导数构造辅导助函数问题选择填空题专练答案

合集下载

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

2024届高考数学专题:同构、构造函数选择填空压轴题一、单选题1.若对∀x ∈12e ,12,不等式(ax -4)ln x <2ln a -ax ln2恒成立,则实数a 的取值范围是()A.(0,4e ]B.(4e ,+∞)C.[4e ,+∞)D.(4e ,+∞)【答案】C【分析】不等式(ax -4)ln x <2ln a -ax ln2变形为ln (2x )2x <ln (ax 2)ax 2,令f x =ln xx ,利用导数研究函数单调性,解不等式求实数a 的取值范围.【详解】由已知得:a >0,由ax -4 ln x <2ln a -ax ln2,得ax ln 2x <2ln a +2ln x 即ax ln (2x )2<ln (ax 2),可得ln (2x )2x <ln (ax 2)ax 2.令f x =ln xx,x ∈0,+∞ ,则f (2x )<f (ax 2),求导得f (x )=1-ln x x2,f(x )>0,解得0<x <e ;f (x )<0,解得x >e ,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,且当0<x <1时f (x )<0;当x >1时,f (x )>0,函数图像如图所示.∵x ∈12е,12,∴2x ∈1е,1,∴f (2x )<0,由f (2x )<f (ax 2)及f x =ln x x 的图像可知,2x <ax 2恒成立,即a >2x成立,而2x ∈(4,4e ),∴a ≥4е,实数a 的取值范围是[4e ,+∞).故选:C .2.对任意x ∈0,+∞ ,k e kx +1 -1+1xln x >0恒成立,则实数k 的可能取值为()A.-1B.13C.1eD.2e【答案】D【分析】将恒成立的不等式化为e kx +1 ln e kx >x +1 ln x ,构造函数f x =x +1 ln x ,利用导数可求得f x 单调性,从而得到e kx >x ,分离变量可得k >ln x x ;令h x =ln xx,利用导数可求得h x 最大值,由此可得k 的范围,从而确定k 可能的取值.【详解】当x >0时,由k e kx +1 -1+1xln x >0得:kx e kx +1 >x +1 ln x ,∴e kx +1 ln e kx >x +1 ln x ,令f x =x +1 ln x ,则f x =ln x +1+1x,令g x =f x ,则g x =1x -1x 2=x -1x 2,∴当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0;∴f x 在0,1 上单调递减,在1,+∞ 上单调递增,∴f x ≥f 1 =2>0,∴f x 在0,+∞ 上单调递增,由e kx +1 ln e kx >x +1 ln x 得:f e kx >f x ,∴e kx >x ,即k >ln xx;令h x =ln x x ,则h x =1-ln xx 2,∴当x ∈0,e 时,h x >0;当x ∈e ,+∞ 时,h x <0;∴h x 在0,e 上单调递增,在e ,+∞ 上单调递减,∴h x ≤h e =1e,∴当x >0时,k >ln x x 恒成立,则k >1e,∴实数k 的可能取值为2e,ABC 错误,D 正确.故选:D .【点睛】关键点点睛:本题考查利用导数求解恒成立问题,解题关键是能够对于恒成立的不等式进行同构变化,将其转化为同一函数的两个函数值之间的大小关系的问题,从而利用函数的单调性来进行求解.3.已知对任意的x ∈0,+∞ ,不等式kx e kx +1 -x +1 ln x >0恒成立,则实数k 的取值范围是()A.e ,+∞B.1e ,eC.1e,+∞D.1e2,1e【答案】C【分析】对已知不等式进行变形,通过构造函数法,利用导数的性质、常变量分离法进行求解即可.【详解】因为kx e kx +1 >(x +1)ln x ,所以e kx +1 ln e kx >(x +1)ln x ①,令f (x )=(x +1)ln x ,则f (x )=1x +1+ln x ,设g (x )=f (x )=1x+1+ln x ,所以g (x )=-1x 2+1x =x -1x2,当0<x <1时,g(x )<0,当x >1时,g (x )>0,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f x ≥f 1 =2,所以f (x )在(0,+∞)单调递增,因为①式可化为f e kx >f (x ),所以e kx >x ,所以k >ln xx,令h (x )=ln x x ,则h (x )=1-ln xx 2,当x ∈(0,e )时,h (x )>0,当x ∈(e ,+∞)时,h (x )<0,所以h (x )在(0,e )单调递增,在(e ,+∞)单调递减,所以h (x )max =h (e )=1e ,所以k >1e,故选:C .4.设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax -ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【分析】将e 2ax-ln x 2a ≥1a -e 2ax ax化简为e 2ax 2ax +2 ≥x ln x +2 ,再构造函数f x =x ln x +2 ,求导分析单调性可得e 2ax ≥x 在区间1e3,+∞上恒成立,再参变分离构造函数求最值解决恒成立问题即可.【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e 3,+∞时,fx >0,故f x =x ln x +2 在区间1e3,+∞上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln xx .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B 【点睛】方法点睛:恒(能)成立问题的解法:若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f x >0⇔f x min >0;∀x ∈D ,f x <0⇔f x max <0;(2)能成立:∃x ∈D ,f x >0⇔f x max >0;∃x ∈D ,f x <0⇔f x min <0.若能分离常数,即将问题转化为:a >f x (或a <f x ),则(1)恒成立:a >f x ⇔a >f x max ;a <f x ⇔a <f x min ;(2)能成立:a >f x ⇔a >f x min ;a <f x ⇔a <f x max .5.已知函数f x =ln x +ax 2,若对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是()A.14,+∞B.12,+∞C.14,+∞ D.12,+∞ 【答案】D【分析】构造函数g (x )=f (x )-2x =ln x +ax 2-2x (x >0),则转化得到g x 在(0,+∞)上单调递增,将题目转化为g (x )=1x+2ax -2≥0在(0,+∞)上恒成立,再利用分离参数法即可得到答案.【详解】由题意,不妨设x 1>x 2>0,因为对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,所以f x 1 -f x 2 >2x 1-2x 2,即f x 1 -2x 1>f x 2 -2x 2,构造函数g(x)=f(x)-2x=ln x+ax2-2x(x>0),则g x1>g x2,所以g(x)在(0,+∞)上单调递增,所以g (x)=1x+2ax-2≥0在(0,+∞)上恒成立,即a≥1x-12x2在(0,+∞)上恒成立,设m(x)=1x-12x2(x>0),则m (x)=-1x2+1x3=1-xx3,所以当x∈(0,1)时,m (x)>0,m(x)单调递增,x∈(1,+∞)时,m (x)<0,m(x)单调递减,所以m(x)max=m(1)=1-12=12,所以a≥1 2 .故选:D.6.已知f x 是定义在R上的函数f x 的导函数,且f x +xf x <0,则a=2f2 ,b=ef e ,c=3f3 的大小关系为()A.a>b>cB.c>a>bC.c>b>aD.b>a>c【答案】A【分析】构建g x =xf x ,求导,利用导数判断g x 的单调性,进而利用单调性比较大小.【详解】构建g x =xf x ,则g x =f x +xf x ,因为f x +xf x <0对于x∈R恒成立,所以g x <0,故g x 在R上单调递减,由于a=2f2 =g2 ,b=ef e =g e ,c=3f3 =g3 ,且2<e<3,所以g2 >g e >g3 ,即a>b>c.故选:A.【点睛】结论点睛:1.f x +xf x 的形式,常构建xf x ;f x -xf x 的形式,常构建f x x;2.f x +f x 的形式,常构建e x⋅f x ;f x -f x 的形式,常构建f x e x.7.若函数f x =e x2-2ln x-2a ln x+ax2有两个不同的零点,则实数a的取值范围是()A.-∞,-eB.-∞,-eC.-e,0D.-e,0【答案】A【分析】将问题转化为函数y=-a与y=e x2-2ln xx2-2ln x图象有两个不同的交点,根据换元法将函数y=e x2-2ln x x2-2ln x 转化为g t =e tt,利用导数讨论函数的单调性求出函数的值域,进而得出参数的取值范围.【详解】函数f(x)的定义域为(0,+∞),f x =e x2-2ln x-2a ln x+ax2=e x2-2ln x+a x2-2ln x,设h(x)=x2-2ln x(x>0),则h (x)=2x-2x=2(x+1)(x-1)x,令h (x)>0⇒x>1,令h (x)<0⇒0<x<1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x+a x 2-2ln x =0⇒-a =e x 2-2ln x x 2-2ln x,等价于函数y =-a 与y =e x 2-2ln xx 2-2ln x 图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e tt ,t >1图象有一个交点,则g t =te t -et t 2=e t t -1 t2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .