高压共轨喷油器工作原理.
共轨系统的工作原理
共轨系统的工作原理
共轨系统是一种燃油喷射系统,其工作原理是通过将燃油喷射器连接到共同的燃油管道或“共轨”上,以供应多个喷射器所需的燃油。
这些喷射器位于发动机每个缸的喷油嘴附近。
以下将介绍共轨系统的工作原理:
1. 燃油供应:共轨系统通过一台高压燃油泵将燃油从燃油箱中抽取并送入共轨中。
在共轨中,燃油被保持在一个恒定的高压状态,通常为几百到几千巴的压力。
这样可以确保在需要时能够快速、准确地喷射燃油。
2. 压力控制:共轨系统中有一个称为压力调节阀的装置,用于控制共轨中的燃油压力。
压力调节阀的目的是调整压力以满足发动机不同工况下的燃油需求。
3. 燃油喷射:每个缸的喷油嘴通过从共轨中引出的燃油供应。
当需要进行燃油喷射时,控制单元将发送信号给喷油嘴,喷油嘴将启动,并向缸内喷射精确计量的燃油。
4. 压力释放:在燃油喷射完成后,共轨中的压力需要释放。
这是通过一个或多个称为压力释放阀的装置实现的。
压力释放阀允许多余的燃油返回到燃油箱中,以确保共轨内的压力保持在正常工作范围。
综上所述,共轨系统的工作原理是通过控制共轨中的燃油压力,并通过喷油嘴精确地喷射燃油到发动机缸内,以实现更高效、
更精确的燃油喷射。
这种系统能够带来更好的燃烧效率、更低的尾气排放和更高的动力输出。
电控高压共轨喷射系统及其喷油器研发生产方案(二)
电控高压共轨喷射系统及其喷油器研发生产方案1. 实施背景随着全球能源结构的转变和环保意识的提高,燃油喷射系统在汽车工业中的地位日益重要。
电控高压共轨喷射系统(HPDI)作为新一代燃油喷射技术,具有更高的燃油喷射压力和更精确的喷油控制,能够显著降低燃油消耗和排放。
目前,HPDI技术在国外汽车企业中得到了广泛应用,但在中国,此技术尚处于起步阶段。
因此,开展HPDI技术的研发生产具有强烈的现实意义和广阔的市场前景。
2. 工作原理电控高压共轨喷射系统主要由高压油泵、高压油轨、喷油器和电控单元组成。
工作原理是:高压油泵将燃油加压至100MPa以上,通过高压油轨将燃油输送至喷油器。
在喷油器内,高压燃油通过电磁阀控制喷出,经过雾化后与空气混合,实现燃油喷射。
电控单元根据发动机工况和传感器信号,精确控制喷油量和喷油时刻。
3. 实施计划步骤3.1 技术研究:进行HPDI技术的深入研究和实验验证,包括高压油泵的设计与制造、高压油轨的材质与加工、喷油器的结构设计、电磁阀的控制逻辑等。
3.2 生产工艺制定:根据技术研究结果,制定生产工艺流程和质量控制方案。
3.3 设备采购与调试:采购生产所需的设备,并进行安装调试。
3.4 产品试制:按照制定的生产工艺和质量控制方案,进行小批量试制。
3.5 产品测试与验证:对试制的产品进行性能测试和可靠性验证,并对存在的问题进行改进。
3.6 扩大生产:经过验证后,逐步扩大生产规模,并考虑与汽车企业进行合作。
4. 适用范围本研发生产方案适用于汽车、发动机等领域,特别是适用于燃油经济性要求较高和排放标准严格的领域。
未来,HPDI技术还可应用于船舶、航空等领域的燃油喷射系统。
5. 创新要点5.1 高压油泵的设计与制造技术:实现燃油的高压化,提高燃油喷射压力。
5.2 高压油轨的材质与加工技术:选择合适的材质和加工工艺,确保高压燃油的输送安全可靠。
5.3 喷油器的结构设计技术:优化喷油器的结构,提高喷油的雾化效果和均匀性。
高压共轨工作原理
高压共轨工作原理高压共轨系统是一种现代柴油机燃油供给系统,它由高压泵、高压共轨、喷油器等部分组成。
由于该系统具有较高的压力及较快的响应速度,能够使得喷油更为精准、快速、均匀,从而提高燃烧效率并降低污染物排放。
在本文中,我们将详细介绍高压共轨系统的工作原理。
一、高压共轨系统的基本组成高压共轨系统是由高压泵、高压共轨、喷油器和控制单元等部分组成的。
高压泵能够提供高压油液,将燃油输送到高压共轨中;高压共轨则是一个压力传递和储油的装置,将高压油液传递给各个喷油器;喷油器则是实现燃油雾化和喷射的设备;控制单元则能够实现对高压共轨系统的控制和调节。
1、高压泵提供高压油液高压泵会将燃油从油箱中吸入,通过柱塞将燃油压缩,形成高压油液,再将高压油液送往高压共轨中。
高压共轨是一个储存高压油液的装置,它能够保存一定量的高压油液,并将高压油液传递给各个喷油器。
3、喷油器实现燃油雾化和喷射当需要喷油时,控制单元将信号发送至喷油器,激活电磁阀,打开高压油液通道,将高压油液送至喷油器中。
喷油器中的针阀则会打开,将高压油液喷射至喷油嘴上,并形成微小的雾状颗粒。
4、控制单元调节燃料喷射时间和量控制单元能够对高压共轨系统中的燃油喷射时间和量进行调节。
当需要增加燃油喷射量时,控制单元会将信号发送至高压泵,增加燃油压力;当需要减少燃油喷射量时,控制单元会减小针阀的打开时间,从而减少燃油的喷射。
1、提高燃烧效率由于高压共轨系统能够保持较高的燃油压力,使得燃油更容易雾化,从而提高了燃烧效率。
高压共轨系统能够调节燃油喷射时间和量,使得燃油能够更加精准地喷射至缸内,从而提高了燃烧效率。
2、降低污染物排放由于高压共轨系统能够实现更加精准的燃油喷射,使得燃烧更加充分,减少了未燃烧的燃料和氧化物的排放,从而降低了污染物的排放。
