第4章-电弧的基本理论
电弧的基本理论共40页文档
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
Байду номын сангаас
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
6.5.交流电弧熄灭原理
第四章 交流电弧的熄灭原理
5
第四章 交流电弧的熄灭原理
§ 4-0 序 § 4-1 弧隙中的介质恢复过程 § 4-2 弧隙中的电压恢复过程 § 4-3 交流电弧的熄灭条件
2008年 4月 17日
第四章 交流电弧的熄灭原理
6
§ 4-1 弧隙中的介质恢复过程
介质恢复过程的概念
弧柱区 的介质恢复过程
间隙电压高
第四章 交流电弧的熄灭原理
64
§ 4-2 弧隙中的电压恢复过程
理想弧隙的电压恢复过程
开断 单频电路 时弧隙上的电压恢复过程
实际 开断单频电路短路电流时, uhf 多为振荡衰减的波形
这种恢复电压常用 两参数 来表征
在 低压电器 中
振幅因数
γ =U hfm
U gm
描述恢复电压幅值的大小
振荡频率
f= 1 2tm
2008年 4月 17日
第四章 交流电弧的熄灭原理
32
第四章 交流电弧的熄灭原理
§ 4-0 序 § 4-1 弧隙中的介质恢复过程 § 4-2 弧隙中的电压恢复过程 § 4-3 交流电弧的熄灭条件
2008年 4月 17日
第四章 交流电弧的熄灭原理
33
§ 4-2 弧隙中的电压恢复过程
电压恢复过程
电流过零后, 弧隙两端 的电压由 零 或 反向电弧电压 上升到 电源电压 的过程称为 电压恢复过程 恢复电压( recovery voltage) :电压恢复过程中弧隙上的 电压
电击穿 :电弧电流过零后, Rh →∞, 但由于介质温度较高,
弧隙耐压强度低,而引起的击穿 温度仍然较高
复合
扩散
耐压强度低 弧柱温度
过零时
Ph = 0
焊工工艺学第五版教学课件第四章 焊条电弧焊
§4-2 焊条电弧焊设备及工具
三、常用焊条电弧焊电源
1.弧焊变压器 (1)BX3-300 型弧焊变压器 BX3-300 型弧焊变压器属于动
圈式,是生产中应用最广泛的一种 交流弧焊机,其外形如图所示。
21 第 四 章 焊 条 电 弧 焊
BX3-300 型弧焊变压器
§4-2 焊条电弧焊设备及工具
1.弧焊变压器
15 第 四 章 焊 条 电 弧 焊
§4-2 焊条电弧焊设备及工具
5.对弧焊电源动特性的要求 弧焊电源动特性是指弧焊电源对焊接电弧的动态负载所输出的电流、
电压对时间的关系,它表示弧焊电源对动态负载瞬间变化的反应能力。 弧焊电源动特性合适时,引弧容易,电弧稳定,飞溅小,焊缝成形良好。 弧焊电源动特性是衡量弧焊电源质量的一个重要指标。
它是依靠一次绕组、二 次绕组间漏磁获得陡降外特 性的,其结构如图所示。
22 第 四 章 焊 条 电 弧 焊
BX3-300 型弧焊变压器的结构 1—手柄 2—调节丝杆 3—铁心
§4-2 焊条电弧焊设备及工具
1.弧焊变压器
(2)BX1-315 型弧焊变压器 BX1-315 是动铁心式弧焊变 压器,它由一个口字形固定铁心 (Ⅰ)和一个梯形活动铁心(Ⅱ) 组成,活动铁心构成了一个磁分路, 以增强漏磁,使电焊机获得陡降外 特性。BX1-315 型弧焊变压器的外 形及电路结构如图所示。
§4-2 焊条电弧焊设备及工具
3.对弧焊电源稳态短路电流的要求 弧焊电源稳态短路电流是弧焊电源所能稳定提供的最大电流,即输
出端短路时的电流。若稳态短路电流太大,焊条过热,易引起药皮脱落, 并增加熔滴过渡时的飞溅;若稳态短路电流太小,则会使引弧和焊条熔 滴过渡产生困难。因此,对于下降外特性的弧焊电源,一般要求稳态短 路电流为焊接电流的1.25~2.0倍。
电弧的基本理论
5.1.1 电弧的产生和物理特性 4.电弧的组成
5.1 电弧的基本理论
弧柱区——6000k以上高温,大量气体分子游离,因此 具有良好的导电性。电流越大,弧温越高。热电离程度越大 ,电阻越小,伏安特性是负特性(但真空电弧是正特性), 弧柱内气体全部电离,正负带电粒子数相等,为等离子体。
5.1 电弧的基本理论
5.1.1 电弧的产生和物理特性 5. 电弧发生的途径 从辉光放电转变到冷阴极电弧的过程。在阴极电化显著增高的非正常辉光放电中 。 阴极表面的个别
部分在强电场影响下能够发射电子,其数量足以使阴极电位降区域和气体显著地游离,由此产生电荷浓 度较高的区域。电子比正离子更快离开这个区域,因此形成中间电荷的增加,促使场电子发射继续增加 , 最后形成电弧放电。
5)从火花放电到电弧放电的转变。 当两电极之间的间隙被击穿形成火花放电时,就在间隙形成导电通道,开始输入能量,电流逐渐上 升。电流上升速度一般决定于外部电路的参数,但在两电极间的电容经常有某些储藏的能量被迅速输入 到通道中。通道强烈地被加热和扩展,并且扩展的速度在初始阶段可以近似地看作为冲击波的传播。火 花放电可以引起具有大的压力跃变的冲击波。