【点睛】方法点睛:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.对于不适合分离参数的等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.8.函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且满足f x +2xf x >0,若不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax在x ∈1,+∞ 上恒成立,则实数a 的取值范围是()A.0,1eB.1e ,+∞C.0,eD.1e,+∞【答案】B【分析】根据题目条件可构造函数g x =x 2f x ,利用导函数判断出函数单调性,将不等式转化成g ax≥g ln x ,即a ≥ln x x 在x ∈1,+∞ 上恒成立,求出函数ln xx在1,+∞ 上的最大值即可得a 的取值范围.【详解】设g x =x 2f x ,x >0,g x =x 2f x +2xf x =x 2fx +2x f x >0所以函数g x 在0,+∞ 上为增函数.由f x 的定义域为0,+∞ 可知ax >0,得a >0,将不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax整理得a 2x 2⋅f ax ≥f ln x ⋅ln 2x ,即g ax ≥g ln x ,可得ax ≥ln x 在x ∈1,+∞ 上恒成立,即a ≥ln xx在x ∈1,+∞ 上恒成立;令φx =ln xx ,其中x >1,所以a ≥φx maxφ x =1-ln xx2,令φ x =0,得x =e .当x ∈1,e 时,φ x >0,所以φx 在1,e 上单调递增;当x ∈e ,+∞ 时,φ x <0,所以φx 在e ,+∞ 上单调递减;所以φx max =φe =1e ,即a ≥1e故选:B .9.已知函数f (x )=xe x -a ln x +x -x a +1,若f (x )>0在定义域上恒成立,则实数a 的取值范围是()A.(-∞,e )B.0,eC.(-∞,1)D.0,1【答案】B【分析】构造函数g x =x +e x ,从而原不等式可转化为g x +ln x >g a ln x +ln x ,根据g x 的单调性可得x -a ln x >0,根据a 不同取值分类讨论求解即可.【详解】由f x >0得xe x +x >a ln x +x a +1,所以xe x +x +ln x >a ln x +ln x +x a +1,即e x +ln x +x +ln x >a ln x +ln x +x a +1,构造函数g x =x +e x ,则不等式转化为g x +ln x >g a ln x +ln x ,又易知g x 在R 上单调递增,故不等式等价于x +ln x >a ln x +ln x ,即x -a ln x >0.设h x =x -a ln x ,若a <0,h e1a=e1a-a lne 1a =e 1a-1<0,不符合题意;若a =0,则当x >0时,h x =x >0,符合题意;若a >0,则h x =1-ax,h x 在0,a 上单调递减,在a ,+∞ 上单调递增,所以h (x )min =h a ,要使h x >0恒成立,只需h a =a 1-ln a >0,所以0<a <e.综上可知a 的取值范围是0,e .故选:B .10.已知函数f (x )=xe x +e x ,g (x )=x ln x +x ,若f x 1 =g x 2 >0,则x 2x 1可取()A.-1 B.-1eC.1D.e【答案】A【分析】探讨函数g x 在1e 2,+∞上单调性,由已知可得x 2=e x 1(x 1>-1),再构造函数并求出其最小值即可判断作答.【详解】依题意,由g x 2 =x 2(ln x 2+1)>0得x 2>1e,令g x =2+ln x >0,函数g x 在1e 2,+∞上单调递增,由f x 1 =e x 1x 1+1 >0得x 1>-1,则f x =e x ln e x +1 =g (e x ),由f x 1 =g x 2 >0得:g (e x 1)=g (x 2),又e x 1>1e ,x 2>1e,于是得x 2=e x 1(x 1>-1),x 2x 1=ex1x 1,令h (x )=e x x (x >-1),求导得h(x )=e x (x -1)x 2,当-1<x <0,0<x <1时,h (x )<0,当x >1时,h (x )>0,即函数h (x )在(-1,0),(0,1)上单调递减,在(1,+∞)上单调递增,当x >0时,h (x )min =h (1)=e ,且x →+∞,h (x )→+∞,h (-1)=-1e ,且x →0-,h (x )→-∞,故h (x )∈-∞,-1e∪[e ,+∞)即x 2x 1∈-∞,-1e ∪[e ,+∞),显然选项A 符合要求,选项B ,C ,D 都不符合要求.故选:A 一、填空题11.设实数m >0,若对∀x ∈0,+∞ ,不等式e mx -ln xm≥0恒成立,则m 的取值范围为.【答案】m ≥1e【分析】构造函数f x =xe x 判定其单调性得mx ≥ln x ,分离参数根据恒成立求y =ln xx max即可.【详解】由e mx -ln xm≥0⇔mxe mx ≥x ln x =ln x ⋅e ln x ,构造函数f x =xe x x >0 ⇒f x =x +1 e x >0,∴f x 在0,+∞ 为增函数,则mx ⋅e mx ≥ln x ⋅e ln x ⇔mx ≥ln x 即对∀x ∈0,+∞ ,不等式mx ≥ln x 恒成立,则∀x ∈0,+∞ ,m ≥ln xx max,构造函数g x =ln x x ⇒g x =1-ln xx 2,令g x >0,得0<x <e ;令g x <0,得x >e ;∴g x =ln xx在0,e 上单调递增,在e ,+∞ 上单调递减,∴g x max =g e =1e ,即m ≥1e .故答案为:m ≥1e .12.已知函数f (x )=e x +1-a ln x ,若f (x )≥a (ln a -1)对x >0恒成立,则实数a 的取值范围是.【答案】0,e 2【分析】对不等式进行合理变形同构得e x +1-ln a +x +1-ln a ≥x +ln x ,构造函数利用函数的单调性计算即可.【详解】易知a >0,由e x +1-a ln x ≥a (ln a -1)可得e x +1a+1-ln a ≥ln x ,即e x +1-ln a +1-ln a ≥ln x ,则有e x +1-ln a +x +1-ln a ≥x +ln x ,设h (x )=e x +x ,易知h x 在R 上单调递增,故h (x +1-ln a )≥h (ln x ),所以x +1-ln a ≥ln x ,即x -ln x ≥ln a -1,设g (x )=x -ln x ⇒g x =x -1x,令g x >0⇒x >1,g x <0⇒0<x <1,故g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以g x ≥g 1 =1,则有1≥ln a -1,解之得a ∈0,e 2 .故答案为:0,e 2 .13.已知a >1,若对于任意的x ∈13,+∞,不等式13x -2x +ln3x ≤1ae2x +ln a 恒成立,则a 的最小值为.【答案】32e【分析】根据题意可得13x +ln3x ≤1ae2x +ln ae 2x ,再构造f (x )=1x +ln x (x ≥1),利用导数研究该函数的单调性,从而利用函数的单调性,可得3x ≤ae 2x ,然后再参变量分离,将恒成立问题转为变量的最值,最后利用导数求出变量式的最值,从而得解.【详解】因为ln a +2x =ln a +ln e 2x =ln ae 2x ,所以13x -2x +ln3x ≤1ae 2x +ln a 可化为13x +ln3x ≤1ae2x +ln ae 2x ,设f (x )=1x +ln x (x ≥1),则f (x )=-1x 2+1x =x -1x 2≥0,∴f (x )在1,+∞ 上单调递增,因为a >1,x ∈13,+∞,所以3x ≥1,e 2x ≥e 23>1,ae 2x >1,所以13x +ln3x ≤1ae 2x +ln ae 2x 可化为f (3x )≤f (ae 2x ),所以3x ≤ae 2x ,∴a ≥3x e2x 在x ∈13,+∞ 上恒成立,∴a ≥3x e2xmax ,x ∈13,+∞ ,设g (x )=3x e 2x ,x ∈13,+∞ ,则g(x )=3(1-2x )e 2x,令g (x )>0,得13≤x <12;g (x )<0,得x >12,所以g (x )在13,12上单调递增,在12,+∞ 上单调递减,所以g x max =g 12 =32e ,所以a ≥32e ,即a 的最小值为32e .故答案为:32e.【点睛】关键点睛:本题的关键是将式子同构成13x +ln3x ≤1ae 2x +ln ae 2x ,再构造函数.14.若不等式ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,则实数a 的最小值为.【答案】13e【分析】将不等式变形为e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,构造函数g x =e x +x ,求导得单调性,进而问题进一步转化为ln a ≥ln x -3x 成立,构造h x =ln x -3x ,即可由导数求最值求解.