3、提高启动性能和响应速度由于高压共轨系统能够提供更快的响应时间和更高的燃油压力,使得柴油机具有更好的启动性能和响应速度。
4、降低噪音水平由于高压共轨系统能够喷出细小的雾状颗粒,使得燃油更为均匀,从而减少了燃油的燃烧噪音。
柴油高压共轨原理
柴油高压共轨原理
柴油高压共轨原理是一种现代柴油燃油系统,通过将柴油加压到高压共轨中供给喷油器,实现精确的燃油控制。
其工作原理如下:
1. 燃油供给:柴油从燃油箱经过燃油泵被送至高压燃油管道,然后进入高压共轨。
2. 高压共轨:高压共轨是一个储存燃油的管道,其内部保持着高压。
在共轨的两端分别有进油口和出油口。
燃油进入共轨后,通过压力调节阀控制压力的大小。
3. 压力调节:压力调节阀控制共轨内的压力,根据需要不断调整。
当压力过高时,调节阀会放出一部分燃油,保持压力稳定;当压力过低时,调节阀会打开,使燃油从燃油泵进入共轨,提高压力。
4. 喷油器控制:在高压共轨上有多个喷油器,其工作由电子控制单元(ECU)控制。
ECU通过控制喷油器的打开和关闭时间以
及喷油的压力,来控制燃油的喷射量和喷射时间。
5. 精确喷射:由于高压共轨可以提供稳定的高压和精确的喷射时间控制,使得燃油能够在喷油器中形成微细的燃油雾化和高速燃烧,提高燃油的利用效率和动力性能。
总之,柴油高压共轨原理通过高压共轨和精确的燃油控制系统,
实现了精准的燃油喷射,提高了柴油引擎的燃烧效率和动力性能。
第四章掌握共轨式电控燃油喷射系统结构原理与故障检修
3.喷油器 喷油器用于将高压燃油直接喷入到燃烧室中参与
燃烧,其安装位置如图4-25所示。喷油始点和喷油量 由电控喷油器调节,这种喷油器取代了原来的喷油器 和喷油座。共轨喷油器目前常见的工作形式主要有两 种:一种是电磁式;另一种是压电晶体式。
图4-25喷油器的安装位置
(1)电磁式喷油器 电磁式共轨喷油器它主要是由电磁阀、滑阀、阀控制
图4-17博世CP2高压油泵
燃油计量阀的结构如图4-18,其特性曲线如图4-19 所示。它是一个流量控制阀,是电脑控制共轨燃油压 力的执行器。燃油计量阀安装在高压油泵的进油位置 ,ECU控制其通电时间用于调整燃油供给量和燃油压 力值。
a)结构示意图
b)实物图
图4-18燃油计量阀的结构
图4-19燃油计量阀的工作特性
图4-11BOSCH CP1高压油泵
图4-12高压油泵的结构
a.高压柱塞泵 在喷油泵内部有三个高压柱塞泵(见图4-13和图4-
14)。燃油进入喷油泵内部后经三个径向柱塞压缩, 柱塞相互之间错开120°,凸轮轴每旋转一圈,便有 三个柱塞分别同时泵油一次。
图4-13高压柱塞泵
图4-14高压柱塞泵的内部结构
任务三、 掌握电子控制中压共轨燃油喷射系统
一、美国卡特匹勒公司开发的HEUI型电控喷油 系统
1.中压共轨系统的组成
电控中压共轨系统的组成如图4-29所示。主要由低 中压机油供给系统、低压柴油供给系统和高压柴油供 给系统三大部分组成。
图4-29电控中压共轨系统组成
中压机油共轨系统中的高压燃油的形成及喷射,均 在喷油器总成内完成,喷油器总成如图4-30所示。
b.压力控制阀 压力控制阀根据发动机的负荷的参数设定共轨中压力
高压共轨原理及常见电喷故障排除
工作原理 1)电磁阀断电:球阀关闭 控制腔压力+针阀弹簧压力 > 针阀腔压力 针阀关闭,不喷射 2)电磁阀通电:球阀开启,泻油孔泻油 控制腔压力+针阀弹簧压力 < 针阀腔压力 针阀抬起,喷射 针阀抬起速度 取决于泻油孔与进油孔的流 量差 针阀关闭速度 取决于进油孔流量 喷射响应=电磁阀响应+液力系统响应 一般应为 0.1ms~0.3ms (喷油速率控制的要 求)
怠速和驱动怠速控制
➢ 挂档时发动机负载加大,采用驱动怠速控制可以实现分档控制
➢ 此时PID参数和指令怠速转速均发生变化
巡航控制——暂时不用
防抖(ASD)控制 ——改善车辆在挂档起步、急加速和急减速过程的平顺性
空调控制
➢根据空调负载调节发动机怠速转速
➢根据车辆对动力性的需求和发动机的工作状况对空调压缩机进行开/关控制
A
18
喷油器工作原理
1线圈
喷嘴置位
回油
喷嘴开启
衔铁
球阀
高
释放控制孔
压 连
充油控制孔
接 管
喷嘴关闭
针阀杆
喷嘴针阀压力环 喷孔
A
19
高压
低压
喷油器工作过程
电磁阀 衔铁 球阀
释放控制孔 充油控制孔
喷嘴置关开位闭启
喷油器脉冲 电流
控制阀升程 控制室压力
针阀杆 喷油嘴压力环 喷孔
High pressure
提升电流 Iboost A
24~ 26
设定值: 25A
保持电流 Ihold A 1A1~ 设定值: 12A 22
高压油泵 柴油进口(自滤器)
M-PROP 燃油计 量阀
高压油出口 柴油出口(到 油箱)
溢流阀
高压共轨喷油器工作原理
高压共轨喷油器工作原理
1.储油器:柴油从燃油箱中通过管道进入储油器,维持燃油系统的供应。
2.燃油泵:燃油泵负责将柴油从储油器中抽取出来,并产生高压供给
给高压共轨。
3.高压共轨:燃油泵将高压燃油输送到一个称为高压共轨的管道中。
高压共轨由一根有着多个装有喷油嘴的螺纹管组成,并安装在发动机上方。
