第2讲:函数图象上点的存在性问题中的全等、相似与角度(下)
高中数学_函数与方程教学设计学情分析教材分析课后反思
第2讲《基本初等函数、函数与方程》教材分析《基本初等函数、函数与方程》是在学生复习了《函数的图像与性质》的基础上,学生具备了运用函数图像与性质的能力后复习的,并为《导数与函数的单调性、极值、最值问题》奠定了知识与方法的基础,起着承上启下的作用。
本节课在本模块乃至整个数学学习中都具有十分重要的地位。
学情分析学生已经复习了函数的图像与性质,而且作函数的图像已经很熟,本节课是在此基础上进一步提高学生运用函数图像的能力,充分利用数形结合思想,体会方程的工具作用。
考虑到我教的这个班是英语加强班,平时就有课前预习导学案的习惯,课堂上有分组讨论、交流合作的习惯,因此我利用目标明确、问题导学的方式,让学生自主探究,合作交流、分析、观察、归纳总结出函数的零点所考查的题型与其对应的解题方法。
并在及时反馈、问题辨析中,突出重点、突破难点。
对于例题和变式通过小组讨论、交流、学生板书、学生补充、学生总结方法和规律,近一步强化本节的重点,通过合作体验成功的喜悦。
知识技能目标1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;3.能利用函数解决简单的实际问题。
过程与方法目标(1)本节课采用高考引领、合作交流、归纳总结、教师点拨、及时反馈、例题分析、变式训练,巩固提高发挥学生学习的主动性,提高学生学习的积极性。
(2)探索函数的零点与方程的关系,体会数和形的统一,理解数形结合思想。
(3)通过观察、分析、合作探究、分组讨论、学生总结培养学生大胆创新,勇于探索、互相合作的精神,提高学生语言表达的能力、培养学生的自信心。
(4)通过学生板书、学生查错、学生总结,培养学生解题的策略与能力。
情感与态度目标(1)培养学生层层深入、一丝不苟研究事物的科学精神,提高学生分析问题、解决问题的能力。
(2)体会数学中的数与形的关系。
(3)感受图像在研究函数性质中的一般性和有效性,培养学生大胆创新、勇于探索、互相合作的精神。
初中数学易考知识点平面几何中的相似与全等
初中数学易考知识点平面几何中的相似与全等相似与全等是初中数学中的重要知识点,它们在平面几何中具有广泛应用。
相似与全等的概念和性质是理解和解决相关问题的基础。
本文将介绍相似与全等的定义、判定方法以及应用,帮助初中生更好地掌握这一知识点。
一、相似的定义及性质1. 相似的定义:在平面几何中,如果两个图形的形状相同但大小不同,那么我们称它们为相似图形。
两个相似图形的对应边成比例,对应角相等。
2. 相似的性质:(1)对应角相等:两个相似图形的对应角相等。
(2)对应边成比例:两个相似图形的对应边的比例相等。
二、判断相似的方法1. AA相似判定法:若两个三角形的对应角分别相等,则这两个三角形相似。
2. SAS相似判定法:若两个三角形的一对对应边成比例,且夹角相等,则这两个三角形相似。
3. SSS相似判定法:若两个三角形的三对对应边成比例,则这两个三角形相似。
三、相似三角形的性质与定理1. 直角三角形的性质:直角三角形的斜边和斜边上的高(即垂直于斜边的线段)相等时,它们相似。
2. 三角形的中线定理:三角形中线的长度相等时,它们相似。
3. 正方形的性质:正方形的每条边都相等且对角线相等,所以它的四个角都是直角。
正方形与正方形相似。
四、全等的定义及性质1. 全等的定义:在平面上,如果两个图形的大小形状完全相同,那么我们称它们为全等图形。
全等图形的对应边和对应角全部相等。
2. 全等的性质:(1)对应角相等:两个全等图形的对应角全部相等。
(2)对应边相等:两个全等图形的对应边全部相等。
五、判断全等的方法1. SSS全等判定法:若两个三角形的三对对应边全部相等,则这两个三角形全等。
2. SAS全等判定法:若两个三角形的一对对应边相等,且夹角相等,则这两个三角形全等。
3. ASA全等判定法:若两个三角形的一对对应角相等,且夹边相等,则这两个三角形全等。
4. RHS全等判定法:若两个直角三角形的斜边和一条直角边分别相等,则这两个直角三角形全等。
第1讲-点的存在性问题中的全等、相似和角度
第一讲 函数图象上点的存在性问题中的全等、相似与角度【1、二次函数与一个角】在抛物线上找点,满足特殊角。
探索:用角来刻画直线和抛物线的位置关系。
【探索1】如图,在平面直角坐标系XOY 中,点P 为抛物线2y x =上一动点,是否存在点P ,使POX ∠为45°,若存在,请求出点P 的坐标;不存在,说明理由。
