高二数学第一学期期末考试试题含答案(理科)

合集下载

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试高二数学(理科)试卷考试时间:120分钟试题分数:150分卷I一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数〃?、〃,是“方程如=]的曲线是双曲线,,的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是♦♦A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数x2 y23.已知椭圆一+ —— = 1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为25 16A. 2B. 3C. 5D. 74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题〃是“甲降落在指定范围”,g是“乙降落在指定范围”,则命题“至少有一位学员没有降,落在指定范围”可表示为A. (-1/7)v(-ity)B. /?v(-ity)C.(^/?)A(—D. pvq2 25.若双曲线:-二=1的离心率为J5,则其渐近线的斜率为crA. ±2B. ±-C. ±5/2D. ± —2 26 ,曲线),=———一!在点M(三,0)处的切线的斜率为sinx + cosx 2 4A,在 B. 一昱 C. 1 D. -12 2 2 27.已知椭圆£ +奈的焦点与双曲线今旬的焦点恰好是一个正方形的四个顶点,则抛物线少=打2的焦点坐标为A.(4-,0)B. (^- ,0)C. (0,^-)D. (0,^—)8. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜:③四向倾斜.记三种盖法屋顶而积分别为4鸟,A,① ② ③若屋顶斜而与水平而所成的角都是。

,则A. 4=E = AB. 4=4<鸟C.D.9.马云常说“便宜没好货”,他这句话•的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件10.设。

高二上理科数学期末试卷及答案

高二上理科数学期末试卷及答案

第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。

每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。

高二数学理科上学期期末试题(有答案)

高二数学理科上学期期末试题(有答案)

高二数学理科上学期期末试题(有答案)C.②③①D.③②①5.若a=(1,,2),b=(2,-1,1),a与b的夹角为60,则的值为A.17或-1B.-17或1C.-1D.16.设F1,F2是椭圆+=1(a5)的两个焦点,且|F1F2|=8,弦AB 过点F1,则△ABF2的周长为A.10B.20C.2D.47.对于R上可导的任意函数f(x),若满足(x-2)f(x)0,则必有A.f(-3)+f(3)2f(2)B.f(-3)+f(7)2f(2)C.f(-3)+f(3)2f(2)D.f(-3)+f(7)2f(2)二、填空题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.8.复数10的值是.9.用反证法证明命题:若x,y0,且x+y2,则,中至少有一个小于2时,假设的内容应为.10.已知等差数列{an}中,有=成立.类似地,在等比数列{bn}中,有成立.11.曲线y=sin x在[0,]上与x轴所围成的平面图形的面积为 .12.已知函数f(x)=x(x-c)2在x=2处有极大值,则c的值为 .13.正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},,记第n组中各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},,记第n组中后一个数与前一个数的差为Bn,则An+Bn= .三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)已知函数f(x)=ax3+(a-1)x2+27(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,5]上的单调性,并求出f(x)在区间[-4,5]上的最值.15.(本小题满分12分)已知数列{an}满足Sn+an=2n+1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.16.(本小题满分12分)如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA平面ABCD,E,F分别是BC,PC的中点.(1)证明:AE(2)若H为PD上一点,且AHPD,EH与平面PAD所成角的正切值为,求二面角E-AF-C的余弦值.必考试卷Ⅱ一、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义在R上的函数f(x)的导函数f(x)的图像如图,若两个正数a,b满足f(2a+b)1,且f(4)=1,则的取值范围是A.B.(5,+)C.(-,3)D.二、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.2.设函数f(x)=x(x+k)(x+2k)(x-3k),且f(0)=6,则k= .三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为a、mln(b+1)万元(m0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?4.(本小题满分13分)已知椭圆C:+=1(a0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP 分别与x轴交于点R,S,O为坐标原点,求证:为定值.5.(本小题满分14分)已知函数f(x)=ex,xR.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k 的值;(2)设x0,讨论曲线y=与直线y=m(m0)公共点的个数;(3)设函数h满足x2h(x)+2xh(x)=,h(2)=,试比较h(e)与的大小.湖南师大附中2019届高二第一学期期末考试试题数学(理科)参考答案必考试卷Ⅰ又∵函数f(x)在[-4,5]上连续.f(x)在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数.(9分)f(x)的最大值是54,f(x)的最小值是-54.(11分)15.解:(1)a1=,a2=,a3=,.猜测an=2-(5分)(2)①由(1)已得当n=1时,命题成立;(7分)②假设n=k时,命题成立,即ak=2-,(8分)当n=k+1时,a1+a2++ak+ak+1+ak+1=2(k+1)+1,且a1+a2++ak=2k+1-ak2k+1-ak+2ak+1=2(k+1)+1=2k+3,2ak+1=2+2-,ak+1=2-,即当n=k+1时,命题成立.(11分)根据①②得nN+时,an=2-都成立.(12分)16.(1)证明:由AC=AB=BC,可得△ABC为正三角形.因为E为BC的中点,所以AEBC.又BC∥AD,因此AEAD.因为PA平面ABCD,AE平面ABCD,所以PAAE.而PA平面PAD,AD平面PAD且PAAD=A,所以AE平面PAD.又PD平面PAD,所以AEPD.(5分)(2)解:因为AHPD,由(1)知AE平面PAD,则EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,此时tanEHA===,在Rt△AOE中,EO=AEsin 30=,AO=AEcos 30=,又F是PC的中点,在Rt△ASO中,SO=AOsin 45=,又SE===,在Rt△ESO中,cosESO===,即所求二面角的余弦值为.(12分)解法二:由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,所以A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F,所以=(,0,0),所以cos〈m,〉===.因为二面角E-AF-C为锐角,所以所求二面角的余弦值为.(12分)必考试卷Ⅱ一、选择题1.D 【解析】由图像可知f(x)在(-,0)递减,在(0,+)递增,所以f(2a+b)1即2a+b4,原题等价于,求的取值范围.画出不等式组表示的可行区域,利用直线斜率的意义可得.二、填空题2.-1 【解析】思路分析:按导数乘积运算法则先求导,然后由已知条件构造关于k的方程求解.f(x)=(x+k)(x+2k)(x-3k)+x(x+2k)(x-3k)+x(x+k)(x-3k)+x (x+k)(x+2k)故f(0)=-6k3,又f(0)=6,故k=-1.三、解答题3.解:(1)设投放B型电视机的金额为x万元,则投放A型电视机的金额为(10-x)万元,农民得到的总补贴f(x)=(10-x)+mln(x+1)=mln(x+1)-+1,(19).(5分)(没有指明x范围的扣1分)(2)f(x)=-==,令y=0,得x=10m-1(8分)1 若10m-11即02 若110m-19即3 若10m-19即m1,则f(x)在[1,9]是增函数,当x=9时,f(x)有最大值.因此,当0当当m1时,投放B型电视机9万元,农民得到的总补贴最大.(13分)4.解:(1)依题意,得a=2,e==,c=,b==1;故椭圆C的方程为+y2=1.(3分)(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,-y1),不妨设y10.由于点M在椭圆C上,所以y=1-.(*)(4分)由已知T(-2,0),则=(x1+2,y1),=(x1+2,-y1),=(x1+2,y1)(x1+2,-y1)=(x1+2)2-y=(x1+2)2-=x+4x1+3方法二:点M与点N关于x轴对称,故设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,由已知T(-2,0),则=(2cos +2,sin )(2cos +2,-sin )=(2cos+2)2-sin2=5cos2+8cos +3=52-.(6分)故当cos =-时,取得最小值为-,此时M,又点M在圆T上,代入圆的方程得到r2=.故圆T的方程为:(x+2)2+y2=.(8分)(3)方法一:设P(x0,y0),则直线MP的方程为:y-y0=(x-x0),令y=0,得xR=,同理:xS=,(10分)故xRxS=(**)(11分)又点M与点P在椭圆上,故x=4(1-y),x=4(1-y),(12分) 代入(**)式,得:xRxS===4.所以===4为定值.(13分)方法二:设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,P(2cos ,sin ),其中sin sin .则直线MP的方程为:y-sin =(x-2cos ),令y=0,得xR=,同理:xS=,(12分)故xRxS===4.所以===4为定值.(13分)5.解:(1)f的反函数g(x)=ln x.设直线y=kx+1与g(x)=ln x 相切于点P(x0,y0),则x0=e2,k=e-2.所以k=e-2.(3分) (2)当x0,m0时,曲线y=f(x)与曲线y=mx2(m0)的公共点个数即方程f(x)=mx2根的个数.由f(x)=mx2m=,令v(x)=v(x)=,则v(x)在(0,2)上单调递减,这时v(x)(v(2),+v(x)在(2,+)上单调递增,这时v(x)(v(2),+).v(2)=.v(2)是y=v(x)的极小值,也是最小值.(5分)所以对曲线y=f(x)与曲线y=mx2(m0)公共点的个数,讨论如下:当m时,有0个公共点;当m=时,有1个公共点;当m时有2个公共点;(8分)(3)令F(x)=x2h(x),则F(x)=x2h(x)+2xh=所以h=,故h===令G(x)=ex-2F(x),则G(x)=ex-2F(x)=ex-2=显然,当0当x2时,G(x)0,G(x)单调递增;所以,在(0,+)范围内,G(x)在x=2处取得最小值G(2)=0. 即x0时,ex-2F(x)0.故在(0,+)内,h(x)0,所以h(x)在(0,+)单调递增,又因为h(2)==,h(2)所以h(e).(14分)2019年高二数学理科上学期期末试题就为大家整理到这儿了,同学们要好好复习。