4.高压喷油泵:高压喷油泵负责将燃油压力进一步提升至极高的压力,以实现喷油的高效和精确。
高压喷油泵的压力由电控单元的计算机进行控制。
5.喷油嘴:在高压喷油泵的控制下,喷油嘴被打开,燃油被强力喷射
到发动机的燃烧室中。
高压的燃油喷射使得柴油燃烧更为充分和彻底。
整个高压共轨喷油器系统的控制是通过发动机电控单元来实现的。
电
控单元负责监测和调整喷油嘴和高压喷油泵的工作,以实现燃油的精确喷
射和燃烧过程的最优化。
1.高效燃烧:高压喷油使柴油能够充分雾化和混合,从而实现更高效
的燃烧过程,提高发动机效率。
2.低噪音和振动:高压共轨喷油器能够实现精确的燃油喷射,并减少
柴油燃烧过程中的噪音和振动。
3.减少尾气排放:高压共轨喷油器的精确喷射能够有效减少柴油发动
机的尾气排放,降低对环境的污染。
4.高可靠性和耐用性:高压共轨喷油器系统采用了先进的技术和材料,能够提供高可靠性和耐用性,减少维修和更换的频率。
总之,高压共轨喷油器通过精确控制燃油的喷射和燃烧过程,实现了
柴油发动机的高效率和低排放。
它是现代柴油发动机应用广泛的燃油喷射
系统,对汽车和工业应用具有重要意义。
高压共轨系统
喷油器工作过程
5、ECM
ECM在汽车电子中通常指引擎控制器。 发动机电子控制模块(简称ECM)具有连续监测 并控制发动机正常工作运转的功能。在现代发动机管 理系统中,ECM系其核心控制元件。它可以根据发动 机的不同工况,向发动机提供最佳空燃比的混合气和 最佳点火时间,使发动机始终处在最佳工作状态,发 动机的性能(动力性、经济型、排放性)达到最佳。 其主要功能有: 1、燃油喷射(EFI)控制 2、点火(ESA)控制 3、怠速控制(ISC) 4、排放控制 5、自诊断与报警 6、CAN总线接口
各缸高压油
共 轨 压 力 反 馈
各 缸 喷 油 指 令
共轨压力指令
其它传感 器输入
高压共轨系统工作原理图
3、VP分配式高压油泵工作原理
(1)VP型分配式高压油泵
VP型分配式高压油泵由三个径向排列、互相呈120°夹角 的柱塞组成。VP分配泵通过联轴器、由凸轮轴上的油泵驱动齿 轮带动旋转,油泵的转速是发动机转速的一半。主要部件:泵 缸、活塞、排出阀、活塞杆及吸入阀。 高压泵(高压往复泵)的工作原理: 活塞自左向右移动时,泵缸内形成负压,则进口管路内液 体经吸入阀进入泵缸内。当活塞自右向左移动时,缸内液体受 挤压,压力增大,由排出阀排出。活塞往复一次,各吸入和排 出一次液体,称为一个工作循环;这种泵称为单动泵。若活塞 往返一次,各吸入和排出两次液体,称为双动泵。 活塞由一 端移至另一端,称为一个冲程。
ECM的功能
4、扭矩控制 1、喷油方式控制 高达5次喷射(现只用2次) 瞬态扭矩 加速扭矩 2、喷油量控制 低速扭矩补偿 预喷油量自学习控制 最大扭矩控制 减速断油控制 5、瞬态冒烟控制 3、喷油正时控制 6、增压器保护控制 主喷正时 7、过热保护 预喷正时 8、各缸平衡控制 正时补偿 9、EGR 控制 4、轨压控制 10、VGT 控制 正常和快速轨压控制 11、辅助起动控制(电机和预热塞) 轨压建立和超压保护 12、系统状态管理 喷油器泄压控制 13、电源管理 轨压Limp home控制 14、故障诊断
高压共轨燃油系统的原理及优势
高压共轨燃油系统的原理及优势高压共轨燃油系统是一种现代化的燃油供应技术,由德国博世公司和日本电装公司联合开发。
它可以有效地克服传统喷油系统存在的高温、高压、低效的弊端,其原理是利用压电陶瓷给油压信号加压,并通过共轨将高压燃油提供给各个汽缸,使汽车发动机达到更高的功率输出和更低的排放。
高压共轨燃油系统的原理是将油泵送的燃油压力提高至200~2000 bar,并将燃油储存在共轨中,再由喷油器在每个气缸进行精确喷射,以满足发动机的燃烧需求。
由于高压共轨系统能够产生更高的燃油压力,喷油器可以以更高的速度和更高的精确度喷射燃油,这使得发动机的燃烧更加充分,功率更强,同时排放量更低。
高压共轨燃油系统的优势主要包括以下几个方面:1. 更高的功率输出:相较于传统喷油系统,高压共轨系统能够产生更高的燃油压力,使发动机的燃烧更加充分,功率更强。
这不仅提高了车辆的性能,还能够满足高速行驶和急加速的需求。
2. 更低的排放量:高压共轨系统可以精确控制燃油喷射量和时间,使得发动机燃烧更为充分,减少了废气中的CO、HC等有害物质排放,从而更加环保。
3. 更高的燃油利用率:高压共轨系统采用了智能控制技术,可以对燃油的使用进行更加精确的控制,从而提高了燃油的利用率。
相较于传统喷油系统,高压共轨系统的燃油经济性更为出色。
4. 更为稳定的性能:高压共轨系统可以实现对燃油喷射时间和量的精确控制,从而使发动机的运行更加平稳。
同时,高压共轨系统还可以减少燃油喷射的噪音和震动,提高车辆的乘坐舒适性。
总之,高压共轨燃油系统是一种先进的燃油供应技术,它的原理和优势都非常明显。
随着技术的不断发展,高压共轨系统还将不断完善,使得汽车的性能和环保性能进一步提高。
解读柴油机高压共轨电控喷射系统
柴油机高压共轨电控喷射系统一、柴油机基本知识柴油发动机与汽油发动机具有基本相同的结构,都有气缸体、气缸盖、活塞、气门、曲柄、曲轴、凸轮轴、飞轮等。