式由表面复合和空间复合,影响复合因素最显著的是温度,冷却作用是加强复合的决定性因素。
5.1 电弧的基本理论
5.1.1 电弧的产生和物理特性 2. 气体放电的物理过程 扩散——弧柱中的带电粒子,由于热运动从弧柱中浓度高的区域移动到弧柱周围浓度较低的区域,
叫扩散。 电弧电流恒定时,扩散速率与电弧直径成反比,复合速率与电弧直径平方成反比。 3)气体放电的几个阶段
第四章 电弧焊自动控制基础——【《熔焊方法及设备(第2版)》王宗杰】
下三种:
• (1)行程转换 即按预定的空间距离进行程序转换。常用于全位置 环缝焊时的过程参数的分段转换、环缝焊到终点时自动停止、焊 枪自动返回等。常用行程开关来实现。
• (2)时间转换 即按预定的时间间隔进行程序转换。例如,保护气
提前给送和滞后停止、焊丝返烧熄弧等即属此类。可以使用延时 继电器或延时电路来实现。
线分别表示保护气体流量、冷却水流量和焊接速
度随时间的变化。也可将这些曲线放到一个坐标
图中。
图4-1 熔化极气体保护焊程序循环图示例
4.1.2电弧焊程序自动控制转换的类型和实现方法
• 1.程序自动控制转换的类型
•
除了需接受必要的外部人工操作指令(如启动、停止、急
停)以外,电弧焊的程序转换都应自动地实现。其转换方式有以
逻辑组合有“或”、“与”、“非”三种,复
杂一些的程序控制系统可以由它们复合而成。 其中,逻辑“或”组合实例如图4-2a所示,只
要气流预检开关S1、提前送气继电器K1的触点 和滞后停气时间继电器KT1的触点中有一个接通, 电磁气阀YV就可以接通。图4-2b是逻辑“与”
组合实例,不考虑空载接通开关S2,只有当中 间继电器K1的触点和时间继电器KT2的触点都接 通时,才能使继电器K2工作。
可以改变延时时间。该电路的缺点是延时精度易受网压波动 的影响。
第四章 焊接过程自动控制基础、电弧焊自动控制
按预定要求,从某一个工艺程序自动进入下一个工艺程序。
③自动调整 使工艺过程中的某些变量自动地保持在预定范围内。
焊接生产自动控制的核心问题是: (1)焊接程序的自动控制 (2)焊接参数的自动控制 (3)焊接方向的自动控制
(1)焊接程序的自动控制 焊接程序的编制主要取决于焊接方法和产品特性。通常根据 焊接方法和产品所需的工艺步骤设计具体控制系统。焊接程序的 控制取决于是按定时或定位或定位加定时的形式进行控制。实现 程序控制常用的方法有机械法、继电器法、射流法、数控法和电 子法等。 例如:避免焊道末端出现弧坑,可以设置衰减控制电路,采用分 级变阻法和改变激磁电流法使电弧衰减。 分级变阻法是在焊接回路或激磁回路中设置附加电阻,使电流平 滑衰减,接头质量好。 改变激磁电流法是指通过改变电容放电时间或可控硅导通角等方 法,通过电源的激磁电流来调节衰减速度。
电弧电压反馈自动调节系统也称为电弧电压均匀调节系统。这 种系统的调节作用是在弧长变化后主要通过电弧电压的负反馈 作用来保持电弧长度不变的,属于闭环控制系统。 当弧长发生波动而引起电弧电压变化时,将此变化量反馈到自 动调节系统的输入端,强迫改变送丝速度,使其重新等于焊丝 熔化速度,从而恢复电弧长度。 影响电弧电压反馈自动调节系统调节精度的因素主要有:焊丝 的伸出长度、焊丝直径和电阻率、焊接电源外特性、网压波动 等。
4.3 埋弧焊设备及控制
4.3.1 埋弧焊设备分类
埋弧焊是目前广泛使用的一种生产效率较高的机械化焊接方 法。它与焊条电弧焊相比,虽然灵活性差一些,但焊接质量好、 效率高、成本低,劳动条件好。 埋弧焊设备包括埋弧焊机与各种辅助设备。其中埋弧焊机是 核心部分,由机械系统、焊接电源和控制系统3部分组成。 常用的埋弧焊机有等速送丝式和变速送丝式两种类型。按照 不同的工作需要,埋弧焊机可做成不同的型式。常见的有焊车式、 悬挂式、车床式、悬臂式和门架式等。
第4章电弧及其与电路的相互作用
强电场发射——强电场 热电子发射——高温
②电极间弧柱气体游离产生大量的电子和离子
碰撞游离——电场加速电子,由高速运动的电子与中性粒子碰撞 产生新的带电粒子
热游离——高温(起弧),由中性质点热运动碰撞产生
3.弧光放电的特点
在辉光、电晕、弧光等自持性放电形式中,弧光放电的特 点是电流密度大(伴随有高温和强光)、阴极位降低。形 成的电弧是一种能量集中、温度很高、亮度很强的具有良 好导电性的游离气体。
二、高气压电弧与真空电弧比较
高气压电弧与真空电弧的定义
由于形成机理不同,二者在很多方面表 现明显不同。
1、外观形态上的区别
电弧形态示意图
从外观形态上来看,高气压电弧有集中的阴极斑点和阳极斑点。由于 受到自身电流产生的磁场箍缩效应,在高气压电弧阴极斑点和阳极斑 点之间,有一根明亮而且集中的弧柱。而真空电弧却不同,在阴极表 面上往往有许多明亮而分散的阴极斑点,阴极斑点作无规则运动。在 阳极表面,只有当电流超过一定的数值时,才能出现阳极斑点。各个 阴极斑点之间好象是独立的,弧柱呈锥状向阳极伸展。两极之间的弧 柱亮度较弱。
动态伏安曲线
对于长度不变的直流电弧, 其静态伏安曲线只有一条, 而动态伏安曲线可以有千万 条!
