探索平行线的判定(一)
【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思
5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。
2.能用平行线的判定方法1来推理判定方法2和判定方法3。
3.能够根据平行线的判定方法进行简单的推理。
【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
初中数学教学课例《平行线的判定方法(一)》课程思政核心素养教学设计及总结反思
(设计意图:通过学生自己回忆可避免传统教学一
问一答的方式,同时也可以活跃学生的思维,为新课的
课例研究综 学习做准备。)
述
3、如图,在加工木料时,木工师傅总是利用角尺
在木块上画平行线,你知道其中的道理吗?
(设计意图:通过创设情景,激发学生的学习兴趣,
同时也让学生体会到数学与现实生活有着密切的联 系。)
(一)学习目标的确定
知识与技能
掌握判定两条直线平行的方法 1,能运用判定方法
1 对两直线的位置关系进行判定。
过程与方法
在学习直线位置关系的判定过程中,感受逻辑推
教学目标 理,逐步学习证明的方法。
情感、态度与价值观
在学习过程中,通过师生的互动交流,促使学生在
学习活动中培养良好的情感和合作交流,主动参与的意
择与设计
教学流程:创设情境、复习引入—画一画,说一说
——想一想,议一议——总结归纳得出结论——做一
做,练一练——谈一谈,叙一叙——布置作业
一)创设情境、复习引入
1、怎样的两条直线叫做平行线?
教学过程
2、根据平行线的概念判断:
(1)、如图(1)直线 a、b 是否平行?
(2)、如图(2)直线 a、b 是否平行?
(二)画一画,说一说 问题 1、我们以前学过平行线的画法,怎样用一个 三角板和一把直尺()画平行线呢?动手画一画.大家 观察画平行线的过程,思考无论三角尺怎样摆放,在这 一过程中,三角尺都起着什么作用?
初中数学教学课例《平行线的判定方法(一)》教学设计及 总结反思
学科
初中数学
教学课例名
《平行线的判定方法(一)》
称
平行线的判定方法(一)系七年级下册第五章第二
平行线的判定(第1课时)课件
【教学难点】
运用平行线的判定方法进行简单的推理.
复习回顾
在前面的章节中我们学习过以下知识:
两直线平行,同位角相等;
两直线平行,内错角相等;
两直线平行,同旁内角互补.
情景导入
平行、相交
在同一平面内,两条直线的位置关系是_____________.
没有公共点的
在同一平面内,_____________两条直线的是平行线.
请你在下面的括号中填上理由:
因为 a∥b,b∥c,
所以∠1 =∠2, ∠2 =∠3,
因此∠1 =∠3.
从而 a∥c( 同位角相等,两直线平行.
).
A,B,C. 如
巩固练习
1. 从∠5 =∠ ABC ,可以推出 AB∥CD,
理由是 同位角相等,两直线平行 .
A
4
1
B
D
3
5
2
C
巩固练习
2. 如图,已知∠1=∠2, AB∥CD 吗?为什么?
行吗?为什么?
D
A
C
B
E
解析:根据 AB∥DC 及∠D=125°,可求出∠A 的度数,从而说明
∠A=∠CBE. 再根据“同位角相等,两直线平行”可得 AD∥BC.
典例精析
解:AD∥BC.
理由如下:因为 AB∥DC (已知),
所以∠A+∠D=180°(两直线平行,同旁内角互补).
因为∠D=125°(已知),
因为AE是∠DAC的平分线,
所以∠DAC=2∠1,
所以∠B=∠1,
所以 AE∥BC.
