2013届九年级数学上学期期末考试试题_苏科版

合集下载

2012-2013学年江苏省徐州市九年级(上)期末数学试卷

2012-2013学年江苏省徐州市九年级(上)期末数学试卷

2012-2013学年江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+23.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或124.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.26.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣17.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作km2.11.(3分)方程x2﹣2x=0的根是.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD 的长.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是;(2)抛物线与x轴的交点的坐标是;(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=s;n=cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?2012-2013学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+2【解答】解:原式=()2﹣1=2﹣1=1.故选A.3.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或12【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C.4.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)【解答】解:A、把(﹣2,﹣3)代入y=得:左边=﹣3,右边=﹣3,左边=右边,即(﹣2,﹣3)在反比例函数图象上,故本选项错误;B、把(﹣1,﹣6)代入y=得:左边=﹣6,右边=﹣6,左边=右边,即(﹣1,﹣6)在反比例函数图象上,故本选项错误;C、把(﹣0.5,12)代入y=得:左边=12,右边=﹣12,左边≠右边,即(﹣0.5,12)不在反比例函数图象上,故本选项正确;D、把(1.5,4)代入y=得:左边=4,右边=4,左边=右边,即(1.5,4)在反比例函数图象上,故本选项错误;故选C.5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.2【解答】解:∵四边形ABCD是正方形,∴AO=BO=AC=,∵∠AOB=90°,由勾股定理得,AB=1,S正方形ABCD=1×1=1.故选A.6.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣1【解答】解:由x≠0,已知等式变形得:x﹣=﹣1.故选D7.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b【解答】解:∵实数a、b在数轴上对应点的位置可知b>a,∴b﹣a>0.原式==b﹣a.故选:C.8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°【解答】解:连接OC,∵∠AOB=120°,∴=120°,∵=2,∴==×120°=40°,∴∠AOC=40°,∴∠ADC=∠AOC=×40°=20°.故选B.二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作 1.7×105km2.【解答】解:170 000=1.7×105,故答案为:1.7×105.11.(3分)方程x2﹣2x=0的根是x1=0,x2=2.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是周六.【解答】解:这七天的温差分别是:昨天:﹣2﹣(﹣10)=8;今天:2﹣(﹣6)=8;周二:0﹣(﹣5)=5;周三:2﹣(﹣3)=5;周四:3﹣(﹣1)=4;周五:6﹣0=6;周六:4﹣(﹣5)=9;则温差最大的一天是周六.故答案为周六.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为﹣2π.【解答】解:∵圆的半径为1,∴周长为2π,∴点A′对应的实数为﹣2π.故答案为:﹣2π.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为3m.【解答】解:设该矩形的长为xm,则宽为(4﹣x)m,由题意,得x(8÷2﹣x)=3,解得:x1=3,x2=1.答:矩形的长为3m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=±2.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣b,∴一次函数y=x+b的图象与x、y轴的交点分别为(﹣b,0),(0,b),∴b2=2,解得b=±2.故答案为:±2.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为﹣1.【解答】解:连接OD,∵正方形OCDE的面积为1,∴正方形OCDE的边长为1,∴OD=,∴AC=﹣1,∵DE=DC,BE=AC,=,∴S=长方形ACDF的面积=AC•CD=﹣1.阴故答案为:﹣1.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.【解答】解:(1)原式=1+1﹣2=0;(2)由原方程,得(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得,x1=3,x2=﹣1.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.【解答】解:(1)由图形可知,甲的最好成绩是9环,所以甲命中9环以上次数为0次;把乙运动员10次比赛成绩按从小到大的顺序排列为:2、4、6、7、7、8、8、9、9、10;位于中间的两个数是7、8,所以乙的中位数为:(7+8)÷2=7.5.填表如下:(2)①从平均数来看,两人成绩不相上下;②从中位数来看,乙的成绩较好;③从方差来看,甲的成绩比较稳定;④从成绩变化趋势看,乙的成绩越来越好.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.【解答】证明:(1)∵BD是角平分线,∴∠EBD=∠DBC,∵E、D是中点,∴ED是中位线,∴ED∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB;(2)由∠EBD=∠EDB得BE=DE,∵ED是中位线,∴ED=BC,∴BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD的长.【解答】解:连接OC,∵⊙O中,直径AB⊥弦CD,∴CD=2CP.在Rt△OPC中,∵PC2+PO2=OC2,且OP=OB﹣PB=5﹣2=3.∴PC===4,∴CD=2CP=8.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.【解答】解:(1)设AB=xcm,则AC=(x+1)cm,∵在Rt△ABC中,由勾股定理得:AC2﹣AB2=BC2,∴((x+1)2﹣x2=52,解得:x=12,即AB=12cm,AC=13cm;(2)连接AO、BO、CO、OD、OE、OF,设内切圆的半径为y,根据题意,得S=×5×12=×5r+×12r+×13r,△ABC解得:r=2,即所求内切圆的半径为2cm.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?【解答】解:根据题意得出:y=[300﹣10(x﹣60)](x﹣40)=﹣10(x﹣90)(x﹣40)=﹣10(x﹣65)2+6250.当x=65即单价为65元时,每月销售该商品的利润最大.23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是(2,4);(2)抛物线与x轴的交点的坐标是(0,0),(4,0);(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.【解答】解:(1)y=x2﹣4x的顶点坐标是(2,﹣4);(2)当x2﹣4x=0时,解得x=4,x=0,即抛物线与x轴的交点坐标是(4,0),(0,0);(3)将抛物线绕原点O旋转180°,所得图象对应二次函数的关系式y=﹣x2+4x,故答案为:(2,﹣4),(4,0),(0,0).24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.【解答】解:∵AB为⊙O的直径,∠A=∠B=90°,∴AD、BC均为⊙O的切线,又CD与⊙O相切于点E,∴DE=DA,CE=CB,∴CD=AD+BC,设AD=x,则BC=4AD=4x,CD=5x,如图所示,作梯形的高DF,在Rt△CDF中,DF=AB=2OA=4,CF=CB﹣BF=CB﹣AD=3x,CD=5x,由勾股定理得:DF2+FC2=CD2,得42+(3x)2=(5x)2,解得:x1=1,x2=﹣1(舍去),∴CD=5x=5.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=8s;n=8cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?【解答】解:(1)由题意可知,当点C与点E重合时,y有最大值,由图2知此时x=4s,∵等腰直角三角形ABC运动速度为1cm/s,∴CB=AB=1×4=4,=×4×4=8,即n=8cm2;∴S△ABC∵点C与点F重合时,面积达到最小值0,又EF=CB=4,∴t=8s,即m=8s.故答案为8,8;(2)当0≤x≤4时,如图,设DE与AC交于点H.∵BE=x,∴EH=CE=BC﹣BE=4﹣x,∴y=S=(EH+AB)•BE=(4﹣x+4)x=﹣x2+4x,梯形ABEH即y=﹣x2+4x;当4<x≤8时,如图,设GF与AC交于点I.∵BE=x,BC=4,∴CE=BE﹣BC=x﹣4,∴FI=CF=EF﹣EC=4﹣(x﹣4)=8﹣x,=CF2=(8﹣x)2=x2﹣8x+32,∴y=S△CFI即y=x2﹣8x+32;综上所述,y=;(3)当0≤x≤4时,令﹣x2+4x=3.5,整理,得x2﹣8x+7=0,解得x1=1,x2=7(不合题意,舍去);当4<x≤8时,令x2﹣8x+32=3.5,整理,得x2﹣16x+57=0,解得x1=8﹣,x2=8+(不合题意,舍去).综上所述,当x为1s或(8﹣)s时,重叠部分面积为3.5cm2.。