【探索2】如图,在平面直角坐标系XOY 中,点P 为抛物线2y x =上一动点,点A 的坐标为(14,0),是否存在点P ,使PAX ∠分别为45°或30°?若存在,请求出点P 的坐标; 不存在,说明理由。
【探索3】如图,在平面直角坐标系XOY 中,点P 为抛物线2y x =上一动点,点A 的坐标为(1,0),若点P 使PAX ∠最小,请求出点P 的坐标。
【探索4】二次函数223y x x =--的图象与x 轴交于A 、B 两点(点A 在点B 的左侧), 与y 轴交于C 点,在二次函数的图象上是否存在点P ,使得∠PAC 为锐角?若存在,请你 求出P【探索5】二次函数图象经过点A (-3,0),B (-1,8),C (0,6),直线23y x =+与 y 轴交于点D ,点P 为二次函数图象上一动点①若∠PAD =45°,求点P 的坐标;②若∠PAD =30°,求点P 的坐标;【探索6】如图,在平面直角坐标系XOY 中,点P 为抛物线2y x 上一动点,点A 的坐 标为(4,2)①若使∠AOP =45°,请求出点P②若使∠AOP =30°,请求出点P【真题模拟】【例1】抛物线24y ax bx a =+-经过A (1,0)、C (0,4)两点,与x 轴交于另一点B 。
(1)求抛物线的解析式;(2)知点D (m ,1-m )在第二象限的抛物线上,求点D 关于直线BC 的对称点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标。
第51讲函数图象上点的存在性问题中的全等、相似与角度(下)
二轮复习 第二讲函数图象上点的存在性问题中的全等、相似和角度(下)全讲测试题1、在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,且点B 的坐标为()10,,点C 的坐标为()03,.⑴求抛物线及直线AC 的解析式;⑵E 、F 是线段AC 上的两点,且AEO ABC ∠=∠,过点F 作与y 轴平行的直线交抛物线于点M ,交x 轴于点N .当M F D E =时,在x 轴上是否存在点P ,使得以点P 、A 、F 、M 为顶点的四边形是梯形? 若存在,请求出点P 的坐标;若不存在,请说明理由;⑶若点Q 是位于抛物线对称轴左侧图象上的一点,试比较锐角QCO ∠与BCO ∠的大小(直接写出结果,不要求写出求解过程,但要写出此时点Q 的横坐标x 的取值范围).【解析】 ⑴ ∵抛物线2y x bx c =-++过()10B ,、()03C ,两点,∴10,3.b c c -++=⎧⎨=⎩解得2,3.b c =-⎧⎨=⎩∴抛物线的解析式为223y x x =--+. 由223y x x =--+可得A 点坐标为()30-,. 设直线AC 的解析式为y kx n =+, ∴ 30,3.k n n -+=⎧⎨=⎩解得1,3.k n =⎧⎨=⎩∴ 直线AC 的解析式为3y x =+. ⑵ ∵3OA OC ==,1OB =,∴△AOC是等腰直角三角形,AC =4AB =. ∴45ECO ∠=°.∵AEO ABC ∠=∠,EAO BAC ∠=∠,∴△AEO ∽△ABC .∴AE AOAB AC =,∴4AE .∴AE =∴CE AC AE =-= 过点E 作EH y ⊥轴于H . 可得1EH CH ==,2OH =. ∴E 点的坐标为()12-,.∵抛物线223y x x =--+顶点D 的坐标为()14-,,∴2ED =. ∴2MF ED ==.x∵F 在线段AC 上,M 在抛物线223y x x =--+上,∴设F 点的坐标为()3x x +,,M 点的坐标为()223x x x --+,. ∴()22332x x x --+-+=.解得12x =-,21x =-(不合题意,舍去).∴F 点的坐标为()21-,,∴1FN NA ==. 在x 轴上存在点P ,使得以点P 、A 、F 、M 为顶点的四边形是梯形.当FP MA ∥时,可得FN PN MN AN =,∴131PN =,∴13PN =. ∴P 点的坐标为703⎛⎫- ⎪⎝⎭,.当MP FA ∥时,可得FN ANMN PN=.∴3PN =. ∴P 点的坐标为()50-,.∴在x 轴上存在点P 使得以点P 、A 、F 、M 为顶点的四边形是梯形, 点P 的坐标为703⎛⎫⎪⎝⎭,或()50-,.⑶ 当5x <-时,锐角QCO BCO ∠<∠;当5x =-时,锐角QCO BCO ∠=∠; 当51x -<<-时,锐角QCO BCO ∠>∠.2.