注意事项
实际上开关中的直流电弧在熄灭 过程中电流的变化都是较快的,因 此在讨论电弧电压与电流的关系时 必须采用动态伏安特性。
二、直流电弧的稳定燃烧与熄灭
电弧电压Uh随电弧长度l
的增大而升高,伏安特 性曲线向上移
冷却条件对伏安特性的影响
冷却情况有关
冷却条件越好,伏安特性 曲线越向上移。这是因为 外界对电弧冷却作用的增 强会使弧柱内的消游离过 程加强,在相同的电流下, 必须有较高的电场强度 (在一定弧长时,也即要 有较高的电弧电压)才能 给弧道提供足够的能量来 加强热游离,继续维持电 弧的稳定燃烧。
电弧基本理论good
6.短弧原理灭弧 利用一个金属灭弧栅将电弧分为多个短弧,利 用近阴极效应的方法灭弧。常用于低压开关电器中, 如自动开关和电磁接触器等。
7、利用固体介质的狭缝灭弧 将电弧拉入灭弧片的狭缝中,灭弧片由石 棉水泥或陶土材料制成,加强冷却。灭弧片结 构有直缝式和曲缝式。 常用于低压电器中的接触器等。
高压断路器熄灭电弧的基本方法
4.利用多断口灭弧
采用多断口的结构后,每一个断口在开断位置的电压 分配和开断过程中的恢复电压分配出现了不均匀现象。 如图为单相断路器在开断 接地故障后的电路图。 U:电源电压 U1、U2:两个断口的电压 Cd:断口的等效电容
C0:底座对地等效电容
二、高压断路器熄灭电弧的基本方法
一、电弧的基本理论
(一)电弧的产生、维持及物理过程
3.去游离过程(带电质点减少)
在电弧中,发生游离过程的同时还进行着使带 电质点减少的去游离过程。 游离过程>去游离过程:电弧电流增大,炽热燃烧 游离过程=去游离过程:电弧电流不变,稳定燃烧
游离过程<去游离过程:电弧电流减小,最终熄灭
因此,要想使电弧熄灭,就必须设法加强去游离 过程,使其大于游离过程。
(二)熄灭交流电弧的物理过程
介质强度和弧隙电压的恢复过程图示 (a)在t1时刻发生 击穿.电弧重燃 (b)电弧熄灭 (c)电弧熄灭
弧隙介质强度的恢复过程
介质强度的恢复过程与下列因结构)
灭弧介质的特性(SF6气体和真空介质)
触头分离的速度(电阻) 近阴极效应:交流低压电器常利用近阴极效应来灭弧 150~250伏的起始介质强度(0.1微秒-1微秒)。 在电流过零后在阴极附近的薄 层空间介质强度突然升高的现象。
一、电弧的基本理论
哈工大焊接考研复试内容及经验
(1)焊接电弧理论与电弧焊方法部分,占75分。
主要内容:①《电弧焊基础》第1章:电弧的物理基础,电弧理论、现象,电弧本质,带电粒子的产生,电弧的热源、力源特性,电弧的电特性,交流电弧的特点、电弧磁场及外部磁场对电弧的作用。
②《电弧焊基础》第2章:焊丝熔化热、熔化速度、熔化特性,熔滴过渡的分类及与各种条件的关系(并与后续章节中的MIG焊、CO2焊、MAG焊、埋弧焊实际情况相联系);焊缝成形与焊接参数的关系,焊接缺陷的种类。
③后续章节:TIG焊、MIG焊、CO2焊、MAG焊、埋弧焊、等离子弧焊的原理与应用,脉冲焊接的特点,焊接飞溅与控制措施。
参考书目:杨春利,林三宝,《电弧焊基础》,哈工大出版社,2003。
(2)焊接冶金学部分,占75分。
主要内容:主要包括焊接化学冶金、焊接热影响区组织和性能问题,以及焊接裂纹的分析和判断等。
主要内容要点如下:①《焊接冶金学(基本原理)》第1章:气相与焊缝金属的作用:主要包括氢、氮、氧等的来源,与金属的溶解、扩散、化学反应,对焊缝金属的危害,影响因素及控制措施;S、P的危害及控制;合金过渡。
②《焊接冶金学(基本原理)》第4章:焊接热影响区的分区方式,各区域的组织特征及对接头性能的影响。
(一定要画图)③《焊接冶金学(基本原理)》第5章:主要包括焊接中危害最大的几种缺陷:焊接裂纹,裂纹包括热裂纹、冷裂纹、应力腐蚀裂纹,重点掌握缺陷产生的条件、机理和抑制措施。
参考书目:张文钺,《焊接冶金学(基本原理)》,机械工业出版社,1996。
(3)焊接结构部分,占50分。
主要内容:①《焊接结构》第2章:焊接应力与变形产生机理(§2-1)(去年没考)、焊接残余应力分布规律与控制方法(§2-3);(去年考了画图)②《焊接结构》第4章:影响金属脆断的主要因素(§4-2)、焊接结构的特点及其对脆断的影响(§4-5)、预防焊接结构脆断的措施(§4-7);③《焊接结构》第5章:应力集中和残余应力对焊接接头疲劳强度的影响(§5-6)、提高焊接接头疲强度的措施(§5-7)。
第4章 电弧的基本理论
第4章电弧的基本理论电弧的实质是高温等离子体。
等离子体:由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。