但前者用压燃柴油作功,后者用点燃汽油作功,一个"压燃"一个"点燃",就是两者的根本区别点。
汽油机的燃料是在进气行程中与空气混合后进入气缸,然后被火花塞点燃作功;柴油机的燃料则是在压缩行程接近终了时直接喷注入气缸,在压缩空气中被压燃作功。
这个区别造成了柴油机在燃料供给系统的结构有其自己的特点。
柴油机的燃料喷射系统是由喷油泵、喷油器、高压油管及一些附属辅助件组成。
柴油机燃料输送的简单过程是:输油泵将柴油送到滤清器,过滤后进入喷油泵(为了保证充足的燃料并保持一定的压力,要求输油泵的供油量比喷油泵的需要量要大得多,多余的柴油就经低压管回到油箱,其它部分柴油被喷油泵压缩至高压)经过高压油管进入喷油器直接喷入气缸燃烧室中压燃。
(示意图是柴油机燃料供给系统,4是高压输油管、1、2、3是低压输油管、5、6、7、8是回油管)。
二、高压共轨电控柴油喷射系统现代先进的汽车柴油机一般采用电控喷射、共轨、涡轮增压中冷等技术,在重量、噪音、烟度等方面已取得重大突破,达到了汽油机的水平,而且相比汽油机更环保。
目前国外轻型汽车用柴油机日益普遍,奔驰、大众、宝马、雷诺、沃尔沃等欧洲名牌车都有采用柴油发动机的车型。
在电控喷射方面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是控制空燃比,柴油机的电控喷射系统则是通过控制喷油时间来调节输出的大小,而柴油机喷油控制是由发动机的转速和加速踏板位置(油门拉杆位置)来决定的。
因此,基本工作原理是计算机根据转速传感器和油门位置传感器的输入信号,首先计算出基本喷油量,然后根据水温、进气温度、进气压力等传感器的信号进行修正,再与来自控制套位置传感器的信号进行反馈修正,确定最佳喷油量的。
电控柴油喷射系统由传感器、ECU(计算机)和执行机构三部分组成。
柴油机电控高压共轨燃油喷射系统原理与发展
齿轮输油泵由发动机通过机械 装置驱动, 为了在发动机第一次起动 或燃油箱放空后排除燃油系统中的 空气, 需在齿轮泵或低压管路上配备 手动油泵。
③电控喷油器: 电控喷油器是高
阀球阀 5 关闭控制室顶部的回油量
压共轨燃油系统中最关键和最复杂
孔 6, 高压油轨的燃油压力通过量孔
的部件, 它通过高压油管与共轨管相
7 作用在针阀控制柱塞 9 上, 使喷嘴
连, 主要由一个喷油器和一个电磁阀
关闭; 电磁阀通电时, 量孔 6 被打开,
构 成 。ECU 使 电 磁 阀 通 电 后 喷 油 器
一、高压共轨燃油喷射系统的基 本组成
高压共轨电控燃油喷射系统主 要 由 电 控 单 元( ECU) 、高 压 油 泵 、共 轨 管 、电 控 喷 油 器 以 及 各 种 传 感 器 等 组成( 见图 1) 。输油泵( 低压油泵) 将 燃油输入高压油泵, 高压油泵将燃油 加压后送入高压油轨( 高压油轨中的 压力由 ECU 根据油轨压力传感器测 量的油轨压力以及预设值进行调 节) , 高压油轨内的燃油经过高压油 管 进 入 喷 油 器 ; ECU 根 据 柴 油 机 的 运行状态, 由预设程序确定合适的喷 油定时和喷油量, 以控制喷油器的喷 油起始时刻和持续时间, 操纵电液控 制的喷油器将燃油喷入气缸内。
电动机为永磁式直流电动机, 电 动 机 的 供 电 由 ECU 通 过 继 电 器 控 制, 发动机起动时即开始工作, 其转 速( 泵油量) 不受发动机转速的影响。
高压共轨喷油器预喷影响因素研究
试验方法。
带预喷的工作压力较高@1000baror600bar图1共轨喷油器的工作原理装配参数的影响研究1.2.1电磁阀弹簧预紧力1.2.1.1影响分析陶瓷球受力分析:衔铁施加力和控制腔内的液压力。
F球=F电磁+F液压-F弹簧-G(弹簧+衔铁+陶瓷球零件自身的重量相对于其它力比太小,在以后所有受力分析中均不施加此力。
如果F球增加,衔铁上升速度快,提前。
但是电磁阀弹簧受本身结构尺寸和封液压力影响,52-60N之间变动,占整个力分布10%左右。
1.2.1.2不同电磁阀弹簧预紧力的影响随着电磁阀弹簧力的增加,预喷油量变小。
电磁阀弹簧力变化不同的衔铁升程下,对应的预喷油量的变化量是不同的。
衔铁升程在65-70um,变化量0.2mm3/str左右。
电磁阀弹簧力控制在52-55N。
电磁阀弹簧力:N525558表1电磁阀弹簧力与预喷油量实测数据——————————————————:国家重点研发计划(2016YFD0700805)。
作者简介:陈晓辉(1971-),女,内蒙古通辽人,工程硕士,程师,主要负责共轨和机械喷油器开发、验证工作;海龙(1984-),男,湖南岳阳人,从事共轨系统设计、配标定验证工作;沈彬(1970-),男,江苏徐州人,从事燃油系统、后处理系统的匹配应用工作。
图2PI喷油速率曲线所受液压力,占其3%左右,对预喷影响不太。
但是对低怠速影响较大。
(表3)②不同油嘴弹簧力影响。
实际测试过程中,油嘴弹簧力对预喷无影响。
具体数据见表4。
油嘴弹簧力:N 323640预喷油量:mm 3/str1.721.621.79表4油嘴弹簧力与预喷油量实测数据1.3关键零件的控制参数1.3.1控制阀套A/Z 比和A 孔直径1.3.1.1控制阀A/Z 比和A 孔直径影响分析控制阀A/Z 比决定喷油持续期长短,A/Z 大喷油持续期长,喷油量大,反之喷油量[3]。
