浙教版八年级数学上第二章特殊三角形单元测试题(有答案)
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.30°或40°D.50°2、如图,△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B.6对C.7对D.8对3、下列汽车标志不是轴对称图形的是()A. B. C. D.4、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°5、等腰三角形的两边分别为5cm、4cm,则它的周长是()A.14cmB.13cmC.16cm或9cmD.13cm或14cm6、如图是清朝李演撰写的《仇章算术细草图说》中的“勾股圆方图”,四边形ABCD,四边形EBGF,四边形HNQD均为正方形,BG,NQ,BC是某个直角三角形的三边,其中BC是斜边,若HM:EM=8:9,HD=2,则AB的长为( )A. B. C.3 D.7、如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即)的面积为()A.6B.7.5C.10D.208、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=()A.2-B. -1C.6-D. -310、如图,AB∥CD,AD=CD,∠1=55°,则∠2的度数是()A. B. C. D.11、如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD OB交OA于点D,若PD=6,则PC的长为()A.4B.3C.2D.112、如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A. B. C. D.13、如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于()A. B. C. D.14、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形,正三角形,等腰梯形和菱形四种图形,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形15、山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是轴对称图形的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC上的点E处,则EF的长为________.17、如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为________。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AC,∠BAC=64°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A.26°B.32°C.52°D.58°2、一等腰三角形两边长分别为3,4.则这个等腰三角形的周长为()A.7B.11C.7或10D.10或113、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中不正确的是()A.AD是∠BAC的平分线B.∠ADC=60°C.点D在AB的中垂线上 D.S△DAC :S△ABD=1:34、活动课上,小华将两张直角三角形纸片如图放置,已知AC=8,O是AC的中点,△ABO 与△CDO的面积之比为4:3,则两纸片重叠部分即△OBC的面积为( )A.4B.6C.D.5、如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设表示线段AP的长表示线段BP的长,与的关系如图(2)所示,则边BC的长是()A. B. C. D.66、以下图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.7、正五边形是轴对称图形,对称轴有( )A.3条B.4条C.5条D.6条8、如图,在中,,,,则点到的距离为()A. B. C. D.9、在图中,既是中心对称图形有是轴对称图形的是()A. B. C. D.10、下列图形中,是轴对称图形的是()A. B. C. D.11、如图四个图案中,是轴对称图形的是()A. B. C. D.12、若三角形的三边分别为a,b,c,则下面四种情况中,构成直角三角形的是()A.a=2,b=3,c=4B.a=12,b=5,c=13C.a=4,b=5,c=6 D.a=7,b=18,c=1713、下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.14、如图,Rt△ABC中,∠C=90°,∠B=30°,AC=.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC,AB于点E、D;②分别以D,E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连接AP交BC于点F.那么BF的长为()A. B.3 C.2 D.15、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4 ,则△EFC的周长为()A.11B.10C.9D.8二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=________时,四边形PECF的面积最大,最大值为________.17、直角三角形中,两锐角的角平分线所夹的锐角是________度.18、在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为________.19、等腰三角形的顶角等于50°,则一个底角的度数为________;等腰三角形的一个底角为50°,则它的顶角为________.20、如图,四边形ABCD内接于,AB是直径, ,则的度数为________.21、如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为________22、如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,若AC=2 ,则∠BAC的度数为________.23、在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=________.24、已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为________.25、如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA,则∠BPC=________三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.28、如图所示,在等腰ABC中,延长边AB到点D,延长边CA到点E,连接DE,恰有AD=BC=CE=DE.求证:∠BAC=100°.29、如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形空地斜边上的高进行了探究:两人在直角边上距直角顶点为米远的点处同时开始测量,点为终点.小娟沿的路径测得所经过的路程是米,小燕沿的路径测得所经过的路程也是米,这时小娟说我能求出这个直角三角形的空地斜边上的高了,小燕说我也知道怎么求出这个直角三角形的空地斜边上的高了.你能求出这个直角三角形的空地斜边上的高吗?若能,请你求出来;若不能,请说明理由.30、如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F 与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、D5、B6、C8、D9、B10、B11、C12、B13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.42、如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为()A.2cmB.4cmC.8cmD.16cm3、如图,在中,,,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则=()A. B. C. D.4、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形 D. 等腰梯形5、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米6、如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°7、如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.3B.3C.6D.68、下面四个图形中不是轴对称图形的是()A. B. C. D.9、下列图形中,是轴对称图形的是()A. B. C. D.10、在等腰三角形ABC中,AB=4,BC=2,则△ABC的周长为()A.8B.10C.8或10D.6或811、如图,在△ACB的边BC所在直线上找一点P,使得△ABP为等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个12、四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°13、如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A. B.4 C. D.214、如图,在正方形ABCD中,E、F分别在CD、AD边上,且CE=DF,连接BE、CF相交于G 点。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )A.9B.8C.7D.102、如图,AE是⊙O的直径,弦AB=BC=4,弦CD=DE=4,连接OB,OD,则⊙O的半径是()A.4B.4C.2D.2 +23、如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE折叠,使点B 落在点F处,连结CF,当△CEF为直角三角形时,BE的长是()A.4B.3C.4或8D.3或64、在中,与相邻的外角是130°,要使为等腰三角形,则的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°5、如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为 ( )A. B. C. D.6、同学甲要从A点出发到距离A点1000米的C地去,他先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了600米到达目的地C,由此可知AB之间的距离为()A.700米B.700 米C.800米D.800 米7、如图,已知在△ABC中,∠C = 90°,AD = AC,DE⊥AB交BC于点E,若∠B = 28°,则∠AEC =()A.28°B.59°C.60°D.62°8、若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为( )A.12cmB.10cmC.8cmD.6cm9、如图,四边形中,,,,,则四边形的面积是().A. B. C. D.10、方程x2﹣12x+27=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.21B.21或15C.15D.不能确定11、如图,中,将绕点逆时针旋转,得到,这时点B、C、D恰好在同一直线上,则的度数为()A. B. C. D.12、下列四组线段中,能组成直角三角形的是()A.a=2,b=2,c=3B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12,c=1313、小米在一个长方形的水池里游泳,长方形的长、宽分别为30米,40米,小米在水池中沿直线最远可以游()A.30米B.40米C.50米D.60米14、下列说法正确的是()A.圆有无数条对称轴,对称轴是直径所在的直线B.正方形有两条对称轴 C.两个图形全等,那么这两个图形必成轴对称 D.等腰三角形的对称轴是高所在的直线15、如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9B.5:3C.D.5 :3二、填空题(共10题,共计30分)16、在锐角△ABC中,AB=26cm,AC=25cm,BC边上的高为24cm,则△ABC的面积为________ cm2.17、如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,则BE的长为________.18、如图,在△ABC中,AB=AC,BD=CD,∠B=70°,则∠BAD=________。