高二数学(理)上学期期末考试试题(带答案)

高二数学(理)上学期期末考试试题(带答案)

高二数学(理)上学期期末考试试题(带答案)一、选择题(每小题4分,共40分,每小题只有一个正确答案,请你把正确的选择涂在答题卡中相应位置) 1、下列函数求导运算正确的个数为( )①()e x x3log 33=';②()2ln 1log 2x x ='③()x x e e =';④x x ='⎪⎭⎫ ⎝⎛ln 1;⑤1)(+='⋅xx e e xA .1B .2C .3D .42、已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是A .OM OA OB OC =++ B . 2OM OA OB OC =-- C .111333OM OA OB OC =++ D .1123OM OA OB OC =++ 3、○1命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”. ○2“1=x ”是“2430x x -+=”的充要条件;○3若p q ∧为假命题,则p 、q 均为假命题.○4对于命题p :0x R ∃∈,200220x x ++≤, 则⌝p :x R ∀∈, 2220x x ++>. 上面四个命题中正确是 A .○1○2 B . ○2○3 C .○1○4 D .○3○44、若双曲线12222=-by a x 的焦点到其渐近线的距离等于实轴长,则该双曲线离心率为A. 5 B .5 C. 2 D .25、抛物线2y nx =(n <0)与双曲线2218x y m-=有一个相同的焦点,则动点(,m n )的轨迹是 A .椭圆的一部分 B .双曲线的一部分 C .抛物线的一部分 D .直线的一部分6、在正三棱柱ABC-A 1B 1C 1中,已知AB=2,CC 1=2,则异面直线AB 1 和BC 1所成角的余弦值为 A.0 B.742C.23D. 217、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是A B C D 8、过点(2,0)与抛物线y x 82=只有一个公共点的直线有A. 1条B. 2条C. 3条D. 无数条9、如图,已知平行六面体ABCD —A 1B 1C 1D 1中,AB=4,AD=3,AA 1=5,∠BAD=∠BAA 1=∠DAA 1=60°,则||1AC 的长为A.10、椭圆2212516x y +=的左右焦点分别为12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为π,,A B 两点的坐标分别为1122(,),(,)x y x y ,则12y y -值为A .35 B .310 C .320D .35二、填空题(每小题4分,共16分)11、已知向量)1,10,()1,5,4()1,12,(k OC OB k OA -===,且A 、B 、C 三点共线,则=k ________.12、椭圆1422=+y x 中,以点M (1,21)为中点的弦所在直线方程是__ . 13、已知抛物线x y 42=上的任意一点P ,记点P 到y 轴的距离为d ,对于给定点)5,4(A ,则d PA +||的最小值为 .14、设点M (x ,y ),其轨迹为曲线C ,若(2,),(2,),||||||2,a x y b x y a b =-=+-=则曲线C 的离心率等于 . 三、解答题(共44分)15、(10分)已知m R ∈,设命题p :方程22151x y m m +=--表示焦点在y 轴上的的椭圆;命题q :函数f(x )=3x 2+2mx +m +43有零点.(1)若p ⌝为真命题,求m 的取值范围; (2)若“p∨q”为真,求m 的取值范围.16、(10分)在边长为1的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 是DD 1的中点. (1)求证:CF∥平面A 1DE ;(2)求直线AA 1与平面A 1DE 所成角的余弦值.17、(12分)在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,且PA ⊥面ABCD. (1)求证:PC⊥BD; (2)过直线BD 且垂直于直线PC 的平面交PC 于点E ,的体积取到最大值,①求此时PA 的长度;A 1D②求此时二面角A-DE-B 的余弦值的大小.18、(12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,2F 也是抛物线22:4C y x =的焦点,点M 为12,C C 在第一象限的交点,且25||3MF =.(1)求1C 的方程;(2)平面上的点N 满足12MN MF MF =+,直线//l MN ,且与1C 交于A,B 两点,若0OA OB ∙=,求直线l 的方程.二、填空题:11、32-12、022=-+y x 13、134- 14、2 15、(10分)解:(1)p :,53,051<<∴>->-m m m 。