课堂小结
由同位角的关系判定两直线平行的三个步骤:
1. 判断两个同位角是否相等;
七年级数学下册《探索平行线的判定方法》优秀教学案例
一、案例背景
在我国初中数学教育中,七年级是培养学生几何直观与逻辑推理能力的关键时期。本案例以人教版七年级数学下册《探索平行线的判定方法》为教学内容,旨在帮助学生掌握平行线的判定方法,培养他们的空间想象力和推理能力。在教学过程中,教师将引导学生从生活实例中提炼出几何问题,运用直观演示、动手操作、合作交流等教学策略,激发学生的求知欲,让他们在探索中发现平行线的判定方法,并在实际应用中巩固所学知识。本案例注重理论与实践相结合,以学生为主体,充分调动他们的积极性与创造性,使学生在轻松愉快的氛围中掌握数学知识,提高数学素养。
3.小组合作与交流分享
案例中,小组合作与交流分享环节充分发挥了学生的主体作用,让他们在合作中互相学习、共同成长。这种教学方式不仅培养了学生的团队精神和沟通能力,还提高了他们的表达能力和自信心。
4.反思与评价相结合
本案例注重学生的反思与评价,引导他们总结学习过程中的心得体会,发现自身的优点和不足。同时,鼓励学生互相评价,学会欣赏他人,形成良好的学习氛围。这种做法有助于提高学生的自我认知能力和批判性思维。
(二)问题导向
在教学过程中,我将采用问题导向的教学策略,引导学生提出问题、分析问题、解决问题。例如,在学习平行线的判定方法时,我会提出以下问题:“如何判断两条直线是否平行?”“同位角、内错角、同旁内角在平行线判定中有什么作用?”通过这些问题,激发学生的思维,培养他们的逻辑推理能力。
(三)小组合作
小组合作是本章节教学的重要组成部分。我将学生分成若干小组,让他们在小组内进行讨论、交流、分享。在每个小组中,学生需要相互协作,共同完成学习任务。例如,在学习平行线的判定方法时,小组成员可以相互提问、解答,共同总结规律。这种教学策略有助于培养学生的合作意识、沟通能力和团队精神。
《平行线的判定》(一)评课
《5.2.2 平行线的判定(一)》评课
本节课的教学内容主要是平行线的三个判定方法。
由于学生还没有接触公理、定理等概念,所以本节的教学如何处理好公理的呈现和定理的得出就成了教学的一个难点。
教者在本节教学中采用了从实际问题出发,创设问题情境,从木匠在木板上画线到平行线的画法,让学生发现二者的相同之处,确认画出的是平行线,并发现保证平行的条件,从而水到渠成地引入了平行线的第一种判定方法——“同位角相等,两直线平行”。
学生对公理的认可过程正是公理的形成过程,这种潜移默化的处理在本节显得非常得当。
学生主动的探索是知识结构形成的必经之路,教者在得到第一种判定方法后,不失时机地通过“小明的画板”问题,引导学生经过“简单说理”得出判定2、3,学生在不知不觉中进入了逻辑轨道,通过提问、追问、设问,使说理更加严谨。
本节教者通过引导----操作法、观察法、多媒体电化教学法相结合,很好地完成了本节的教学任务。
特别是将实物抽象成几何图形,向学生渗透具体到抽象、转化等数学思想,展示了数学研究的一个形成过程,使学生对判定方法理解更加准确。
本节对“转化”的数学思想及激发学生的探索精神都做得非常好,整节都体现了“做数学”的一种学习意识,教者对学生掌握几何语言的训练也非常重视,体现了严谨治学的态度。
学生在本节课上充分动手实践、自主探索、合作交流,课堂气氛融洽,活动充分,不失为一节新课程下的优质数学课。
2、2探索直线平行的条件
预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。
如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。
问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。
做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。
2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。
问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。
湘教版数学七年级下册4.4《平行线的判定方法1》教学设计
湘教版数学七年级下册4.4《平行线的判定方法1》教学设计一. 教材分析《平行线的判定方法1》是湘教版数学七年级下册第4章第4节的内容。
本节内容主要介绍同位角相等,两直线平行的判定方法。
通过本节内容的学习,学生能够理解同位角相等的含义,掌握用同位角相等来判定两直线平行的方法,并为后续学习其他平行线的判定方法打下基础。
二. 学情分析七年级的学生已经学习了直线、射线、线段的基本概念,并对几何图形有了一定的认识。
但是,对于用数学方法来判定两直线是否平行,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出几何模型,并通过观察、操作、推理等方法,引导学生发现并归纳出平行线的判定方法。
三. 教学目标1.知识与技能:使学生理解同位角相等的含义,掌握用同位角相等来判定两直线平行的方法。
2.过程与方法:培养学生观察、操作、推理的能力,发展学生的几何思维。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索的精神。
四. 教学重难点1.重点:同位角相等的含义,用同位角相等来判定两直线平行的方法。
2.难点:如何引导学生从实际问题中抽象出几何模型,并发现平行线的判定方法。
五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生从实际问题中抽象出几何模型。
2.启发式教学法:在教学过程中,教师引导学生观察、操作、推理,从而发现并归纳出平行线的判定方法。
3.小组合作学习法:学生在小组内进行讨论、交流,共同探索问题,培养合作意识。
六. 教学准备1.教学课件:制作课件,展示实际问题情境和几何模型。
2.教学素材:准备一些实际问题,供学生观察和操作。
3.板书设计:设计板书,突出平行线的判定方法。
七. 教学过程1.导入(5分钟)教师通过设置一个实际问题情境,引导学生从实际问题中抽象出几何模型。
例如,教师可以展示一张图片,图片中有两条直线被一条横线切割,形成了一对同位角。