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于( )A.18°B.36°C.54°D.72°2、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A.12B.15C.12或15D.183、剪纸是中国的民间艺术.剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图所示的四副图案,不能用上述方法剪出的是()A. B. C. D.4、在等腰三角形ABC中,如果两边长分别为6cm,10cm,则这个等腰三角形的周长为()A.22cmB.26cmC.22cm或26cmD.24cm5、如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠DBC=30°,AD=5,则BC=A.5B.7.5C.D.106、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为()A.4B.4C.5D.57、我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中既是轴对称图形又是中心对称图形的个数有()A.4个B.3个C.2个D.1个8、已知三角形三边的长分别为4,9,则这个等腰三角形的周长为()A.13B.17C.22D.17或229、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.10、下列四个图案中,即是轴对称图形又是中心对称图形的是()A. B. C. D.11、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为()A. B. C. D.12、如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB= ,则DF的长等于()A. B. C. D.213、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:①AD=BE ②AP=BQ ③∠AOB=60°④DE=DP 其中正确的结论有A.①②③B.①③④C.①②D.②③④14、图1是一个地铁站入口的双翼闸机.如图2,当双翼收起时,可以通过闸机的物体的最大宽度是64cm,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,此时双翼的边缘AC、BD与闸机侧立面夹角∠PCA=∠BDQ=30°,则双翼的边缘AC、BD(AC=BD)的长度为()A. cmB. cmC.27cmD.54cm15、平行四边形、矩形、菱形、等腰梯形、正方形中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,平行四边形中,平分,交于点F,,交点,,则=________.17、如图,△ABC、△ADE均是等腰直角三角形,∠ACB=∠AED=90°,BC与DE相交于F 点,若AB=AD=2,则四边形AEFC的周长为________.18、如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A 与点B重合,折痕为DE,则CE的长是________.19、如图,在矩形ABCD中,AB=10 , BC=5 ,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为________.20、在中,的对边分别是,若,又,则最大边上的高为________.21、在等腰中,,,则∠A=________22、如图,在中,.如果将该三角形绕点按顺时针方向旋转到的位置,点恰好落在边的中点处.那么旋转的角度等于________.23、如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A、B、C分别在l1、l2、l3上,AC交l2于D,∠ACB=90°.已知l1与l2的距离为2,l2与l3的距离为6,则的值为________.24、如图,直线与双曲线相交于A、B两点,以AB为边作正方形ABCD,则正方形ABCD面积的最小值为________.25、如图,以直角△ABC的三边向外作正方形,其面积分别为S1, S2, S3且S1=4,S2=8,则S3=________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.28、如图,△ABC中,AB=4 ,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC =1.求DC的长.29、如图,四边形ABCD为平行四边形,连接AC,且.请用尺规完成基本作图:作出的角平分线与BC交于点E.连接BD交AE于点F,交AC于点O,猜想线段BF和线段DF的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)30、如图,四边形ABCD中,∠A=∠B=90°,AB=25,AD=15,BC=10,点E是AB上一点,且DE=CE,求AE的长.参考答案一、单选题(共15题,共计45分)2、B3、C4、C5、D6、C7、C8、C9、B10、B11、C12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。
浙教版数学八年级上册第2章《特殊三角形》测试(及答案)

浙教版数学八上《特殊三角形》单元测试及答案一、选择题(本大题共8小题,共32.0分)()1.等腰三角形两边长为3和6,则周长为 A. 12B. 15C. 12或15D. 无法确定△ABC AB=AC=5BC=62.如图,在中,,,AD是BC边上的中线,点E、F、M、N是AD上的四点,则()图中阴影部分的总面积是 A. 6B. 8C. 4D. 1236∘()3.有一个角是的等腰三角形,其它两个角的度数是 36∘108∘36∘72∘A. ,B. ,72∘72∘36∘108∘72∘72∘C. ,D. ,或,Rt△ABC∠C=90∘∠ABC4.如图,在中,,的平分线BD交ACD.BC=4cm BD=5cm()于点若,,则点D到AB的距离是 A. 5cmB. 4cmC. 3cmD. 2cm5.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角.()形”下列各组数据中,能作为一个智慧三角形三边长的一组是 233A. 1,2,3B. 1,1,C. 1,1,D. 1,2,△ABC6.如图,的顶点都在正方形网格的格点上,若小方格的△ABC()边长为1,则的形状是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形7.如图,已知:,点、、在射线ON 上,点、、在射∠MON =30∘A 1A 2A 3…B 1B 2B 3…线OM 上,、、均为等边三角形,若,则△A 1B 1A 2△A 2B 2A 3△A 3B 3A 4…OA 1=1的边长为 △A 6B 6A 7()A. 6B. 12C. 32D. 648.如图,和都是等腰直角三角形,△ABC △ADE ,连结CE 交AD 于点F ,连结BD∠BAC =∠DAE =90∘交CE 于点G ,连结下列结论中,正确的结论有 BE.();①CE =BD 是等腰直角三角形;②△ADC ;③∠ADB =∠AEB ;④S 四边形BCDE =12BD ⋅CE .⑤BC 2+DE 2=BE 2+CD 2A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共7小题,共28.0分)9.如图,在中,,,于D ,则△ABC AB =AC BC =6AD ⊥BC ______ .BD =10.如图,在中,CD 是斜边AB 上的中线,若Rt △ABC ,则 ______ .∠A =20∘∠BDC =11.如图,在等边中,,D 是BC 的中点,△ABC AB =6将绕点A 旋转后得到,那么线段DE△ABD △ACE 的长度为______.12.如图,中,于D ,E 是AC 的中点若,△ABC CD ⊥AB .AD =6,则CD 的长等于______.DE =513.如图,折叠长方形的一边AD ,使点D 落在BC 边上的F点处,若,,则EC 长为______ .AB =8cm BC =10cm14.如图,在中,,,AE△ABC ∠BAC =90∘AB =AC 是经过A 点的一条直线,且B 、C 在AE 的两侧,于D ,于E ,,,则BD ⊥AE CE ⊥AE CE =2BD =6DE 的长为______ .15.如图,在中,,,将其Rt △ABC ∠C =90∘AC =BC 绕点A 逆时针旋转得到,交AB15∘Rt △AB'C'B'C'于E ,若图中阴影部分面积为,则的长为23B'E ______.三、解答题(本大题共5小题,共40.0分)16.如图,在中,,分别以点A 、C为圆心,大于长为半径画Rt △ABC ∠B =90∘12AC 弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .求;直接写出结果(1)∠ADE ()当,时,求的周长.(2)AB =3AC =5△ABEDE//AB17.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且,过点EF⊥DEE作,交BC的延长线于点F.(1)∠F求的度数;(2)CD=2若,求DF的长.(1)(2)18.现在给出两个三角形,请你把图分割成两个等腰三角形,把图分割成三个.(1)(2)等腰三角形要求:在图、上分割:标出分割后的三角形的各内角的度数.19.如图,在中,D 是BC 边上一点,且,△ABC BA =BD ,求的度数.∠DAC =12∠B ∠C =50∘.∠BAC 20.已知:如图,在中,AD 是的高,作,交AD 的延长△ABC △ABC ∠DCE =∠ACD 线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .求证:;(1)CE =AF 若,,且,求的度数.(2)CD =1AD =3∠B =20∘∠BAF答案1. B2. A3. D4. C5. D6. B7. C8. C9. 310. 40∘11. 3312. 813. 3cm14. 415. 23‒2(1)∵16. 解:由题意可知MN是线段AC的垂直平分线,∴∠ADE=90∘;(2)∵Rt△ABC∠B=90∘AB=3AC=5在中,,,,∴BC=52‒32=4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE=AB+(AE+BE)=AB+BC=3+4=7的周长.(1)∵△ABC17. 解:是等边三角形,∴∠B=60∘,∵DE//AB,∴∠EDC=∠B=60∘,∵EF⊥DE,∴∠DEF=90∘,∴∠F=90∘‒∠EDC=30∘;(2)∵∠ACB=60∘∠EDC=60∘,,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90∘∠F=30∘,,∴DF=2DE=4.18. 解:如图所示:19. 解:设,则,.∠DAC =x ∘∠B =2x ∘∠BDA =∠C +∠DAC =50∘+x ∘,∵BD =BA ,∴∠BAD =∠BDA =50∘+x ∘,∵∠B +∠BAD +∠BDA =180∘即,2x +50+x +50+x =180解得.x =20,∴∠BAD =∠BDA =50∘+20∘=70∘.∴∠BAC =∠BAD +∠DAC =70∘+20∘=90∘20. 证明:是的高,(1)∵AD △ABC ,,∴∠ADC =∠EDC =90∘∠DCE =∠ACD 为等腰三角形,∴△ACE ,∴AC =CE 又点F 是点C 关于AE 的对称点,∵,∴AF =AC ;∴CE =AF 解:在中,,,根据勾股定理得到:(2)Rt △ACD CD =1AD =3,AC =AD 2+CD 2=2,∴CD =12AC .∴∠DAC =30∘同理可得,∠DAF =30∘在中,,Rt △ABD ∠B =20∘. ∴∠BAF =90∘‒∠B ‒∠DAF =40∘。
浙教版八年级上册数学 第2章 特殊三角形考试测试卷(解析版)