(完整版)高二数学第一学期期末考试试卷理科

(完整版)高二数学第一学期期末考试试卷理科

高二数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线22y x =的准线方程为( )A .12y =-B .18y =-C .12x =-D .18x =- 2.给出四个条件:①22ac bc >;②a b c c>;③22a b >;>其中能分别成为a >b 的充分条件的个数为 ( )A .0B .1C .2D .33.圆222410x y x y ++-+=关于直线220ax by -+=对称,则ab 的最大值为 ( )A .1B .12C .14D .不存在 4.如图,已知点M(m,n )在直线l :A x +B y +C=0(AB ≠0)的右下方,则A m +B n +C 的值 ( ) A .与A 同号,与B 同号 B .与A 同号,与B 异号C .与A 异号,与B 异号D .与A 异号,与B 同号5.如图,在△ABC 中,∠CAB=∠CBA=30°,AC 、BC 边上的高分别为BD 、AE ,则以A 、B 为焦点,且过D 、E 的椭圆与双曲线的离心率的倒数和为 ( )A.1C..3 6.直线x -y -1=0与实轴在y 轴上的双曲线22(0)x y m m -=≠的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围为 ( )A .0<m <1B .m <0C .-1<m <0D .m <-17.直线cos 20x α-=的倾斜角的范围是 ( )A .[,]66ππ-B .[0,]6πC .5[0,][,)66πππUD .5[,]66ππ8.已知点A(1,2),过点(5,-2)且斜率为k 的直线与抛物线y 2=4x 交于B 、C 两点,那么△ABC( ) A .是锐角三角形 B .是钝角三角形 C .是直角三角形 D .的形状与k 值有关9.设 12F F 、是双曲线22214x y b-=的两个焦点,点P 在双曲线上,且1290F PF ∠=o ,△12F PF 的面积为1,则正数b 的值为 ( )AB .2 C.1 10.若不等式2222x x a y y ++≥--对一切实数x y ,恒成立,则实数a 的取值范围是 ( )A .a ≥1B .a ≤1C .a ≥2D .a ≤211.已知A 、B 分别为椭圆2212y x +=的左、右顶点,P 是椭圆上第一象限的任一点,若∠PAB=α,∠PBA=β,则必有 ( )A .2tan α+cot β=0B .2tan α-cot β=0C .tan α+2cot β=0D .tan α-2cot β=0BAEDC12.已知平面上点P ∈22{(,)|(2cos )(2sin )16,}x y x y R ααα-+-=∈,则满足条件的点P 在平面上所形成图形的面积是 ( ) A .36π B .32π C .16π D .4π 二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13.不等式2212x x --<的解集是 .14.圆22420x y x y c +--+=与y 轴交于A 、B 两点,圆心为P ,若90APB ∠=o,则c 的值为 .15.设2z x y =+,式中,x y 满足约束条件220,1.x y x y +≥⎧⎨+≤⎩ 则z 的最小值是 ,最大值是 .16.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 是双曲线上任意一点,若221||||PF PF 的最小值为8a ,则此双曲线的离心率e 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知正数a,b 满足a +b =1,且n ∈N*,求证:112n n n n a b a b++++≥.18. (本小题满分12分)已知P (2,0),Q (8,0),点M 到点P 的距离是它到点Q 的距离的21,求点M 的轨迹方程,并求轨迹上的点到直线l :2x -y -55=0的最小距离.19.(本小题满分12分)已知过点(1,6)--的直线l 与抛物线24y x =交于A 、B 两点,若以9(,0)2P 为圆心的圆恰好过A 、B 点,求直线l 的方程.20.(本小题满分12分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点A 、B.(I)求双曲线C 的离心率e 的取值范围;(II)设直线l 与y 轴的交点为P,且512PA PB =u u u r u u u r,求a的值.21.(本小题满分12分)某电器商场拟举办家电促销活动,活动前准备从厂家分批购入每台价格为2000元的某品牌空调共3600台,每批都购入x 台,且每批均付运费400元.整个活动期间所付储存该空调的全部保管费是购买一批空调所付货款的120.现商场有专项资金22000元准备用于支付该空调的全部运费及活动期间的全部保管费.问这笔专项资金是否够用?如果不够用,至少还需要多少资金?22..(本小题满分14分)有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线. 过有心曲线的中心的弦叫有心曲线的直径,(为研究方便,不妨设直径所在直线的斜率存在).定理:过圆)0(,222>=+r r y x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-1.(Ⅰ)写出该定理在椭圆)0(12222>>=+b a by a x 中的推广,并加以证明;(Ⅱ)写出该定理在双曲线中)0,0(12222>>=-b a by a x 的推广;你能从上述结论得到有心圆锥曲线(包括椭圆、双曲线、圆)的一般性结论吗?请写出你的结论.参考答案一、选择题1.B .抛物线标准方程为212x y =,准线方程为18y =-. 2.C .①④能分别成为a >b 的充分条件.3.C .由圆的对称性知圆心(-1,2)在直线上,∴-2a -2b +2=0,即a +b =1,故21()24a b ab +≤=. 4.B .结合图形信息知,0,0,ABC A⎧->⎪⎪⎨⎪->⎪⎩,又原点O 与点M 在直线L 的异侧,∴()0C Am Bn C ++<,故A m+B n +C 与B 、C 异号,与A 同号.5.A .设AB=2c ,则AE=BD=c ,AD=BE=3c ,椭圆离心率为=,双曲线离=故离心率的倒数和为3.6.C .由2210,x y x y m --=⎧⎨-=⎩得交点坐标为(m +12,m -12),解不等式组111,2111,2m m +⎧-≤≤⎪⎪⎨-⎪-≤≤⎪⎩,得-1<m <1.又双曲线焦点在y 轴上,知m <0,故-1<m <0. 7.C .设倾斜角为θ,则tan [θ=,故50,或66ππθθπ≤≤≤<. 8.C .