教师提问:“这两条直线是否平行?”让学生观察并思考。
平行线的判定教学设计说明
教学设计说明课题:浙教版八年级上1.2平行线的判定(1)授课教师:东阳市外国语学校胡新颖一、教材分析1.教材的地位与作用平行线的判定(1)这节课是浙教版八年级上册第一章平行线第2节的第1课时内容,它是继“同位角、内错角、同旁内角”即三线八角内容之后学习的又一个重要知识,它是继续学习平行线其它判定方法的奠基知识,更是今后学习与平行线有关的几何知识的基础。
因此这节内容在七~九年级这一学段的数学知识中具有很重要的地位。
2.教材的重点、难点平行线的判定方法“同位角相等两直线平行”是平行线其它判定的重要依据,它是这节课的教学重点。
由于例1判定两直线平行时需将已知条件作适当的转化,说理过程要求有条理地表示,这在学生学习“证明”之前,学生这方面的能力还比较薄弱,所以例1为本节的教学难点。
二、教学目标分析1.知识目标:理解平行线的判定方法,同位角相等两直线平行,并学会运用这一判定方法进行简单的几何推理:2.能力目标:通过“同位角相等、两直线平行”这一判定方法的发现过程的教学,培养学生动手实验操作能力,归纳分析能力。
通过这一判定方法的运用进一步培养学生的逻辑思维和推理能力。
3.情感目标:体会用实验的方法得出几何性质(规律)的重要性与合理性。
进一步培养学生积极参与主动探索的良好学习习惯和思维品质三、学法指导(1)乐学,在整个学习过程中,让学生保持强烈的好奇心和求知欲,不断强化他们的创新意识,全身心地投入学习中去,成为学习的主人。
(2)学会:通过新知的学习,让学生学会新知在新的情境下如何应用,从而逐步完善其认知结构。
(3)会学:通过学生的亲身参与,更进一步体会到动手实践自主探索是学习数学其它知识的重要方式。
四、教法分析与说明以皮划挺静水项目比赛的航向与航线引发的问题为背景贯穿整节课,采用“新课引入—探究新知—新知巩固—运用新知解决实际问题—归纳小结——延伸提高”为主线的教学程序。
遵循学生从已知到未知的认知规律,使学生感到新旧知识之间的密切联系。
7.7平行线的判定第一课时教案
7.7平行线的判定(1)一、教学目标: 1.知识与技能:(1)从“用三角尺和直尺画平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。
(2)熟练掌握平行线的三个判定方法,并会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。
2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。
3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。
二、教学重、难点重点:判定方法一及判定方法二、三。
一般的定义与判定方法一是等价的。
都可以做判定的方法。
但平行线的定义不好用来判定两直线相交还是 不相交。
这样,有必要借助两条直线被第三条直线截成的角来判定。
因此,三个判定方法就显得尤为重要了。
它们是判断两直线平行的依据,也为下一节,学习平行线的性质打下了基础.难点:理解由判定方法一推出判定方法二、三的证明过程。
学生刚刚接触用 演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。
有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。
因此,教学中要有直观的演示和操作,也要附有严格推理证明的板书示范。
使学生能初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。
三、教学方法:疑探式教学、小组合作 四、教学过程: 预设问题:1、什么是平行线?2、如何画平行线?3、怎样判定两条直线平行?4、如何应用于证明?一、设疑自探,小组合探情景导入.如图,装修工人正在向墙上钉木条,如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角为多少度时,才能使木条a 与木条b 平行?图1 图2 要解决这个问题,就要弄清楚平行的判定。
自学教材130页 直线平行的条件cba 43215 6 87D C B A 32bac41 4321FE D C BA我们学过用直尺和三角尺画平行线,如图(130图7-22)在三角板移动的过程中,什么没有变?思考并小组讨论(三角板经过点P 的边与靠在直尺上的边所成的角没有变。
平行线的判定例题与讲解
3 平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.如图,推理符号表示为:∵∠1=∠2,∴AB∥CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.(2)平行公理的推论:①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行.符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD.谈重点同旁内角互补,两直线平行①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等【例2-2】如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD .因为∠A+∠C=180°,所以AB∥CD错解:A或B或D错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D =180°,所以AB∥CD.3.平行线的判断方法平行线的判定方法主要有以下六种:(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…4.平行线判定的应用(1)平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是确定角的位置关系及大小关系.【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.答案:合格【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。