【章节训练】第2章特殊三角形一、选择题(共20小题)1.(3分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角2.(3分)如图所示,以数轴的单位长线段为边作一个正方形,以数轴的表示数1的点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A .B.2.41 C .D.1+3.(3分)下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等4.(3分)平面内点A(﹣2,2)和点B(﹣2,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣25.(3.1分)用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()A.假设CD∥EF B.假设AB∥EFC.假设CD和EF不平行D.假设AB和EF不平行6.(3分)已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是()A.(﹣3,2)B.(3,2) C.(﹣3,﹣2)D.(3,﹣2)7.(3分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y 轴翻折到第一象限,则点C的对应点C′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)8.(3分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.5cm B.5cm C.4cm D.4cm9.(3分)具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C10.(3分)已知等腰三角形的两边长分别为6cm、3cm,则该等腰三角形的周长是()A.9cm B.12cm C.12cm或15cm D.15cm11.(3分)如图,将矩形ABCD沿BE折叠,若∠CBA′=30°,则∠ABE为()A.90°B.60°C.45°D.30°12.(3分)如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为()A.2 B.+2 C.3 D.213.(3分)用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°14.(3分)用反证法证明命题:“三角形的内角中至少有一个角不大于60度”时,首先应假设这个三角形中()A.三个角都不大于60度B.三个角至多有一个大于60度C.三内角都大于60度D.三内角至多有两个大于60度15.(3分)如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1) B.(0,﹣3)C.(3,0) D.(2,1)16.(3分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b17.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是()A .B.1 C .D .18.(3分)用反证法证明命题“四边形四个内角中至少有一个角大于等于90°”,我们应该假设()A.四个角都小于90°B.最多有一个角大于或等于90°C.有两个角小于90°D.四个角都大于或等于90°19.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N.若△AMN的周长为18,BC=6,则△ABC的周长为()A.21 B.22 C.24 D.2620.(3分)如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个二、填空题(共5小题)(除非特别说明,请填准确值)26.(4分)如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于°.27.(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=8,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.26题图27题图28题图29题图28.(4分)如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.29.(4分)如图,已知点A(2,2)关于直线y=kx(k>0)的对称点恰好落在x轴的正半轴上,则k的值是.30.(4分)已知△ABC中,AB=AC,求证:∠B<90°,若用反证法证这个结论,应首先假设.三、解答题(共2小题)(选答题,不自动判卷)31.(10分)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.32.(10分)如图,已知在平面直角坐标系中,点P从原点O以每秒1个单位速度沿x轴正方向运动,运动时间为t秒,作点P关于直线y=tx的对称点Q,过点Q作x轴的垂线,垂足为点A.(1)当t=2时,求AO的长.(2)当t=3时,求AQ的长.(3)在点P的运动过程中,用含t的代数式表示线段AP的长.【章节训练】第2章特殊三角形参考答案与试题解析一、选择题(共25小题)1.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【解答】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的逆命题正确∴应假设:至少有两个内角是直角.故选:B.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.如图所示,以数轴的单位长线段为边作一个正方形,以数轴的表示数1的点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A .B.2.41 C .D.1+【分析】图中正方形的边长为1,则可根据勾股定理求出正方形对角线的长度.以对角线长度为半径作圆与x轴交于点A,则点A表示的数即为1加上对角线的长度.【解答】解:应用勾股定理得,正方形的对角线的长度==,以正方形对角线长为半径画弧,交数轴正半轴于点A,所以数轴上的点A表示的数为:1+.故选:D.【点评】本题主要考查勾股定理的知识,还要了解数轴上的点表示数的方法.解题关键是利用勾股定理求出正方形的对角线长度,同时要掌握圆上各点到圆点的距离相等都为半径.3.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、符合判定HL,故本选项正确,不符合题意;B、全等三角形的判定必须有边的参与,故本选项错误,符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定SAS,故本选项正确,不符合题意.故选:B.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.平面内点A(﹣2,2)和点B(﹣2,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣2【分析】根据A,B点位置进而得出两点的对称轴.【解答】解:如图所示:平面内点A(﹣2,2)和点B(﹣2,6)的对称轴是:直线y=4.故选:C.【点评】此题主要考查了坐标与图形变换,正确结合坐标系得出是解题关键.5.用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()A.假设CD∥EF B.假设AB∥EFC.假设CD和EF不平行D.假设AB和EF不平行【分析】熟记反证法的步骤,然后进行判断.【解答】解:用反证法证明CD∥EF时,应先设CD与EF不平行.故选C.【点评】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是()A.(﹣3,2)B.(3,2) C.(﹣3,﹣2)D.(3,﹣2)【分析】让点A的横坐标为原来横坐标的相反数,纵坐标不变可得所求点的坐标.【解答】解:∵A的坐标为(﹣3,2),∴A关于y轴的对应点的坐标为(3,2).故选:B.【点评】考查图形的对称变换;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数.7.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)【分析】根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:由A点坐标,得C(﹣3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.【点评】本题考查了坐标与图形变化﹣对称,关于y轴对称的点的坐标:横坐标互为相反数,纵坐标相等.8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.5cm B.5cm C.4cm D.4cm【分析】如图,连接DE,过点M作MG⊥CD于点G,证明△MNG≌△DEC,则有MN=DE.【解答】解:如图,连接DE.由题意,在Rt△DCE中,CE=4cm,CD=8cm,由勾股定理得:DE===cm.过点M作MG⊥CD于点G,则由题意可知MG=BC=CD.连接DE,交MG于点I.由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),∴∠NMG=∠EDC.在△MNG与△DEC中,∴△MNG≌△DEC(ASA).∴MN=DE=cm.故选:D.【点评】考查了翻折问题,翻折问题关键是找准对应重合的量,哪些边、角是相等的.本题中DN=EN 是解题关键,再利用勾股定理、全等三角形的知识就迎刃而解.9.(3.1分)具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.【点评】注意直角三角形中有一个内角为90°.10.(3.1分)已知等腰三角形的两边长分别为6cm、3cm,则该等腰三角形的周长是()A.9cm B.12cm C.12cm或15cm D.15cm【分析】题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选:D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.11.(3.1分)如图,将矩形ABCD沿BE折叠,若∠CBA′=30°,则∠ABE为()A.90°B.60°C.45°D.30°【分析】由折叠的性质知,折叠后形成的图形全等,找出对应的边角关系即可.【解答】解:根据题意,∠A′=∠A=90°,∠ABE=∠A′BE,又∠CBA′=30°,∴∠ABE=∠ABA'=30°,故选:D.【点评】本题考查折叠问题.解题关键是找出由轴对称所得的相等的边或者相等的角.12.(3.1分)如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为()A.2 B .+2 C.3 D.2【分析】根据三角形内角和定理求出∠CAB,根据翻转变换的性质得到DA=DB,∠DAB=∠B=30°,根据直角三角形的性质计算.【解答】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,由折叠的性质可知,DA=DB,∠DAB=∠B=30°,∴DA=DB=2DE=2,∠CAD=30°,∴CD=AD=1,∴BC=CD+BD=3,故选:C.【点评】本题考查的是翻转变换、直角三角形的性质,掌握翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.13.(3.1分)用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°【分析】根据反证法的第一步是假设结论不成立矩形解答即可.【解答】解:用反证法证明“三角形中至少有一个内角大于或等于60°”时,第一步应先假设每一个内角都小于60°,故选:B.【点评】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.14.用反证法证明命题:“三角形的内角中至少有一个角不大于60度”时,首先应假设这个三角形中()A.三个角都不大于60度B.三个角至多有一个大于60度C.三内角都大于60度D.三内角至多有两个大于60度【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角不大于60°”时,首先应假设这个三角形中每一个内角都大于60°,故选:C.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.15.(3.1分)如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1) B.(0,﹣3)C.(3,0) D.(2,1)【分析】根据对称的性质可知点C和对称点C′到直线AB的距离是相等的则易解.【解答】解:∵△A′B′C'与△ABC关于直线AB对称,∴通过网格上作图或计算可知,C’的坐标是(2,1).故选:D.【点评】主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.16.(3.1分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【分析】熟记反证法的步骤,直接填空即可.要注意的是a>b的反面有多种情况,需一一否定.【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.17.(3.1分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是()A .B.1 C .D .【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【解答】解:如图所示:当PE∥AB.由翻折的性质可知:PF=FC=2,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即=,解得:DF=3.2.