由24,(5)2,y x y k x ⎧=⎨=--⎩得242080ky y k ---=,设B(x 1,y 1),C(x 2,y 2),则12124208,k y y y y k k++==-,记121222,11BA CA y y k k x x --==--,则1212121222221212121212216162()42()41()21616()11164BA CA y y y y y y y y k k k y y y y y y k k x x x x k ---++-++⋅====-+-+-++-+.故BA ⊥CA . 9.D .设PF 1=m ,PF 2=n ,则由题设知2224,4(4),2,m n m n b mn -=⎧⎪+=+⎨⎪=⎩解得b=1.10.C .由22(1)(1)2x y a +++≥-恒成立知,20a -≤,即a ≥2. 11.D .考虑极端位置,当P 点落在上顶点时,有tan αβ==,显然有tan α-2cot β=0成立.12.B .P 点是以(2cos α,2sin α)为圆心,4为半径的圆周上的点,而当α在R 上变化时,点(2cos α,2sin α)又是以(0,0)为圆心,2为半径的圆周上的点,故当圆心在半径为2的圆周上变化时,P 点的轨迹形成一个内圆半径为2,外圆半径为6的圆环.故面积为36π-4π=32π. 二、填空题13.{x |―1<x <3,且x ≠1}.14.-3.圆的标准方程为22(2)(1)5x y c -+-=-,在等腰直角三角形PAB 中,由P 到y 轴的距离为2,知半径r =22,解5-c =8,得c =-3.15.2-如图,作出约束条件确定的可行域,在A 点处有最小值,在B 点处有最大值.16.(1,3].222211111||(2||)4||48||||||PF a PF a PF a a PF PF PF +==++≥,当|PF 1|=2a 时取等号.因此应有c -a ≤2a ,即e =ca ≤3,又e >1,故1<e ≤3.三、解答题17.证明:∵a 、b 为正数且a +b =1,∴原不等式等价于)(112))((+++≤++n n n n b a b a b a . ))(()(2))((1111n n n n n n n n n n a b b a b a ab b a b a b a b a --=--+=+-++++++当a ≥b 时,a -b ≥0,a n ≥b n ,即b n -a n ≤0,∴(a -b )( b n -a n )≤0, 当a <b 时,a -b <0,a n <b n ,即b n -a n >0,∴(a -b )( b n -a n )<0,因此)(-112))((+++++n n n n b a b a b a ≤0即)(112))((+++≤++n n n n b a b a b a∴原不等式成立.18. 解:设),(y x M ,则依条件得21)0()8()0()2(2222=-+--+-y x y x 两边平方,整理得2216x y +=,这就是所求的轨迹方程.设圆:2216x y +=的圆心O 到直线l :2x -y -55=0的距离为d ,则5d ==故圆上的点到直线l :2x -y -55=0的最小距离为d -4=1.19. 解:由题设,直线l 的斜率必存在且不为0,设斜率为k ,则l 的方程为:(1)6y k x =+-由2(1)64y k x y x =+-⎧⎨=⎩消去y 得222[2(6)4](6)0k x k k x k +--+-= △222[2(6)4]4(6)0k k k k =---->解得33k <<+且0k ≠.设1122(,),(,)A x y B x y ,则2211224,4y x y x ==,12242(6)k k x x k--+=, 由题意知AP BP =,得2222112299()()22x y x y -+=-+,∴22121299()()44022x x x x ---+-=,即1212()(5)0x x x x -+-=,Θ12x x ≠,∴125x x +=,∴242(6)5k k k --=,解得2k =或27k =-2(3舍去)7-<,∴所求的直线方程为24y x =-.(注:另可利用AB 的中点,及垂径分弦定理求解)20. 解:(I )由C 与l 相交于两个不同的点,故知方程组2221,1.x y ax y ⎧-=⎪⎨⎪+=⎩有两个不同的实数解.消去y 并整理得2222(1)220a x a x a -+-= ①24221048(1)0a a a a ⎧-≠⎪∴⎨+->⎪⎩解得01a a <<≠.双曲线的离心率e ==0a <<Q a ≠1 e e ∴>≠即离心率e的取值范围是)+∞U . (II )设1122(,),(,),(0,1)A x y B x y P ,5,12PA PB =u u u r u u u r Q 11225(,1)(,1).12x y x y ∴-=-由此得12512x x =.由于12,x x 都是方程①的根,且210a -≠,∴212221222121a x x a a x x a ⎧+=-⎪⎪-⎨⎪⋅=-⎪-⎩⇒222222217212152121a x a ax a ⎧=-⎪⎪-⎨⎪=-⎪-⎩ ∴2221751212x x =, ∴20x =(舍)或2175x =,∴222289160a a -=- 由0a >,所以1713a =. 21. 解:设该空调的全部运费及活动期间的全部保管费共y 元,则由题意,得36001400(2000)20y x x =⨯+⨯3600400100x x ⨯=+36004100()100x x⨯=+≥⋅=24000.当且仅当36004x x⨯=,即x =120时取等号. ∴当x =120时,y 最小,且min 24000y =.24000-22000=2000(元) ,答:这笔专项资金不够用,至少还需要2000元资金.22. 解:(Ⅰ)设直径的两个端点分别为A 、B ,由椭圆的对称性可得,A 、B 关于中心O (0,0)对称,所以A 、B 点的坐标分别为A (),11y x ,B (),11y x --.P (),y x 上椭圆12222=+by a x 上任意一点,显然||||||||11y y x x ≠≠,因为A 、B 、P 三点都在椭圆上,所以有222122122212211b a y a x b b y a x =+=+, ① 22222222221b a y a x b b y a x =+=+, ②. 而2122121111x x y y k k x x y y k x x y y k PB PA PBPA --=⋅++=--=, 由①-②得:22222211()()0,b x x a y y -+-=22212221y y b x x a-∴=--. 所以该定理在椭圆中的推广为:过椭圆)0(12222>>=+b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值22ab -.(Ⅱ)该定理在双曲线中的推广为:过双曲线)0,0(12222>>=-b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值.22a b该定理在有心圆锥曲线中的推广应为:过有心圆锥曲线)0(122≠=+AB By Ax 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-.BA。