【详解】因为ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,不等式可变形为:ae 3x +3x +ln a ≥ln x +x ,即e ln a e 3x +3x +ln a ≥ln x +e ln x ,即e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,记g x =e x +x ,则g x =e x +1>0,所以g x 在R 上单调递增,则e 3x +ln a +3x +ln a ≥e ln x +ln x 可写为g 3x +ln a ≥g ln x ,根据g x 单调性可知,只需3x +ln a ≥ln x 对任意x ∈0,+∞ 成立即可,即ln a ≥ln x -3x 成立,记h x =ln x -3x ,即只需ln a ≥h x max ,因为h x =1x -3=1-3x x ,故在x ∈0,13 上,h x >0,h x 单调递增,在x ∈13,+∞ 上,h x <0,h x 单调递减,所以h x max =h 13 =ln 13-1=ln 13e,所以只需ln a ≥ln 13e 即可,解得a ≥13e.故答案为:13e【点睛】方法点睛:利用导数求解不等式恒成立或者存在类问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.15.已知函数f x =ln x +ax 2,若对任意两个不相等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是【答案】12,+∞ 【分析】设x 2>x 1>0,令g x =f x -2x ,将问题转化为g x 在0,+∞ 上单调递增,即g x ≥0在0,+∞ 上恒成立,采用分离变量的方式可得2a ≥-1x 2+2x ,结合二次函数性质可确定2a ≥1,由此可得结果.【详解】不妨设x 2>x 1>0,由f x 1 -f x 2x 1-x 2>2得:f x 1 -2x 1<f x 2 -2x 2,令g x =f x -2x ,则g x 在0,+∞ 上单调递增,∴g x =1x +2ax -2≥0在0,+∞ 上恒成立,∴2a ≥-1x 2+2x ,当1x =1,即x =1时,y =-1x2+2x 取得最大值1,∴2a ≥1,解得:a ≥12,∴实数a 的取值范围为12,+∞ .故答案为:12,+∞ .16.已知函数f x =12x 2-a ln x +1,当-2≤a <0,对任意x 1,x 2∈1,2 ,不等式f x 1 -f x 2 ≤m1x 1-1x 2恒成立,则m 的取值范围为.【答案】12,+∞【分析】构造新函数,利用导数研究函数的单调性与最值,求m 的取值范围即可.【详解】因为-2≤a <0,函数f x 在1,2 上单调递增,不妨设1≤x 1≤x 2≤2,则f x 1 -f x 2 ≤m1x 1-1x 2,可化为f x 2 +m x 2≤f x 1 +mx 1,设h x =f x +mx=12x2-a ln x+1+mx,则h x1≥h x2,所以h x 为1,2上的减函数,即h x =x-ax-mx2≤0在1,2上恒成立,等价于m≥x3-ax在1,2上恒成立,设g x =x3-ax,所以m≥g(x)max,因-2≤a<0,所以g x =3x2-a>0,所以函数g x 在1,2上是增函数,所以g(x)max=g2 =8-2a≤12(当且仅当a=-2时等号成立).所以m≥12.故答案为:12,+∞.17.已知实数x,y满足e x=xy2ln x+ln y,则xy的取值范围为.【答案】[e,+∞)【分析】把e x=xy2ln x+ln y化为xe x=x2y⋅ln(x2y),构造函数f(x)=xe x(x>0),可得xy=e xx,再求出函数g(x)=e xx(x>0)的值域即可得答案.【详解】依题意有x>0,y>0,设f(x)=xe x(x>0),则f (x)=(x+1)e x>0,所以f(x)在(0,+∞)上单调递增,由e x=xy2ln x+ln y,得xe x=x2y⋅ln(x2y),即有f(x)=f(ln(x2y)),因为f(x)在(0,+∞)上单调递增,所以有x=ln(x2y),即x2y=e x,所以xy=e x x,设g(x)=e xx(x>0),则g (x)=(x-1)e xx2,令g (x)=0,得x=1,x∈(0,1)时,g (x)<0,g(x)单调递减,x∈(1,+∞)时,g (x)>0,g(x)单调递增,所以g(x)min=g(1)=e,所以x∈(0,+∞)时,g(x)∈[e,+∞),所以xy的取值范围为[e,+∞).故答案为:[e,+∞)18.已知x0是方程e3x-ln x+2x=0的一个根,则ln x0x0=.【答案】3【分析】依题意得e3x0+3x0=x0+ln x0,构造函数f(x)=e x+x,则有f(3x0)=f(ln x0),得出f(x)的单调性即可求解.【详解】因为x0是方程e3x-ln x+2x=0的一个根,则x0>0,所以e3x0-ln x0+2x0=0,即e3x0+3x0=x0+ln x0,令f(x)=e x+x,则f (x)=e x+1>0,所以f(x)在R单调递增,又e3x0+3x0=x0+ln x0,即f(3x0)=f(ln x0),所以3x0=ln x0,所以ln x0x0=3.故答案为:319.已知函数f x =e ax-2ln x-x2+ax,若f x >0恒成立,则实数a的取值范围为.【答案】2e,+∞ 【分析】根据f x >0恒成立,可得到含有x ,a 的不等式,再进行分离变量,将“恒成立”转化为求函数的最大值或最小值,最后得出a 的范围.【详解】已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax +ax >ln x 2+e ln x 2,可得g ax >g ln x 2 ,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,F x =ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e ,可得a <2e .故答案为:2e ,+∞ .【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得f x >a 恒成立,可得出f x min >a ;对于任意的x ,使得f x <a 恒成立,可得出f x max <a .20.若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e 2【分析】利用同构法,构造函数f (x )=ln x +x ,将问题转化为f (2ax )≤f (e x),从而得到2a ≤e x x恒成立问题,再构造g (x )=e x x,利用导数求得其最小值,由此得解.【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x +1=1+x x>0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x,令g (x )=e x x (x >0),g (x )=e x (x -1)x 2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e 2.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知a <0,不等式xe x +a ln x x a ≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【分析】将不等式等价变形为xe x ≥-a ln x ⋅e -a ln x ,构造函数f x =xe x ,进而问题转化成x ≥-a ln x ,构造g (x )=x ln x ,利用导数求解单调性进而得最值.【详解】xe x ≥-a ln x x a =-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-x ln x 任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x ,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别22.关于x 的不等式a 2e 2x +1-ln x +x +1+2ln a ≥0在0,+∞ 上恒成立,则a 的最小值是.【答案】22e【分析】不等式转化为e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,构造函数f x =e x +x ,判断函数单调递增得到2x +1+ln a ≥ln x ,转化为2x +1-ln x +ln a ≥0,构造函数g x =2x +1-ln x +ln a ,根据函数的单调性计算最小值即得到答案.【详解】a 2e 2x +1-ln x +x +1+2ln a ≥0,即e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,设f x =e x +x ,f x =e x +1>0恒成立,故f x 单调递增.原不等式转化为f 2x +1+2ln a ≥f ln x ,即2x +1+2ln a ≥ln x ,即2x +1-ln x +2ln a ≥0在(0,+∞)上恒成立.设g x =2x +1-ln x +2ln a ,g x =2x -1x ,当x ∈12,+∞ 时,g x >0,函数单调递增;当x ∈0,12 时,g x <0,函数单调递减;故g x min =g 12=2+ln2+2ln a ≥0,即2ln a ≥-2-ln2=-ln2e 2,解得a ≥22e.所以a 的最小值是22e.故答案为:22e.【点睛】方法点睛:将不等式a 2e 2x +1-ln x +x +1+2ln a ≥0化为e 2x +1+2ln a +2x +1+2ln a ≥e ln x +ln x ,这种方法就是同构法,同构即结构形式相同,对于一个不等式,对其移项后通过各种手段将其变形,使其左右两边呈现结构形式完全一样的状态,接着就可以构造函数,结合函数单调性等来对式子进行处理了.。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