∴PD=DF﹣FP=3.2﹣2=1.2.故选:D.【点评】本题主要考查的是翻折的性质,熟练掌握翻折的性质、垂线段的性质是解的关键.18.用反证法证明命题“四边形四个内角中至少有一个角大于等于90°”,我们应该假设()A.四个角都小于90°B.最多有一个角大于或等于90°C.有两个角小于90°D.四个角都大于或等于90°【分析】反证法的步骤中,第一步是假设结论不成立,反面成立即可.【解答】解:用反证法证明“四边形的四个内角中至少有一个不小于90°”时第一步应假设:四个角都小于90度.故选:A.【点评】本题考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.(3.1分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N.若△AMN的周长为18,BC=6,则△ABC的周长为()A.21 B.22 C.24 D.26【分析】根据等腰三角形的性质与判定即可求出答案.【解答】解:∵MN∥BC,∴∠MEB=∠EBC,∵BE平分∠ABC,∴∠MBE=∠EBC,∴∠MEB=∠MBE,∴△MBE是等腰三角形,∴ME=MB,同理,EN=CN,∵AM+AN+MN=18,MN=ME+EN=BM+CN∴AM+AN+BM+CN=18,∴AB+AC=18,∴AB+AC+BC=24故选:C.【点评】本题考查等腰三角形的判定与性质,解题的关键是证明△MEB与△ENC是等腰三角形,本题属于中等题型.20.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中等腰三角形共有()A.3个 B.4个 C.5个 D.6个【分析】由在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,可求得∠ABD=∠EDB=∠DBC=∠A=36°,∠BDC=∠ABC=∠C=72°,∠AED=∠ADE,即可得△ABC,△ABD,△EBD,△BCD,△AED 是等腰三角形.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,△ABC是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.【点评】此题考查了等腰三角形的性质与判定、平行线的性质以及角平分线的定义.此题难度适中,注意掌握数形结合思想的应用.24.(3.1分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A .B .C .D .【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A 、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.25.(3.1分)二、填空题(共5小题)(除非特别说明,请填准确值)26.(3.1分)如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于140°.【分析】根据等腰三角形的性质和三角形内角和定理可得∠ADB=90°﹣∠ABD,∠CDB=90°﹣∠CBD,由于∠ADC=∠ADB+∠CDB,∠ABC=80°,依此即可求解.【解答】解:∵AB=BC=BD,∴∠ADB=90°﹣∠ABD,∠CDB=90°﹣∠CBD,∴∠ADC=∠ADB+∠CDB=90°﹣∠ABD+90°﹣∠CBD=180°﹣(∠ABD+∠CBD)=180°﹣×80°=180°﹣40°=140°.故答案为:140.【点评】本题考查了等腰三角形的性质及三角形内角和定理,注意整体思想的运用.本题难度适中.27.(3.1分)如图,在△ABC中,∠ACB=90°,AC=4,BC=8,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为或4..【分析】分两种情况进行讨论,依据折叠的性质可设CD=C'D=x,过E作EF⊥BC于F,在Rt△DEF 中运用勾股定理列方程求解,即可得到CD的长.【解答】解:由题可得,AB==4,分两种情况:①如图,当∠AC'E=90°=∠AC'D时,点D,C',E在同一直线上,由折叠可得,AC'=AC=4,而AE=AB=2,∴C'E==2,设CD=C'D=x,则DE=x+2,过E作EF⊥BC于F,则BF=CF=4,EF==2,∴DF=4﹣x,∵Rt△DEF中,EF2+DF2=DE2,∴22+(4﹣x)2=(x+2)2,解得x=;②当∠AC'E=90°=∠AC'D时,点D,C',E在同一直线上,同理可得,C'E==2,设CD=C'D=x,则DE=x﹣2,过E作EF⊥BC于F,则BF=CF=4,EF==2,∴DF=4﹣x,∵Rt△DEF中,EF2+DF2=DE2,∴22+(4﹣x)2=(x﹣2)2,解得x=4;综上所述,△AC′E是直角三角形,则CD 的长为或4.故答案为:或4.【点评】本题主要考查了折叠的性质、勾股定理等知识的综合运用,构造直角三角形是解决这个题目的关键.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.28.(3.1分)如图,∠C=∠D=90°,添加一个条件:AC=AD(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.【解答】解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.【点评】本题考查了直角三角形全等的判定的应用,能熟记定理是解此题的关键,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.29.(3.1分)如图,已知点A(2,2)关于直线y=kx(k>0)的对称点恰好落在x轴的正半轴上,则k的值是.【分析】作辅助线,构建点与x轴和y轴的垂线,先根据点A的坐标得出OA′的长,再根据中位线定理和推论得:CF是△AA′E的中位线,所以CF=AE=1,也可以求OF的长,表示出点C的坐标,代入直线y=kx中求出k的值.【解答】解:设A关于直线y=kx的对称点为A′,连接AA′,交直线y=kx于C,分别过A、C作x轴的垂线,垂足分别为E、F,则AE∥CF,∵A(2,2),∴AE=OE=2,∴OA=2,∵A和A′关于直线y=kx对称,∴OC是AA′的中垂线,∴OA′=OA=2,∵AE∥CF,AC=A′C,∴EF=A′F=,∴CF=AE=1,∴OF=OA′﹣A′F=,∴C(,1),把C(,1)代入y=kx中得:1=()k ,k=,故答案为:,【点评】本题考查了一次函数及轴对称的性质,要熟知对称轴是对称点连线的垂直平分线,本题还利用了中位线的性质及推论,这此知识点要熟练掌握:三角形的中位线平行于第三边且等于第三边的一半.求正比例函数的解析式,就是求直线上一点的坐标即可.30.(3.1分)已知△ABC中,AB=AC,求证:∠B<90°,若用反证法证这个结论,应首先假设∠B≥90°.【分析】熟记反证法的步骤,直接填空即可.【解答】解:用反证法证明:第一步是:假设∠B≥90°.故答案是:∠B≥90°.【点评】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、解答题(共2小题)(选答题,不自动判卷)31.(3.1分)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.【分析】猜想:BF⊥AE先证明△BDC≌△AEC得出∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.【解答】解:猜想:BF⊥AE.理由:∵∠ACB=90°,∴∠ACE=∠BCD=90°.又BC=AC,BD=AE,∴△BDC≌△AEC(HL).∴∠CBD=∠CAE.又∴∠CAE+∠E=90°.∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.【点评】主要考查全等三角形的判定方法,以及全等三角形的性质.猜想问题一定要认真观察图形,根据图形先猜后证.32.(3.9分)如图,已知在平面直角坐标系中,点P从原点O以每秒1个单位速度沿x轴正方向运动,运动时间为t秒,作点P关于直线y=tx的对称点Q,过点Q作x轴的垂线,垂足为点A.(1)当t=2时,求AO的长.(2)当t=3时,求AQ的长.(3)在点P的运动过程中,用含t的代数式表示线段AP的长.【分析】(1)作辅助线,构建点D,根据正比例函数y=2x,可得D的坐标(2,4),证明△OPD∽△QAP,得AQ与AP的关系,设AO=a,最后利用勾股定理列方程可得结论;(2)(3)同理可得AQ和AP的长.【解答】解:过P作PD⊥x轴,交直线y=tx于D,连接OQ,(1)当t=2时,y=PD=2x=4,∵∠BDP+∠DPB=∠DPB+∠APQ=90°,∴∠BDP=∠APQ,∴△OPD∽△QAP,∴,∴AP=2AQ,设AQ=a,Rt△AQO中,OQ=OP=2,由勾股定理得:OQ2=AQ2+AO2,∴,5a2+4a﹣12=0,a1=﹣2(舍),a2=,∴AO=;(4分)②当t=3时,OP=3,PD=9,设AQ=a,Rt△AQO中,OQ=OP=3,由勾股定理得:OQ2=AQ2+AO2,,5a2+3a﹣36=0,(a+3)(5a﹣12)=0,a1=﹣3(舍),a2=,∴AQ=AP=(+3)=;(4分)(3)同理OP=t,PD=t2,∴△OPD∽△QAP,∴==,∴AP=tAQ,Rt△AQO中,OQ=OP=t,由勾股定理得:OQ2=AQ2+AO2,∴,AP=.(2分)【点评】本题考查点成轴对称问题,考查了正比例函数图象上点的关系、三角形相似的性质和判定、轴对称的性质等知识,解题的关键是求得点D的坐标,学会利用方程解决问题,属于中考常考题型.。
浙教版八年级上册数学 第2章 特殊三角形 单元测试卷(含答案解析)

浙教版八年级上册数学第2章特殊三角形单元测试卷一、选择题(共10题;共30分)1.永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A. B. C. D.2.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40°3.如图,ΔABC中,DE垂直平分AB,垂足为D,交BC于E,若∠B=32°,AC=CE,则∠C的度数是()A. 52°B. 55°C. 60°D. 65°4.以下命题:(1)如果a<0,b>0 ,那么a + b<0;(2)相等的角是对顶角;(3)同角的补角相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是()A. 0B. 1C. 2D. 35.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A. a=32,b=42,c=52B. a=9,b=12,c=15C. ∠A:∠B:∠C=5:2:3D. ∠C﹣∠B=∠A6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠BAC,ED⊥AB,则ED的长()A. 3B. 4C. 5D. 67.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F.若DG =GE ,AF =3,BF =2,△ADG 的面积为2,则点F 到BC 的距离为( )A. √55B. 2√55B. C. 4√55 D. 4√338.如图,将长方形 ABCD 折叠,使点C 和点A 重合,折痕为 EF , EF 与 AC 交于点O 若 AE =5 , BF =3 ,则 AO 的长为( )A. √5B. 32√5C. 2√5D. 4√59.如图,在 Rt △ABC 中, ∠ACB =90° ,点H 、E 、F 分别是边 AB 、 BC 、 CA 的中点,若 EF +CH =8 ,则 CH 的值为( )A. 3B. 4C. 5D. 610.如图,在Rt △ABC 中,∠ACB=90°,CD 为中线,延长CB 至点E ,使BE=BC ,连结DE ,F 为DE 中点,连结BF.若AC=8,BC=6,则BF 的长为( )A. 2B. 2.5C. 3D. 4二、填空题(共8题;共24分)。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在菱形ABCD中,AD=2,∠ABC=120°,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为()A. B.2 C.1 D.52、如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为()A.60°B.65°C.70°D.75°3、下列说法不正确的是()A.等腰三角形是轴对称图形B.三角相等的三角形是等边三角形C.如果两个三角形成轴对称,那么这两个三角形一定全等D.若两点关于直线对称,则垂直平分4、已知Rt△ABC中的三边长为a,b,c,若a=8,b=15,那么c2等于()A.161B.289C.225D.161或2895、如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cmB.12cmC.19cmD.20cm6、下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 正五边形C.