高二上学期期末考试数学(理科)试卷(含参考答案)

高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。

莞生一日,长一尺。

蒲生日自半。

莞生日自倍。

问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。

高二上学期期末数学试卷(理科)含答案

高二上学期期末数学试卷(理科)含答案

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试 高二数学(理科)试卷注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,答题时间120分钟。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2. 第I 卷(选择题)答案必须使用2B 铅笔填涂;第II 卷(非选择题)必须将答案卸载答题卡上,写在本试卷上无效。

3. 考试结束,将答题卡交回,试卷由个人妥善保管。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、如果0a b <<,那么下列不等式成立的是( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b-<- 2、{}n a 等差数列中,,,116497==+a a a =12a 则( ) A .15 B .30 C .31 D .643、已知双曲线2222:1x y C a b -=12⎫⎪⎭在双曲线C 上,则双曲线C 的方程为( )A.221164y x -= B.2214x y -= C.2214y x -= D.2214x y -= 4、已知命题1:sin 2p x =,命题:2 6q x k k Z ππ=+∈,,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、若实数,x y 满足|3|1x y -≤≤,则 )6、已知数列{}n a 为等比数列,则下列结论正确的是( )A .2312a a a ≥+B .若13a a >,则24a a >C .若31a a =,则21a a =D .2223212a a a ≥+7、《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现。

书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织得快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为( ) A .298尺 B .2916尺 C .2932尺 D .21尺8、若双曲线2214x y -=的渐近线与圆222(5)x y r -+=(0r >)相切,则r =(A )5(B )5(C )2(D )29、设正数,x y 满足:,23x y x y >+=,则195x y x y+-+的最小值为( ) A .83B .114C .4D .210、若椭圆()222210y x a b a b +=>>和圆2222b x y c ⎛⎫+=+ ⎪⎝⎭,(c 为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A.5355⎛⎫ ⎪ ⎪⎝⎭,B.2555⎛⎫ ⎪ ⎪⎝⎭, C.2355⎛⎫ ⎪ ⎪⎝⎭, D.505⎛⎫ ⎪ ⎪⎝⎭, 11、以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )812、如图,12 A A ,为椭圆22195x y +=的长轴的左、右端点,O 为坐标原点, S Q T ,,为椭圆上不同于12 A A ,的三点,直线12 QA QA OS ,,,OT 围成一个平行四边形OPQR ,则22OS OT +=( ) A .5 B .35+ C.9 D .14第II 卷二、填空题:本题共4小题,每小题5分.13、在△ABC 中,若︒=∠==120,5,3C b a ,则=c14、在平面内,三角形的面积为S ,周长为C 体积为V ,表面积为S ,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=___________________15、已知ABC ∆中,sin 2sin cos 0A B C +=,则tan A 的最大值是 16、设数列{}n a 是首项为0的递增数列,()()[]*11sin,,,n n n n f x x a x a a n N n+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且cos (2)cos a C b c A =- (1)求A cos 的值;(2)若6=a ,8=+c b ,求三角形ABC 的面积.(18)(本小题满分12分) 已知数列{}n a 满足112n na a +=-,10a =. (1)计算2a ,3a ,4a ,5a 的值;(2)根据以上计算结果猜想{}n a 的通项公式,并用数学归纳法证明你的猜想.(19)(本小题满分12分)数列}{n a 的前n 项和记为n S ,t a =1,121()n n a S n *+=+∈N .(Ⅰ)当t 为何值时,数列}{n a 是等比数列;(Ⅱ)在(I )的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又11b a +,22b a +,33b a +成等比数列,求n T .20、(本小题满分12分)由4个直角边为2的等腰直角三角形拼成如图的平面凹五边形ACDEF ,沿AD 折起,使平面ADEF ⊥平面ACD .(1)求证:FB AD ⊥;(2)求二面角C EF D --的正切值.21、(本小题满分12分)已知点F 是拋物线()2:20C y px p =>的焦点, 若点()0,1M x 在C 上,且054x MF =. (1)求p 的值;(2)若直线l 经过点()3,1Q -且与C 交于,A B (异于M )两点, 证明: 直线AM 与直线BM 的斜率之积为常数.22、(本小题满分12分)已知椭圆C 的中心为坐标原点,其离心率为22,椭圆C 的一个焦点和抛物线y x 42=的焦点重合. (1)求椭圆C 的方程; (2)过点⎪⎭⎫⎝⎛-031S ,的动直线l 交椭圆C 于A 、B 两点,试问:在平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过点T ,若存在,说出点T 的坐标,若不存在,说明理由.答案注意事项:4. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,答题时间120分钟。