七年级数学《平行线的判定》教案
4.1知识与技能目标
掌握利用同位角相等判定两条直线平行的方法,能利用判定方法对两条直线的位置关系进行判定。
4.2过程与方法目标
在学习直线位置关系的判定过程中,感受逻辑推理,逐步学习证明的方法。
4.3情感态度与价值观目标
经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识。
【设计意图】加强教学反思,帮助学生养成系统整理知识的习惯。
【媒体应用】PPT重现相关知识
【设计意图】
加深认识,深化提高,及时反馈、及时补救
12.教学结构流程设计
12.1符号说明:
(1)开始、结束:(2)教师活动:
(3)学生活动:(4)媒体展示:或
(5)合作学习:(6)重要教学内容:
(7)练习、展评:(8)流程线:
出示练习
【学生活动】
学生认真根据当天知识思考并解决问题
【教师活动】
教师在学生总结发言,体会反思后,进行补充,帮助学生形成知识网络。
【学生活动】学生归纳、总结发言,体会、反思。
【教师活动】
教师布置,分层要求。
【学生活动】
学生按要求记录作
演练空间
[设计意图]
创设问题情境,通过教师的操作,使学生对平行线的画法有一个直观的认识,通过观察与讨论,是学生逐步从感性认识上升到理性认识
9.整合思路
以PowerPoint2003软件为制作平台,运用图片、动画等多媒体手段展示问题和对学生思维训练的过程,暗示教学思路,通过题型变换向学生直观展示平行线的判定的形成过程。PPT课件与传统教学手段相结合的方式,以增大课堂容量,实现课堂教学效果最优化。具体表现:(1)全方位体现教学目标;(2)建构互动和谐的师生关系,创设民主平等的教学氛围;(3)创设生活化、本土化的学习情景,有机整合学生的个人知识、直接经验和现实经验等重要的教学资源。
浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)
专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。
∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
5.1.2平行线的判定
《平行线的判定》教学反思
对本节课的做法是,对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。
注重学生的自己分析,启发学生用不同方法解决问题。
探索直线平行的条件。
在教学过程中,主要做到:突出学生是学习的主体,把问题尽量抛给学生解决。
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。
这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、多媒体课件的应用广泛。
从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;利用“几何画板”的直观性,充分说明学生探索的结论是正确的。
这时多种媒体以生动活泼、形象生动的方式进行教学,调动学生加入到学习过程中来,从而提高学生的学习热情,提高学习效率。
3、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
一堂课下来,遗憾也有不少。
比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。
板书设计。
平行线的判定(1)
E ABC D F134 2平行线的判定导学案(1)学习目标:1.探索平行线的三个判定方法;2.练习推理证明的过程。
学习过程一、 自主学习:回顾用一副三角尺画平行线的方法要求:过已知直线a 外一点p 画a 的平行线b (叙述作图过程)步骤:①_________________________________②___________________________________ ③___________________________________ ④___________________________________ ⑤___________________________________ ⑥___________________________________二、 合作探究:总结规律观察右图,完成下面的推理过程:由画图过程可以看出,经过直线AB 外一点P 画AB 的平行线,实际上就是画∠____=∠____完成的,而这两个角是直线____和直线____被直线____所截形成的_____角。
规律总结1——两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
注意:这是平行线的判定方法之一,与平行线的性质不同,这里是知道了角的关系来判断直线的位置关系。
三、精讲点拨:探索新方法思考:既然同位角可以用来判定两条直线平行,那么内错角和同旁内角可以吗?ACD(1)如果∠1=∠4,那么直线AB和直线CD平行吗?为什么?(2)如果∠2和∠4互补,那么直线AB和直线CD平行吗?为什么?a b c(提示:运用对顶角和邻补角的相关关系)规律总结2——两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
规律总结3——两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
四、 课外延伸:平行线的传递性如图,如果a//b ,b//c ,那么a 和c 平行吗?为什么? 提示:利用反证法证明:假设a 和c 不平行,那么a 和c 相交, 设交点为O 点,那么经过点O 就可以画两条直线与b 平行,这与“___________________ _______”矛盾,所以a//c.平行线的传递性——如果两条直线都与第三条 直线平行,那么这两条直线平行。
平行线的判定(一)
《平行线的判定(一)》导学案
编号:第册第单元课包科领导:审核人:把关人:
知识与技能:1、理解并掌握平行线的判定方法。
2、经历探索直线平行的条件的过程并能运用“内错角相等,两直线平行”和“同旁角互补,两直线平行”。
过程与方法:
一、新知识回顾与新知识导入。
1、我们已经学过的判定直线平行的方法有哪些?