(2009海淀二模)如图,已知抛物线224323m m x m x m y -+-+-=)()(的顶点A 在双曲线xy 3=上, 直线y =mx +b 经过点A , 与y 轴交于点B , 与x 轴交于点C .⑴确定直线AB 的解析式;⑵将直线AB 绕点O 顺时针旋转90︒, 与x 轴交于点D , 与y 轴交于点E , 求sin ∠BDE 的值;⑶过点B 作x 轴的平行线与双曲线交于点G , 点M 在直线BG 上, 且到抛物线的对称轴的距离为6. 设点N 在直线BG 上, 请你直接写出使得∠AMB +∠ANB =45︒的点N 的坐标..))((351322--+--=m m x m∵点A 在双曲线xy 3=上,∴xy =3. -m 2+5m -3=3.解得 m =2, m =3(不合题意, 舍去). ∴ m =2, A (1, 3). …………………1分 ∵直线y =mx +b 经过点A , ∴3=2×1+b . b =1.故直线AB 的解析式为 y =2x +1………2分⑵ 由y =2x +1, 可得B (0, 1), C (21-, 0).将直线AB 绕点O 顺时针旋转90°,得点B 的对应点为D (1, 0), 点C 的对应点为E (0,21).可得直线DE 的解析式为2121+-=x y . ………3分由⎪⎩⎪⎨⎧+-=+=,,212112x y x y 得两直线交点为F (5351,-).…4分 可得DE ⊥BC , BD =2, BF =55, ∴ sin ∠BDE =1010=BD BF . ………5分 ⑶ N 1(5, 1), N 2(-3, 1). …………………7分。
第2章二次函数与几何综合 题型解读5 二次函数与三角形全等相似存在性问题-北师大版九年级数学下册
<<二次函数与几何综合>>题型解读5 二次函数与三角形全等、相似的存在性问题【解题思路】1.利用三角形全等性质进行解题;2.中文字说相似,首先考虑分类讨论,①等角确定时,采用代数方法-----“一个固定一个互换”; ②等角不确定时,采用几何方法----利用等角的三角函数值解题;例1.综合与探究:如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由; (3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.解答:(1)抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a ,∴抛物线的函数表达式为83212--=x x y ∵()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0),设直线l 的函数表达式为kx y =.∵点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=,∵点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4) F 2F 1(2)抛物线上存在点F ,使FOE ∆≌FCE ∆.∵FOE ∆≌FCE ∆,∴OE=CE,OF=FC ,∴F 点在线段OC 的垂直平分线与抛物线的交点上,且经过点E ,此时点F 的纵坐标为-4,∴12x 2−3x −8=−4,解得x=3±√17,∴F 点的坐标为(4,173--)或(4,173-+). (3)当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为(3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况:① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB , 又∵HM//y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8,∴5384)8(4=-=--=--+=+=BH m m EM HE HM ,∵ HM//y 轴,∴BHM ∆∽BOP ∆,∴BOBHOP HM =∴332854-=∴=---m mm ②当OQ OP =时,OPQ ∆是等腰三角形.