矩形 D. 平行四边形7、如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线( )A. l1B. l2C. l3D. l48、下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.9、在△中, 为斜边的中点,且,,则线段的长是()A. B. C. D.10、下列长度的三条线段能组成直角三角形的是()A.4,6,8B.6,8,9C.7,24,25D.5,11,1211、如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①AD上任意一点到点C,点B的距离相等;②AD上任意一点到AB,AC的距离相等;③AD⊥BC且BD=CD;④∠BDE=∠CDF.其中正确的个数是()A.1个B.2个C.3个D.4个12、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC,∠ACB,若CD=3,则CE等于()A.2B.2.5C.3D.3.513、下列四个图案中,是轴对称图形的为()A. B. C. D.14、如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为()A. B.3 C.4 D.515、点 A(3,4)和点 B(3,-5),则 A、B 相距()A.1 个单位长度B.6 个单位长度C.9 个单位长度D.15 个单位长度二、填空题(共10题,共计30分)16、已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,,,,则与之间的距离为________cm.17、如图,AB=AC=AD,如果∠BAC=28°,AD∥BC,那么∠D=________.18、如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1, C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形A n BC n D n的面积为________ .19、如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD ⊥BC,则△DEF的面积与△ABC的面积之比等于________.20、一块三角形材料如图所示,∠A=∠B=60°,用这块材料剪出一个矩形DEFG,其中,点D,E分别在边AB,AC上,点F,G在边BC上.设DE=x,矩形DEFG的面积s与x之间的函数解析式是s=﹣x2+ x,则AC的长是________.21、如图,中,,,,是内部的任意一点,连接,,,则的最小值为________.22、已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________ .23、等腰三角形一个内角的大小为50°,则其顶角的大小为________度.24、在△ABC,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是________.25、如图,是内的一点,,点分别在的两边上,周长的最小值是________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AE=BE.28、如图,在长方形ABCD中,已知AB=8cm,BC=10cm,将AD沿AF折叠,使点D落在BC 上的点E处.求BE及CF的长.29、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求弦DC 的长.30、如图,已知:在△ABC中,AB=AC,∠A=30°,BD是△ABC的角平分线,求∠ADB的度数参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、D5、A6、C7、C8、A9、C10、C11、D12、C13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
浙教版数学八年级上册第2章《特殊三角形》测试题(含答案)

第 2 章 测试题一、选择题(每小题 4 分,共 32 分)1.下列轴对称图形中,对称轴条数最多的是(D )A. 线段B. 角C. 等腰三角形D. 等边三角形2.如图,已知点 P 在△ABC 的外部,在∠DAE 的内部,若点 P 到 BD ,CE 的距离相 等,则下列关于点 P 的位置的说法中,正确的是(C)A. 在∠DBC 的平分线上B. 在∠BCE 的平分线上C. 在∠DAE 的平分线上D. 在∠A 和∠DBC 的平分线的交点处(第 2 题)3.以下列各组数为边长的三角形中,能组成直角三角形的是(B )A. 3,4,6B. 15,20,25C. 5,12,15D. 10,16,254.若直角三角形的两条直角边的长分别为 9 cm 和 12 cm ,则斜边上的中线长为(C )A. 4.5 cmB. 6 cmC. 7.5 cmD. 10 cm5.如图,在△ABC 中,AC =DC =DB ,∠ACD =88°,则∠B =(C )A. 46°B. 44°C. 23°D. 22°(第 5 题)【解】 ∵AC =DC =DB ,∠ACD =88°,∴∠A =∠ADC =46°, ∴∠B =∠DCB =12∠ADC =23°. 6.如图,已知∠MON =30°,点 A 1,A 2,A 3,…在射线 ON 上,点 B 1,B 2,B 3,…在 射线 OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形.若 OA 1=1,则△A 6B 6A 7 的边长为(A )A. 32B. 16C. 8D. 6(第6 题)【解】∵△A1B1A2 是等边三角形,∴A1A2=A1B1,∠B1A1A2=60°.∵∠MON=30°,∴∠OB1A1=∠B1A1A2-∠MON=30°,∴A1B1=OA1=1,∴A1A2=1,∴OA2=2.同理,AB2=2,A3B3=4,A4B4=8,A5B5=16,A6B6=32,2∴△A6B6A7 的边长为32.7.在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别为a,b,c,正放置的四个正方形的面积依次为S1,S2,S3,S4,则S1+S2+S3+S4=(C)(第7 题)A. a+bB. b+cC. a+cD. a+b+c【解】∵∠ACB+∠BAC=90°,∠ACB+∠DCE=90°,∴∠BAC=∠DCE.又∵∠ABC=∠CDE=90°,AC=CE,∴△ABC≌△CDE(AAS),∴AB=CD.同理可证得△PQM≌△MFN,∴PQ=MF.∵CD2+DE2=AB2+DE2=a,MF2+FN2=PQ2+FN2=c,又∵S=AB2,S2=DE2,S3=PQ2,S4=FN2,1∴S1+S2+S3+S4=AB2+DE2+PQ2+FN2=a+c.8.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是(D)(第8 题)A. ①②③B. ①②④C. ②③④D. ①③④【解】①作∠ABC 的平分线与AC 交于点D,则△ABD 和△BCD 为等腰三角形.②不能分成两个小的等腰三角形.③作∠BAC 的平分线与BC 交于点D,则△ABD 和△ACD 为等腰三角形.④过点A 作∠BAD=36°交BC 于点D,则△ABD 和△ACD 为等腰三角形.二、填空题(每小题4 分,共24 分)9.已知在Rt△ABC 中,∠C=90°,∠A=37°,则∠B=53°.10.若等腰三角形的两边长分别为4 和8,则周长为20 .11.命题“等腰三角形两腰上的高相等”的逆命题是如果一个三角形两边上的高相等,那么这个三角形是等腰三角形,这个逆命题是真命题.12.如图,在Rt△ABC 中,∠B=90°,直线DE 与AC,BC 分别交于D,E 两点.若∠DEC=∠A,则△EDC 是直角三角形.【解】∵∠B=90°,∴∠A+∠C=90°.又∵∠DEC=∠A,∴∠DEC+∠C=90°,∴△EDC 是直角三角形.,(第 12 题)),(第 13 题)) 13.如图,在 Rt △ABC 中,∠C =30°,以直角顶点 A 为圆心,AB 长为半径画弧交 BC于点 D ,过点 D 作 DE ⊥AC 于点 E .若 DE =a ,则△ABC 的周长用含 a 的代数式表示为(6+2 3)a .【解】 ∵∠BAC =90°,DE ⊥AC ,∠C =30°,∴BC =2AB ,CD =2DE =2a ,∠B =60°.∵AB =AD ,∴∠BDA =∠B =60°,∴∠DAC =∠BDA -∠C =30°=∠C .∴AD =CD =2a .∴AB =AD =2a .∴BC =4a .∴AC .∴△ABC 的周长=AB +BC +AC =2a +4a +=(6+a .(第 14 题)14.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE ……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角 形所构成的图形的面积为15.5 . AB =BC =1,∠ABC =90°,∴CA DC .∴ABC S ∆=12 AB ·BC =12×1×1=12,ACD S ∆=12 AC ·CD =121. 同理,S △ADE =2,S △AEF =4,S △AFG =8.∴图形总面积=12+1+2+4+8=1152三、解答题(共44 分)15.(8 分)如图,在△ABC 中,∠ACB=90°,E 是BC 延长线上一点,D 为AC 边上一点,AE=BD,且CE=CD.求证:BC=AC.(第15 题)【解】∵∠ACB=90°,∴∠ACE=90°.⎪⎧BD=AE,在Rt△BCD 和Rt△ACE 中,∵⎨⎩⎪CD=CE,∴Rt△BCD≌Rt△ACE(HL).∴BC=AC.16.(10 分)如图,在△ABC 中,AB=AC,点E 在CA 的延长线上,∠E=∠AFE,请判断EF 与BC 的位置关系,并说明理由.(第16 题)【解】EF⊥BC.理由如下:过点A 作AD⊥BC 于点D,延长EF 交BC 于点G.∵AB=AC,AD⊥BC,∴∠BAC=2∠CAD.又∵∠BAC=∠E+∠AFE,∠E=∠AFE,∴∠BAC=2∠E.∴∠CAD=∠E.∴AD∥EF.又∵∠ADC=90°,∴∠EGC=90°,即EF⊥BC.17.(12 分)一牧童在A 处牧马,牧童的家在B 处,A,B 处距河岸的距离分别是AC=500 m,BD=700 m,且C,D 两地间的距离也为500 m,天黑前牧童从点A 将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)问:他至少要走多少路?(第17 题)【解】(1)如解图①,作点A 关于河岸的对称点A′,连结BA′交河岸于点P,此时PB+P A=PB+P A′=BA′,所走的路程最短,故牧童应将马赶到河边的点P 处.(第17 题解) (2)如解图②,过点A′作A′B′⊥BD 交BD 的延长线于点B′.易知四边形A′B′DC 是长方形,∴B′A′=CD=500,B′D=A′C=AC=500.在Rt△BB′A′中,BB′=BD+DB′=1200,A′B′=500,∴BA′=12002+5002=1300(m).答:他至少要走1300 m.18.(14 分)如图,D 为等腰直角三角形ABC 内的一点,∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE=CA.(第18 题)(1)求证:DE 平分∠BDC.(2)若点M 在线段DE 上,且DC=DM.求证:EM=BD.【解】(1)在等腰直角三角形ABC 中,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴AD=BD.又∵AC=BC,DC=DC,∴△ADC≌△BDC(SSS).∴∠DCA=∠DCB=45°.∵∠BDE=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDE=∠EDC,∴DE 平分∠BDC.(2)连结MC.∵DC=DM,且∠MDC=60°,∴△MDC 是等边三角形,∴CM=CD,∠DMC=∠MDC=60°,∴∠EMC=∠ADC=120°.又∵CE=CA,∴∠CEM=∠CAD.∴△EMC≌△ADC(AAS).∴EM=AD.∴EM=BD.。
浙教版八年级数学上册《第2章特殊三角形》单元测试题含答案