江苏省昆山市九年级数学第一学期期末考试试卷 苏科版

江苏省昆山市九年级数学第一学期期末考试试卷 苏科版

昆山市2012~2013学年第一学期期末考试九年级数学试卷 (试卷满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.化简(-1)2013得( ▲ )A .-1B .1C .-2013D .20132.在北大、清华、复旦和浙大的校标LOGO 中,轴对称图形的是( ▲ )3.已知∠A 为锐角,若sin ∠A =12,则cos A 的值是( ▲ )A B C D 4.将二次函数y =x 2的图象向上平移3个单位,得到新抛物线的函数关系式是( ▲ )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)25.如图,在⊙O 中,AB 为弦,OC ⊥AB 于点E ,若⊙O 的半径为5,CE =2,则AB 的长是( ▲ )A .2B .4C .6D .86.某圆与半径为1的圆相切,两圆的圆心距为4,则此圆的半径为( ▲ )A .3B .7C .3或5D .5或77.平面直角坐标系内点P(1,1)关于点Q (-1,0)的对称点坐标是( ▲ )A . (-2,-1)B .(-3,-1)C .(-1,-2)D . (-1,-3)8.根据下表中二次函数y =ax 2+bx +c (a ≠0)的对应值:判断方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是( ▲ )A .3.23<x<3.24B .3.24<x<3.25C .3.25<x<3.26D .不能确定9.如图,将大小两块量角器的零度线对齐,且小量角器的中心O 2恰好在大量角器的圆周上.设它们圆周的交点为P ,且点P 在小量角器上对应的刻度为75°,那么点P 在大量角器上对应的刻度为( ▲ )A .75°B .60°C .45°D .30°10.平面直角坐标系中,在以点(3,4)为圆心,r 为半径的圆上,有且仅有两个点到x 轴的距离等于1,则半径r 的取值范围是( ▲ )A .r>3B .0<r<5C .3≤r<4D .3<r<5二、填空题(本大题共8小题,每小题3分,共24分)11.函数y x 的取值范围是 ▲ .12.从1~9这9个自然数中任取一个,恰是2的倍数的概率是 ▲ .13.观察二次函数y =x 2-2x -1的图象,若x>0,则y 的取值范围是 ▲ .14.如图,在等腰梯形ABCD 中,已知AD =5cm ,BC =11cm ,∠C =60°,则腰长为 ▲ cm .15.如图,将直角边长为3cm 的等腰Rt △ABC 绕点A 逆时针旋转15°得到△ADE ,ED 交AB于点F ,则△AEF 的面积为 ▲ cm 2.16.如图,已知圆锥的母线AC =6cm ,侧面展开图是半圆,则底面半径OC = ▲ .17.如图,利用两面夹角为135°且足够长的墙,围成梯形围栏ABCD ,∠C =90°,新建墙BCD 总长为15m ,则当CD = ▲ m 时,梯形围栏的面积最大.18.如图,二次函数y =ax 2+c 图象的顶点为B ,若以OB 为对角线的正方形ABCO 的另两个顶点A 、C 也在该抛物线上,则a ·c 的值是 ▲ .三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算题(本题共2小题,每小题4分,共8分)2 ()12sin 45-+︒20.解下列方程(本题共2小题,每小题4分,共8分)(1)2x 2-8=0 (2)(3-x)2+x 2=521.(本题共6分)已知关于x 的一元二次方程x 2-6x +c =0有两个实数根.(1)求c 的取值范围;(2)当c 取符合条件的最大整数时,若二次函数y =x 2-6x +c 与y =x 2+mx -6的图象交于x 轴上同一点,求m 的值.22.(本题共6分)已知△BDE 和△ABC 都是等边三角形,DE交AB 于点F .若BD =1,∠CBD =45°,求△BEF 的面积.23.(本题共6分)如图,直线AB 、CD 分别经过点(0,1)和(0,2)且平行于x 轴,图1中射线OA 为正比例函数y =kx(k>0)在第一象限的部分图象,射线OB 与OA 关于y 轴对称;图2为二次函数y =ax 2(a>0)的图象.(1)如图l ,求证:12AB CD =; (2)如图2,探索:AB CD 的值.24.(本题共8分)小惠在证明“两条平行弦所夹的弧相等”时,画了图1并连结半径OC ,OD (即:AB 为⊙O 的直径,CD 为弦且CD//AB ,求证:AC BD=) (1)请按图1帮小惠证明当一条弦为直径时结论成立;(2)显然,小惠只证了一条弦为直径的情形,失去了一般性.请你在下面两个备用图中画出其它情形,并尝试运用转化的思想,直接利用小惠的结论解决这个问题.25.(本题共8分)如图,已知二次函数y =x 2-3x -4的图象交x 轴于A 、B 两点.(1)若点P 在线段AB 上运动,作PQ ⊥x 轴,交抛物线于点Q ,求PQ 的最大值:(2)已知点D(5,6)在抛物线上,若点M 在线段AD 上运动,作MN ⊥x 轴,交抛物线于点N ,求MN 的最大值.(3)在(2)的运动过程中,求△ADN 面积的最大值.26.(本题共8分)如图,在矩形ABCD 的对角线AC 上有一动点O ,以OA 为半径作⊙O 交AD 、AC 于点E 、F ,连结CE .(1)若CE 恰为⊙O 的切线,求证:∠ACB =∠DCE ;(2)在(1)的条件下,若AB BC =2,求⊙O 的半径.27.(本题共8分)如图,直线y+1分别与两坐标轴交于A,B两点,点C从A点出发沿射线BA方向移动,速度为每秒1个单位长度.以C为顶点作等边△CDE,其中点D和点E都在x轴上.半径为3的⊙M与x轴、直线AB相切于点G、F.(1)直线AB与x轴所夹的角∠ABO=▲°;(2)求当点C移动多少秒时,等边△CDE的边CE与⊙M相切?28.(本题共10分)已知二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x 轴交于不同的两点A、B,若点A的坐标是(1,0),点B在点A的右侧.(1)c=▲;(2)求a的取值范围;(3)若过点C且平行于x轴的直线交该抛物线于另一点D,AD、BC交于点P,记△PCD的面积为S1,△PAB的面积为S2,求S1-S2的值.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:32.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度3.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 4.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±95.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1807.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π8.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 9.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .110.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是4 13.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣114.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D 31015.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________21.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.22.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .23.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 24.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.25.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.26.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.27.抛物线()2322y x =+-的顶点坐标是______.28.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.29.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.30.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.三、解答题31.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值. 32.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P是抛物线上的一动点,以P为圆心、PM为半径的圆与x轴相交于E、F两点,若PEF∆的面积为26,请直接写出点P的坐标.33.已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.34.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米的测角仪测得古树顶端点H的仰角HDE∠为45︒,此时教学楼顶端点G恰好在视线DH 上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEF∠为60︒,点A、B、C点在同一水平线上.(1)计算古树BH的高度;(2)计算教学楼CG的高度.(结果精确到0.12 1.4≈3 1.7≈).35.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示. (1)V D = ,C 坐标为 ; (2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.38.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).39.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.40.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.2.C解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C . 【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..4.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B .【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解. 5.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1, 故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.6.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.7.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=1010,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=1111=解得115DE = 115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】 本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 18.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 19.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.20.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.21.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.22.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 23.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.24.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.25..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.26.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 29.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°, ∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形, ∴S △CPQ 32, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴627BP =, ∴BP 127, ∴AQ =BP 127, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC ,∴AE AD BC BD =, ∴6AE =,∴AE ,∴QE =AQ−AE =7.故答案为;7. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.30.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题31.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500, 当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000, ∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值, 当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,。

江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版

江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版

- 1 -江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版(满分150分 时间120分钟)亲爱的同学们:经过初三一学期的学习,你们一定收获不少吧!你们也一定很想知道自己的学习情况,那么就仔仔细细地审题,认认真真地做答,把自己的真实水平都发挥出来,相信你一定能行!一、选择题:(每小题只有一个正确答案,请把正确答案选项的字母填在题后的括号内;每小题3分,共30分)1、若两圆的半径分别是3和4,圆心距为8,则两圆的位置关系为A .相交B .内含C .外切D .外离 2、已知⊙O 的半径为7cm ,OA =5cm ,那么点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定 3、抛物线y=(x-2)2+3的顶点坐标是A .(-2,3)B .(2,3)C .(3,2)D .(3,-2); 4、顺次连接平行四边形四边的中点所得的四边形是A.矩形B.菱形C.正方形D.平行四边形 5、甲、乙、丙三名射击运动员在某场测试中各射击10次,3人的测试成绩如下表则甲、乙、丙3名运动员测试成绩最稳定的是 ( )A .甲B .乙C .丙D .3人成绩稳定情况相同6、已知⊙O 1的半径R 为7cm ,⊙O 2的半径r 为4cm ,两圆的圆心距O 1O 2为3cm ,则这两圆的位置关系是 ( )A .相交B .内含C .内切D .外切7、如图,在梯形ABCD 中,AD∥BC,AD =AB ,BC =BD, ∠A=140°,则∠C 等于( )A .75°B .60°C .70°D .80°8、抛物线21522y x x =--+的顶点坐标为 A .(1,3) B .(1,-3) C .(-1,3) D .(-1,-3)9、学校为了了解500名初三学生的体重情况,从中抽取100名学生进行测量,下列说法中A B C D 第7题图- 2 - 正确的是A .总体是500B .样本容量是100C .样本是100名学生D .个体是每个学生10、若△ABC 的一边a 为4,另两边b 、c 分别满足b 2-5b +6=0,c 2-5c +6=0,则△ABC 的周长为 ( ) A .9 B .10 C .9或10 D .8或9或10 二、填空题:(每小题3分,共24分)11、方程24x x =的解是 ▲ 。