∵y EH // 轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ = m m OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,∵y EH // 轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =,∴38851-=∴=---m mm .③当OP=PQ 时,显然不可能,理由:∵D(6,-8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO >∠1,∴OP ≠PQ ,综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形.例2.如图,在平面直角坐标系中,抛物线y=﹣x 2+bx+c 与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度; (3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的 三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.解:(1)y=﹣x 2﹣x+4;(2)∵E (m ,0),B (0,4),PE ⊥x 轴交抛物线于点P ,交BC 于点G ,∴P (m ,﹣m 2﹣m+4),G (m ,4),∴PG=﹣m 2﹣m+4﹣4=﹣m 2﹣m ; (3)在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似.∵D (﹣3,0).当点P 在直线BC 上方时,﹣3<m <0.设直线BD 的解析式为y=kx+4,将D (﹣3,0)代入,得﹣3k+4=0,解得k=,∴直线BD 的解析式为y=x+4,∴H (m ,m+4). (二次函数中出现的相似的分类讨论情况的解题思路过程)综上所述,在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似,此时m 的值为﹣1或﹣.例3.如图,直线y =−12x +2与x 轴交于点B,与y 轴交于点C ,抛物线y =−12x 2+bx +c 的对称轴是直线x=32,与x 轴交于点A ,且经过B,C 两点。
初一数学平面几何中的相似与全等性质总结
初一数学平面几何中的相似与全等性质总结在初一数学学习中,平面几何是一个重要的内容。
其中,相似与全等性质是平面几何中的基本概念和定理。
本文将对初一数学平面几何中的相似与全等性质进行总结和概括。
一、相似性质相似性质是指在平面几何中,两个图形的形状和内部角度大小都保持一致,只有大小比例不同的特点。
具体来说,我们可以根据相似性质来判断两个图形是否相似,以及相似图形之间的性质和关系。
1. 相似三角形的判定在初一数学中,我们可以通过以下三种方法来判断两个三角形是否相似:(1)AAA相似判定法:如果两个三角形的三个内角分别相等,则这两个三角形相似。
(2)AA相似判定法:如果两个三角形的一个内角相等,并且两个对应边的比例相等,则这两个三角形相似。
(3)SAS相似判定法:如果两个三角形的一个对应边比例相等,并且这两个对应边所夹的角相等,则这两个三角形相似。
2. 相似三角形的性质相似三角形之间有很多有趣的性质和关系:(1)相似三角形的对应边比例相等。
(2)相似三角形的对应角相等。
(3)相似三角形的高线比例相等。
(4)相似三角形的面积比例等于边长比例的平方。
(5)相似三角形可以通过缩放、旋转和镜像来得到。
二、全等性质全等性质是指在平面几何中,两个图形的形状、内角大小和边长都完全相等的特性。
具体来说,全等性质可以帮助我们判断两个图形是否全等,以及全等图形之间的性质和关系。
1. 全等三角形的判定在初一数学中,我们可以通过以下四种方法来判断两个三角形是否全等:(1)SSS全等判定法:如果两个三角形的三个边分别相等,则这两个三角形全等。
(2)SAS全等判定法:如果两个三角形的两个边和夹角分别相等,则这两个三角形全等。
(3)ASA全等判定法:如果两个三角形的一个角和两个边分别相等,则这两个三角形全等。
(4)RHS全等判定法:如果两个直角三角形的斜边和一个直角边分别相等,则这两个直角三角形全等。
2. 全等三角形的性质全等三角形之间有以下重要的性质和关系:(1)全等三角形的对应边相等。
初三数学课程-第16讲-函数图象上点的存在性问题中的全等、相似与角度(下)
初三数学
函数图象上点的存在性问题中的全等、
相似与角度(下)
【例1】(2009崇文一模)