导数练习题及答案

导数练习题及答案

导数练习题及答案一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( ) A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx =4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的.图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x →0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

导数中的构造函数问题

导数中的构造函数问题

专题:导数中的构造函数问题一:填空题1.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0, 则不等式f (x )g (x )<0的解集是变式.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )-f (x )g ′(x )>0,且f (-3)=0, 则不等式f (x )g (x )<0的解集是2.已知定义域为R 的函数()f x 满足(1)3f =,且的导数()21f x x '<+,则不等式2(2)421f x x x <++的解集为▲ . 变式1.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,集为 ▲.),1(+∞变式2.函数()f x ()x ∈R 满足(1)1f =,______. 【答案】(,1)(1,)x ∈-∞-+∞3,若对任意两个不等的正实数12,x x 都有恒成立,则a,对任意两个不等的正实数12,x x 都有,则max ()a g x ≥,为开口方向向下,对称轴为1x =的抛物线,.即a 的取值范围是[1,)+∞. 若在区间(0,1)内任取两个实数p ,q ,且p≠q ,不等式a 的取值范围是 .【答案】[15,)+∞ 【解析】表示点(1,(1))p f p ++ 与点(1,(1))q f q ++连线的斜率,因实数p ,q在区间(0,1)内,故1p + 和1q +在区间(1,2)内.∵不等式区间(1,2)内任意两点连线的斜率大于1,由函数的定义域知,1x >-,∴f′(x )=﹣2x >1 在(1,2)内恒成立.成立.由于二次函数2231y x x =++在[1,2]上是单调增函数,故2x =时,2231y x x =++ 在[1,2]上取最大值为15,∴15a ≥,故答案为[15,)+∞.考点:不等式;函数恒成立问题.4.设)(x f 、)(x g 分别是定义在R 上的奇函数和偶函数,当x <0时,0)()()()(>'+'x g x f x g x f , 且0)3(=g ,则不等式0)()(<⋅x g x f 的解集是 . 【答案】(,3)(0,3)-∞- 【解析】 试题分析:根据题意可知()()()()(()())'0f x g x f x g x f x g x ''+=⋅>,令()()()F x f x g x =⋅,可知(3)0F =,函数()F x 在(,0)-∞上是增函数,又根据条件可知()F x 是奇函数,根据函数图像的对称性,可知不等式0)()(<⋅x g x f 的解集是(,3)(0,3)-∞- .考点:函数的奇偶性,函数单调性,数形结合思想.5.已知函数()f x (R x ∈)满足()11f =,且()f x 的导数【答案】11-∞-+∞ (,)(,)6.函数y=f (x )是定义在R 上的偶函数,当x<0时,f (x )+x·f′(x )<0,且f (-4)=0,则不等式xf (x )试题分析:'0,[()]0()x xf x xf x <<∴在x<0时单调递减,f (-4)=0,由f (x )是偶函数得xf (x )是奇函数,所以()0xf x >的解集是()(),40,4-∞-⋃ 考点:构造函数研究单调性,解抽象不等式.7.函数()f x 是定义在R 上的偶函数,(2)0f -=,且0x >时,()()0f x xf x '+>,则不等式()0>xf x 的解集是 . 【答案】()()2,02,-+∞【解析】试题分析:令()()g x xf x =,则()g x 为R 上的奇函数,且(2)0g -=,由题意得:0x >时,()0g x '>;所以0x >时,()0g x >解集为()2,+∞,0x <时,由奇函数性质知()0g x >解集为()2,0.-考点:函数性质综合应用8.已知()f x 为定义在()0,+∞上的可导函数,且()()f x xf x '>试题分析:()()'f x xf x > ,()()'0xf x f x ∴-<,()'0g x ∴<,()g x ∴在()0,+∞上为减函数,,0x >,,01x <<∴. 2用单调性解不等式.【思路点晴】将()()'f x xf x >变形可得()()'0xf x f x -<,求()'g x ,根据()'g x 的正负可得函数 9.已知定义域为R且()f x 的导数()21f x x '<+,则不等式2(2)421f x x x <++ 化为()21f t t t <++,设()()21g t f t t t =--- ()()()''210g t f t t g x ∴=--<∴单调递减,()()1130g f =-= ()0g t ∴<的解集为考点:1.函数导数与单调性;2.不等式与函数的转化10.已知函数()f x 的定义域是R ,()f x '是()f x 的导数,()1f e =,()()()g x f x f x '=-,()10g =,()g x 的导数恒大于零,函数()()x h x f x e =-( 2.71828e =⋅⋅⋅是自然对数的底数)的最小值是 .【答案】0 【解析】,因为()g x 的导数恒大,所以()1f e '=,在,所以在区间(,1]-∞上,()F x 单调递减,二解答题:1.已知函数f(x)=21x 2-ax+(a -1)ln x ,1a >。

导数练习题及答案

导数练习题及答案

章末检测一、选择题1.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( )A.(-1,3) B.(-1,-3)C.(-2,-3)D.(-2,3)答案B解析∵f′(x)=2x+2=0,∴x=-1.f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3).2.函数y=x4-2x2+5的单调减区间为( )A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)答案A解析y′=4x3-4x=4x(x2-1),令y′<0得x的范围为(-∞,-1)∪(0,1),故选A.3.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( )A.2B.3C.4D.5答案D解析f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,∴a=5.4.函数y=ln错误!的大致图象为()答案D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.5.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点所在象限是( )A.第一B.第二C.第三D.第四答案C解析∵y=f′(x)的图象过第一、二、三象限,故二次函数y=f(x)的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.6.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-3) B.[-错误!,错误!]C.(错误!,+∞) D.(-错误!未定义书签。

,错误!未定义书签。

)答案B解析f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0⇒-错误!≤a≤错误!未定义书签。

.7.设f(x)=x ln x,若f′(x0)=2,则x0等于( )A.e2B.ln 2C.错误!未定义书签。

导数四则运算及复合函数求导运算练习题

导数四则运算及复合函数求导运算练习题

一、选择题 (共 7 小题 ,每题 5.0分,共 35 分)??1.函数 y = 3sin(2x - 6)的导数为 ()??A . y ′= 6cos(2x - 6)B ′ 3cos(2 ??6). y =x -??C . y ′=- 3cos(2x - 6 )??D . y ′=- 6cos(2x - 6 )2??2.函数 f(x)= ?? 的导函数是 ()??A′() 2e 2x. f x =2??B . f ′(x)= 2????(2??-1)??2??C . f ′(x)=2??(??-1)??2??D . f ′(x)=2??3.以下求导运算正确的选项是( )11 A . (x + ) ′= 1+ 2???? 1B . (log 2 x) ′= ??ln2C . [(2 x + 3)2] ′= 2(2x + 3)D . (e 2x ) ′= e 2x4. ( 1) 2 xf ′(x)()x - 2 -,则等于已知函数 f = xA . 4x + 3B . 4x -1C . 4x -5D . 4x - 35.函数 y = cos(1+ x 2)的导数是 ( )A . 2xsin(1+ x 2)B . - sin(1+ x 2)C . - 2xsin(1+ x 2)D . 2cos(1+x 2 )16.已知 f(x)= aln x + 2x 2(a>0) ,若对随意两个不等的正实数取值范围是 ( )A . (0,1]B . (1,+ ∞)??(??)-??(?? )1 21 2 >2 恒建立,则 a 的x, x ,都有?? -??21C. (0,1)D. [1 ,+∞)7.已知曲线f(x) =xlnx 的一条切线的斜率为2,则切点的横坐标为()A . 1B. ln 2C. 2D. e二、填空题 (共9 小题 ,每题 5.0分,共 45分 )()8.已知函数 f(x) =2sin 3x+ 9x,则lim ??1+△ ??-??(1)△ ??→0△ ??________.9.函数 f(x)= xsin(2x+5)的导数为 ________.2)________________.10.函数 y= cos(2x+ x 的导数是11.函数 y= ln√1+??2的导数为 ________.1-??212.y= xe cos x的导函数为 ________.sin x ′()________.13.f′(x)是 f( x) =cosx·e的导函数,则 f x=14.()=e2x· cos()的导数 f′()________.已知函数 f x x,则 f x x =15.已知函数 f(x)= (x+ 2)e x,则 f′(0)=________.2-1),且 f′(1) 4________.16.已知 f(x)= ln(ax=,则 a=三、解答题 (共 0 小题 ,每题12.0 分 ,共 0分 )答案分析1.【答案】 A??【分析】令 y = 3sint , t =2x - 6 ,′ (3sin ?? ??t) ′·(2 则 y = x - 6 ) =′3cos(2x - 6 ) ·2 ??= 6cos(2x - 6 ). 2.【答案】 C2??【分析】关于函数f(x)= ??, ?? 2?? ′ 2?? ′对其求导可得 f ′(x)= (?? ) ×??-?? × ??2??2??2??2??2????? -??(2??-1)??=2=2.????3.【答案】 B【分析】由于 (x +11′ 11,因此选项 A 不正确;′′()-2??= x +?? =??21,因此选项 B 正确;(logx)′=??ln2[(2 x + 3)2] =′2(2x + 3) ·x(2+ 3) =′4(2x + 3),因此选项 C 不正确;(e 2x ) ′= e 2x · (2x) =′ 2e 2x ,因此选项 D 不正确.4.【答案】 A【分析】令 x - 1= t ,则 x = t + 1,因此 f(t)= 2(t + 1)2- (t + 1)= 2t 2+ 3t + 1,因此 f(x)= 2x 2+ 3x + 1,因此 f ′(x)=4x + 3.5.【答案】 C【分析】 y ′=- sin(1+ x 2) · +(1 x 2) ′=- 2xsin(1+ x 2).6.【答案】 D??(??)-??(?? )【分析】对随意两个不等的正实数x 1, x 2,都有12>2 恒建立,??1-??2则当 x>0 时, f ′(x)≥2恒建立,?? f ′(x)= + x ≥2在(0,+ ∞)上恒建立,??则 a ≥(2x - x 2)max = 1.7.【答案】 D【分析】 ∵f ′(x)= lnx + 1,由曲线在某点的切线斜率为2,令 y ′=ln x +1= 2,解得 x = e.8.【答案】 6cos 3+ 9【分析】 f ′(x)= (2sin 3x + 9x) ′= 6cos 3x + 9.lim ()??1+△ ??-??(1) = f ′(1)= 6cos 3+ 9. △ ??→0△ ??9.【答案】 sin(2x + 5)+ 2xcos(2x + 5)【分析】 f ′(x)= x ′sin(2x + 5)+ x(sin(2 x + 5)) ′= s in(2 x + 5)+2xcos(2x + 5).10.【答案】- (4x + 1)sin(2 x 2+ x)【分析】 y ′=- (4x + 1)sin(2 x 2+ x).2??11.【答案】 1-??411+??2【分析】 y ′= 1+??2(√) ′√21-?? 1-?? 21 1 (1+??2) ′= 1+??2 · 1+??2√2 2 √21-??21-?? 1-??1 1 4??=1+??2 · 1+??2 · 2 ) 2√ 2 2 √ 2 (1-??1-?? 1-??1-?? 24??2 = 2??= 2(1+?? 2 ) · 2 )1-?? 4. (1-??12. cos xcos x 【答案】- xsinx ·e + ecos xcos xcos x′【分析】 y ′= (xe) ′ x ′e + x(e )== e cos x( sin e cos xcos x e cos x+ x - x )=- xsinx ·e + .13.【答案】 (cos 2x - sinx)e sin xsin x【分析】 ∵f(x)= cosx ·e ,sin x cosx(e sin x sin x cosxe sin x 2 sin x ∵f ′(x)= (cosx) ′e+ ) ′-= sinxe +cosx = (cos x - sinx)e .14.【答案】 e 2x (2cosx - sinx)【分析】由积的求导可得,f ′(x)= (e 2x · cosx) ′= e 2x · 2·xcos +e 2x (cosx) ′ = 2e 2x cosx - e 2x sinx= e 2x (2cosx - sinx).15.【答案】 3【分析】 ∵f ′(x)= [( x + 2) ·e x ]′= e x + (x + 2)e x ,∵f ′ (0)= 1+ 2= 3.16.【答案】 2【分析】∵f′(x)=1(ax2- 1) ′=2????,22????-1????-1∵′(1)2??= 4,f=??-1∵a= 2.。