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。

2013-2014学年度苏科版九年级上学期数学期末练习试卷和答案

2013-2014学年度苏科版九年级上学期数学期末练习试卷和答案

苏科版九年级数学期末试卷温馨提示:亲爱的同学,本次测试试题总分为150分,考试时间为120分钟,请仔细审题,细心答题,相信你一定会有出色的表现!祝你考出好成绩。

一、选择题(本大题共10小题,每小题3分,共30分) 1.下列计算中,错误的是....( ) A.632=⨯=C.252322=+D.32)32(2-=-2. 抛物线y=x 2+3x 的顶点在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.如图,点C 在⊙O 上,若∠ACB =40°,则∠AOB 等于 ( )A 、40°B 、60°C 、80°D 、100°4. 若x x -=-2)2(2则x 的取值范围是 ( )A .2x >-B .2x ≥-C .2≤x 且0x ≠D .2≤x5.如图,PA 、PB 是⊙O 的两条切线,A 、B 是切点,若∠APB=60°,PO=2,则⊙O 的半径等于 ( ) A 、2 B 、2 C 、1 D 、36. 如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的 A .三角形B .平行四边形C .矩形D .正方形 ( )7. 已知关于x 的方程232+-x kx =0有两个实数根,则k 的取值范围为 ( ) A .89≤k B .89<k C . 089≠≤k k 且 D .0k 89≠<且k8. 两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为 ( )A .外离B .外切C .相交D .内切9. 下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是 ( )A .6 6.17x <<B .6.17 6.18x <<C .6.186.19x << D .6.19 6.20x << 10. 如图,A B C D ,,,为⊙O 的四等分点,动点P从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )(第3题图)(第6题图)(第5题图)AB C D OP(第18题图)二.填空题(本大题共8小题,每小题3分,共24分)11.当x 时,4-x 在实数范围内有意义 12.方程2x = 2x 的解是________.13.有一组数据数据11,8,—10,9,12极差是_________.14.在四边形ABCD 中, 已知AD ∥BC, 要使四边形ABCD 为平行四边形, 需要增加条件 (只需填一个你认为正确的条件即可) 15.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 。

江苏省江阴暨阳2013届九年级上学期期末考试数学试题江苏苏科版

江苏省江阴暨阳2013届九年级上学期期末考试数学试题江苏苏科版

2012-2013学年第一学期期末考试 初三 数学试卷(满分130分,考试时间120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的) 1|x ﹣y ﹣3|互为相反数,则x+y 的值为………………………………………………( ) A . 3 B . 9 C . 12 D . 272.某同学对甲、乙、丙、丁四个市场二月份每天的猪肉价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为2222S 8.5S 2.5S 10.1S 7.4====乙丁甲丙,,,.二月份猪肉价格最稳定的市场是…………………………………………………………………………………………………( ) A .甲 B .乙 C .丙 D .丁3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是…………( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 4.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为 (0,3),则AC 长为……………………………………………………………………………………( ) A .4 B .5 C .6 D .不能确定5.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为……………………( ) A . 15πcm 2 B .3cm 2 C .60πcm D .30πcm 26.在正方形网格中,ABC △的位置如图所示,则A ∠tan 的值为……………………………………( )A .31BCD7.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①02=+b a ;②abc <0;③042>-ac b ;④8a+c >0.其中正确的有………………( ) A .3个 B .2个 C .1个 D .0个8.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是……………( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长. ………………………………………………… ( ) A .10n B .29+16n 2 C .29n 2+16 D .210n 2+1610.如图,等腰直角三角形△ABD 内接于⊙O ,AB 为直径,点C 为劣弧AD 上一点,且AC=4,CD=26,则BC 的长为…………………………………………………………………………………………( ) A .14 B .15 C .16 D .17 二、填空题(本大题共8小题-每小题2分,共16分)11.已知a 、b 为两个连续的整数,且b a <<13,则b a += . 12.已知一组数据:1,3,5,5,6,则这组数据的方差是 。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)
(1)若每周的利润 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?
(2)当 时,求每周获得利润 的取值范围.
32.如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.
33.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为 、 、 、 类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:
18.如图,已知菱形 中, , 为钝角, 于点 , 为 的中点,连接 , .若 ,则过 、 、 三点的外接圆半径为______.
19.若记 表示任意实数的整数部分,例如: , ,…,则 (其中“+”“-”依次相间)的值为______.
20.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵


小莹

80
90
若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( )
A.86B.87C.88D.89
13.如图, 的半径为2,弦 ,点P为优弧AB上一动点, ,交直线PB于点C,则 的最大面积是
A. B.1C.2D.
14.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )
A.4B.3C.2D.1
3.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则 =( )
A. B. C. D.
4.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()

苏科版数学九年级上册《期末考试试卷》附答案

苏科版数学九年级上册《期末考试试卷》附答案
7.已知3a=4b≠0,那么 =_____.
8.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.
9.已知圆锥 底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)
10.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.
15.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.
16.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.
三.解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
一.选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡相应位置上)
1.一元二次方程x2﹣3x=0的两个根是()
A.x1=0,x2=﹣3B.x1=0,x2=3C.x1=1,x2=3D.x1=1,x2=﹣3
[答案]B
[解析]
3. 的半径为5,圆心O到直线l的距离为3,则直线l与 的位置关系是
A.相交B.相切C.相离D.无法确定
[答案]A
[解析]
[分析]
根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.
[详解]∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.
故选A.
[答案] .
[解析]
分析]
根据概率公式计算概率即可.
[详解]∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,