高二数学(理科)期末考试参考答案

高二数学(理科)期末考试参考答案

期末考试高二数学(理科)参考答案二、填空题(每小题4分,共20分)11.. 13. 丙 14.2315. 1 三、 解答题(本大题共5小题,共50分)16.解:(Ⅰ) 连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . ……………3分 因为DF ⊂平面A 1CD ,BC 1平面A 1CD ,所以BC 1∥平面A 1CD . ……………5分(Ⅱ)由AC =CB AB 得,AC ⊥BC . ……………6分 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),1CA =(2,0,2), 1(2,2,1)AE =--. 设n =(x ,y ,z )是平面A 1CD 的一个法向量,则10,0,n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩即0,220.x y x z +=⎧⎨+=⎩可取n =(1,-1,-1).……………8分 设1A E 与平面A 1CD 所成角为θ,则111||3,|.sin |c ||||os A E n A E n A E n θ⋅===<>⋅ ………10分17. 解:命题P :对任意实数x 都有ax 2+ax +1>0恒成立,则“a =0”,或“a >0且a 2-4a <0”.解得0≤a <4. ………3分命题q :关于x 的方程x 2-x +a =0有实数根,则Δ=1-4a ≥0,得a ≤14. ………5分因为P ∧q 为假命题,P ∨q 为真命题,则P ,q 有且仅有一个为真命题,故p ⌝∧q 为真命题,或P ∧q ⌝为真命题,则⎩⎪⎨⎪⎧ a <0或a ≥4a ≤14或⎩⎪⎨⎪⎧0≤a <4a >14. ………7分解得a <0或14<a <4. 所以实数a 的取值范围是(-∞,0)∪(14,4).………8分18.解:(Ⅰ)由(3,9)C ,知(3,9)A -,设211(,)B x x ,222(,)D x x ;由题意知,过点C 的切线斜率存在,故设切线的方程为9(3)y k x -=-联立229(3)390.y k x x kx k y x -=-⎧⇒-+-=⎨=⎩22()4(39)0(6)0 6.k k k k ∆=---=⇒-=⇒=从而 6.BD k k == ………3分 从而设直线BD 的方程为6y x m =+22660.y x mx x m y x=+⎧⇒--=⎨=⎩ 则126,x x += 12x x m =- 又因为90BAD ∠=; 所以221212121212991(3)(3)13()9 1.33AB ADx x k k x x x x x x x x --⋅=-⇒⋅=--=-⇒-++=-++即36918.m m --⨯+=-⇒=- 故直线BD 的方程为68.y x =- ………6分 (Ⅱ)解方程2680x x -+=,可得 (2,4)B ,(4,16)D所以||BD == ………7分点A 到BD 的距离为1d ;点C 到BD 的距离为2d12d d +==………9分12ABCD 11=||()36.22S BD d d ⋅+=⨯=四边形 ………10分另解, 四边形ABCD 面积ACD ACB S S S ∆∆=+ 1116(75)36222D C B C AC y y AC y y =⨯⨯-+⨯⨯-=⨯⨯+=.19. 解:(Ⅰ)证明:在图1中,由△ABC 是等边三角形,E ,D 分别为AB ,AC 的三等分点,点G 为BC 边的中点,则DE ⊥AF ,DE ⊥GF ,DE ∥BC .在图2中,因为DE ⊥AF ,DE ⊥GF ,AF ∩FG =F ,所以DE ⊥平面AFG .又DE ∥BC ,所以BC ⊥平面AFG . ………5分 (Ⅱ)解:因为平面AED ⊥平面BCDE ,平面AED ∩平面BCDE =DE ,AF ⊥DE , 所以,AF ⊥ 平面BCDE 又因为DE ⊥GF ,所以F A ,FD ,FG 两两垂直. ………6分 以点F 为坐标原点,分别以FG ,FD ,F A 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系F -xyz .则A (0,0,23),B (3,-3,0),E (0,-2,0), 所以AB →=(3,-3,-23),BE →=(-3,1,0). 设平面ABE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·BE →=0,即⎩⎨⎧3x -3y -23z =0,-3x +y =0,取x =1,则y =3,z =-1,则n =(1,3,-1). ………8分 显然m =(1,0,0)为平面ADE 的一个法向量,所以 cos 〈m ,n 〉=m ·n |m |·|n |=55. ………9分由图形可知二面角B -AE -D 为钝角, 所以,二面角B -AE -D 的余弦值为-55. ………10分20.(Ⅰ)解:设动圆圆心(,)P x y ,半径为r.,PA r PB r PA PB AB ==⇒+=>= ………3分故点P 的轨迹为椭圆,2a a c c ===⇒= 22223,32 1.a b a c ==-=-=故圆心P 的轨迹方程为22 1.3x y += ………6分 (Ⅱ)假设存在实数k ,由22213y kx x y =+⎧⎪⎨+=⎪⎩得22(13)1290.k x kx +++= 由22(12)36(13)0k k ∆=-+>得21.k > ………7分 设直线2y kx =+与椭圆交于1122(,),(,),C x y D x y 则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩① ………8分 由以CD 为直径的圆过坐标原点O ,知121200.OC OD OC OD x x y y ⊥⇒⋅=⇒+= ………9分而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,212121212(1)2()40.x x y y k x x k x x +=++++=②将①代入②整理可求得2133k = ………11分21313k =>,其值满足0∆>.故k = ………12分。

高二年级(理科)数学第一学期期末试卷(含答案)(最新整理)

高二年级(理科)数学第一学期期末试卷(含答案)(最新整理)

A.存在 x0∈R,使得 x20<0 B.对任意 x∈R,都有 x2<0
C.存在 x0∈R,使得 x20≥0 D.不存在 x∈R,使得 x2<0
D. 6
5. 抛物线 y2 4x 的焦点到其准线的距离是(

A. 4
B. 3
C. 2
D. 1
6.
两个焦点坐标分别是
F1
(5,
0),F2
(5,
0)
,离心率为
5 4
的双曲线方程是(

A. x2 y2 1 43
B. x2 y2 1 53
1
C. x2 y2 1 25 9
7. 下列各组向量平行的是( )
A. a (1, 1, 2), b (3, 3, 6)
D. x2 y2 1 16 9
B. a (0, 1, 0), b (1, 0, 1)
=3,| BA1 |= 6 ,| CB1 |= 5
∴cos<
BA1

CB1
>=
|
BA1 BA1 |
CB1 | CB1
|
1 10
30 .
11 (3)证明:依题意,得 C1(0,0,2)、M( 2 , 2 ,2),
第 20 题图
A1B =(-1,1,-2),
C1M
=(
1, 2
1 2
,0).∴
A1 B
· C1M
4
交于 A,B 两点,求△OAB 的面积。
19.(本题满分 15 分)已知棱长为 1 的正方体 ABCD-A1B1C1D1,试用向量法求平面 A1BC1 与 平面 ABCD 所成的锐二面角的余弦值。
20、(本题满分 15 分)如图所示,直三棱柱 ABC—A1B1C1 中,CA=CB=1,∠BCA=90°,