等离子体分为:高温等离子体和低温等离子体。
电弧是高温等离子体。
电弧的特点:导电性能强、能量集中、温度高、亮度大、质量轻、易变形等。
4.1电弧的形成与去游离放电的形式:非自持式放电和自持式放电。
非自持式放电:需要外部游离因素来维持的放电形式,主要指在气体环境下,放电持续需要依靠外界游离因素所造成的原始游离才能实现。
它的特点:1.外因影响放电,外界游离因素消失,放电也会衰减直至停止;2.具有饱和性,稳定的外部因素单位时间里游离出的带电粒子数目是稳定的,于是形成饱和形式的放电现象。
自持式放电:指当电场强度(场强)达到或超过一定值时,出现的电子崩可仅由电场的作用而自行维持和发展,不必再依赖外界游离因素的放电现象。
电弧是一种自持式放电现象,即电极间的带电质点不断产生和消失,处于一种动态平衡状态。
自持式放电:1.放电不再依赖外界游离因素;2.自持放电的条件是:电源的能量足以维持电弧的燃烧;3.放电电流迅速增加,放电间隙电压迅速降低;4.伴随有强光和高温。
4.1.1介质中电弧形成的机理电弧的形成过程:介质向等离子体态的转化过程;电弧的产生和维持:弧隙里中性质点(分子和原子)被游离的结果,游离就是中性质点转化为带电质点的过程。
从电弧的形成过程来看,游离过程分三种形式:1.强电场发射:是在弧隙间最初产生电子的原因;2.碰撞游离》:由英国物理学家汤森德在1903年提出(汤森德机理)3.热游离:电弧产生之后,弧隙的温度很高,在高温作用下,气体的不规则热运动速度增加;具有足够动能的中性质点互相碰撞,又可能游离出电子和离子。
还有光游离、热电子发射、金属气化等。
4.1.2电弧的去游离过程去游离的主要形式:复合和扩散。
1.复合去游离复合:指正离子和负离子互相吸引,结合在一起,电荷互相中和的过程。
精品文档-供配电技术(刘燕)-第4章
第4章 供配电系统的主要电气设备
4.3.2 电力变压器的结构及型号 1. 电力变压器的结构 电力变压器是利用电磁感应原理进行工作的,因此其基本的结构
组成有电路和磁路两部分。变压器的电路部分就是它的绕组,对于降 压变压器来说,与系统电路和电源连接的称为一次绕组,与负载连接 的称为二次绕组;变压器的铁芯构成了它的磁路,铁芯由铁轭和铁芯 柱组成,绕组套在铁芯柱上。为了减少变压器的涡流和磁滞损耗,一 般采用表面有绝缘漆膜的硅钢片交错叠成铁芯。
在现代的电气开关电器中,常常根据具体情况综合利用上述某 几种灭弧方法来达到快速灭弧的目的。
第4章 供配电系统的主要电气设备
4.3 电 力 变 压 器
4.3.1 电力变压器的分类及特点 电力变压器是变电所中最关键的一次设备,其主要功能是将
电力系统中的电能电压升高或降低,以利于电能的合理输送、分 配和使用。
第4章 供配电系统的主要电气设备
2. 电弧的产生与熄灭 1) 电弧的产生 产生电弧的根本原因是开关触头在分断电流时,触头间电场强 度很大, 使得触头本身的电子及触头周围介质中的电子被游离, 从而形成电弧电流。产生电弧的游离方式有高电场发射、热电发射、 碰撞游离和高温游离。 在触头分开之初是高电场发射和热电发射 的游离方式占主导作用,接着碰撞游离和高温游离使电弧持续并发 展,而且它们是互相影响、互
图4-6 绝缘灭弧栅对电弧的作用
第4章 供配电系统的主要电气设备
(7) 真空灭弧法:真空具有相当高的绝缘强度,因此装在真空 容器内的触头分断时,在交流电流过零时即能熄灭电弧而不致复燃。 真空断路器就是利用真空灭弧原理制成的。
(8) 六氟化硫(SF6)灭弧法:SF6气体具有优良的绝缘性能和灭 弧性能,其绝缘强度约为空气的3倍,绝缘恢复的速度约为空气的 100倍,因此SF6气体能快速灭弧。六氟化硫断路器就是利用SF6作 绝缘介质和灭弧介质的。
电弧的基本理论-1
1.去游离过程 使弧隙中正离子和自由电子减少。 正负电荷中和成为中性质点的现象。
扩散:电弧中的自由电子和正离子散溢到电弧外面, 并与周围未被游离的冷却介质相混合的现象。
要使电弧熄灭,必须使去游离作用强于游离作用。
5.1 电弧的产生及危害
四、电弧的熄灭
2.影响去游离的物理因素 (1)介质的特性 (2)电弧的温度 (3)气体介质压力
3.电弧是一种自持放电,很低的电压就能维持电弧的稳燃 烧而不会熄灭。
4.游离的气体,质量轻,迅速移动、伸长、弯曲和变形。 运动速度可达每秒几百米。
5.1 电弧的产生及危害
三、电弧的 电弧的基本理论
1.电弧的高温,可能烧坏电器触头和触头周围 的其他部件;对充油设备还可能引起着火甚至 爆炸等危险。