浙教版八年级数学上册第2章特殊三角形单元测试题第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.下列图案是轴对称图形的是( )2.若等腰三角形的顶角为70°,则它的底角度数为( )A.45°B.55°C.65°D.70°3.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有( )A.AD与BD B.BD与BCC.AD与BC D.AD,BD与BC4.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是( )A.1 B. 2 C. 3 D.25.若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为( ) A.5 B.7 C.5或7 D.66.如图所示,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°7.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°9.如图所示,在△ABC中,∠C=90°,AC=3,∠B=45°,P是BC边上的动点,则AP 的长不可能是( )A.3.5 B.3.7 C.4 D.4.510.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为( )A.10 cm B.8 cmC.12 cm D.20 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共90分)二、填空题(本题共6小题,每小题4分,共24分)11.命题“内错角相等,两直线平行”的逆命题是____________________.12.如图所示,在△ABC中,AB=AC,∠A=40°,BD⊥AC于点D,则∠DBC=________°.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,判定△ABD≌△ACD最简单的方法是________.14.直角三角形的两条边长分别为3,4,则它另一边的长为________.15.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,已知左边滑梯与地面的夹角∠ABC=27°,则右边滑梯与地面的夹角∠DFE=________°.16.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC 于点F.若BC=2,则DE+DF=________.三、解答题(本题共8小题,共66分)17.(6分)如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.18.(6分)如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.19.(6分)如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD =12,求四边形ABCD的面积.20.(8分)如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.21.(8分)如图所示,请将下列两个三角形分别分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)22.(10分)在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.23.(10分)如图所示,在△ABC中,∠C=2∠B,D是BC边上的一点,且AD⊥AB,E是BD的中点,连结AE.求证:(1)∠AEC=∠C;(2)BD=2AC.24.(12分)如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=40,一动点C在直线l 上移动.(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.答案1.A 2.B 3.A 4.B 5.B 6.C 7.D 8.C 9.D 10.A11.两直线平行,内错角相等 12.20 13.HL 14.5或7 15.6316. 317.解:∵AB =AC ,∴∠B =∠C (等边对等角). ∵DE ⊥BC 于点E ,∴∠DEB =∠FEC =90°, ∴∠B +∠EDB =∠C +∠F =90°, ∴∠EDB =∠F (等角的余角相等). 又∵∠EDB =∠ADF (对顶角相等), ∴∠F =∠ADF ,∴AD =AF , ∴△ADF 是等腰三角形. 18.证明:如图,连结AD .∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD .在△AED 和△AFD 中,∵⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD (SAS ),∴DE =DF .19.解:∵∠A 为直角,∴在Rt △ABD 中,由勾股定理,得BD 2=AD 2+AB 2. ∵AD =12,AB =16,∴BD =20.∵BD 2+CD 2=202+152=252,且BC 2=252,∴BD 2+CD 2=BC 2, ∴∠CDB 为直角,∴△ABD 的面积为12×16×12=96,△BDC 的面积为12×20×15=150,∴四边形ABCD 的面积为96+150=246. 20.证明:(1)∵BF =AC ,AB =AE , ∴BF +AB =AC +AE ,即FA =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由△AEF ≌△CDE ,得∠FEA =∠EDC . ∵△DEF 是等边三角形,∴∠DEF =60°.∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF , ∴∠BCA =60°.同理可得∠BAC =60°, ∴∠ABC =60°,∴△ABC 为等边三角形. 21.解:如图所示.22.证明:如图所示,在Rt △ABC 中,∵∠1+∠2=90°,∠1=∠3,∴∠2+∠3=90°. 又∵∠ACC ′=90°,∴∠2+∠3+∠ACC ′=180°, ∴B ,C (A ′),B ′在同一条直线上. 又∵∠B =90°,∠B ′=90°,∴∠B +∠B ′=180°,∴AB ∥C ′B ′.由面积相等得12(a +b )(a +b )=12ab +12ab +12c 2,即a 2+b 2=c 2.23.证明:(1)∵AD ⊥AB , ∴△ABD 为直角三角形. ∵E 是BD 的中点,∴AE =BE =DE ,∴∠B =∠BAE .∵∠AEC =∠B +∠BAE ,∴∠AEC =2∠B . 又∵∠C =2∠B ,∴∠AEC =∠C . (2)由(1)的结论可得AE =AC . ∵AE =12BD ,∴AC =12BD ,即BD =2AC .24.解:(1)存在.由勾股定理可求得AC =5.当点P 使得△ACP 为等腰三角形时,如图①所示,OP 1=4,OP 2=5-4=1,OP 3=CP 3+OC =AC +OC =5+4=9.在Rt △AP 4O 中,AP 42=OP 42+OA 2,设OP 4=x ,则(4-x )2=x 2+32,解得x =78,∴OP 4=78.综上所述,OP 的长为4或1或9或78.(2)存在.如图②所示,作点A 关于直线l 的对称点A ′,连结A ′B 与直线l 相交于点C ,则A ′B 为AC +BC 的最小值.过点A ′作A ′E ∥l ,过点B 作BE ⊥A ′E 于点E ,过点A 作AD ⊥BE 于点D .在Rt △ABD 中,AB =40,BD =5-3=2,∴AD =AB 2-BD 2=6.在Rt △A ′BE 中,A ′E =AD =6,BE =5+3=8, ∴A ′B =BE 2+A ′E 2=82+62=10, ∴AC +BC 的最小值为10.。
【浙教版】新八年级数学上:第二章-特殊三角形单元测试题(含参考答案)

第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距(??)A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,3、如图,,则△ADBA、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2?????D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1 C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB()A、假定CD EFD、假定AB不平行于EF9,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OPA、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是(??)A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设?________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是?________.(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________?14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________?米.15、如图是一段楼梯,高BC是3米,斜边AC是5________米.16________?m2.17、所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________?cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30长.21、如图,在B船沿南偏东60°的方向以每小时6M岛到N22、如图,DE,则△ABE?23AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】得两条船分别走了32,24海里,根据勾股定理得:(海里2故选D.2、【考点】坐标与图形变化-对称【解析】【解答】∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选C.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.3、【答案】D【考点】角平分线的性质【解析】【解答】解:∵∠C=90°,∠B=30°,BC=9,∴AB==6,∵AD平分∠CAB,DE⊥AB于E,∴DE=CD=3,∴△ADB的面积=AB?DE=×6×3=9.故选D.【分析】根据∠C=90°,∠B=30°,BC=9,求得,DE=CD=3,然后根据三角形的面积公式即可得到结论.4、【答案】A【考点】【解析】在Rt△ABC∵∴Rt△ABC在Rt△ABC∵∴Rt△ABC≌Rt△ABD(HL).故选A.【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.5、【答案】D【考点】直角三角形全等的判定【解析】【解答】解:∵在一个直角三角形中,有一个锐角等于60°,∴另一个锐角的度数是90°﹣60°=30°.故选D.【分析】根据直角三角形两锐角互余的性质列式进行计算即可得解.6、【答案】D【考点】反证法【解析】【解答】解:由于结论a2>b2的否定为:a2≤b2,用反证法证明命题时,要首先假设结论的否定成立,故应假设a2≤b2,由此推出矛盾.故选D.【分析】由于结论a2>b2的否定为:a2≤b27、【答案】C【考点】勾股定理【解析】【解答】解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB=故选:C.8、【考点】【解析】AB∥CD,AB∥EF,那么CD∥EF.CD不平行于EF.故选:C.【分析】根据要证CD∥EF,直接假设CD不平行于EF即可得出.9、【答案】C【考点】角平分线的性质,含30度角的直角三角形,直角三角形斜边上的中线,勾股定理【解析】【解答】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.【分析】由OP平分∠AOB,∠AOB=60°,CP=2,°,又由含30°角的直角三角形的性质,即可求得边上的中线等于斜边的一半,即可求得DM10、【答案】C【考点】勾股定理【解析】【解答】解:∵在△ABC故选:C.【分析】如c,那么a2+b2=c2.依此即可求解.二、填空题11、【考点】【解析】【分析】根据反证法就是从结论的反面出发进行假设,直接假设出一个三角形中至少有两个钝角即可.12、【答案】BC=NP【考点】直角三角形全等的判定【解析】【解答】解:根据直角三角形的判定定理HL,已知AB=MN,∠A=∠M=90°,再加上BC=NP,即可使△ABC≌△MNP,故填:BC=NP【分析】根据直角三角形的判定定理HL,题目中以经给出了一条直角边对应边,再添加一个斜边相等的条件,或再加一个锐角相等的条件也可,总之此题答案不唯一.13、【答案】11cm≤a≤12cm【考点】勾股定理的应用=24﹣12=12cm.【解析】【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB==13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.14、【答案】10【考点】【解析】,小树高为过C点作CE连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.15、【答案】7【考点】勾股定理的应用【解析】【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB=?