2、两条直线被第三条直线所截形成的角中,有同位角、内错角和同旁内角。
同位角相等,两直线平行,那么利用内错角、同旁内角的关系,能否判定两直线平行呢?
二、新知识
1、在下图中,如果∠2=∠3,能得到a∥b吗?请在后面的括号内填上理由。
因为∠2=∠3(已知),
又因为∠1=∠3(对顶角相等),
所以∠1=∠2(等量代换),
所以a∥b()
上述由∠2=∠3推出a∥b,用文字来叙述为:
2、如果∠2+∠4=1800,那么a与b平行吗?填写理由:
因为∠2+∠4=1800(),
又因为∠1+∠4=1800(),
所以∠1=∠2(),
由∠2+∠4=1800得到∠1=∠2,用文字来叙述为:
小结:到目前为止我们学过了几个判定两条直线平行的方法?请分别用语言叙述出来。
三、课堂展示
1、在同一平面内如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
答:平行。
理由如下:因为b⊥a、c⊥a( ),
所以∠1=∠2=900(),
从而b∥c ()。
2、课本第15页第1(2)、2、3题
四、自我检测
习题5.2第2、3、4(2)(3),7(2)(3)。
平行线的判定定理 1
1、求证:垂直于同一条直线的两条直线平行。
上面的问题希望同学多种方法解答
2、课本86页随堂练习第1题,习题第2题
四、拓展练习
如图,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ。
要求:证AB∥CD时用平行线判定的三种方法,这样既拓展了学生的思维,还巩固了这节课所学知识点。
五、课堂检测
已知:如图∠1=∠2,BD平分∠ABC,求证:AB//CD
六、课堂小结
引导学生总结本节的知识点及所得收获。
七、布置作业
教师引出问题,学生思考后回答
学生口答,教师板书
学生独立回答
学生思考,小组交流解决办法。
教师巡回指导给予适当的启发,点拨。
鼓励学生独立完成,发现问题可有针对性解决
证明中的每一步推理都要有根据,这些根据,可以是已知条件,也可以是定义、公理,以及已经学过的定理。
(2)根据条件、结论,结合图形,写出已知、求证.
(3)经过分析,找出由已知推出求证的途径,写出证明过程.
课后反思
本节课要提醒学生注意证明的严谨性,要步步有据,并且依据只能是有关概念的定义、所规定的公理及已经证明的定理,忌不假思索地把以前学过的结论用来作为证明的依据。
因为初一初二时对证明步骤要求不高,虽然经过本节课的学习,但学生对证明步骤书写的理解还是有些模糊,在下节还要加以巩固。
现在是初学阶段,要求把根据写在每一步推理后面的括号内。
教师启发、点拨,引导学生归纳、总结证明的一般步骤
学生动手做,在“做数学”中学习数学
请一优生板演,然后根据黑板上板演步骤进行点评,师生共同进一步理清证明的步骤。
鼓励学生多种方法解答此题,以巩固平行线判定公理和定理的应用
沪科版七年级下册数学10.平行线的判定方法(一)课件
平行线的画法: “推平行线法”:
一、落和三角板画平行线的方法, 同学们会有什么启示?
E C
A
D 同位角相等,两直线平行.
2
B AB∥CD
1
F
判定两直线平行的方法1:
两条直线被第三条直线所截,如果 同位角相等,那么这两条直线平行.