江苏省无锡市大桥区2013届九年级上学期期末考试数学试题

江苏省无锡市大桥区2013届九年级上学期期末考试数学试题

2012~2013学年度第一学期期末考试初 三 数 学注意事项: 1.本试卷满分130分,考试时间为120分钟.2.卷中各题均应给出精确结果.3.所有的试题都必须在答题纸上作答,在试卷或草稿纸上答题无效.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.下列计算正确的是 ( )A .2+23=3 5B .8= 4 2C .27÷3=3D .(-3)2 = -32.下列一元二次方程中,两根之和为2的是 ( )A .x 2+2x+1=0B .2 x 2-x -1=0C .x 2+2x -3=0D .x 2-2x -5=03.两圆的圆心距为5,它们的半径分别是一元二次方程x 2-5x +4=0的两根,则两圆( )A .外切B .相交C .内切D .外离4.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为 ( )A .b =2,c =-2B .b =-8,c =14C .b =-6,c =6D .b =-8,c =185.Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于 ( )A .cos sin a A bB + B .sin sin a A b B +C .sin sin a b A B +D .cos sin a b A B+ 6.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的 ( )A .方差B .平均数C .中位数D .众数7.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),B (5,0),给出下列判断: ①ac<0; ②b 2>4ac ; ③b+4a =0; ④4a-2b +c <0.其中正确的是 ( )A .①②B .①②③C .①②④D .①②③④第7题8.如图,已知扇形的圆心角为2α(定值),半径为R (定值),分别在图一、二中作扇形的内接矩形,若按图一作出的矩形面积的最大值为21tan 2R α,则按图二作出的矩形面积的最大值为 ( )A .2tan R αB .21tan 2R αC .21tan 22R α D .2tan 2R α 二、填空题(本大题共有12小题,共16空,每空2分,共32分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.10.使式子111+-x 有意义的x 的取值范围是 .11.关于x 的一元二次方程(a -1)x 2-x+a 2-1=0的一个根是0,那么a 的值为______.12. 若一组数据8,6,5,x ,9的平均数是7,则这组数据的极差为 ;方差为 .13是同类二次根式,那么a 的值为.第8题14. 现有A 、B 两个均匀的小正方体(立方体每个面上分别标上数字1~6),小丽掷A 立方体朝上的数字为x ,小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在抛物线x x y 52+-=上的概率是 .15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为______.16. 如图,在△ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,53cos =B ,则(1)DC = ;(2)tan ∠EDC = .17.如图,已知点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标是___________.第15题 第16题 第17题 第18题18.如图,电线杆AB 直立在地面上,它的影子恰好照在土坡坡面CD 和地面上,若斜坡CD 的坡角为45°,∠A =60°,CD =6m ,BC =)2366(-m ,则电线杆AB 的长度_____ m .19. 如图,甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球距地面高度h (米)与其飞行的水平距离s (米)之间的关系式为23321212++-=s s h .若球网AB 距原点5米,乙(用线段CD 表示)扣球的最大高度为2.25米,(1)羽毛球的出手点高度为__________米;(2)设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失误,则m 的取值范围是______.第19题20.已知直线321+=x y 与x 轴交于点A ,与y 轴交于点B ,点C (0,2)、点M (m ,0), 如果以MC 为半径的⊙M 与直线AB 相切,则经过点A 、C 、M 的抛物线的解析式为________.三、解答题(本大题共有8小题,共74分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(1)计算︒⋅︒+︒-︒-+--45tan 30sin )60(cos tan6013)8(20π (2 ) 解方程 06)31(5)13(2=--+-y y22.关于x 的一元二次方程0351232=-+⋅-+k x k x ,问:是否存在整数..k 使方程有两个不相等的实数根,若存在,请求出k 的值并求出此时方程的两个实数根;若不存在,试说明理由.23.如图,等腰三角形ABC 中,AC =BC =3,AB =4.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E .(1)求证:直线EF 是⊙O 的切线;(2) 连接BG ,求GBC ∠sin 的值.24.(1)大桥中学初三学生对迎新文艺汇演的满意程度进行测评,评定分A 、B 、C 、D 四个等第,①请在下面给出的图中画出这30名学生对文艺汇演满意程度等第的频数条形统计图,并计算其中等第达到较满意以上(含较满意)的频率;②已知初三学生学号是从3001开始,按由小到大顺序排列的连续整数,请你计算这30名学生学号的中位数,并运用中位数的知识来估计这次初三学生的满意度等第达到较满意以上(含较满意)的人数;(2)迎新文艺汇演组委会准备邀请所有参与表演的学生去嬉戏谷游玩,由于项目较多,准备上午先从A .雷神之怒、B .龙行天下、C .撕裂星空、D .云之秘境中随机选择三个项目, 下午再从E .天际骇客、F .激流勇进、G .魔兽天途中随机选择二个项目游玩,①请用列举法或树形图说明当天学生们符合上述条件的所有可能的选择方式.(用字母表示)②在①的选择方式中,求学生恰好上午选中A 雷神之怒,同时下午选中G 天际骇客这两个项目的概率.25.如图是无锡某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场 地划分成A 、B 、C 三个不同的票价区.其中与场地边缘MN 的视角大于或等于45°, 并且距场地边缘MN 的距离不超过15米的区域划分为A 票区,B 票区(如图1所示), 剩下的为C 票区.(1)请你利用尺规作图,在观赛场地中,作出A 票区所在的区域(只要求作出图形,保留作图痕迹,不要求写作法);(2)如果每个座位所占的平均面积是1.2平方米,请估算A 票区有多少个座位;(3)为提高B 区观众的观赛效果,举办方将B 区用两个大型的支柱AP 、AC 撑起一定的角度,其横截面如图2所示.若AB =10米,∠B =30°,∠CPA =∠CAD =75°,求CP 的长度.(结果保留根号)26.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜 边AB =12cm ,DC =14cm ,把三角板DCE 绕点C 逆时针旋转15°得到△11CE D (如图2).这时AB 与1CD 相交于点O ,与11E D 相交于点F .(1)填空:∠1OFE = °;(2)请求出△1AOD 的内切圆半径;(3)把△11CE D 绕着点C 逆时针再旋转α度(︒<<︒750α)得△22CE D ,若△2CBE 为等腰三角形,求α的度数(精确到0.1°).图1 图227.国内某企业生产一种隔热瓦(其厚度忽略不计),形状近似为正方形,边长x (cm )在5~25之间(包括5和25),每片隔热瓦的成本价(元)与它的面积(cm 2)成正比例.出厂价P (元)与它的边长x (cm )满足一次函数,图象如图所示.(1)已知出厂一张边长为15cm 的隔热瓦,获得的利润是55元(利润=出厂价-成本价).①求每片的隔热瓦利润Q (元)与边长x (cm )之间满足的函数关系式;②当边长为多少时,出厂的隔热瓦能获得最大利润?最大利润是多少?(2)在(1)的基础上,如果厂家继续扩大产品规模,从5cm~25cm 扩大到5cm~60cm .由于20cm~40cm的隔热瓦属于国家科技项目,国家对这部分产品进行贴补.每片隔热瓦贴补W (元)与它的边长x (cm )满足:10)30(2-=x W .在推广20cm~40cm 的隔热瓦时,厂家进行市场营销,这种规格的隔热瓦广告费为每片10元.要使每片隔热瓦的利润不低于60.4元,求5cm~60cm 的隔热瓦边长x 的取值范围.(x 取整数)28.如图1,二次函数)0(2≠++=a c bx ax y 的图象为抛物线,交x 轴于A 、B 两点,交y轴于C 点.其中AC =21,BC =34,332tan =∠BAC . (1)求二次函数的解析式;(2)若P 点为抛物线上一动点且在x 轴下方运动,当以P 为圆心,1为半径的⊙P 与直线BC 相切时,求出符合条件的P 点横坐标;(3)如图2,若点E 从点A 出发,以每秒3个单位的速度沿着AB 向点B 匀速运动,点F 从点A 出发,以每秒221个单位的速度沿着AC 向点C 匀速运动.两点同时出发,当其中一点到达终点时,另一点也随之停止运动.过点E 作AB 的垂线l 交抛物线于点E′,作点F 关于直线l 的对称点F′.设点E 的运动时间为t (s ),点F′ 能恰好在抛物线吗?若能,请直接写出t 的值;若不能,请说明理由.图1 图2初三数学答案及评分标准一.选择题1.C 2.D 3.A 4.C 5.B 6.A 7.B 8.D 二. 填空题21.(8分)(1)原式=1+313--4-23 (2分) =234-- (4分) (2)371=y 02=y (4分) 22.(7分)解:因为方程有两个不相等的实数根所以0)35(4)123(2>---k k (2分)另外012≥-k (3分)所以2321<≤k (4分) 所以k 的整数值为1 (5分)代入方程解之得1,221-=-=x x (7分)23.(8分)(1)连接OD.∵OB=OD ∴∠OBD=∠ODB ∵AC=BC ∴∠OBD=∠A∴∠ODB=∠A∴OD//AC (2分)∴∠EDO=∠EFC=90°∴EF 为切线。

苏科版-九年级第一学期数学期末考试试题

苏科版-九年级第一学期数学期末考试试题

2012-2013学年度第一学期九年级数学期末试卷一、 精心选一选:(共8小题,每小题4分,共32分)1.抛物线y =(x -2)2+3的顶点坐标是( )A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)2.若两圆的半径分别是3和4,圆心距为8,则两圆的位置关系为( )A .相交B .内含C .外切D .外离3.如图,AB 是半圆O 的直径,点P 从点O 出发,沿线段OA -弧AB -线段BO 的路径匀速运动一周.设线段OP 长为s ,运动时间为t ,则下列图形能大致刻画s 与t 之间关系的是( )4.用配方法解方程0762=+-y y ,得(),2n m y =+则( ) A .2,3==n m B. 2,3=-=n m C. 9,3==n m D. 7,3-=-=n m5.在平面直角坐标系中,⊙O的半径为5,圆心O 为坐标原点,则点P(-3,-4)与⊙O的位置关系是( )A .点P 在⊙O上B .点P 在⊙O外部C .点P 在⊙O内部D .不能确定6.如图,⊙O 的半径为5,圆心O 到弦AB 的距离为3,则AB 的长为( )A .4B .5C .6D .87.如果二次函数y=ax 2+bx+c(其中a 、b 、c 为常数,a ≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x 的方程ax 2+bx +c =0的一个正根可能是( )A .0.5B .1.5C .2.5D .3.58.两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A.(4+ cm B.cm C .9cm D.二、细心填一填:(共10小题,每空4分,共40分)9. 方程24x x =的解是 ▲ .10. 如图,点C 、D 在以AB 为直径的⊙O 上,若∠BDC =28°,则∠ABC =_ ▲__.11.二次函数y=(x -3)(x +2)的图象的对称轴是 _▲_ .12. 关于x 的一元二次方程22(2)40a x x a -++-=的一个根是0,则a 的值为_ ▲__.13.把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为_ ▲__.第7题图 第8题图第6题图第10题图A1O 14.已知点A (m ,0)是抛物线221y x x =--与x 轴的一个交点,则代数式2242010m m -+的值是_ ▲__.15.如图,在纸上剪下一个圆形和一个扇形的纸片,若它们恰好能围成一个圆锥模型,圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的数量关系是_ ▲__.16.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图所示),要使种植面积为600平方米,求小道的宽.若设小道的宽为x 米,则可列方程为_ ▲__.17.在平面直角坐标系xOy 中,点A 的坐标是(1,0),当以点A 为圆心的圆与直线l :y=x+3相切时,切点的坐标是_ ▲__.18.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC分别交于点G 、H 、E 、F ,则EF+GH 的最小值是_ ▲__.三、认真答一答:(共8小题,共78分)19.(本题5分)解方程: (x -3)2+4x (x -3)=020.(本题8分) 已知:关于x 的一元二次方程0132=+--k x x 有两个不相等的实数根.(1)求k 的取值范围; (2)请选择一个k 的正整数值,并求出方程的根.21.(本题8分)如图,扇形OAB 的圆心角为90°,以OB 为直径的半圆O 1与半圆O 2外切,且⊙O 1与⊙O 2都与扇形弧相内切。