一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。

专题03 导数及其应用选择填空题(解析版)

专题03 导数及其应用选择填空题(解析版)
函数f(x)在(0,+∞)上单调递增,f(0)=1,
f(x)在(0,+∞)上没有零点,舍去;
②当a>0时,f′(x)=2x(3x﹣a)>0的解为x ,
∴f(x)在(0, )上递减,在( ,+∞)递增,
又f(x)只有一个零点,
∴f( ) 1=0,解得a=3,
f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],
∴切线方程为:y=3x.
故答案为:y=3x.
12.【2019年北京理科13】设函数f(x)=ex+ae﹣x(a为常数).若f(x)为奇函数,则a=;若f(x)是R上的增函数,则a的取值范围是.
【解答】解:根据题意,函数f(x)=ex+ae﹣x,
若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+aex=﹣(ex+ae﹣x),变形可得a=﹣1,
•常见基本初等函数的导数公式:
(C)0(C为常数);(xn)nxn1,nN;(sinx)cosx;(cosx)sinx;(ex)ex;(ax)axlna(a0,且a1);
(lnx) ;(logax) logae(a0,且a1)
•常用的导数运算法则:
法则1:[u(x)v(x)]u(x)v(x).
法则2:[u(x)v(x)]u(x)v(x)u(x)v(x).
【解答】解:由y=f(x) 在[﹣6,6],知
f(﹣x) ,
∴f(x)是[﹣6,6]上的奇函数,因此排除C
又f(4) ,因此排除A,D.
故选:B.
3.【2019年新课标1理科05】函数f(x) 在[﹣π,π]的图象大致为( )
A.
B.
C.
D.
【解答】解:∵f(x) ,x∈[﹣π,π],

导数构造辅助函数问题选择填空题专练答案(1)

导数构造辅助函数问题选择填空题专练答案(1)