=?=4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故答案为:7.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.16、【答案】96【考点】勾股定理的应用【解析】【解答】解:如图,连接AC.在△ACD∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96(平方米).故答案为:96.ABC是直角三角形,那么△ABC17、【考点】【解析】A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2).故答案为:147.【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.18、【答案】11【考点】角平分线的性质【解析】【解答】解:过点D 作DH ⊥AC 于H ,∵AC , ∴DF=DH ,在Rt △ADF 和Rt △ADH 中,,∴Rt △ADF ≌Rt △ADH (HL ),∴SRt △ADF =S Rt △在Rt △DEF∴Rt △DEF ∴S Rt △DEF =S Rt △∵△ADG ∴38+S Rt △DEF ∴S Rt △DEF =11故答案为:【分析】过点D 作DH ⊥AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,再利用“HL”证明Rt △ADF 和Rt △ADH 全等,Rt △DEF 和Rt △DGH 全等,然后根据全等三角形的面积相等列方程求解.三、解答题19、【答案】证明:假设直线l1与l2不相交,则两直线平行.∵l1∥l2,线l1⊥m,直线l2⊥n.∴m∥n,与直线m、n是相交线相矛盾.则l1和l2平行错误,则直线l1与l2必相交.【考点】反证法【解析】【分析】假设直线l1与l2不相交,则两直线平行,即可证得m∥n,与已知矛盾,从而证得.20、【答案】解:设斜边为acm∴则较小的直角边为acm,∴a+a=18,解得a=12cm.【考点】含30度角的直角三角形【解析】acm,列21、∴△BMN∴MN=?=?=20答:M岛与【考点】【解析】BN与BM的长,根据勾股定理即可求得MN的长.22、【答案】解:在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4.由翻折的性质,得CE=AE.△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.答:△ABE的周长等于7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.23、【答案】解:∵AB=13cm,BD=5cm,AD=12cm,∴AB2=169,AD2+BD2=25+144=169,∴AB2=AD2+BD2,∴AD⊥BC,∵BC=14cm,BD=5cm,∴DC=9cm,AD=12cm,∴AC==15(cm),答:AC的长为15cm.【考点】勾股定理【解析】四、综合题24、【答案】(1)4:3(2)解:∵△ABC的面积为70,△ABD与△CBD∴△ABD则DE=5【考点】【解析】∴==∴=,∴△ABD【分析】(的值,根据高相等的两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;(2)根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.。
浙教版八年级上册数学第二章特殊三角形单元测试卷(含答案解析)

浙教版八年级上册数学第二章特殊三角形单元测试卷第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形是轴对称图形的是( )A. B. C. D.2.威宁草海是国家级自然保护区,享有“高原明珠”等美誉.以下四个字中,是轴对称图形的是( )A. B. C. D.3.一个三角形中有两条边相等,则这个三角形是.( )A. 不等边三角形B. 等边三角形C. 直角三角形D. 等腰三角形4.若△ABC的三边a,b,c满足关系式(a−b)2+(b−c)2=0,则△ABC是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 锐角三角形5.如图,在四边形ABCD中,AB=CD,连接BD,且BD=AB.若∠ABC=130°,∠C=30°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°6.如图,Rt△ABC中,∠C=90°,∠A<∠B,且∠A≠30°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点P在△ABC的其他边上,则可以画出不同的点P的个数为( )A. 4B. 5C. 6D. 77.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF//BC,交AC于点F.以下结论:①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.其中结论正确的是( )A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤8.“对顶角相等”的逆命题是( )A. 如果两个角是对顶角,那么这两个角相等B. 如果两个角相等,那么这两个角是对顶角C. 如果两个角不是对顶角,那么这两个角不相等D. 如果两个角不相等,那么这两个角不是对顶角9.已知命题:如果a=b,那么|a|=|b|,则该命题的逆命题是( )A. 如果a=b,那么|a|=|b|B. 如果|a|=|b|,那么a=bC. 如果a≠b,那么|a|≠|b|D. 如果|a|≠|b|,那么a≠b10.如图,在Rt△ABC中,∠A=90°,∠C=30°,BC的垂直平分线交AC于点D,并交BC于点E,若ED=3,则AC的长为( )A. 3√3B. 3C. 6D. 911.下列条件:①∠A:∠B:∠C=1:2:3;②AB=√41,BC=4,AC=5;③∠A=90°−∠B;④∠A+∠B=∠C.其中能判定△ABC是直角三角形的有( )A. 4个B. 3个C. 2个D. 1个12.下列命题是假命题的是( )A. 两条直角边分别相等的两个直角三角形全等B. 斜边及一锐角分别相等的两个直角三角形全等C. 两个锐角分别相等的两个直角三角形全等D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图所示,在△ABC中,AB=3,AC=4,EF垂直平分BC,交AC于点D,交BC于点G,点P为直线EF上一动点,则△ABP周长的最小值是______.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=________.15.已知a、b、c是一个三角形的三边长,如果满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是______.16.如图,在Rt△ABC中,∠BCA=90°,AC=10,BC=24,分别以它的三边为直径作三个半圆,则阴影部分面积为______.三、解答题(本大题共9小题,共72分。
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、等边三角形、矩形、菱形、正方形、等腰梯形这五个图形中,既是轴对称又是中心对称的图形有()个.A.2B.3C.4D.52、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A. B. C. D.3、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为A. B. C. D.4、如图,在长、宽都为3cm,高为8cm的长方体纸盒的A处有一粒米粒,一只蚂蚁在B处去觅食,那么它所行的最短路线的长是()A.(3 +8)cmB.10cmC. cmD.无法确定5、下列图形中,既是轴对称又是中心对称的图形是( )A.矩形B.平行四边形C.等腰三角形D.直角三角形6、已知一个等腰三角形的两边长分别为2 cm和4 cm,那么该等腰三角形的周长为()A.8cmB.10cmC.8cm或10cmD.不能确定7、下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个8、以下列各组数据中是勾股数的是()A.1,1,B.12,16,20C.1,,D.1,2,9、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm10、下面四个汽车标志图标中,不是轴对称图形的为()A. B. C. D.11、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.12B.15C.19D.2012、下列命题中,其中正确命题的个数为()个①Rt△ABC中,已知两边长分别为3和4,则第三边为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c若a2+c2=b2,则∠C=90°④在△ABC中,∠A:∠B:∠C=1:5:6,则△ABC为直角三角形.A.1B.2C.3D.413、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠BAC,ED⊥AB,则ED 的长()A.3B.4C.5D.614、以下各组数能作为直角三角形三边长的是A.2,5,6B.5,8,10C.4,11,12D.5,12,1315、下列图案中,是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,为修铁路需凿通隧道BC,测得∠C=90°,AB=5km,AC=4km,若每天凿隧道0.3km,则需________天才能把隧道凿通.17、如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H 是对角线BD上的任意一点,则HE+HF的最小值是________.18、如图,在△ABC中,∠ACB=90°,AC=BC=2,D是边AC的中点,CE⊥BD于E.若F是边AB上的点,且使△AEF为等腰三角形,则AF的长为________.19、如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=________ .20、点P(-3,-4)到原点的距离为________ .21、如图,在△ABC中,BA=BC, BD平分∠ABC,则∠2-∠1=________.22、如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为________.23、如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为________.24、如图,CE平分∠ACB,且CE⊥BD,DA=DB,又知AC=18,△CDB的周长为28,那么BE 的长为________25、一个三角形的三边之比为,且周长为60cm,则它的面积是________ .三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,问海岛B与灯塔C相距多远?28、如图,把一张长方形纸片ABCD沿EF折叠,使点C落在点C'处,点D落在点D'处,ED'交BC于点G,已知∠EFG=50°,那么∠DEG和∠BGD'各是多少度?29、已知,如图,在△ABC中,AD平分∠BAC,E是CA延长线上的一点,EG∥AD,交AB于F,求证:AE=AF.30、已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、B5、A6、B7、B8、B9、B10、A11、C12、C13、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)