简单说成: 同位角相等,两直线平行.
E
符号语言:如图
C
∵ ∠1=∠2(已知)
∴ AB∥CD
A
(同位角相等,两直线平行)
D 2
B 1
F
例 火眼金睛,找出图中的平行线
A
如果∠ADE=∠ABC,则__DE∥ _B_C
D
E 如果∠ACD=∠F, 则_D_C∥ _B_F
B
C
如果∠DEC=∠BCF,则_D_E∥ _B_C
F
注:要确定是哪两条直线被第三条直线所截得 到的同位角.
同旁内角互补,两直线平行
判定两直线平行方法
同 位 角 相 等
, 两 直 线
平 行
内 错 角 相 等
, 两 直 线
平 行
同, 旁两 内直 角线 互平 补行
例 如图,由下列条件可以判定哪两条直线平行?
说明理由。 D
C
1
3
2
4
A
B
1.由∠1=∠2判定 DC∥ A,B 理由 是 内错角相等,两直线平行 .
∴ AB∥CD(内错角相等,两直线平行)
应用练习B组
2.如图,D为AC上的一点,F是AB上的一点。在什么条 件下能够判定DF∥BC ? 说明理由。
C
D4
1
A
23
F
B
解:∠1=∠C或者∠2=∠B 或者由∠3+∠B=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题2 课本“数学理解”栏目给我们 展示了一种画平行线的工具. 在画平行线 之前,工人师傅往往要先调整一下工具, 然后画平行线,你能说明这种工具的用法 和其中的道理吗?
如图,在屋架上要加一根横梁 DE , 已 知 ∠ B=32°, 要 使 DE∥BC, 则 ∠ADE必须等于多少度?为什么? A D B F E
生活中的问题能用数学知识解决吗?
c a b c a b
如图,三根木条相交 成∠1, ∠2,固定木 条b,c,转动木条a
当 ∠ 1> ∠ 2时 当 ∠ 1= ∠ 2时 当 ∠ 1< ∠ 2时
①直线a和b不平行
②直线 a∥b
③直线a和b不平行
认识“三线八 角”:
两条直线被第三条直线所截,形成“三线八角”,
如图: ∵∠1=∠2
∴ a∥b (同位角相等,两直线平行)
(1)找出下面点阵中互相平行的线段,并说明理由 (点阵中相邻的四个点构成正方形). E G A B
C
D
F
H
(2)如图, ∠1=∠2=55º , ∠3等于多少度? 直线AB,CD平行吗?说明你的理由. A C
E
1
G
3
H
2
B D
F
你还记得怎样用移动三角尺的方法画两条平行线吗?
具有∠1与∠2这样位置关系的角称为同位角 l ∠1和∠2是同位角 C 3 1 D ∠3和∠4是同位角 7 5 ∠ 5 和 ∠ 6 是同位角 A B 4 2 8 6 ∠7和∠8是同位角
同位角在被截直线的同一侧,在截线的同一方
判定两条直线平行的方法:
同位角相等,两直线平行
c 1 a b 2 c
a
2
1
b
C
问题1:本节课你认为自己解决的最 好的问题是什么? 问题2:本节课你有哪些收获? 问题3:通过今天的学习,你想进一步探 究的问题是什么?
问题1:在同一平面内两条直线的 位置关系有 几种?分别是什么? 问题2:如图,两条直线相交所 构成的四个角中分别有何关系?
A O
C B D
问题3:什么叫两条直线平行?
观察下面每幅图中的直线a,b, 它们分别平行吗?你能验证吗?
观察下面每幅图中的直线a,b, 它们分别平行吗?你能验证吗?
装修工人正在向墙上 钉木条。如果木条b 与墙壁边缘垂直,那 么木条a与墙壁边缘 所夹角是多少度时, 才能使木条a与木条b 平行?
过已知直线外一点画它的平行线.请说出其中的道理。
同位角相等,两直线平行. 一、放
0 1 2 0 3 1 4 2 5 3 6 4 7 5 8 6 9 7 10 8 9 10
二、靠
三
6
7
8
9
10
00 11
22 33
44
55
66
77 88
99 10 10
四、画
问题1 你能用一张不规则的纸(比如,如图 所示的四边形的纸)折出两条平行的直线 吗?与同伴说说你的折法.