陶瓷球抬起后,控制腔内压力降低,降低的速度与A (出孔)的直径、形状和流量系数相关。
博世EDC17电控高压共轨系统介绍
博世EDC17电控高压共轨系统介绍1.系统原理:博世EDC17电控高压共轨系统基于传统的共轨系统原理,通过控制电磁阀和高压泵来实现燃油喷射。
不同于传统的机械喷油泵系统,该系统使用一个称为共轨的高压燃油管,供应恒定的高压燃油给每个喷油器。
喷油器通过电磁阀控制燃油的喷射时间和喷射量,从而实现精确的燃油喷射控制。
2.系统组成:-高压泵:高压泵是系统中最重要的组件之一,负责将燃油加压到非常高的压力,通常在1000至2500巴之间。
该泵由一个电动马达驱动,能够根据控制信号实现不同的压力调节和喷油时间的精确控制。
-高压燃油管:高压燃油管将高压燃油输送到每个喷油器。
这个共轨系统允许每个喷油器获得恒定的高压燃油供应,从而确保了更精准的燃油喷射。
-喷油器:喷油器是系统中最终执行燃油喷射的部件。
它根据电磁阀的控制信号,在喷油孔中形成高压燃油喷雾,喷射到燃烧室中。
精确的控制喷油时间和喷油量,能够提高燃烧效率和动力输出,并减少排放物的产生。
-电磁阀:电磁阀是控制喷油器喷油的关键组件,通过开关来控制燃油的喷射时间和喷射量。
控制单元将根据发动机的工作状态和驾驶员的需求发送信号到电磁阀,从而实现灵活的喷油控制。
3.系统优势:-燃油喷射更精确:通过精确控制电磁阀和高压泵,能够实现更精确的燃油喷射时间、喷射量和喷雾形状,从而提高燃烧效率和动力输出。
-降低排放:通过精确的燃油喷射控制,可以减少氮氧化物(NOx)和颗粒物(PM)的排放,使发动机更环保。
-增加燃油经济性:该系统能够实现对燃油喷射的多次和多阶段控制,在不同工况下优化燃料的燃烧过程,从而提高燃油经济性。
-适应性更强:系统能够根据发动机工作状态和驾驶员需求,实时调整喷油时间和喷油量,以适应不同工况和驾驶方式的变化。
总之,博世EDC17电控高压共轨系统是一种高效、精确、可靠的汽车燃油系统,通过精确的燃油喷射控制,能够提高燃烧效率、减少排放物产生,并提升车辆的燃油经济性。
这种系统在现代柴油发动机中得到了广泛的应用。
Bosch电控高压共轨系统的工作原理和特点
1柴油喷射系统的发展历程一直以来,博世都是柴油机燃油喷射技术的先驱和领导者,早在1927年就设计和生产了第一台直列泵及油嘴,为柴油喷射技术的发展奠定了坚实基础。
此后,经历了轴向分配泵、电控分配泵和电控直列泵等发展过程,尤其是直列泵技术在几十年后的今天仍在各个领域广泛应用。
1994年,生产了第一台商用车电控泵喷嘴系统(UIS),自此柴油喷射系统从位置控制系统发展为时间控制系统,用高速电磁阀直接控制高压柴油喷射,使原来复杂的机械结构大大简化。
随后,第一台单体泵系统(UPS)和第一台电控径向分配泵相继问世。
代表着当今最先进的柴油喷射系统———电控高压共轨系统于1997年和1999年分别在乘用车和商用车领域实现批量生产,它使喷射压力的产生完全独立于发动机的转速和喷射过程,并由高速电磁阀直接控制高压柴油喷射,实现了从时间控制系统到时间—压力控制系统的飞跃(见图1)。
图1Bosch柴油喷射系统的发展历程2Bosch电控高压共轨系统的工作原理2.1高压共轨系统简介高压共轨燃油喷射技术是通过高压油泵压缩燃油至共轨管内形成高压,再由高压油管分配到每个喷油器,并通过控制喷油器上的高速电磁阀的开启与关闭定时定量地将高压燃油喷射至柴油机燃烧室内,以保证最佳的雾化和燃烧效果,从而使发动机获Bosch电控高压共轨系统的工作原理和特点唐永华,张恬(博世汽车柴油系统股份有限公司技术中心,无锡214028)摘要:阐述了Bosch柴油喷射系统的发展历程,并介绍了Bosch电控高压共轨系统的组成和工作原理,分析了Bosch 电控高压共轨系统的主要特点。
同时指出以Bosch为代表的电控高压共轨技术是当前实现国3及更高排放标准,同时提高柴油机动力输出、降低油耗和噪音的最佳技术方案,是今后国内柴油机应用和发展的必然趋势。
关键词:Bosch;柴油机;电控;共轨系统中图分类号:U467.48文献标志码:A文章编号:1005-2550(2009)05-0009-05Working Principle and Key Characteristics of Bosch Diesel Common Rail SystemTANG Yong-hua,ZHANG Tian(Bosch Automotive Diesel System Co.Ltd.,Wuxi214028,China)Abstract:This article introduces the evolution of Bosch diesel fuel injection system,working principle and key charac-teristics of Bosch common rail system.Based on the analysis of its main characteristics,it points out that