八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、使两个直角三角形全等的条件有()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等2、坐标平面内一点A(1,2),O是原点,P是x轴上一个动点,如果以点P、O、A为顶点的三角形为等腰三角形,那么符合条件的动点P的个数为()A.1B.2C.3D.43、如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B. C. D.4、如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE 的值是()A. B. C.6 D.45、已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.146、已知:如图,在半径为4的⊙O中,AB为直径,以弦AC(非直径)为对称轴将弧AC折叠后与AB相交于点D,如果AD=3DB,那么AC的长为()A. B. C. D.67、如图,折叠菱形纸片ABCD,使得AD的对应边A1D1过点C,EF为折痕,若∠B=60°,当A1E⊥AB时,的值等于()A. B. C. D.8、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD9、下列图形既是中心对称图形又是轴对称图形的是()A. B. C. D.10、下面四个图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,BD=BC,若∠A=40°,则∠BDC的度数是()A.80°B.7 0°C.6 0°D.5 0°12、下列图形中,不是轴对称图形的是()A. B. C. D.13、如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,AD=3,CE=5,则CD等于()A.3B.4C.D.14、如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B 处,则小虫所爬的最短路径长是(π取3)()A.20cmB.30cmC.40cmD.50cm15、如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.13.5二、填空题(共10题,共计30分)16、如图所示,已知△ABC和△BDE都是等边三角形。
八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)

八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,B C′交AD于E,AD=8,AB=4,则DE的长为A.3B.4C.5D.62、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是().A.7B.9C.10D.113、如图,在等腰三角形ABC中,AC=BC=5cm, AB=6cm,则等腰△ABC的面积为()A.12B.11C.10D.134、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为( )A.3cmB.4cmC.1cmD.2cm5、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个6、如图,在中,,、、分别是、、上的点,且,,若,则的度数是()A. B. C. D.7、下列都是同学们喜欢的商标,其中是轴对称图形的是()A. B. C. D.8、如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.9、如图,,是的直径,,是的弦,且,与交于点,连接,若,则的度数是()A.20°B.30°C.40°D.50°10、如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=()A. B. C. D.11、如图,,,三点在正方形网格线的交点处,若将绕点逆时针旋转得到,则点的坐标为()A. B. C. D.12、如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A. cmB. cmC. cmD.7cm13、如图,将Rt△ABC(∠ACB=90°,∠ABC=30°)沿直线AD折叠,使点B落在E处,E 在AC的延长线上,则∠AEB的度数为()A.30°B.40°C.60°D.55°14、如图所示,为等腰直角三角形,,正方形DEFG边长也为2,且AC与DE在同一直线上,从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为与正方形DEFG重合部分图中阴影部分的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.15、下列图形中,不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求:(1)AB的长为________(2)S△ABC=________17、在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
【解答】∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:(海里),2小时后两船相距40海里,故选D.【点评】解答本题的关键是熟练运用勾股定理进行计算,基础知识,比较简单。
2、【答案】 C【考点】坐标与图形变化-对称【解析】【解答】∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选C.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.3、【答案】D【考点】角平分线的性质【解析】【解答】解:∵∠C=90°,∠B=30°,BC=9,∴AB==6,∵AD平分∠CAB,DE⊥AB于E,∴DE=CD=3,∴△ADB的面积=AB•DE=×6×3=9.故选D.【分析】根据∠C=90°,∠B=30°,BC=9,求得AB==6,根据角平分线的性质得到DE=CD=3,然后根据三角形的面积公式即可得到结论.4、【答案】A【考点】直角三角形全等的判定【解析】【解答】解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选A.【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.5、【答案】D【考点】直角三角形全等的判定【解析】【解答】解:∵在一个直角三角形中,有一个锐角等于60°,∴另一个锐角的度数是90°﹣60°=30°.故选D.【分析】根据直角三角形两锐角互余的性质列式进行计算即可得解.6、【答案】D【考点】反证法【解析】【解答】解:由于结论a2>b2的否定为:a2≤b2 ,用反证法证明命题时,要首先假设结论的否定成立,故应假设a2≤b2 ,由此推出矛盾.故选D.【分析】由于结论a2>b2的否定为:a2≤b2 ,由此得出结论.【解析】【解答】解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB=故选:C.【分析】由正方形的性质和勾股定理求出AB的长,即可得出结果.8、【答案】C【考点】反证法【解析】【解答】解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.∴证明的第一步应是:从结论反面出发,故假设CD不平行于EF.故选:C.【分析】根据要证CD∥EF,直接假设CD不平行于EF即可得出.9、【答案】C【考点】角平分线的性质,含30度角的直角三角形,直角三角形斜边上的中线,勾股定理【解析】【解答】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE= CP=1,∴PE= = ,∴OP=2PE=2 ,∵PD⊥OA,点M是OP的中点,∴DM= OP= .故选:C.【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【解析】【解答】解:∵在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,∴a2+c2=b2.故选:C.【分析】勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.依此即可求解.二、填空题11、【答案】一个三角形中至少有两个钝角【考点】反证法【解析】【解答】解:根据反证法就是从结论的反面出发进行假设,故证明“一个三角形中至多有一个钝角”,应假设:一个三角形中至少有两个钝角.故答案为:一个三角形中至少有两个钝角.【分析】根据反证法就是从结论的反面出发进行假设,直接假设出一个三角形中至少有两个钝角即可.12、【答案】BC=NP【考点】直角三角形全等的判定【解析】【解答】解:根据直角三角形的判定定理HL,已知AB=MN,∠A=∠M=90°,再加上BC=NP,即可使△ABC≌△MNP,故填:BC=NP【分析】根据直角三角形的判定定理HL,题目中以经给出了一条直角边对应边,再添加一个斜边相等的条件,或再加一个锐角相等的条件也可,总之此题答案不唯一.13、【答案】11cm≤a≤12cm【考点】勾股定理的应用【解析】【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB==13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.【分析】先根据题意画出图形,再根据勾股定理解答即可.【考点】勾股定理的应用【解析】【解答】解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.15、【答案】7【考点】勾股定理的应用【解析】【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m ∴AB= = =4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故答案为:7.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.16、【答案】96【考点】勾股定理的应用【解析】【解答】解:如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×15×20﹣×9×12=96(平方米).故答案为:96.【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC 的面积减去△ACD的面积就是所求的面积.17、【答案】147【考点】勾股定理【解析】【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2).故答案为:147.【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.18、【答案】11【考点】角平分线的性质【解析】【解答】解:过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和38,∴38+S Rt△DEF=60﹣S Rt△DGH,∴S Rt△DEF=11,故答案为:11.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解.三、解答题19、【答案】证明:假设直线l1与l2不相交,则两直线平行.∵l1∥l2,线l1⊥m,直线l2⊥n.∴m∥n,与直线m、n是相交线相矛盾.则l1和l2平行错误,则直线l1与l2必相交.【考点】反证法【解析】【分析】假设直线l1与l2不相交,则两直线平行,即可证得m∥n,与已知矛盾,从而证得.20、【答案】解:设斜边为acm,∵在直角三角形中,有一个锐角为30度,∴则较小的直角边为acm,∴a+ a=18,解得a=12cm.【考点】含30度角的直角三角形【解析】【分析】设斜边为acm,利用含30度的直角三角形的性质可得较小的直角边为acm,列方程求解即可.21、【答案】解:根据条件可知:BM=2×8=16(海里),BN=2×6=12(海里).∵∠MBN=180°﹣60°﹣30°=90°,∴△BMN是直角三角形,∴MN= = =20(海里)答:M岛与N岛之间的距离是20海里.【考点】勾股定理的应用【解析】【分析】根据条件可以证得△BMN是直角三角形,求得BN与BM的长,根据勾股定理即可求得MN的长.22、【答案】解:在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC= =4.由翻折的性质,得CE=AE.△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.答:△ABE的周长等于7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.23、【答案】解:∵AB=13cm,BD=5cm,AD=12cm,∴AB2=169,AD2+BD2=25+144=169,∴AB2=AD2+BD2,∴AD⊥BC,∵BC=14cm,BD=5cm,∴DC=9cm,AD=12cm,∴AC= =15(cm),答:AC的长为15cm.【考点】勾股定理【解析】【分析】首先利用勾股定理的逆定理得出AD⊥BC,进而利用勾股定理得出AC的长.四、综合题24、【答案】(1)4:3(2)解:∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5【考点】角平分线的性质【解析】【解答】解:(1)∵BD是△ABC的角平分线,∴ = = ,∴ = ,∴△ABD与△CBD的面积之比为4:3;【分析】(1)根据角平分线的性质: = 求出的值,根据高相等的两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;(2)根据(1)求出的△ABD与△CBD的面积之比,得到△ABD 的面积,根据三角形的面积公式求出DE.。