(4)游离质点的密度 (5)触头材料
《发电厂变电站电气设备》 第五章 电弧的基本理论
5.1 电弧的产生及危害
思考练习
《发电厂变电站电气设备》 第五章 电弧的基本理论
思考练习
1.电弧具有什么特征?它对电力系统和电气设 备有哪些危害?
2.电弧是如何形成的?
3.电弧的游离和去游离方式各有哪些?影响去 游离的因素是什么?
阴极的热电子发射或强电场发射:触头开断瞬间产生 少量的自由电子的原因。
热电子发射:触头刚分离时,触头间的接触压力和接 触面积不断减小,接触电阻迅速增大,使接触处剧烈发 热,局部高温使此处电子获得动能,就可能发射出来成 为自由电子。
CH-04-1电弧理论
电气运行
1.吹弧
电气运行
2.采用多断口灭弧
电气运行
3.短电弧灭弧
这种灭弧方法是近阴极 效应的利用。当触点间发 生电弧后,由于磁场的作 用,把电弧吸引到栅片内, 将长弧分割成一串短电弧。 电弧过零时,每个短电弧 的阴极附近立即出现 150 一 250V 的介质电强度。 如果触点间的电压小于各 个间隙介质电强度的总和, 电弧将会熄灭。这种灭弧 方法在低压开关电器中效 果显著。
电气运行
弧隙介质强度的恢复过程是指在电弧电流过零时电弧 熄灭,而弧隙的绝缘能力要经过一定时间恢复到绝缘 的正常状态的过程。 影响弧隙介质恢复的因素,除了介质的种类、状态、 电极材料、形状等外,还有近阴极效应。
电气运行
近阴极效应:
但电流过零极性改变是,弧隙中剩余带电粒子的运 动方向也随之改变,由于电子的质量比正离子小得多, 弧隙极性改变时,电子能迅速地向相反方向运动,而 正离子却几乎不动,这样,在新阴极附近形成了只有 正离子的离子空间。其电导很低,显示出一定的介质 电强度,约在0.1~1微秒的短暂时间内有150~250V的 起始介质电强度。这种现象有利于电弧的熄灭。随后, 弧隙介质电强度恢复的快慢,主要取决于冷却条件。
电气运行
开关电器
开关电器是用来接通或切断电路的电气设备。发 电厂、变电站中的设备的投入或退出、系统运行方式 的改变都必须用开关电器进行。
开关电器主要是指断路器、隔离开关、熔断器、 负荷开关、闸刀开关、接触器、起动器等电气设备。
电气运行
开关电器分类
根据开关电器在电路中担负的任务,可分为: (1)仅用来正常工作情况下,断开或闭合工作电流。 如高压负荷开关、低压闸刀开关、接触器、磁力启动 器。 (2)仅用来断开故障情况下的过负荷电流或短路电 流。若高、低压熔断器。 (3)既用来断开或闭合工作电流,也用来断开或闭 合过负荷电流或短路电流。如高压断路器、低压自动 空气断路器等。 (4)不要求断开或闭合工作电流,但具备一定的切、 合电容电流和环流的能力,在检修时则用来隔离电压。 如隔离开关等。
电弧物理 课件 第四章 焊丝的熔化和熔滴的过渡
主讲教师:黄健康
第四章 焊丝的熔化和熔滴 的过渡
电弧焊时,焊丝(或焊条)的末端在电弧的高 温作用下加热熔化,熔化的液体金属达到一定程度 便以一定的方式脱离焊丝末端,过渡到熔池中去。 这个过程称为熔滴过渡。焊接过程中,焊丝的加热、 熔化及熔滴过渡会直接影响到焊缝质量和焊接生产 率。本章将讲述焊丝的加热与熔化、熔滴上的作用 力、熔滴过渡的主要形式以及熔滴过渡过程中产生 的飞溅。
5.焊丝材料的影响 焊丝材料不同,电阻率也不同,所产生的电阻 热不同,因而对熔化速度的影响也不同。不锈钢 电阻率较大,会加快焊丝的熔化速度,尤其是伸 出长度较长时影响更为明显。 材料不同还会引起焊丝熔化系数的不同。铝合金 因电阻率小,焊丝熔化速度与电流成线性关系。 但是焊丝越细,熔化速度与电流关系曲线斜率越 大,说明熔化系数随焊丝直径变小而增大,与电 流无关 。不锈钢电阻率较大,产生的电阻热较大, 因而焊丝熔化速度与电流不成线性关系,随着电 流增大,曲线斜率增大,说明熔化系数随电流增 加而增大,并且随焊丝伸出长度增加而增加。
根据第二章中的可知,单位时间内阴极区和 阳极区的产热量如果分别用电功率PK和PA表示, 计算公式如下: PK=I(UK-UW-UT) (4-1) PA=I(UA+UW+UT) (4-2) 在通常电弧焊的情况下,弧柱的平均温度为 6000K左右,UT<1V;当焊接电流密度较大时,UA 近似为零,故上两式可简化为: PK=I(UK-UW) (4-3) PA= IUW (4-4) 这是熔化极电弧焊熔化焊丝的主要热源。
4.2.3 电弧力