导数构造辅导助函数问题选择填空题专练A 组一、选择题1.已知()'f x 是函数()()0f x x R x ∈≠且的导函数,当0x >时 ,()()'0xf x f x -<成立,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 2.已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系是( )A .B .C .D . 3.定义在(0,)2π上的函数()f x ,'()f x 是它的导函数,且恒有'()()tan f x f x x >成立.则有( )A()()63f ππ< B()2cos1(1)6f f π>C .2()()46f ππ<D ()()43f ππ<4.函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f 且有'3()()0f x xf x +<,则不等式3(2016)(2016)8(2)0x f x f +++-<的解集为( )A .()2018,2016--B .(),2018-∞-C .()2016,2015--D .(),2012-∞-5.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2x f x e <的解集为( )A .(),0-∞B .(),2-∞C .()0,+∞D .()2,+∞ 6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x>0时,有2xf x -f x x '()()<0恒成立,则不等式x 2f (x )>0的解集是( )A .(-2,0)∪(2,+∞)B .(-2,0)∪ (0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2)7.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x ->,则使得()0f x >成立的x 的取值范围是( )R ()y f x =()'y f x =0x ≠()()'0f x f x x+>1122a f ⎛⎫=⎪⎝⎭()22b f =--11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭a b c ,,a b c <<b c a <<c a b <<a c b <<A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞8.定义在[]0,+∞的函数()f x 的导函数为()'f x ,对于任意的0x ≥,恒有()()()()32',2,3f x f x a e f b e f >==,则,a b 的大小关系是( )A .a b >B .a b <C .a b =D .无法确定9.已知定义在实数集R 上的函数)(x f 满足4)1(=f ,且)(x f 的导函数满足3)(<'x f ,则不等1ln 3)(ln +>x x f 的解集为( )A .),1(+∞B .),(+∞eC .)1,0(D .),0(e10.设ln 24a =,ln 39b =,ln 525c =,则( ) A .b a c >> B .a b c << C .b a c << D .a b c >>11.已知()f x 在()0,+∞上非负可导,且满足0)()(/≤-x f x xf ,对于任意正数,m n ,若m n <,则必有( )A .()()nf m mf n ≤B .()()mf m f n ≤C .()()nf n f m ≤D .()()mf n nf m ≤12.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()f x f x '>,则下列结论正确的是( ) A. (1)e (0)f f > B. (1)e (0)f f < C. (1)(0)f f > D. (1)(0)f f < 二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其中e 为自然对数的底数)的解集为 .B 组一、选择题1.已知函数()f x 对定义域R 内的任意x 都有()()4f x f x =-,且当2x ≠时其导函数()'fx 满足()()''2xf x f x >,若24a <<,则( )A. ()()()223log a f f f a <<B. ()()()23log 2a f f a f << C. ()()()2log 32a f a f f << D. ()()()2log 23a f a f f <<2.已知()f x 为定义在(),-∞+∞上的可导函数,且()()f x f x '>对于x R ∈恒成立(e 为自然对数的底),则( )A .()()2015201620162015e f e f ⋅>⋅ B .()()2016201620162015e f e f ⋅=⋅C .()()2015201620162015ef e f ⋅<⋅ D .()20152016ef ⋅与()20162015e f ⋅大小不确定;3.已知函数()()f x x R ∈满足()11f =,且()f x 的导函数()'13f x <,则()233x f x <+的解集为( ) A .{}11x x -<< B.{}1x x > C .{}1x x <- D .{}11x x x <->或4.已知在实数集R 上的可导函数)(x f ,满足)2(+x f 是奇函数,且12'()f x >,则不等式121(x)>-x f 的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1) 5.若1201x x <<<,则( ) A .2121ln ln x x e e x x -<-B .2121ln ln x x e e x x ->-C .1221x x x e x e <D .2112x x e x e x >6.设函数)(x f 在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上x x f <')(,若m m f m f 48)()4(-≥--,则实数m 的取值范围为( )A 、 ]2,2[-B 、 ),2[+∞C 、 ),0[+∞D 、(,2][2,)-∞-+∞ 7.已知定义在R 上的函数)(x f 和)(x g 满足x f x e f x f x )0(22)1(')(222-+⋅=-,且0)(2)('<+x g x g ,则下列不等式成立的是( )A .)2017()2015()2(g g f <B .)2017()2015()2(g g f >C .)2017()2()2015(g f g <D .)2017()2()2015(g f g >8.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0,f -=当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A.(1,0)(1,)-⋃+∞B.(,1)(0,1)-∞-⋃C.(,1)(1,0)-∞-⋃-D.(0,1)(1,)⋃+∞9.定义在()0,+∞上的可导函数()f x 满足()'f x ()x f x ⋅<,且()20f =,则()0f x x>的解集为( ) A .()0,2 B .()()0,22,+∞ C .()2,+∞ D .()()0,33,+∞10.设函数在R 上的导函数为,在上,且,有,则以下大小关系一定正确的是( )A. B. C. D.11.已知()'f x 是函数()f x (0x R x ∈≠且)的导函数,当0x >时,()()'0xf x f x -<,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c === ,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<二、填空题12.已知定义在R 上的可导函数()f x 满足'()1f x <,若(1)()12f m f m m -->-,则实数m 的取值范围是__________.C 组一、选择题1.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为( )A.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e 2.定义在),0(+∞上的单调递减函数)(x f ,若)(x f 的导函数存在且满足,则下列不等式成立的是( )A .)3(2)2(3f f <B .)3(4)4(3f f <C .)4(3)3(2f f <D .)1(2)2(f f < 3.已知函数()f x 的导数为()f x ',且()()()10x f x xf x '++>对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A .()f xB .()xf x)(x f )(x f ')0(∞+,x x f 2sin )(<'R x ∈∀x x f x f 2sin 2)()(=+-)34()65(π<πf f )()4(π<πf f )34()65(π-<π-f f ()()4f f ππ->-x x f x f >')()(C .()xe f x D .()xxe f x4.已知()f x 是R 上的减函数,其导函数'()f x 满足()1'()f x x f x +<,那么下列结论中正确的是( ) A .x R ∀∈,()0f x <B .当且仅当(,1)x ∀∈-∞,()0f x <C .x R ∀∈,()0f x >D .当且仅当(1+)x ∀∈∞,,()0f x >5.设12x <<,则ln x x ,2ln ()x x,22ln x x 的大小关系是( )A .222ln ln ln ()x x x x x x <<B .222ln ln ln ()x x x x x x << C .222ln ln ln ()x x x x x x << D .222ln ln ln ()x x x x x x<< 6.设奇函数()f x 在R 上存在导数()'f x ,且在()0,+∞上()2'f x x<,若()()()331113f m f m m m ⎡⎤--≥--⎣⎦,则实数m 的取值范围为( )A .11,22⎡⎤-⎢⎥⎣⎦ B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .11,,22⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭7.设)(x f '为函数)(x f 的导函数,已知21()()ln ,()x f x xf x x f e e'+==,则下列结论正确的是( ) A .()f x 在(0,)+∞单调递增 B .()f x 在(0,)+∞单调递减 C .()f x 在(0,)+∞上有极大值 D .()f x 在(0,)+∞上有极小值8.已知定义在),0(+∞上的函数)(x f ,满足0)()1(>x f ;)(2)()()2(x f x f x f <<'(其中)(x f '是)(x f 的导函数,e 是自然对数的底数),则)2()1(f f 的范围为( ) A.)1,21(2e e B.)1,1(2ee C.)2,(e e D.),(3e e 9.若函数()f x 是定义在R 上的偶函数,当0x <时,'()()0f x xf x +<,且(4)0f -=,则不等式()0xf x >的解集为( )A .(4,0)(4,)-+∞ B .(4,0)(0,4)- C .(,4)(4,)-∞-+∞ D .(,4)(0,4)-∞-10.已知定义在R 上的可导函数)(x f 满足:0)()('<+x f x f ,则122)(+--m m em m f 与)1(f 的大小关系是( ) A .122)(+--m m em m f >)1(f B .122)(+--m m em m f <)1(fC .122)(+--m m em m f =)1(f D . 不确定二、填空题11.已知函数()f x 是R 上的奇函数,()g x 是R 上的偶函数,且有(1)0g =,当0x >时,有''()()()()0f x g x f x g x +>,则()()0f x g x >的解集为 .。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。