(完整)高二上学期期末理科数学试题及答案,推荐文档

(完整)高二上学期期末理科数学试题及答案,推荐文档

高二年级理科数学卷20161225一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤ C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤2、公比为2的等比数列{n a } 的各项都是正数,且 41016a a =,则6a =A .1B .2C .4D .8 3、在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于 A .ο30 B .ο60 C .ο120 D .ο1504、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则23z x y =+的取值范围是A. [8,4]-B. [8,2]-C. [4,2]-D. ]4,8[--5、已知双曲线221916x y -=上一点M 到A (5,0)的距离为3,则M 到左焦点的距离等于 A .6 B .7 C .8 D .9 6、已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则=+++821111S S S Λ A. 87B. 98C. 89D. 9107、设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面α的法向量的是A.(-1,-2,5)B.(-1,1,-1)C.(1, 1,1)D.(1,-1,-1)8、空间四点A,B,C,M 互不重合且无三点共线,O 为空间任意一点,则使向量MA u u u r 、MB u u u r 、MC u u uu r 可能成为空间一组基底的关系是A .111333OM OA OB OC =++u u u u r u u u r u u u r u u u rB .MA MB MC =+u u u r u u u r u u u u rC .OM OA OB OC =++u u u u r u u u r u u u r u u u rD .32MA MB MC =-u u u r u u u r u u u u r9、已知直线m 、n 和平面α,则n m //的一个必要不充分条件是A .αα////n m 且B .α//m 且n α⊥C .m 、n 与α成等角D .m α⊥且n α⊥10、如果满足∠ABC=060,AC=12,BC=k 三角形恰有一个,那么k 的取值范围是A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11、已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13 B .12C .3D .2212.如果满足方程y tx t y x 322222+=+++的实数对),(y x 一定满足不等式||x y ≥,则常数t 的取值范围是A .]223,223[--- B .]223,223[++- C .]223,223[-+- D .]223,223[+--二、填空题.(本大题共 4小题,每小题 5分,共 20 分 )13、已知向量(5,3,1)a =r ,2(2,,)5b t =--r ,若向量a r 与b r 的夹角为锐角,则t 的取值范围是14、等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = .15、抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则p 的值为_____________16、已知命题p :ABC ∆中, B A >是B A sin sin >的充要条件;命题q : 0>>b a 是ab ba >+2的充分不必要条件。

高二第一学期期末数学试卷(理科含答案)

高二第一学期期末数学试卷(理科含答案)

高二第一学期期末数学试卷(理科)第I 卷(选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求)。

1.设集合{}{}2/2,/340S x x T x x x =>-=+-≤,则()SRC T ⋃= ( ) A.(-2,1] B.(-∞,-4] C. (-∞,1] D.[1,+∞)2.已知△ABC 中,a=4,b=030,则等于 ( )A. 030 B. 030或0150 C.060 D. 060或01203.在△ABC 中,若a=7,b=8, 1314COSC =,则最大角的余弦是 ( ) A.15- B.16- C.17- D.18-4.若x>0,则函数1y x x=-- ( )A.有最大值-2B.有最小值-2C. 有最大值2D. 有最小值2 5.等比数列{}n a 的各项均为正数,且564718a a a a += ,则1012333log log log a aa+++=( )A.5B.9C.453log D.106.设命题P:对,,xx R e Inx +∀∈>则p ⌝为 ( )A.000,x x R eInx +∃∈< B. ,x x R e Inx +∃∈< C. 000,x x R eInx +∃∈≤ D. ,x x R e Inx +∃∈≤7. 向量(2,4,),(2,,2),a x b y →→==若6a =且a b ⊥,则x +y 的值为 ( )A .-3B .1C .-3或1D .3或18.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( )9.2<m<6是“方程22126x y m m+=--为椭圆方程”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知()2,f x ax bx =+且满足:1(1)3,1(1)1f f ≤≤-≤-≤,则(2)f 的取值范围是( ) A.[0,12] B.[2,10] C.[0,10] D.[2,12]11.已知12,F F 是双曲线E:22221x y a b +=的左,右焦点,点M 在E 上,1MF 与 X 轴垂直,211sin 3MF F ∠=,则E 的离心率为 ( )B.32D.2 12.已知点12,F F 是椭圆2222x y +=的左,右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是 ( )A.0B.2C.1D.第II 卷(非选择题, 共90分)二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.已知函数94(1),1y x x x =-+>-+当x=a 时,y 取得最小值b ,则a b +等于________。

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试 高二数学(理科)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 2 D.22±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为2212 D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43(B. )0,123(C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是A. 30︒B.45︒C. 60︒D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a,是夹角为60的两单位向量,向量b c a c⊥⊥,,且||1c =,c b a y c b a x -+-=+-=3,2,则><y x,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点.(Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ∆为等边FE C 'B'AA'CB三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点. (Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且椭圆上点到左焦点距离的最小值为1.(Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆k 的值.xyz参考答案一.选择题CDBAC CDABB DB 二.填空题2π1- 5216- 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分 18.解:(1)0a >时,21[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a-≥-≤, 104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-,102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则 1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A P B C M D .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥, 又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>的余角即是CD 与平面ADMN 所成的角. 因为cos ,||||PB DC PB DC PB DC ⋅<>=⋅105=,所以CD 与平面ADMN 所成的角的正弦为510 20. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,, 因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分且G GF EG EFG GF EFG EG =⊂⊂ ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂ 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO ,由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中oBCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分 不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BA BC EF ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n,又因为⊄EF 面BC A ',所以//EF 面BC A '.┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,.因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF , 所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC , 所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1('),3,0,1(-=--=AA AB ,设面B AA '的一个法向量为),,(1111z y x n =,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为 1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分 (Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。

(完整版)高二数学(理科)第一学期期末考试题(含答案)

(完整版)高二数学(理科)第一学期期末考试题(含答案)

2012~2013学年度第一学期 高二数学(理科)期末考试题一、选择题(每小题5分,共60分)1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A . 锐角三角形 B .钝角三角形 C . 直角三角形 D .等腰三角形3.已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16= ( )A.7B.16C.27D.644.已知等差数列{}n a 的公差为3,若431,,a a a 成等比数列,则2a 等于A.9B.3C.-3D.-95.数列1,x ,x 2,…,x n -1,…的前n 项之和是 ( )A.x x n --11B.x x n +--111C.x x n +--211D.以上均不正确6.数列{}n a 是等差数列,{}n b 是正项等比数列,且56a b =,则有( ) A .8473b b a a +≤+ B .8473b b a a +≥+C .8473b b a a +≠+D .8473b b a a ++与 大小不确定7.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