苏科版数学九年级上册《期末考试题》含答案

苏科版数学九年级上册《期末考试题》含答案

苏科版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共10小题)1.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数2.已知一元二次方程p2﹣p﹣3=0,q2﹣q﹣3=0,则p+q的值为()A.﹣B.C.﹣3 D.33.到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线4.在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数6.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③7.一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离P A=75cm.若钢管的厚度忽略不计,则劣弧的长为()A.πcm B.50πcm C.πcm D.50πcm8.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2 C.a+2,b D.a+2,b+29.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°10.已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是()A.①②B.①③C.②③D.①②③二、填空题(共8小题)11.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是.12.方程x3+8=0在实数范围内的解是﹣.13.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为.14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣.15.某药品经过两次降价,每盒零售价由105元降到88元,已知再次降价的百分率相同,设每次降价的百分率为x,根据题意可列方程为﹣.16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD=8,CF交AB于点G,则弦CF的长为,AG的长为.18.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为.三、解答题(共10小题)19.解方程:(1)(2x+3)2﹣81=0.(2)x2﹣4x﹣5=020.新世纪超市今年3月底购进了一批水果1260千克,预计在4月份进行试销,购进价格为每千克10元,若售价为每千克12元,则可全部售出.若售价每千克涨价0.1元,销售量就减少2千克.(1)若超市4月份销售量不低于1200千克,则售价应不高于多少元?(2))因市场需求增加,5月份进价比3月底的进价每千克增加20%,该超市增加了进货量,并提高销售力度,结果5月份的销售量比4月份在(1)的条件下的最低销售量增加了a%(a>15),但售价比4月份在(1)的条件下的最高售价减少了%,结果5月份利润达到3696元,求a的值.21.(2019•濮阳模拟)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F 上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有450人,其中选择B类的人数有63人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.22.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)求证:方程有两个不相等的实数根;(2)以这个方程的的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=2时,△ABC是等腰三角形,求此时m的值;(3)若方程两个实数根为x1、x2,且x1<x2,满足=.求m的值.23.高新区教育局为了了解区内七年级学生参加社会实践活动情况,随机抽取了辖区部分学校的七年级学生2018﹣2019学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中的a=,参加实践活动的天数为6天的学生对应的圆心角度数是;(2)请你补全条形统计图;本次抽样调查的中位数是.(3)若高新区共有七年级学生5000人,请你估计活动时间不少于6天的学生人数大约有多少人?24.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,AC平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=6cm,求⊙O的半径.25.2018年全国两会期间民生话题成为社会焦点.无锡市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了无锡市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)无锡市人口现有600万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?26.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.(1)求⊙O半径;(2)求证:DE为⊙O的切线;27.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.28.阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:x2+11x+24=x2+11x+()2﹣()2+24=(x+)2﹣=(x++)(x+﹣)=(x+8)(x+3)根据以上材料,解答下列问题:(1)用配方法将x2+8x﹣1化成=(x+m)2+n的形式,则x2+8x﹣1=﹣;(2)用配方法和平方差公式把多项式x2﹣2x﹣8进行因式分解;(3)对于任意实数x,y,多项式x2+y2﹣2x﹣4y+16的值总为(填序号).①正数②非负数③0参考答案一、单选题(共10小题)1.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数[解答]解:由于关于x的方程ax2+bx+c=0是一元二次方程,所以二次项系数不为零,即a≠0.故选:A.[知识点]一元二次方程的定义2.已知一元二次方程p2﹣p﹣3=0,q2﹣q﹣3=0,则p+q的值为()A.﹣B.C.﹣3 D.3[解答]解:由题意可知:p、q是方程x2﹣x﹣3=0的两根,∴p+q=,故选:B.[知识点]根与系数的关系3.到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线[解答]解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.故选:A.[知识点]三角形的内切圆与内心4.在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元[解答]解:∵捐款金额为20元的学生数最多为20人,∴众数为20元,∵共有50位同学捐款,∴第25位同学和26位同学捐款数的平均数为中位数,即中位数为:=30元;故选:A.[知识点]众数、中位数5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数[解答]解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C.[知识点]统计量的选择、中位数6.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③[解答]解:①错误,实验条件会极大影响某事件出现的频率;②正确;③正确;④错误,“两个正面”、“两个反面”的概率为,“一正一反”的机会较大,为.故选:B.[知识点]概率的意义、利用频率估计概率、可能性的大小7.一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离P A=75cm.若钢管的厚度忽略不计,则劣弧的长为()A.πcm B.50πcm C.πcm D.50πcm[解答]解:∵最短距离PB=25cm,最长距离P A=75cm,∴圆O的半径为25cm,则OM=25cm,OP=50cm,∵PM⊥OM,∴∠OPM=30°,∠MOP=60°,同理可得,∠NOP=60°,∴∠MON=120°,劣弧==πcm.故选:A.[知识点]弧长的计算、切线的性质8.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2 C.a+2,b D.a+2,b+2[解答]解:∵数据x1,x2,…,x n的众数为a,方差为b,∴数据x1+2,x2+2,…,x n+2的众数为a+2,这组数据的方差是b,故选:C.[知识点]方差、众数9.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°[解答]解:∠BAC=∠BOC=×72°=36°.故选:C.[知识点]圆周角定理、圆心角、弧、弦的关系10.已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是()A.①②B.①③C.②③D.①②③[解答]解:①如果5是方程M的一个根,那么25a+5b+c=0,方程两边同时除以25, 得a+b+c=0,即c+b+a=0,所以是方程N的一个根,故①正确,符合题意;②如果方程M有两个不相等的实数根,那么△=b2﹣4ac>0,所以方程N也有两个不相等的实数根,故②正确,符合题意;③如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,解得:x=±1,故③错误,不符合题意;故选:A.[知识点]一元二次方程的定义、根的判别式二、填空题(共8小题)11.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是.[解答]解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环);故答案为:7.5.[知识点]中位数12.方程x3+8=0在实数范围内的解是﹣.[解答]解:由x3+8=0,得x3=﹣8,x=﹣2,故答案为x=﹣2.[知识点]高次方程13.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为.[解答]解:根据题意得,r=30cm,故答案为30cm.[知识点]弧长的计算14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣.[解答]解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.[知识点]根与系数的关系15.某药品经过两次降价,每盒零售价由105元降到88元,已知再次降价的百分率相同,设每次降价的百分率为x,根据题意可列方程为﹣.[解答]解:设每次降价的百分率为x,依题意,得:105(1﹣x)2=88.故答案为:105(1﹣x)2=88.[知识点]由实际问题抽象出一元二次方程16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.[解答]解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.[知识点]概率公式17.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD=8,CF交AB于点G,则弦CF的长为,AG的长为.[解答]解:连结BC,DF,OC,连结DO并延长交CF于点H,∵弦CD⊥AB于点E,CD=8,∴CE==4,设OC=x,则OE=x﹣2,∵OE2+CE2=OC2,∴(x﹣2)2+42=x2,解得x=5,∴OC=5,∴OE=5﹣2=3,∵,∴DF=CD,∠CFD=∠COB,DH⊥CF,∴∠FHD=∠OEC=90°,∴△DHF∽△CEO,∴=,∴,∴FH=,DH=,∴CF=2FH=,OH=DH﹣OD=,∵∠CFD=∠COB=∠BOD,∠BOD=∠GOH,∴∠GOH=∠DFH,∵∠GHO=∠OEC=90°,∴△GHO∽△CEO,∴,∴,∴OG=,故答案为:,.[知识点]相似三角形的判定与性质、垂径定理、圆心角、弧、弦的关系、圆周角定理、勾股定理18.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为.[解答]解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD==2.4,∴⊙C的半径为2.4,故答案为:2.4[知识点]勾股定理的逆定理、切线的性质三、解答题(共10小题)19.解方程:(1)(2x+3)2﹣81=0.(2)x2﹣4x﹣5=0[解答]解:(1)(2x+3)2=81,2x+3=±9,即2x+3=9或2x+3=﹣9,所以x1=3,x2=﹣6;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1.[知识点]解一元二次方程-因式分解法、解一元二次方程-直接开平方法20.新世纪超市今年3月底购进了一批水果1260千克,预计在4月份进行试销,购进价格为每千克10元,若售价为每千克12元,则可全部售出.若售价每千克涨价0.1元,销售量就减少2千克.(1)若超市4月份销售量不低于1200千克,则售价应不高于多少元?(2))因市场需求增加,5月份进价比3月底的进价每千克增加20%,该超市增加了进货量,并提高销售力度,结果5月份的销售量比4月份在(1)的条件下的最低销售量增加了a%(a>15),但售价比4月份在(1)的条件下的最高售价减少了%,结果5月份利润达到3696元,求a的值.[解答]解:(1)设4月份的售价为x元,根据题意得:1260﹣(x﹣12)÷0.1×2≥1200,解得:x≤15.答:若超市4月份销售量不低于1200千克,则售价应不高于15元.(2)设y=a%,根据题意得:1200(1+y)×[15(1﹣y)﹣10×(1+20%)]=3696,整理得:50y2﹣25y+2=0,解得:y1=0.4,y2=0.1,∴a=10(舍去)或a=40.答:a的值为40.[知识点]一元二次方程的应用21.(2019•濮阳模拟)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F 上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有450人,其中选择B类的人数有63人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.[解答]解:(1)参与本次问卷调查的学生共有162÷36%=450人,其中选择B类的人数有450×14%=63人, 故答案为:450、63;(2)E类对应的扇形圆心角α的度数360°×(1﹣36%﹣14%﹣20%﹣16%﹣4%)=36°,C方式的人数为450×20%=90人、D方式人数为450×16%=72人、E方式的人数为450×10%=45人,F方式的人数为450×4%=18人,补全条形图如下:(3)估计该校每天“绿色出行”的学生人数为3000×(1﹣14%﹣4%)=2460人.[知识点]垂径定理22.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)求证:方程有两个不相等的实数根;(2)以这个方程的的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=2时,△ABC是等腰三角形,求此时m的值;(3)若方程两个实数根为x1、x2,且x1<x2,满足=.求m的值.[解答](1)证明:∵a=1,b=﹣(2m+3),c=m2+3m+2,△=b2﹣4ac=(2m+3)2﹣4(m2+3m+2),=1>0,∴方程有两个不相等的实数根;(2)解:依题意可知,△ABC中AB或者AC=BC=2,∴方程有一实数根为2,将x=2代入方程得:22﹣2(2m+3)+m2+3m+2=0,解得:m1=0,m2=1,此时m的值为0或1;(3)根据根与系数的关系得:,∴x2﹣x1=|x1﹣x2|==(2m+3)2﹣4(m2+3m+2)=1,∴=,,解得:m1=0,m2=﹣3,经检验,m1=0,m2=﹣3都是方程的解,由(1)知m的值满足题意.∴m的值为0或﹣3.[知识点]等腰三角形的判定与性质、根与系数的关系、根的判别式23.高新区教育局为了了解区内七年级学生参加社会实践活动情况,随机抽取了辖区部分学校的七年级学生2018﹣2019学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中的a=,参加实践活动的天数为6天的学生对应的圆心角度数是;(2)请你补全条形统计图;本次抽样调查的中位数是.(3)若高新区共有七年级学生5000人,请你估计活动时间不少于6天的学生人数大约有多少人?[解答]解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,参加实践活动的天数为6天的学生对应的圆心角度数是360°×20%=72°;故答案为:10%,72°;(2)参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:抽样调查中总人数为100人,结合条形统计图可得:中位数是6天;故答案为:6;(3)根据题意得:5000×(25%+10%+5%+20%)=3000(人),答:活动时间不少于6天的学生人数大约有3000人.[知识点]条形统计图、用样本估计总体、中位数、扇形统计图24.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,AC平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=6cm,求⊙O的半径.[解答](1)证明:∵AC平分∠BCD,∠BCD=120°,∴∠ACD=∠ACB=60°,∵∠ACD=∠ABD,∠ACB=∠ADB,∴∠ABD=∠ADB=60°,∴△ABD是等边三角形;(2)解:作直径DE,连结BE,∵△ABD是等边三角形,∴∠BAD=60°,∴∠BED=∠BAD=60°,∵DE是直径,∴∠EBD=90°,∴∠EDB=30°,∴DE=2BE,设EB=x,则ED=2x,∴(2x)2﹣x2=62∵x>0,∴x=2,∴即⊙O的半径为2.[知识点]等边三角形的判定与性质、圆周角定理、圆内接四边形的性质25.2018年全国两会期间民生话题成为社会焦点.无锡市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了无锡市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)无锡市人口现有600万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?[解答]解:(1)总人数=80÷20%=400(人),m=400×10%=40(人),n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比==15%,故答案为:40,100,15.(2)600×=180 (万人).答:无锡市人口现有600万人,估计其中关注D组话题的市民人数有180万人.(3)此人关注C组话题的概率==.[知识点]用样本估计总体、概率公式、统计表、扇形统计图26.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.(1)求⊙O半径;(2)求证:DE为⊙O的切线;[解答]解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵BD=CD,∴AB=AC=12,∴⊙O半径为6;(2)证明:连接OD,∵∠CDE=∠DAC,∴∠CDE+∠C=∠DAC+∠C,∴∠AED=∠ADB,由(1)知∠ADB=90°,∴∠AED=90°,∵DC=BD,OA=OB∴OD∥AC.∴∠ODF=∠AED=90°,∴半径OD⊥EF.∴DE为⊙O的切线.[知识点]切线的判定、圆周角定理27.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.[解答](1)证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(3)解:作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=4,在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴=3,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=3,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD===3.[知识点]圆周角定理、切线的判定与性质28.阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:x2+11x+24=x2+11x+()2﹣()2+24=(x+)2﹣=(x++)(x+﹣)=(x+8)(x+3)根据以上材料,解答下列问题:(1)用配方法将x2+8x﹣1化成=(x+m)2+n的形式,则x2+8x﹣1=﹣;(2)用配方法和平方差公式把多项式x2﹣2x﹣8进行因式分解;(3)对于任意实数x,y,多项式x2+y2﹣2x﹣4y+16的值总为(填序号).