答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。

答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。

答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。

答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。

答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。

8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。

专题6.1 导数中的构造函数-玩转压轴题,突破140分之高三数学选择题填空题高端精品

专题6.1 导数中的构造函数-玩转压轴题,突破140分之高三数学选择题填空题高端精品

【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F n f x x x =;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1.【2019届高三第二次全国大联考】设是定义在上的可导偶函数,若当时,,则函数的零点个数为 A .0 B .1 C .2D .0或2 【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A .B .C .当时,取得极大值D .当时,2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e=. 例2、【湖南省长郡中学2019届高三下学期第六次月考】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】【安徽省黄山市2019届高三第二次检测】已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫<⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题. 1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可.【举一反三】【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A .B .C .D .【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5.【云南省玉溪市第一中学2019届高三下学期第五次调研】 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【强化训练】一、选择题1.【山西省2019届高三百日冲刺】已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.2.【海南省海口市2019届高三高考调研】已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.3.【辽宁省抚顺市2019届高三一模】若函数有三个零点,则实数的取值范围是() A.B.C.D.4.【辽宁省师范大学附属中学2019届高三上学期期中】已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.5.【2019届山西省太原市第五中学高三4月检测】已知函数,若函数在上无零点,则()A.B.C.D.6.【安徽省毛坦厂中学2019届高三校区4月联考】已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.7.【2019届湘赣十四校高三第二次联考】已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.8.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.9.【宁夏六盘山高级中学2019届高三二模】定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.10.【四川省教考联盟2019届高三第三次诊断】已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.11.【2019届高三第二次全国大联考】已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2二、填空题12.【江苏省海安高级中学2019届高三上学期第二次月考】若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.13.【山东省济南市山东师范大学附属中学2019届高三四模】定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.14.【广东省佛山市第一中学2019届高三上学期期中】已知定义在R上的奇函数满足f(1)=0,当x >0时,,则不等式的解集是______.15.【重庆市第一中学校2019届高三3月月考】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______. 16.【湖南师大附中2019届高三月考(七)】设为整数,若对任意的,不等式恒成立,则的最大值是__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲 导数构造辅导助函数问题选择填空题专练A 组一、选择题1.已知()'f x 是函数()()0f x x R x ∈≠且的导函数,当0x >时 ,()()'0xf x f x -<成立,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 构造()()f x F x x=,()()()20xf x f x F x x'-'=<,()F x ∴单调递减,()0.22a F =,()20.2b F =,()2log 5c F =,c a b <<,选C2.已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系是( )A .B .C .D . 构造()()F x x f x =,且()F x 为偶函数,()()()F x xf x f x ''=+,由()()()()()000fx xf x f xFxf x xxx''+'+>⇒>⇒>,∴0x >,()0F x '>,函数()F x 在()0,+∞单调递增,12a F ⎛⎫= ⎪⎝⎭,()()22b F F =-=,()1ln ln 22c F F ⎛⎫== ⎪⎝⎭,3.定义在(0,)2π上的函数()f x ,'()f x 是它的导函数,且恒有'()()tan f x f x x >成立.则有( )A()()63f ππ< B 3()2cos1(1)6f f π>C .2()()46f ππ<D ()()43f ππ<构造()()cos F x xf x =,()()()cos sin F x xf x xf x ''=-,由()()tan f x f x x '>()()cos sin 0xf x xf x '⇒->,()0F x '∴>,函数()F x 在(0,)2π上单调递增,R ()y f x =()'y f x =0x ≠()()'0f x f x x+>1122a f ⎛⎫=⎪⎝⎭()22b f =--11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭a b c ,,a b c <<b c a <<c a b <<a c b <<a c b <<63F F ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,()()63f ππ<,选A4.函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f 且有'3()()0f x x f x +<,则不等式3(2016)(2016)8(2)0x f x f +++-<的解集为( )A .()2018,2016--B .(),2018-∞-C .()2016,2015--D .(),2012-∞-构造()()3F x x f x =,()()()()()322330F x x f x x f x x f x xf x '''⎡⎤=+=+<⎣⎦,()F x ∴在)0,(-∞上单调递减,3(2016)(2016)8(2)0x f x f +++-< ⇔()()20162F x F +<-2016020162x x +<⎧⇔⎨+>-⎩20182016x ⇔-<<-,选A 5.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2x f x e <的解集为( )A .(),0-∞B .(),2-∞C .()0,+∞D .()2,+∞ 构造()()xf x F x e=,()()()0xf x f x F x e'-'=<,()F x ∴是R 上的减函数,()2xf x e <()()00xf x f e e ⇔<,所以0x >,选C6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x>0时,有2xf x -f x x '()()<0恒成立,则不等式x 2f (x )>0的解集是( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 构造()()f x F x x=,()F x 是偶函数,当0x >,()()()20xf x f x F x x'-'=<, 即0,x >()F x 单调递减,0,x <()F x 单调递增,当02x <<,()()202f x f x>=即02x <<时,()0f x >,当2x <-时,()()202f x f x-<=-,即2x <-时,()0f x >()20x f x >()0f x ⇔>,所以选D7.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0x f x f x ->,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞ C .(,1)(1,0)-∞-- D .(0,1)(1,)+∞构造()()f x F x x=,()F x 是偶函数,当0x >,()()()20xf x f x F x x '-'=>,即0,x >()F x 单调递增,0,x <()F x 单调递减,当1x >,()()101f x f x>=,即1x >时,()0f x >,当10x -<<时,()()101f x f x-<=-,即10x -<<时,()0f x >,选B8.定义在[]0,+∞的函数()f x 的导函数为()'f x ,对于任意的0x ≥,恒有()()()()32',2,3f x f x a e f b e f >==,则,a b 的大小关系是( )A .a b >B .a b <C .a b =D .无法确定 构造()()xf x F x e=,()()()0xf x f x F x e'-'=>,函数()F x 在[]0,+∞单调递增,()()2323f f ee<()()3223e f e f ⇔<a b ⇔<,选B9.已知定义在实数集R 上的函数)(x f 满足4)1(=f ,且)(x f 的导函数满足3)(<'x f ,则不等1ln 3)(ln +>x x f 的解集为( )A .),1(+∞B .),(+∞eC .)1,0(D .),0(e 构造()()3F x f x x =-,()()30F x f x ''=-<,()F x ∴是减函数,1ln 3)(ln +>x x f ()()l n 1F x F ⇔>l n 1x ⇔<0x e ⇔<<,选D10.设ln 24a =,ln 39b =,ln 525c =,则( ) A .b a c >> B .a b c << C .b a c << D .a b c >>构造函数()2ln x F x x =,()432ln 12ln x x x xF x x x --'==,当x >()0F x '<,函数单调递减,0x <<()0F x '>函数单调递增,a b c >>,选 D11.已知()f x 在()0,+∞上非负可导,且满足0)()(/≤-x f x xf ,对于任意正数,m n ,若m n <,则必有( )A .()()nf m mf n ≤B .()()mf m f n ≤C .()()nf n f m ≤D .()()mf n nf m ≤ 构造()()f x F x x=,当0x >,()()()20xf x f x F x x '-'=≤,()F x 是()0,+∞的减函数或者常值函数,()()f m f n mn≥⇒()()mf n nf m ≤,选D12.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()f x f x '>,则下列结论正确的是( )A. (1)e (0)f f >B. (1)e (0)f f <C. (1)(0)f f >D. (1)(0)f f < 构造()()xf x F x e =,()()()0xf x f x F x e '-'=> ,()F x ∴在R 上单调递增,()()010f f ee>,即(1)e (0)f f >,选A二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其中e 为自然对数的底数)的解集为 .构造函数()()x x F x e f x e =-,()()()10x F x e f x f x ''⎡⎤=+->⎣⎦,3)(+>x x e x f e ⇔()()0F x F >⇔0x >,解集为{}0x x >B 组一、选择题1.已知函数()f x 对定义域R 内的任意x 都有()()4f x f x =-,且当2x ≠时其导函数()'fx 满足()()''2xf x f x >,若24a <<,则( )A. ()()()223log a f f f a <<B. ()()()23log 2a f f a f << C. ()()()2log 32a f a f f << D. ()()()2log 23af a f f <<有()()4f x f x =-可知函数关于2x =对称,()()2xf x f x ''>()()20x f x '⇔->2x >,()0f x '>,()f x 单调递增,2x <,()0f x '<,()f x 单调递减,()()()221log 21log 2a f f a f <<⇔>>()()()22log 3f f a f ⇔<>()()()42164216a a f f f <<⇔<<()()()2log 32a f a f f ∴<<,选C2.已知()f x 为定义在(),-∞+∞上的可导函数,且()()f x f x '>对于x R ∈恒成立(e 为自然对数的底),则( ) A .()()2015201620162015e f e f ⋅>⋅ B .()()2016201620162015e f e f ⋅=⋅C .()()2015201620162015ef e f ⋅<⋅ D .()20152016ef ⋅与()20162015e f ⋅大小不确定;构造()()xf x F x e=,()()()0xf x f x F x e'-'=<,函数是R 上的减函数,()()2015201620152016f f e e >,选C3.已知函数()()fx x R ∈满足()11f =,且()f x 的导函数()'13f x <,则()233x f x <+的解集为( ) A .