电弧中的电磁收缩力、等离子流力、斑点压 力对熔滴过渡都有不同的影响。需要指出的是, 电流较小时住往是重力和表面张力起主要作用; 电流Байду номын сангаас大时,电弧力对熔滴过渡起主要作用。 1.电磁收缩力 作用在熔滴上的电磁力通常可分解为径向和 轴向两个分力。
第4章_电弧及其与电路的相互作用
二、电弧的组成部分 电弧通常可以分为三个区域:阴极区、 电弧通常可以分为三个区域 阴极区、 阴极区 弧柱区和阳极区 通常阴极区的电位降为l0V~20V,并与 , 通常阴极区的电位降为 触头材料等有关。阴极区的长度很小, 触头材料等有关。阴极区的长度很小, 如在大气中只有10 左右, 如在大气中只有 -4cm左右,因此电位 左右 梯度很大。 梯度很大。 阳极区的位降与阴极区的位降相近, 阳极区的位降与阴极区的位降相近, 长度稍长。 长度稍长。 弧柱长度大, 弧柱长度大,电位梯度一般不过几十 伏上下,最高几百伏, 伏上下,最高几百伏,较阴极电位梯 度小得多。 度小得多。
五、电弧的作用
※
利用电弧的高温:金属焊接、熔炼; 利用电弧的高温:金属焊接、熔炼; 高温 利用电弧的强光 强光源; 强光: 利用电弧的强光:强光源; 电力开关中的负面作用 负面作用: 电力开关中的负面作用:电弧的存在延长了开关电器开 断故障电路的时间,加重了电力系统短路故障的危害; 断故障电路的时间,加重了电力系统短路故障的危害; 电弧产生的高温,将使触头表面熔化和蒸化, 电弧产生的高温,将使触头表面熔化和蒸化,烧坏绝缘 材料。对充油电气设备还可能引起着火、爆炸等危险; 材料。对充油电气设备还可能引起着火、爆炸等危险; 由于电弧在电动力、热力作用下能移动, 由于电弧在电动力、热力作用下能移动,很容易造成飞 弧短路和伤人,或引起事故的扩大。 弧短路和伤人,或引起事故的扩大。 电力开关中的正面作用 正面作用: 电力开关中的正面作用:充分利用电弧等离子体的温度 控制,实现导体到绝缘体的转换。 控制,实现导体到绝缘体的转换。
电弧是等离子体,质量极轻、极容易改变形状: 电弧是等离子体,质量极轻、极容易改变形状:电弧区 内气体的流动, 内气体的流动,包括自然对流以及外界甚至电弧电流本 身产生的磁场都会使电弧受力,改变形状, 身产生的磁场都会使电弧受力,改变形状,有的时候运 动速度可达每秒几百米。 动速度可达每秒几百米。设计人员可以利用这一特点来 快速熄弧并预防电弧的不利影响及破坏作用。 快速熄弧并预防电弧的不利影响及破坏作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章电弧的基本理论电弧的实质是高温等离子体。
等离子体:由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。
等离子体分为:高温等离子体和低温等离子体。
电弧是高温等离子体。
电弧的特点:导电性能强、能量集中、温度高、亮度大、质量轻、易变形等。
4.1电弧的形成与去游离放电的形式:非自持式放电和自持式放电。
非自持式放电:需要外部游离因素来维持的放电形式,主要指在气体环境下,放电持续需要依靠外界游离因素所造成的原始游离才能实现。
它的特点:1.外因影响放电,外界游离因素消失,放电也会衰减直至停止;2.具有饱和性,稳定的外部因素单位时间里游离出的带电粒子数目是稳定的,于是形成饱和形式的放电现象。
自持式放电:指当电场强度(场强)达到或超过一定值时,出现的电子崩可仅由电场的作用而自行维持和发展,不必再依赖外界游离因素的放电现象。
电弧是一种自持式放电现象,即电极间的带电质点不断产生和消失,处于一种动态平衡状态。
自持式放电:1.放电不再依赖外界游离因素;2.自持放电的条件是:电源的能量足以维持电弧的燃烧;3.放电电流迅速增加,放电间隙电压迅速降低;4.伴随有强光和高温。
4.1.1介质中电弧形成的机理电弧的形成过程:介质向等离子体态的转化过程;电弧的产生和维持:弧隙里中性质点(分子和原子)被游离的结果,游离就是中性质点转化为带电质点的过程。
从电弧的形成过程来看,游离过程分三种形式:1.强电场发射:是在弧隙间最初产生电子的原因;2.碰撞游离》:由英国物理学家汤森德在1903年提出(汤森德机理)3.热游离:电弧产生之后,弧隙的温度很高,在高温作用下,气体的不规则热运动速度增加;具有足够动能的中性质点互相碰撞,又可能游离出电子和离子。
还有光游离、热电子发射、金属气化等。
4.1.2电弧的去游离过程去游离的主要形式:复合和扩散。
1.复合去游离复合:指正离子和负离子互相吸引,结合在一起,电荷互相中和的过程。
2.扩散去游离扩散:指带电质点从电弧内部逸出而进入周围介质的现象。