Bosch common rail system is the state-of-the-art diesel injection technology to meet China3and future emission standards,and mean-while helps to raise power output,lower fuel consumption and reduce noise emission for diesel engine,therefore,it is an inevitable tendency of Chinese diesel engine application and development.Key words:Bosch;diesel;electronic controlled;common rail system收稿日期:2009-06-12得最佳的性能。
高压共轨燃油喷射系统构造及工作原理
高压共轨燃油喷射系统构造及工作原理柴油机共轨电控柴油喷射系统部件构造主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。
低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的 map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。
3.1.1 高压油泵高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。
由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。
Bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达 135Mpa 的压力。
该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的1/9 ,负荷也比较均匀,降低了运行噪声。
该系统中高压共轨腔中的压力的控制是通过对共轨腔中燃油的放泄来实现的,为了减小功率损耗,在喷油量较小的情况下,将关闭三缸径向柱塞泵中的一个压油单元使供油量减少。
日电装公司采用了一个三作用凸轮的直列泵来产生高压。
该高压油泵对油量的控制采用了控制低压燃油有效进油量的方法。
工作过程:(1)柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;(2)柱塞上行,但控制阀中尚未通电,处于开启状态,低压燃油经控制阀流回低压腔;(3)在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。
利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;(4)凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。
高压共轨柴油机剖图
高压共轨柴油机剖图有其它原理图的跟帖啊,有解释性文字和动画相结合最好不过了。
高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。
它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Press ure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。
柴油机共轨式电控燃油喷射技术随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。
我国从80年代起相应制订了有关的标准,将环境保护作为大事来抓。
与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。
共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。
柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。
实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。
柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在喷射时之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。
由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。
此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低速区域容易产生上述现象。
严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。
为了解决柴油机燃油压力变化所造成的缺陷,现代柴油机采用了一种称之为“共轨”的电喷技术。