{}11x x -<< B.{}1x x > C .{}1x x <- D .{}11x x x <->或 构造函数()()3x F x f x =-,()()103F x f x ''=-<,函数是R 上的减函数,()233x f x <+()()1F x F ⇔<1x ⇔>,选B 4.已知在实数集R 上的可导函数)(x f ,满足)2(+x f 是奇函数,且12'()f x >,则不等式121(x)>-x f 的解集是( ) A.(-∞,2) B.(2,+∞) C.(0,2) D.(-∞,1) 构造函数()()2x F x f x =-,()()12F x f x ''=-,由()1120'()2f x f x '>⇒<<, ()0F x '<,函数()F x 是减函数,由)2(+x f 是奇函数得到()20f =,121(x)>-x f()()2F x F ⇔>2x ⇔<,选A5.若1201x x <<<,则( ) A .2121ln ln x x e e x x -<- B .2121ln ln x x e e x x ->- C .1221x x x e x e < D .2112x x e x e x >构造函数()x e f x x=,()2x xxe e f x x -'=,当1x <时,()0f x '<,()f x 为减函数 1212x x e e x x >⇔2112x x e x e x >,选D 6.设函数)(x f 在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上x x f <')(,若m m f m f 48)()4(-≥--,则实数m 的取值范围为( ) A 、 ]2,2[- B 、 ),2[+∞C 、 ),0[+∞D 、(,2][2,)-∞-+∞构造()()22x F x f x =-,()()F x f x x ''=-,0x ∴>时()0F x '<,又因为()()()222()()()()0022x x f x f x x f x f x F x F x --+=⇔--+-=⇔-+=()F x ∴为R 上的奇函数,再结合R 上的可导性()F x ∴在为R 上的连续单减奇函数(4)()84f m f m m --≥-()()442F m F m m m m ⇔-≥⇔-≤⇔≥,所以选B7.已知定义在R 上的函数)(x f 和)(x g 满足x f x e f x f x )0(22)1(')(222-+⋅=-,且0)(2)('<+x g x g ,则下列不等式成立的是( )A .)2017()2015()2(g g f <B .)2017()2015()2(g g f >C .)2017()2()2015(g f g <D .)2017()2()2015(g f g >x f x e f x f x )0(22)1(')(222-+⋅=-()()()221220x f x f e x f -''⇒=+- ()()()011220f f e f ''⇒=+-()01f ⇒=再由()2221()2(0)2x f f x e x f x -'=⋅+-⇒2'(1)(0)2f f e -⇒=⋅()212f e '⇒= ()222x f x e x x ∴=+-,()42e =,构造()()2x F x e g x =,()()()222x x F x e g x e g x ''=+()()220x e g x g x '⎡⎤+<⎣⎦,()F x ∴为R 上的减函数()()20152017F F >()()4030403420152017e g e g ⇒>()()220152017g e g ⇒>所以选D8.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0,f -=当0x >时,'()()0x f x f x -<,则使得()0f x >成立的x 的取值范围是( ) A.(1,0)(1,)-⋃+∞ B.(,1)(0,1)-∞-⋃ C.(,1)(1,0)-∞-⋃- D.(0,1)(1,)⋃+∞ 构造()()f x F x x=,()F x 是偶函数,当0x >,()()()20xf x f x F x x'-'=<, 即0,x >()F x 单调递减,0,x <()F x 单调递增,当01x <<,()()101f x f x>=,即01x <<时,()0f x >,当1x <-时,()()101f x f x-<=-,即1x <-时,()0f x >,选B9.定义在()0,+∞上的可导函数()f x 满足()'f x ()x f x ⋅<,且()20f =,则()0f x x>的解集为( ) A .()0,2 B .()()0,22,+∞ C .()2,+∞ D .()()0,33,+∞构造()()f x F x x=,当0x >,()()()20xf x f x F x x '-'=<,()F x ∴为()0,+∞上的减函数,()0f x x>()()2F x F ⇒>02x ⇒<<,选A 10.设函数在R 上的导函数为,在上,且,有,则以下大小关系一定正确的是( ) A. B. )(x f )(x f ')0(∞+,x x f 2sin )(<'R x ∈∀x x f x f 2sin 2)()(=+-)34()65(π<πf f )()4(π<πf fC. D. 构造函数()()2sin F x f x x =-,()()sin 20F x f x x ''∴=-<()()()()()2222sin sin sin 0f x f x x f x x f x x -+=⇔---+-=()()0F x F x ⇔-+=,再结合R 上的可导性()F x ∴在为R 上的连续单减奇函数5451435463643463F F f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-<-⇔--<--⇔-<- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭选C11.已知()'f x 是函数()f x (0x R x ∈≠且)的导函数,当0x >时,()()'0xf x f x -<,记()()()0.2220.22220.2l og 5,,20.2log 5f f f a b c === ,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 构造()()f x F x x=,()()()20xf x f x F x x'-'=<,()F x ∴单调递减,()0.22a F =,()20.2b F =,()2log 5c F =,c a b <<,选C二、填空题12.已知定义在R 上的可导函数()f x 满足'()1f x <,若(1)()12f m f m m -->-,则实数m 的取值范围是__________. 构造()()F x f x x =-,()()10F x f x ''=-<,()F x ∴为R 上的减函数,(1)()12f m f m m -->-()()1F m F m ⇔->112m m m ⇔-<⇔>C 组一、选择题1.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<x f x e 的解集为( )A.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e 构造()()xf x F x e =,()()()0xf x f x F x e '-'=<,()F x ∴为R 上的减函数(1)y f x =+为偶函数(1)(1)f x f x ⇔+=-+,()()201f f ∴==)34()65(π-<π-f f ()()4f f ππ->-()()()()100x xf x f x e F x F x e <⇔<⇔<⇔>,所以选B 2.定义在),0(+∞上的单调递减函数)(x f ,若)(x f 的导函数存在且满足,则下列不等式成立的是( )A .)3(2)2(3f f <B .)3(4)4(3f f <C .)4(3)3(2f f <D .)1(2)2(f f <()f x 是R 上的减函数 ()0f x '∴≤,再由()()()()()0f x f x x f x x f x f x '->⇒>''()()0f x xf x '-<构造()()f x F x x=,()()()20xf x f x F x x '-'=>,()F x ∴为R 上的增函数,()()2323f f <⇒3(2)2(3)f f <,选A 3.已知函数()f x 的导数为()f x ',且()()()10x f x xf x '++>对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( ) A .()f x B .()xf x C .()xe f x D .()xxe f x()()()()()()()xx x x x xe f x e xf x e xf x e f x xf x e xf x ''''⎡⎤=+=++⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦=()()()10x e x f x xf x '++>⎡⎤⎣⎦,所以选D4.已知()f x 是R 上的减函数,其导函数'()f x 满足()1'()f x x f x +<,那么下列结论中正确的是( )A .x R ∀∈,()0f x <B .当且仅当(,1)x ∀∈-∞,()0f x <C .x R ∀∈,()0f x >D .当且仅当(1+)x ∀∈∞,,()0f x >()f x 是R 上的减函数,()0f x '∴≤,由()1'()f x x f x +<()()()()10f x x f x f x '+-⇔<', 所以()()()10f x x f x '+->,构造()()()1F x x f x =-,()0F x '>,()F x ∴为Rx x f x f >')()(上的增函数,()10F =,1x ∴>,()()10x f x ->()0f x ⇒>;1x <,()()10x f x -<()0f x ⇒>,选C5.设12x <<,则ln x x ,2ln ()x x ,22ln x x的大小关系是( ) A .222ln ln ln ()x x x x x x << B .222ln ln ln ()x x x x x x << C .222ln ln ln ()x x x x x x << D .222ln ln ln ()x x x x x x<< 构造()ln x F x x =,()21ln xF x x-'=,当1x e <<时,()0F x '≥,ln ln 2ln 1012x e x e e <<<=<,所以2ln ln x xx x ⎛⎫< ⎪⎝⎭, ()22222ln ln ln ln 2ln 0x xx x x x x x x x x ---==< 222ln ln ln ()x x x x x x<<,选A 6.设奇函数()f x 在R 上存在导数()'f x ,且在()0,+∞上()2'f x x <,若()()()331113f m f m m m ⎡⎤--≥--⎣⎦,则实数m 的取值范围为( )A .11,22⎡⎤-⎢⎥⎣⎦ B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .11,,22⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭构造函数()()33x F x f x =-,()()20F x f x x ''=-<,且()F x 为R 上的奇函数,所以()F x 在R上单调递减,()()()331113f m f m m m ⎡⎤--≥--⎣⎦()()1112F m F m m m m ⇔-≥⇔-≤⇔≥,所以选B 7.设)(x f '为函数)(x f 的导函数,已知21()()ln ,()x f x xf x x f e e'+==,则下列结论正确的是( )A .()f x 在(0,)+∞单调递增B .()f x 在(0,)+∞单调递减C .()f x 在(0,)+∞上有极大值D .()f x 在(0,)+∞上有极小值()()2ln ()()ln x x f x xf x x xf x f x x ''+=⇔+=,构造()()()ln xF x xf x f x x''=+= ()()()2ln 2x F x xf x m ==+,当x e =时()()()()22ln ln 22x e xf x m ef e m =+⇒=+12m ⇒=,()2ln 12x f x x +∴=,()()()()()()222ln 122ln 12x x x x f x x ''+-+'∴== ()2222ln 12ln ln 1022x x x x x ---=-≤,()f x 在(0,)+∞单调递减,选B 8.已知定义在),0(+∞上的函数)(x f ,满足0)()1(>x f ;)(2)()()2(x f x f x f <<'(其中)(x f '是)(x f 的导函数,e 是自然对数的底数),则)2()1(f f 的范围为( ) A.)1,21(2e e B.)1,1(2ee C.)2,(e e D.),(3e e 构造()()()()(),0x xf x f x f x F x F x e e '-'==>,()()()()212112f f f e e f e∴<⇒< 构造()()()()()22,0x x f x f x f x G x G x e e '-'==<,()()()()24212112f f f e e f e ∴>⇒> 所以选B9.若函数()f x 是定义在R 上的偶函数,当0x <时,'()()0f x xf x +<,且(4)0f -=,则不等式()0xf x >的解集为( ) A .(4,0)(4,)-+∞ B .(4,0)(0,4)- C .(,4)(4,)-∞-+∞ D .(,4)(0,4)-∞-构造()()F x xf x =,()F x 为奇函数,当0x <时,()()()0F x f x xf x ''=+<, 所以函数在(),0-∞单调递减,在()0,+∞也单调递减,当04x <<时()()440xf x f >>,当4x <-时,()()440xf x f >-->,所以选D10.已知定义在R 上的可导函数)(x f 满足:0)()('<+x f x f ,则122)(+--m m em m f 与)1(f 的大小关系是( )A .122)(+--m m em m f >)1(f B .122)(+--m m em m f <)1(fC .122)(+--m m em m f =)1(f D . 不确定构造()()xF x e f x =,()()()0xF x e f x f x ''=+<⎡⎤⎣⎦,()F x ∴为R 上的减函数,()()()222221011(1)m m m m m m F F m m ef e f m m --+>⇒>-⇒<-⇒<-,所以选A 二、填空题11.已知函数()f x 是R 上的奇函数,()g x 是R 上的偶函数,且有(1)0g =,当0x >时,有''()()()()0f x g x f x g x +>,则()()0f x g x >的解集为 .因()()()()0f x g x f x g x ''+>,即()()0f x g x '>⎡⎤⎣⎦, ()()f x g x 在0x >时递增,又∵()f x , ()g x 分别是定义R 上的奇函数和偶函数, ∴()()f x g x 为奇函数,关于原点对称, ∴()()f x g x 在0x <时也是增函数. ∵()()110f g =, ∴()()110f g --=∴()()0f x g x >的解集为:1x >或10x -<<。

相关文档
最新文档