弧隙内的扩散去游离的形式:浓度扩散和温度扩散。
游离和去游离是电弧燃烧中两个相反的过程。
游离过程使弧道中的带电离子增加,有助于电弧的燃烧;去游离过程使弧道中的带电离子减少,有利于电弧的熄灭。
由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。
电弧是由于电场过强,气体发生电崩溃而持续形成等离子体,使得电流通过了通常状态下的绝缘介质(例如空气)所产生的瞬间火花现象。
1808年汉弗里·;戴维(Humphry Davy)利用此一现象发明第一盏“电灯”—电弧灯(voltaicarc lamp)。
主要分类〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。
〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。
〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。
特点用途导电性强、能量集中、温度高、亮度大、质量轻、易变性等。
电弧可作为强光源如弧光灯,紫外线源如太阳灯或强热源如电弧炉。
电弧具有热效应。
主要作用电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。
产生电流当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。
因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。
电弧的形成是触头间中性质子(分子和原子)被游离的过程。
开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。
当电场强度超过3×10^6V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。
这种游离方式称为:强电场发射。
从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。
只要电子的运动速度v足够高,电子的动能A=1/2mv^2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。
这种现象称为碰撞游离。
新形成的自由电子也向阳极作加速运动,同样地会与中性质点碰撞而发生游离。
碰撞游离连续进行的结果是触头间充满了电子和正离子,具有很大的电导;在外加电压下,介质被击穿而产生电弧,电路再次被导通。
触头间电弧燃烧的间隙称为弧隙。
电弧形成后,弧隙间的高温使阴极表面的电子获得足够的能量而向外发射,形成热电场发射。
同时在高温的作用下(电弧中心部分维持的温度可达10000℃以上),气体中性质点的不规则热运动速度增加。
当具有足够动能的中性质点相互碰撞时,将被游离而形成电子和正离子,这种现象称为热游离。
随着触头分开的距离增大,触头间的电场强度E逐渐减小,这时电弧的燃烧主要是依靠热游离维持的。
在开关电器的触头间,发生游离过程的同时,还发生着使带电质点减少的去游离过程。
电弧放电两个电极在一定电压下由气态带电粒子,如电子或离子,维持导电的现象。
激发试样产生光谱。
电弧放电主要发射原子谱线,是发射光谱分析常用的激发光源。
通常分为直流电弧放电和交流电弧放电两种。
气体放电中最强烈的一种自持放电。
当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温(几千至上万度),这就是电弧放电。
电弧是一种常见的热等离子体(见等离子体应用)。
电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。
电弧的重要特点是电流增大时,极间电压下降,弧柱电位梯度也低,每厘米长电弧电压降通常不过几百伏,有时在1伏以下。
弧柱的电流密度很高,每平方厘米可达几千安,极斑上的电流密度更高。
电弧放电可分为3个区域:阴极区、弧柱和阳极区。
其导电的机理是:阴极依靠场致电子发射和热电子发射效应发射电子;弧柱依靠其中粒子热运动相互碰撞产生自由电子及正离子,呈现导电性,这种电离过程称为热电离;阳极起收集电子等作用,对电弧过程影响常较小。
在弧柱中,与热电离作用相反,电子与正离子会因复合而成为中性粒子或扩散到弧柱外,这一现象称为去电离。
在稳定电弧放电中,电离速度与去电离速度相同,形成电离平衡。