①正数②非负数③0[解答]解:(1)x2+8x﹣1=x2+8x+16﹣16﹣1=(x+4)2﹣17,故答案为:(x+4)2﹣17;(2)原式=x2﹣2x+1﹣1﹣8=(x﹣1)2﹣9=(x﹣1+3)(x﹣1﹣3)=(x+2)(x﹣4);(3)x2+y2﹣2x﹣4y+16=x2﹣2x+1+y2﹣4y+4+11=(x﹣1)2+(y﹣2)2+11>0,故答案为:①.[知识点]因式分解-运用公式法、配方法的应用、因式分解-分组分解法、因式分解-十字相乘法等。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-44.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.在△ABC 中,若|sinA ﹣12|+(2﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°6.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定7.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4 8.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π9.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.10.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 11.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3 C .4 D .5 12.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6B .7C .8D .913.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根14.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④15.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.二次函数23(1)2y x =-+图象的顶点坐标为________. 18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 20.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.21.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 22.抛物线2(-1)3y x =+的顶点坐标是______.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.24.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 26.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.27.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.29.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.30.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题31.如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒2个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.32.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?33.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P ,连结EF 、EO ,若DE=23,∠DPA=45°. (1)求⊙O 的半径;(2)求图中阴影部分的面积.34.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC .35.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.38.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.39.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD只有一个公共点,直接写出平移后抛物线顶点的横坐标m的值或取值范围.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 2.D解析:D【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】两边开方得到x=±2. 【详解】 解:∵x 2=4, ∴x=±2, ∴x 1=2,x 2=-2. 故选:C . 【点睛】本题考查了解一元二次方程-直接开平方法:形如ax 2+c=0(a≠0)的方程可变形为2=cx a-,当a 、c 异号时,可利用直接开平方法求解. 4.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】 由题意得,sinA-12=0,2-cosB=0, 即sinA=12,22=cosB , 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.6.C解析:C 【解析】分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.7.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.9.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.10.C解析:C 【解析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.12.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.14.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,∴∠+∠=︒,GDP ADO90=,OA OD∴∠=∠,ADO OAD∠=∠,∠+∠=︒,GPD APFAPF OAD90∴∠=∠,GPD GDP∴=,故②正确.GD GP⊥,③正确.AB CE∴AE AC=,=,AC CD∴CD AE=,∴∠=∠,CAD ACEPC PA∴=,AB是直径,∴∠=︒,90ACQCAP CQP∠+∠=︒,∴∠+∠=︒,90 ACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PA∠=︒,ACQ90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,APF ABD∽,∴∆∆∴AP AF=,AB ADAP AD AF AB∴⋅=⋅,∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.15.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义.18.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.19.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.20.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.21.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 22.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.24.(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).25.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.29.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离30.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标. (3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90︒,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90︒,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90︒,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.32.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.33.(1) 2 ;(2)π-2.【解析】【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE∴12CE DE ==∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2(2)连结OF。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .13.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.若25x y =,则x yy+的值为( ) A .25B .72C .57D .756.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=7.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°8.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤9.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .2310.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( ) A .在⊙O 的内部 B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部11.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .433B .23C .334D .32212.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,1513.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B 3C .32D 214.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×10915.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 17.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.18.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m . 19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).23.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.24.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.25.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.26.已知3a =4b ≠0,那么ab=_____. 27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 29.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上B .⊙O 外C .⊙O 内2.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤3.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+4.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x5.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB 10C 10πD .π7.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°8.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.59.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-10.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2 B .y =(x ﹣3)2+2 C .y =(x +2)2+3 D .y =(x ﹣2)2+3 11.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .312.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°13.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内14.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3715.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .18.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.19.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.20.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.21.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.22.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.23.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.24.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).28.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.29.若a b b -=23,则ab的值为________. 30.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题31.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.32.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件. (1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?33.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 34.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A ′恰好落在边AB 上,且AN =12AC ,求AM 的长; (2)如图2,若点A ′恰好落在边BC 上,且A ′N ∥AC . ①试判断四边形AMA ′N 的形状并说明理由; ②求AM 、MN 的长;(3)如图3,设线段NM 、BC 的延长线交于点P ,当35AN AB =且67AM AC =时,求CP 的长.35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.37.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13 ,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D.设∠BAC=α,则sinα=13BC AB = ,可设BC=x ,则AB=3x ,…. 【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P=β,sinβ=35 ,求sin2β的值.38.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B . 【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.2.B解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.3.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.4.D解析:D 【解析】根据比例的性质,把等积式写成比例式即可得出结论. 【详解】 A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.5.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.C解析:C【解析】【分析】【详解】如图所示:在Rt △ACD 中,AD=3,DC=1,根据勾股定理得:2210AD CD +=又将△ABC 绕点C 顺时针旋转60°, 则顶点A 所经过的路径长为l=6010101803π=. 故选C.7.C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.9.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.10.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.12.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.13.A解析:A【解析】【分析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.14.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC,∠ABC=30°,∴AB=2AC=,BC AC,∵DE∥AB,∴CDCA=CECB,,∴CE∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE∴E ′H =12CE ′=32,CH =3HE ′=32, ∴BH =22BC CH -=9214-=53 ∴BE ′=HE ′+BH =33,故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C (2,-3),∴BC∥x 轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.18.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.19.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.20.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.21.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.22.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.23.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线. 【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.24.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.25.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.26.