A. 10B. 10-C. 14D. 14-8.设集合等于则B A x x B x x A I ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131Y D .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,2131Y 9.一动圆圆心在抛物线y x 42=上,过点(0 , 1)且与定直线l 相切,则l 的方程为( ) A.1=x B.161=x C.1-=y D.161-=yABCDE10.已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-11.“12m =”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要 12、如图,面ACD 与面BCD 的二面角为060,AC=AD ,点A 在面BCD 的投影E 是△BCD 的垂心,CD=4,求三棱锥A-BCD 的体积为( ) A.BC. D . 缺条件二、选择题(每小题5分,共20分)13.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________. 14.设,x y R +∈ 且191x y+=,则x y +的最小值为________. 15.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学第一学期期末考试试题含答案(理科)一.选择题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A.l ∥α B.l ⊥α C.l ⊂α D.l 与α斜交2.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( )A .-1B .0C .1D .-23.下列命题错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”B .若命题p :∃x ∈R ,x 2+x +1=0,则¬p 为:∀x ∈R ,x 2+x +1≠0C .若p ∧q 为假命题,则p ,q 均为假命题D .“x =2”是“x 2-3x +2=0”的充分不必要条件4.O 为空间任意一点,若OP→=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( ) A .一定不共面 B .一定共面 C .不一定共面D .无法判断5.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式: ①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→ 其中与向量BD 1→相等的是( )A .①②B .②③C .③④D .①④7.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF→的值为( ) A .a 2B.12a 2C.14a 2D.34a 28.已知空间四边形OABC ,M ,N 分别是OA ,BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示向量MN →为( ) A. 12a +12b +12c B. 12a -12b +12cC .-12a +12b +12cD .-12a +12b -12c9.若m 是2和8的等比中项,则圆锥曲线122=+my x 的离心率是( ) (A)23 (B) 5 (C)23或25 (D)23或5 10. 如图.二面角α-l -β为60°,A ,B 是棱l 上的两点,AC ,BD 分别在半平面α,β内, AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2a B.5a C .a D.3a11.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且与x 轴垂直的直线与双曲线左支交于点M ,N ,已知△MF 2N 是等腰直角三角形,则双曲线的离心率是( )A. 2 B .1 C .1+ 2D .2+ 212.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则该直线的斜率的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B .⎣⎢⎡⎦⎥⎤-33,33C. (-3,3) D .[-3,3]二.填空题13.命题“乌鸦都是黑色的”的否定为:______________________________. 14与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线的标准方程为________.15.已知点A (-1,0),B (1,0),则使得∠APB 为直角的动点P 的轨迹方程为________.16.已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2).则|PA |+|PF |的最小值是 ,取最小值时P 点的坐标 .三.解答题17.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB→,b =AC →。

(1)若|c |=3,且c ∥BC→,求向量c 。

(2)求向量a 与向量b 的夹角的余弦值。

18、若1F 、2F 是椭圆141222=+y x 的两个焦点,P 是椭圆上一点, 且o2160=∠PF F ,求21F PF ∆的面积。

19.已知p :x 2-8x -20≤0,q :x 2-2x +1-a 2≤0(a>0).若p 是q 的充分不必要条件,求实数a 的取值范围.20.已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE=FC 1=1. (1)求证:E,B,F,D 1四点共面;(2)若点G 在BC 上,BG=23,点M 在BB 1上,GM ⊥BF,求直线EM 与AC 1所成的角余弦值21.如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 为PB 的中点,P A =PD =6,AB =4.(1)求二面角B —PD —A 的大小;(2)求直线MC 与平面BDP 所成角的正弦值.22.已知椭圆:M 22221(0)x y a b a b +=>>,其短轴的一个端点到右焦点的距离为2,且点A 2,1)在椭圆M 上. 直线l 的斜率为22,且与椭圆M 交于B 、C 两点. (Ⅰ)求椭圆M 的方程; (Ⅱ)求ABC ∆面积的最大值.高二数学第一学期期末考试答案(理科)1.A2.D3.C4.B5.C6.A7.C8.C9.D 10.B 11.C 12. B 14. x 212-y 28=115. x 2+y 2=1 (x ≠±1)16.27,)2,2( 17.(1)∵c ∥BC→,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2),∴c =mBC→=m (-2,-1,2)=(-2m ,-m,2m )。

∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3。

∴m =±1。

∴c =(-2,-1,2)或(2,1,-2)。

(2)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1。

又∵|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a |·|b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010。

19.解 p :x2-8x -20≤0⇔-2≤x≤10, q :x2-2x +1-a2≤0⇔1-a≤x≤1+a. ∵p ⇒q ,q ⇒/ p , ∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }.故有⎩⎨⎧1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).21.(1)解 取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形, 所以OE ⊥AD ,如图,建立空间直角坐标系Oxyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD→=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·BD →=0,n ·PD →=0,即⎩⎪⎨⎪⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2.于是n =(1,1,2). 平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12.由题意知,二面角B -PD -A 为锐角, 所以它的大小为π3.(2)解 由题意知M ⎝ ⎛⎭⎪⎫-1,2,22,C (2,4,0),MC→=⎝⎛⎭⎪⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269.所以直线MC 与平面BDP 所成角的正弦值为269.【答案】解: (Ⅰ)由题意知222112a b a ⎧+=⎪⎨⎪=⎩,所以b =故所求椭圆方程为22142x y +=………………………………….5分(Ⅱ) 设直线l 的的方程为y x m =+,则0m ≠.设1122(,),(,),B x y C x y 代入椭圆方程并化简得2220x m ++-=, …………6分 由22224(2)2(4)0m m m ∆=--=->,可得204m << . (*)由(*),得1,2x =故12BC x =-==…..9分又点A 到BC 的距离为d =分故12ABC S BC d ∆=⋅= 22(4)2m m +-=≤=当且仅当224m m =-,即m =(*)式. 所以ABC ∆面积的最大值为2. ……………………。

相关文档
最新文档