此时弧柱中的平衡状态可用萨哈公式描述。
能量平衡是描述电弧放电现象的又一重要定律。
能量的产生是电弧的焦耳热,能量的发散则通过辐射、对流和传导三种途径。
改变散热条件可使电弧参数改变,并影响放电的稳定性。
电弧通常可分为长弧和短弧两类。
长弧中弧柱起重要作用。
短弧长度在几毫米以下,阴极区和阳极区起主要作用。
根据电弧所处的介质不同又分为气中电弧和真空电弧两种。
液体(油或水)中的电弧实际在气泡中放电,也属于气中电弧。
真空电弧实际是在稀薄的电极材料蒸气中放电。
这二种电弧的特性有较大差别。
电弧是一束高温电离气体,在外力作用下,如气流,外界磁场甚至电弧本身产生的磁场作用下会迅速移动(每秒可达几百米),拉长、卷曲形成十分复杂的形状。
电弧在电极上的孳生点也会快速移动或跳动。
在电力系统中,开关分断电路时会出现电弧放电。
由于电弧弧柱的电位梯度小,如大气中几百安以上电弧电位梯度只有15伏/厘米左右。
在大气中开关分断100千伏5安电路时,电弧长度超过7米。
电流再大,电弧长度可达30米。
因此要求高压开关能够迅速地在很小的封闭容器内使电弧熄灭,为此,专门设计出各种各样的灭弧室。
灭弧室的基本类型有:①采用六氟化硫、真空和油等介质;②采用气吹、磁吹等方式快速从电弧中导出能量;③迅速拉长电弧等。
直流电弧要比交流电弧难以熄灭。
电弧放电可用于焊接、冶炼、照明、喷涂等。
这些场合主要是利用电弧的高温、高能量密度、易控制等特点。
在这些应用中,都需使电弧稳定放电。
目前的电子产品,如等离子电视、等离子显示器其显示原理也是依赖电弧放电。
(一)电弧现象电弧实际上是一种气体游离的放电现象。
当断路器切断有电流的电路时,如果触头间的电压大于10-20V 、电流大于80-100mH ,在切断电路的瞬间,触头就会产生电弧。
此时因触头间存在电弧,断开的电路仍然处于接通状态。
只有待电弧熄灭后,电路才算真正断开。
在配电网络各种配电设备(如发电机、变压器、电动机、架空和电缆线路等)正常运行时,需要可靠地接通或断开;在改变运行方式时,又需要灵活地进行切换操作;当网络发生故障时,又必须迅速地切除故障部分,使无故障部分继续运行。
这些断开和接通电路的任务必须由开关电器来承担。
在配电网络中承担这项任务的有断路器、隔离开关、熔断器、自动开关、接触器和负荷开关等。
而这些开关电器在断开具有一定电压和电流的电路时,相互分开的开关触头之间产生一种强烈的白光,这种白光称为电弧。
由于电弧能量集中、温度高、亮度强,当用10kV少油断路器断开20kA,的电流时,电弧功率可高达10000kW以上,这样高的能量几乎全部变为热能。
所以电弧持续不息,就会烧坏设备触头和触头附近的绝缘,这不仅延长了断路时间,甚至使断路器内部压力剧增,引起油断路器爆炸。
因此,高压开关电器在切断高压电路时,怎样使电弧迅速熄灭是一个重要问题,为此我们首先应了解电弧是怎样形成的。
(二)形成电弧的四因素1.强电场发射当开关触头刚分开的瞬间,触头之间的距离很近,所以分开的缝隙间电场强度E很大,在此强电场作用下,电子从阴极表面被拉出而奔向阳极,这种现象称为强电场发射。
电场强度愈大,这种金属表面发射电子量也愈增加。
但随着触头的逐渐分开,触头之间的距离增大,电场强度E 随之减小,发射电子量也就迅速减小了。
2.热电发射奔向阳极的自由电子,因具有很大的动能,在运动的过程中,如果碰到中性原子,所持的一部分动能就传给原子;若自由电子所持能量足够大时,可将中性原子的外围电子撞击出来,使它也变为自由电子。
新产生的自由电子和原来电子一起继续受到电场的作用而运动,又继续获得新的动能,再次碰撞出新的自由电子。
如此继续碰撞,在弧隙中的自由电子和离子浓度不断增强,成为游离状态,这种游离过程称为碰撞游离。
当开关触头间积聚的自由电子和离子达到一定浓度时,触头间有足够大的电导,使触头间的介质击穿,开始弧光放电,此时电路仍有电流通过,这就是电弧产生的主要原因。
3.碰撞游离奔向阳极的自由电子,因具有很大的动能,在运动的过程中,如果碰到中性原子,所持的一部分动能就传给原子;若自由电子所持能量足够大时,可将中性原子的外围电子撞击出来,使它也变为自由电子。
新产生的自由电子和原来电子一起继续受到电场的作用而运动,又继续获得新的动能,再次碰撞出新的自由电子。
如此继续碰撞,在弧隙中的自由电子和离子浓度不断增强,成为游离状态,这种游离过程称为碰撞游离。
当开关触头间积聚的自由电子和离子达到一定浓度时,触头间有足够大的电导,使触头间的介质击穿,开始弧光放电,此时电路仍有电流通过,这就是电弧产生的主要原因。