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴6105AB=,故答案为:6105.【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.28.【解析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.29.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a b b-=23,∴b=35a,∴ab=5335aa=,故答案为:53.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.30.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.三、解答题31.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(22252x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.32.(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【解析】【分析】(1)根据题意,可以得到关于x 的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题.【详解】解:(1)设每件玩具的售价为x 元,()()602021001200x x -+-=⎡⎤⎣⎦,解得:190x =,280x =,∵扩大销售,增加盈利,尽快减少库存,∴80x =,答:每件玩具的售价为80元;(2)设每件玩具的售价为a 元时,利润为w 元,()()()2602021002851250w a a a =-+-=--+⎡⎤⎣⎦,即当85a 时,w 有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答.33.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.34.(1)52;(2)①菱形,理由见解析;②AM=209,MN ;(3)1. 【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA ′交MN 于O .设AM =MA ′=x ,由MA ′∥AB ,可得'MA AB =CM CA ,由此构建方程求出x ,解直角三角形求出OM 即可解决问题.(3)如图3中,作NH ⊥BC 于H .想办法求出NH ,CM ,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt △ABC 中,∵∠C =90°,AC =4,BC =3,∴AB 5==,∵∠A =∠A ,∠ANM =∠C =90°,∴△ANM ∽△ACB ,∴AN AC =AM AB, ∵AN =12AC ∴12=5AM , ∴AM =52.(2)①如图2中,∵NA ′∥AC ,∴∠AMN =∠MNA ′,由翻折可知:MA =MA ′,∠AMN =∠NMA ′, ∴∠MNA ′=∠A ′MN ,∴A ′N =A ′M ,∴AM =A ′N ,∵AM ∥A ′N ,∴四边形AMA ′N 是平行四边形, ∵MA =MA ′,∴四边形AMA ′N 是菱形.②连接AA ′交MN 于O .设AM =MA ′=x , ∵MA ′∥AB ,∴'ABC MA C ∽∴'MA AB =CM CA , ∴5x =44x , 解得x =209, ∴AM =209 ∴CM =169,∴CA′=22MA CM-=22201699⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=43,∴AA′=22'AC CA+=22443⎛⎫+ ⎪⎝⎭=4103,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=2103,∴OM=22AM AO-=222021093⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭=210,∴MN=2OM=410.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴NHAC=BNAB=3BH∴NH4=25=3BH∴NH=85,BH=65,∴CH=BC﹣BH=3﹣65=95,∴AM=67AC=247,∴CM=AC﹣AM=4﹣247=47,∵CM∥NH,∴△CPM∽△HPN∴PCPH=CMNH,∴PC9PC 5+=4785, ∴PC =1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点. 35.(1)①P 与直线相切.理由见解析;②()1,1P 或()5,3P -;(2)9131,4⎫-⎪⎭或9131,4⎛⎫- ⎪⎝⎭.【解析】 【分析】(1)①作直线l 的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;②利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案. (2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案. 【详解】 (1)①P 与直线相切.如图,过P 作PQ ⊥直线l ,垂足为Q ,设()P m n ,.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 2.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)3.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 4.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°5.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°6.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,108.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+49.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=10.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =11.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .12.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223313.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 214.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .215.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____. 19.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 20.抛物线2(-1)3y x =+的顶点坐标是______.21.关于x 的方程220kx x --=的一个根为2,则k =______. 22.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.23.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.24.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.25.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.26.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).28.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 29.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.32.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示: (1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?33.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)34.如果一个直角三角形的两条直角边的长相差2cm ,面积是242cm ,那么这个三角形的两条直角边分别是多少?35.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.四、压轴题36.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.38.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可). 39.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.2.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).3.B解析:B 【解析】 【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解. 【详解】解:A 、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B 、方程x 2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.5.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,22-cosB=0,即sinA=122,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C.【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.6.D解析:D 【解析】 【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO , ∵26ADC ∠=︒ ∴∠AOC=252ADC ∠=︒ ∵//OA BC ∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.7.D解析:D 【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.8.A解析:A 【解析】 【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可. 【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y =2(x+1)2+4,故选:A .【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 9.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.10.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=5x,∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.11.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.12.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b =33=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.14.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.19.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.20.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h,k)即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.21.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.22.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.23.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.24.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.26.【解析】【分析】如图,过点F 作FH⊥AE 交AE 于H ,过点C 作CM⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH =HF =x ,则EH =xtan30°x . ∵AB=2AD ,AD=AE ,∴AE =12AB =1,∴=1,解得x 32=.∴S △AEF =12.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.27.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.28.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.29.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题31.(1)123;2x x =-=;(2)123;1x x ==-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
. .
x2
DE AB
.
三、解答题(本大题共有 9 小题,共 78 分) 19.计算(每小题 4 分,共 8 分) (1)( 27- 12+ 45)³ 1 ; 3 (2)( 2- 3) + 18÷ 3.
2
2
20.解方程(每小题 4 分,共 8 分) 2 (1) x -4x+2=0;
(2)2(x-3)=3x(x-3).
2
D.对角线相等的四边形
8.如图,抛物线 y=ax +bx+c 交 x 轴于(-1,0) 、 (3,0)两点,则下 列判断中,错误 的是 „„„„„„„„„„„„„„„„„„ ( ) .. A.图象的对称轴是直线 x=1 B.当 x>1 时,y 随 x 的增大而减小 2 C.一元二次方程 ax +bx+c=0 的两个根是-1 和 3 D.当-1<x<3 时,y<0 9. 如图, 正方形 ABCD 的边长为 4cm, 动点 P、 Q 同时从点 A 出发, 以 1cm/s 的速度分别沿 A→B→C 和 A→D→C 的路径向点 C 运动, 设运动时间为 x 2 (单位: s) , 四边形 PBDQ 的面积为 y (单位: cm ) , 则y与x (0≤x≤8) 之间的函数关系可用图象表示为„„ ( )
23. (1)∵AB∥CD, CE∥AD,∴四边形 AECD 是平行四边形.„„„„„„„„„2 分 ∵CE∥AD,∴∠ACE=∠CA D. „„„„„„„„„„„„„„„„„„„3 分 ∵AC 平分∠BAD,∴∠CAE=∠CAD.∴∠ACE=∠C AE,∴AE=CE. ∴四边形 AECD 是菱形. „„„„„„„„„„„„„„„„„„„„„„4 分 (2) (判断)△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„5 分 证法一:∵AE=CE,AE=BE,∴BE=CE,∴∠B=∠BCE, „„„„„„„„6 分 ∵∠B+∠BCA+∠BAC=180º, ∴2∠BCE+2∠ACE=180º,∴∠BCE+∠ACE=90º,即∠ACB=90º. „„„„„7 分 ∴△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„„„„„„„8 分 证法二:连 DE,则 DE⊥AC,且 DE 平分 AC.„„„„„„„„„„„„„„„„6 分 设 DE 交 AC 于 F.又∵E 是 AB 的中点,∴EF∥BC, „„„„„„„„„„„„„7 分 ∴BC⊥AC,∴△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„8 分 24. (1)BP 与⊙O 相切. „„„„„„„„„„„„„„„„„„„„„„„„„„1 分 理由如下: ∵AB 是⊙O 的直径 ∴∠ACB=90 即 AC⊥BC.„„„„„„„„„„„„„„„„„„„„„„„„„2 分 ∵PF∥AC, ∴∠CAB=∠PEB. „„„„„„„„„„„„„„„„„„„„„3 分 ∵∠AD C=∠ABC, ∠BPF=∠ADC,∴∠ABC=∠BPF.„„„„„„„„„„„4 分
∴x1=2+ 2,x2=2- 2.„„4 分
21.(1)树状图或表格略 „„„„„„„„„„„„„„„„„„„„„„„„„2 分 P(两数差为 0)= 1 4 „„„„„„„„„„„„„„„„„„„„„„„„„„„ 3 分
3 1 (2)P(小明赢)= ,P(小华赢)= ,∵P(小明赢)>P(小华赢),∴不公平. ……………………5 分 4 4 修改游戏规则只要合理就得分 ……„„„„„„„„„„…………………………6 分
启星中学 2014 年九年级数学上学期期末考试试题 苏科版
注意事项:1.本试卷满分 130 分 考试时间:120 分钟 2.试卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果. 一、选择题:(本大题共 10 题,每小题 3 分,满分 30 分. ) 1.下列计算中,正确的是 „„„„„„„„„„„„„„„„„„„„„„ (
18.3- 3
19. (1)原式= 9- 4+ 15 „„3 分 (2)原式=2-2 6+3+ 6 „„„2 分 =3-2+ 15 =5- 6. „„„„„„4 分 =1+ 15 „„„„4 分 20.方法不作要求,只要计算正确,都给分。 (1)(x-2)2=2 „„„„„„2 分 (2)(x-3)(2-3x)=0 „„„„„2 分 x-2=± 2 x=2± 2 „„„„„3 分 x-3=0 或 2-3x=0„„„„3 分 2 ∴x1=3,x2= .„„„„„„4 分 3
25. (本题 10 分)某商场购进一批单价为 16 元的日用品.若按每件 23 元的价格销售,每月能 卖出 270 件;若按每件 28 元的价格销售,每月能卖出 120 件;若规定售价不得低于 23 元, 假定每月销售件数 y(件)与价格 x(元/件)之间满足一次函数. (1)试求 y 与 x 之间的函数关系式. (2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛 利润 w 最大?每月的最大毛利润为多少? (3)若要使某月的毛利润为 1800 元,售价应定为多少元?
22.(本题 6 分)已知⊙O1 经过 A(-4,2) 、B(-3,3) 、C(-1,-1) 、O(0,0)四点, 一次函数 y=-x-2 的图象是直线 l,直线 l 与 y 轴交 于点 D. (1)在右边的平面直角坐标系中画出 直线 l,则直线 l .. 与⊙O1 的交点坐标为 ; (2)若⊙O1 上存在点 P,使得△APD 为等腰三角形,则 这样的点 P 有 个,试写出其中一个点 P 坐标为 .
6.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长 为 8cm 的等边三角形,则梯形的中位线长为 „„„„„„„„( ) A.4cm B.6cm C.8cm D.10cm 7 . 顺 次 连 接 四 边 形 ABCD 各 边 的 中 点 所 得 四 边 形 是 矩 形 , 则 四 边 形 ABCD 一 定 是„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A.菱形 B.对角线互相垂直的四边形 C.矩形
4
26.(本题 10 分) 如图,在矩形 OABC 中 ,OA=8,OC=4,OA、OC 分别在 x 轴与 y 轴上,D 为 OA 上一点,且 CD=AD. (1)求点 D 的坐标; (2)若经过 B、C、D 三点的抛物线与 x 轴的另一个交点 为 E,请直接写出点 E 的坐标; (3)在(2)中的抛物线上位于 x 轴上方的部分,是否存 在一点 P,使△PBC 的面积等于梯形 DCBE 的面积? 若存在,求出点 P 的坐标,若不存在,请说明理由.
3
23. (本题 8 分)如图,四边形 ABCD 中,AB∥CD,AC 平分∠BAD,过 C 作 CE∥AD 交 AB 于 E. (1)求证:四边形 AECD 是菱形; (2)若点 E 是 AB 的中点,试判断△ABC 的形状,并说明理由.
A