1、原理一般认为,柴油机喷油技术经历了传统的纯机械操纵式喷油和现代的电控操纵式喷油两个发展阶段。
电喷柴油机的工作原理
电喷柴油发念头的工作道理和应用办法电喷柴油机的工作道理高压共轨(Common Rail)电喷技巧是指在高压油泵.压力传感器和电子掌握单元(ECU)构成的闭环体系中,将喷射压力的产生和喷射进程彼此完整离开的一种供油方法.它是由高压油泵将高压燃油输送到公共供油管(Rail),经由过程公共供油管内的油压实现准确掌握,使高压油管压力(Pressure)大小与发念头的转速无关,可以大幅度减小柴油机供油压力随发念头转速变更的程度.共轨技巧是指高压油泵.压力传感器和ECU构成的闭环体系中,将喷射压力的产生和喷射进程彼此完整离开的一种供油方法,由高压油泵把高压燃油输送到公共供油管,经由过程对公共供油管内的油压实现准确掌握,使高压油管压力大小与发念头的转速无关,可以大幅度减小柴油机供油压力随发念头转速的变更,是以也就削减了传统柴油机的缺点.ECU掌握喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时光的长短.高压共轨体系应用较大容积的共轨腔将油泵输出的高压燃油蓄积起来,并清除燃油中的压力摇动,然后再输送给每个喷油器,经由过程掌握喷油器上的电磁阀实现喷射的开端和终止.其重要特色可以归纳综合如下:共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构;并且共轨腔内是中断高压,高压油泵所需的驱动力矩比传统油泵小得多.经由过程高压油泵上的压力调节电磁阀,可以依据发念头负荷状况以及经济性和排放性的请求对共轨腔内的油压进行灵巧调节,尤其优化了发念头的低速机能.经由过程喷油器上的电磁阀掌握喷射准时,喷射油量以及喷射速度,还可以灵巧调节不合工况下预喷射和后喷射的喷射油量以及与主喷射的距离.高压共轨体系由五个部分构成,即高压油泵.共轨腔及高压油管.喷油器.电控单元.各类传感器和履行器.供油泵从油箱将燃油泵入高压油泵的进油口,由发念头驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀掌握各缸喷油器在响应时刻喷油.预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内产生预混杂或者部分燃烧,缩短主喷射的着火延迟期.如许缸内压力升高率和峰值压力都邑降低,发念头工作比较缓和,同时缸内温度降低使得NOx排放减小.预喷射还可以降低掉火的可能性,改良高压共轨体系的冷起动机能.主喷射初期降低喷射速度,也可以削减着火延迟期内喷入气缸内的油量.进步主喷射中期的喷射速度,可以缩短喷射时光从而缩短缓燃期,使燃烧在发念头更有用的曲轴转角规模内完成,进步输出功率,削减燃油消费,降低碳烟排放.主喷射末期快速断油可以削减不完整燃烧的燃油,降低烟度和碳氢排放.与曩昔的机械式供油方法不合,电喷发念头由高压油泵将柴油高压送到输油轨上,输油轨衔接喷油器,电脑板来掌握喷油次序和时光,电脑板和曲轴传感器这些代替了时规齿轮来带动高压泵和正时.经由过程进气流量计与氧传感器给电脑旌旗灯号,电脑盘算完毕发出指令,由喷油器上的电磁阀开关掌握喷油嘴的喷油量及时光来实现发念头的工况.开环掌握是指掌握装配与被控对象之间只有按次序工作,没有反向接洽的掌握进程,按这种方法构成的体系称为开环掌握体系,其特色是体系的输出量不会对体系的掌握感化产生影响,没有主动修改或抵偿的才能.闭环掌握体系刚好相反,就是被控对象与掌握装配之间是有反馈的.输出的经由会返回掌握装配来进行调剂.举个例子你就明确了:比方要对电机转速做一个最简略的闭环掌握体系就是如许的,请求把电机转速设定为1000转每分钟,一个测速传感器测量电机的及时转速并把这个旌旗灯号给掌握器,掌握器会不竭比较及时转速和设定转速.如电机转速从0开端上升,小于1000时刻电机中断加快,假如超出1000就开端减速,如斯来去直到速度最后稳固至1000,则不在调剂.但体系受到外界干扰使得转速离开1000(超出或者低于)体系就又开端调剂直至动态均衡,这就是闭环掌握和开环掌握的不合点.电喷柴油发念头应用和省油办法电喷车的行车电脑中都邑存储“减速断油”的程序,比方车辆以3000转/分高速运转,在司机忽然松开油门,车速降低,发念头转速降低的情形下,行车电脑会掌握喷油嘴做出“减速断油”的动作,此时缸体内没有燃油喷射和燃油燃烧.如许的情形相当于“让车辆带着发念头迁移转变”,当发念头转速降到1200-1500转/分(不合车型的具体转速不合)时,喷油恢复正常.假如是在正常的行驶情形(减挡减速)下,从“减速断油”到“正常喷油”的进程是有一段时光的,这段时光现实上是比较省油的.但是假如忽然在高速时挂到空挡,此时发念头转速会立刻跌到怠速状况,行车电脑会掌握喷油嘴开端喷油,如许就缩短了上述进程,油耗现实上是在增长. 那么空挡滑行到底能不克不及省油呢?纯理论的陈述,使人们无法准确的懂得,是以用数据来解释这个问题更能让人懂得.专业人员为此专门进行了测试:经由过程他们的测试发明,在60km/h等速下,完整抬起油门踏板,直线滑行至停滞,在这个进程中空挡滑行的耗油量为31.4mL,滑行距离为890米,而带挡滑行的耗油量只有15.7mL,其滑行距离为608米,比空挡短200多米.