运费为60y×1+10×(80-y)×1.5+50×(130-y)×1.5=(-30y+ 10 950)元.由题意,得0≤y≤80所以当y=80时,运费最低,为8 550元.因为8 300<8 550所以货仓P在A,B之间,距离点A有 0 km,即在A处时,运费最低,为8 300元. 答:货仓在点A处时,运费最低,为 8 300元.自我诊断知识分类题号总分评价1,2,3,4,5,7,8代数式11,12,13,14求代数式的值6,9,10,15,16,17。
人教版七年级数学上册期末专题复习代数式

4
B.
D.
5
6
−
−
天
+
7
)
D
8
天
9
10
11
12
13
14
15
5. 某玩具厂计划生产一种玩具熊,已知每只玩具熊的成本为 y 元,若该
厂每月生产 x 只( x 取正整数),这个月的总成本为5000元,则用式子
表示 y 与 x 的关系为( C )
A. y =
5000
B. 3 xy =5000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15. “杨辉三角”是我国古代数学重要的成就之一,最早出现在南宋数
学家杨辉所著的《详解九章算法》中.其规律如下:从第3行起,每行两
端的数都是“1”,其余各数都等于该数“两肩”上的数之和,如图①.
第15题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(1) 第8行第5个数是 35
10. 若 a2-3 b =-12,则6 b -2 a2+2000= 2024 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
11. 按如图所示的“数值转换机”计算:若开始输入 x 的值为-1,则转
换后输出的结果是
28
.
七年级上册代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
最新人教版七年级数学上册 代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
人教版七年级数学上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
3.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.4.已知点A、B、C在数轴上对应的实数分别为a、b、c,满足(b+5)2+|a﹣8|=0,点P 位于该数轴上.(1)求出a,b的值,并求A、B两点间的距离;(2)设点C与点A的距离为25个单位长度,且|ac|=﹣ac.若PB=2PC,求点P在数轴上对应的实数;(3)若点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…(以此类推).则点p 能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次重合?若不能,请说明理由.【答案】(1)解:依题意,b+5=0,a﹣8=0,所以,a=8,b=﹣5,则AB=8﹣(﹣5)=13(2)解:点C与点A的距离是25个单位长度,所以A点有可能是﹣17,33,因为|ac|=﹣ac,所以点A点C所表示的数异号,所以点C表示﹣17;设点P在数轴上对应的实数为x,∵PB=2PC,∴|x+5|=2|x+17|,∴x+5=2(x+17),或x+5=﹣2(x+17),解得x=﹣29或﹣13,即点P在数轴上对应的实数为﹣29或﹣13(3)解:记向右移动为正,则向左为负.第一次点P对应的实数为﹣1,第二次点P对应的实数为2,第三次点P对应的实数为﹣3,第四次点P对应的实数为4,…则第n次点P对应的实数为(﹣1)n•n,∵点A在数轴上对应的实数为8,点B在数轴上对应的实数为﹣5,∴点P移动8次到达点A,移动5次到达B点【解析】【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据根据两点间的距离公式,可得答案;(3)根据观察,可发现规律,根据规律,可得答案.5.小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有A、B两种活动方案,如表:活动方案木地板价格地砖价格总安装费A8折8.5折2000元B9折8.5折免收料费及安装费)更低?【答案】(1)解:根据题意,可得a+5=4+4,解得a=3;(2)解:铺设地面需要木地板:4×2x+a[10+6−(2x−1)−x−2x]+6×4=8x+3(17−5x)+24=75−7x;铺设地面需要地砖:16×8−(75−7x)=128−75+7x=7x+53;(3)解:∵卧室2的面积为21平方米,∴3[10+6−(2x−1)−x−2x]=21,∴3(17−5x)=21,∴x=2,∴铺设地面需要木地板:75−7x=75−7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积−三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.6.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。
(2)根据x>100,根据两种优惠方案,分别列式即可。
(3)将x=320分别代入(2)中的两种优惠方案的费用中进行计算,再比较大小可作出判断。
7.一般情况下,“ ”并不成立,但当,取某些数时,可以使它成立,例如 .我们称能使“ ”成立的数对,为“优数对”,记为(,).(1)若(,)是一个“优数对”,求的值;(2)请你写出一个“优数对”(,),其中,且;(3)若(,)是一个“优数对”,求代数式的值. 【答案】(1)解:由题意得:,解得(2)解:答案不唯一,如取,则,解得,(2,)(3)解:由()是一个“优数对”得去分母,化简得:,【解析】【分析】(1)利用“优数对”的定义化简,计算即可求出b的值;(2)写出一个“优数对”即可;(3)利用“优数对”定义得到9a+4b=0,原式去括号整理后代入计算即可求出值.8.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.9.已知多项式,,其中,马小虎同学在计算“ ”时,误将“ ”看成了“ ”,求得的结果为.(1)求多项式;(2)求出的符合题意结果;(3)当时,求的值.【答案】(1)解:∵,,∴;(2)解:∵,,∴(3)解:当时,【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.10.观察下列等式:31-30=2×30,32-31=2×31,33-32=2×32,(1)试写出第个等式,并说明第个等式成立的理由;(2)计算30+31+32+…+32018+32019的值.【答案】(1)根据题意得第n个等式为3n-3n-1=2×3n-1,证明如下:3n-3n-1=3×3n-1-3n-1=2×3n-1,所以成立;(2)31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×3201832020-32019=2×32019将这些等式相加得(31-30)+(32-31)+(33-32)+…+(32019-32018)+(32020-32019)=2×(30+31+32+…+32018+32019)故32020-30=2×(30+31+32+…+32018+32019)∴30+31+32+…+32018+32019=【解析】【分析】(1)通过观察即可发现:等式的左边是一个减法算式,被减数的底数是3,指数与等式的序号一致,减数的底数也是3,指数比等式的序号小1;等式的右边是一个乘法算式,一个因数是2 ,另一个因数与左边的减数一致,利用发现的规律即可得出通用公式:第n个等式为3n-3n-1=2×3n-1;(2)利用(1)发现的规律得出 31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×32018,32020-32019=2×32019根据等式的性质,将这些等式直接相加,得出32020-30=2×(30+31+32+…+32018+32019) ,从而根据等式的性质即可得出答案。