D
B
C
24. (本题 10 分)如图,AB 是⊙O 的直径,C、D 在⊙O 上,连结 BC,过 D 作 PF∥AC 交 AB 于 E, 交⊙O 于 F,交 BC 于点 G,且∠BPF=∠ADC. (1)判断直线 BP 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为 5,AC=2,BE=1,求 BP 的长.
1
3 x+ 3 与 x 轴、y 轴分别相交于 A、B 两点, 3 圆心 P 的坐标为(1,0) ,⊙P 与 y 轴相切于点 O.若将⊙P 沿 x 轴向 左移动, 当⊙P 与该直线相交时, 满足横坐标为整数的点 P 的个 数是„„„„„„„„„„„„„„„( ) A.3 B.4 C.5 D.6 10.如图,直线 y= 二、填空题(本大题共 8 小题,共 11 空,每空 2 分,共 22 分. ) 11.若二次根式 2-x在实数范围内有意义,则实数 x 的取值范围是 2 12.若关于 x 的方程 x -5x+k=0 的一个根是 0,则另一个根是 13.已知一个矩形的对角线的长为 4,它们的夹角是 60°,则 这个矩形的较短的边长为 ,面积为 . 14.一组数据 1,1,x,3,4 的平均数为 3,则 x 表示的数为 ________, 这组数据的极差为_______. 15.已知扇形的圆心角为 150°,它所对应的弧长 20π cm, 2 则此扇形的半径是_________cm,面积是_________cm . 16.一个宽为 2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与 光盘相切时,另一边与光盘边缘两个交点处的读数恰好是 “2”和“1(单位:cm) ,那么该光盘的直径 为_________cm. .. ⌒上, 17.如图,四边形 OABC 为菱形,点 B、C 在以点 O 为圆心的 EF ⌒的长为____________cm. 若 OA=1cm,∠1=∠2,则 EF 18. 如图, 平行于 x 轴的直线 AC 分别交抛物线 y1=x(x≥0) 与 y2= (x 3 ≥0)于 B、C 两点,过点 C 作 y 轴的平行线交 y1 于点 D,直线 DE ∥AC,交 y2 于点 E,则 =
4 2 8 27. (本题 12 分)如图,抛物线 y= x - x-12 与 x 轴交于 A、C 两点,与 y 轴交于 B 点. 9 3 (1)求△AOB 的外接圆的面积; (2)若动点 P 从点 A 出发,以每秒 2 个单位沿射线 AC 方向运动;同时,点 Q 从点 B 出发,以每秒 1 个单位沿射线 BA 方向运动,当点 P 到达点 C 处 O 时,两点同时停止运动。问当 t 为何值时,以 A、 P、Q 为顶点的三角形与△OAB 相似? (3)若 M 为线段 AB 上一个动点,过点 M 作 MN 平行于 y 轴交抛物线于点 N. ①是否存在这样的点 M,使得四边形 OMNB 恰为 平行四边形?若存在,求出点 M 的坐标;若不 存在,请说明理由. ②当点 M 运动到何处时, 四边形 CBNA 的面积最大?求出此时点 M 的坐标及四边形 CBAN 面积的最大值. y

A. 3+ 2= 5 B. 3³ 2=6 C. 8÷ 2=4 D. 12- 3= 3 2 2.三角形的两边长分别为 3 和 6,第三边的长是方程 x -6x+8=0 的一个根,则这个三角形 的周长是„„„„„„„„„„„„„„„„„„„„„„„„„„„„( ) A. 9 B. 11 C. 13 D.11 或 13 3.下列说法中,正 确的是„„„„„„„„„„„„„„„„„„„„„„„( ) 1 A.一个游戏中奖的概率是 ,则做 10 次这样的游戏一定会中奖 10 B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是 8 D.若甲组数据的方差是 0.1,乙组数据的方差是 0.2,则乙组数据比甲组数据波动小 4.某学校准备修建一个面积为 200 平方米的矩形花圃,它的长比宽多 10 米,设花圃的宽为 x 米,则可列方程为„„„„„„„„„„„„„„„„„„„„„„ ( ) A.x(x-10)=200 B.2x+2(x-10)=200 C.x(x+10)=200 D.2x+2(x+10)=200 5.一个圆锥的母线长是底面半径的 2 倍,则侧面展开图扇形的圆心角是„„ ( ) A.60° B.90° C.120° D.180°
相关文档
最新文档