两者比拟,带挡滑行比空挡滑行更省油.起首要解释的是,空挡滑行消失安然隐患!因为摘挡后没有发念头制动,下坡时很不服安,在平地上碰到突发情形也来不及处理.人们平日认为,挂空挡,割断发念头的动力(发念头不熄火)的情形下应用汽车惯性进行滑行可以省油.其实,今朝市场上大部分的汽车,无论是手动挡照样主动挡车型,都属于电喷车(电脑掌握燃油喷射).电喷车在不加油的状况下,电脑都将此时默认为怠速供油状况,也就是说认为空挡滑行可以省下的燃油现实上一滴没罕用,并且还有可能造成变速箱聚散器等动力传输体系破坏.每一种型号的汽车都经由严厉盘算来肯定各类设置装备摆设,如合客牌汽车,应用4缸O3电喷柴油发念头,那么依据这款动力的速比,来肯定变速箱.聚散器.差速器.轮胎型号.也就是说所有的驾驶员都要依据每种车型的应用解释,规范操纵.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压共轨喷油器工作原理
2017-06-14
高压共轨喷油器工作原理
2011-03-13 00:09:27| 分类:阅读8 评论0 字号:大中小订阅
喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。
这些喷
油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。
与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。
喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统和
电磁阀。
燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。
泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密
封。
当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。
这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。
图8 共轨系统喷油器
1-回油管;2-回位弹簧;3-线圈;4-高压连接;
5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油
口;10-控制活塞;11-油嘴轴针;12-喷油嘴
图1-喷油器关闭图2-喷油器打开
此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,通
过回油管,会同高压泵和压力控制阀的回油流回油箱。
在发动机的运转和高压泵的产生压力状态下,将喷油器的工作过程划
分为四个阶段:
-喷油器关闭(有高压时);
-喷油器打开(开始喷射);
-喷油器完全打开;
-喷油器关闭(喷射结束)。
这些工作阶段是由于作用于喷油器各零部件的分配力所导致的。
发动
机停机时,共轨中没有压力时,喷油嘴弹簧使喷油器关闭。
喷油器关闭(自由状态):在自由状态,电磁阀没有通电,所以它是
关着的。
泄油孔关闭,阀的弹簧使枢轴的球体顶在泄油孔座上,共轨高压在阀控制腔建立,同样的压力也存在于喷油嘴的承压腔内。
共轨压力作用于控制活塞的末端面,与喷油嘴弹簧力共同作用,克服由由承压腔产生的
开启力,维持喷油嘴在关闭位置。
喷油器打开(开始喷射):喷油器处于它的自由状态,电磁阀通以用
于保证它快速打开的峰值电流。
由电磁触发产生的力超过了阀的弹簧力,触发器打开了泄油孔。
几乎同时,较高的拾取电流降至较低的电磁铁所需的维持电流,磁路的磁隙变小使得仅需较小的维持电流使得控制阀保持开启。
当泄油孔打开时,燃油将从阀控制腔流入位于它上方的空腔,燃油并由此经回油管回到油箱。
泄油孔破坏了绝对的压力平衡,最终在阀控制腔内的压力也下降。
这导致阀控制腔内的压力低于仍与共轨有相同压力水平的喷油嘴承压腔的.压力,阀控制腔内压力的减小,导致作用于控制活塞上的力的减
小,最终喷油嘴针阀打开,喷射开始。
喷油嘴针阀的打开速度取决于流过控制腔的进、泄油孔时的不同流量。
控制活塞到达上方的停止位置,那里仍由在进、出油口之间的燃油流动所产生的缓冲保持着。
这时,喷油器喷油嘴完全打开,且燃油以几乎与共轨内的相同压力喷入燃烧室内。
喷油器的强制分配与它在打开阶
段时相似。
喷油器关闭(喷射结束):一旦电磁阀不被触发,阀弹簧使枢轴向下运动,球阀将关闭泄油孔。
枢轴被设计成两个元件,虽然枢轴盘在它向
下运动过程中是由一个驱动凸肩导向的,但它能利用抵消弹簧对回位弹簧缓冲,从而尽量没有向下的作用力枢轴和球阀上。
泄油孔的关闭泄油口,燃油经进油口进入控制腔建立压力,这个压力与共轨内的压力相同,该压力在控制活塞末端面上产生一个增大的力,这个力再加上弹簧力,此时超过了由承压腔产生的力,所以喷油器针阀关闭。
喷油器针阀的关闭速度取决于进油孔的流量,一旦喷油嘴针阀又运动至底部密封位
置时,喷射停止。