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且OB=OC=3OA。
⑴求抛物线的解析式;
⑵探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形为直角三角形?若存在,求出P
点坐标,若不存在,请说明理由;
⑶直线y=
1
3
x
+1交轴于D点,E为抛物线顶点。
若∠DBC=±,∠CBE=²,求±-²的值。
【例2】
抛物线y=1
2x2-
3
2x+1过点A(1,0),B(x
2,0),交y轴正半轴于点C,在抛物线上(在B点的右侧)是
否存在一点P,使得∠PCB<∠CBA-∠ACB?若存在,求出点P 的坐标;若不存在,请说明理由。
【例3】
(2008年北京中考)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点。
⑴求直线BC及抛物线的解析式;
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
⑶连结CD,求∠OCA与∠OCD两角和的度数。
高中数学知识点精讲精析 全等与相似
1 全等与相似1、在数学上,两个图形可以完全重合,或者说两个物体大小、形状完全相等,那么这两个物体全等。
“全等”用符号“≌”表示,读作“全等于”.2、一个图形经过翻折、平移和旋转变换所得到的新图形一定与原图形全等。
反过来,两个全等的图形经过上述变换后一定可以互相重合.3、两个多边形全等,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合角的叫对应角.三角形全等的判定公理及推论有 (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS”(5)“斜边、直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA 和SSA ,这两种情况都不能唯一确定三角形的形状. 全等三角形的性质全等三角形的对应角相等、对应边相等. 注意:1)性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反.2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.1. 如图1,在正方体ABCD A B C D 1111中,M 、N 分别是棱AB 、BC 上的点,P 是棱DD 1的中点。
求M 、N 在什么位置时,PB ⊥面MNB 1,并证明之.图1【解析】当M 、N 分别是棱AB 、BC 的中点时,PB ⊥面MNB 1 连接AC 、DB ,则AC ⊥DB又PD ⊥AC ,由三垂线定理得AC ⊥PB 在正方形ABCD 中,由MN ∥AC ,得MN ⊥PB 取C C 1中点E ,连接PE ,则PE ⊥面BCC B 11 在正方形BCC B 11中,Rt B BN Rt BCE ∆∆1≅ 则∠∠BB N CBE 1=,而∠∠BB N BNB 1190+=︒ 故∠∠CBE BNB +=︒190 即B N BE 1⊥由三垂线定理得:PB ⊥B N 1 从而PB ⊥面MNB 1。
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用
3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
春中考数学《二次函数:全等三角形的存在性问题》课件
理解偏差
对于全等三角形的理解存 在偏差,导致在应用判定 定理时出现错误。
判定方法的实际应用
解题技巧
在解决二次函数问题时,利用全 等三角形的存在性判定可以简化
解题过程。
实际应用
全等三角形的存在性判定在实际生 活中也有广泛的应用,例如在几何 图形的设计和制作中。
拓展应用
通过全等三角形的存在性判定,还 可以进一步探究二次函数图像中的 其他几何性质和规律。
高难度练习题3
题目内容涉及二次函数的最值求解和全等三角形 的证明,以及数学思想的运用。
基础练习题答案
详细解答每个基础练习题的解题思路和步骤,帮助 学习者掌握基础知识。
中等难度练习题答案
详细解答每个中等难度练习题的解题思路和步骤 ,提高学习者的解题能力。
高难度练习题答案
详细解答每个高难度练习题的解题思路和步骤,激发学 习者的创新思维和数学素养。
总结词
基础题目是全等三角形存在性问题的入门级题目,主要考察学生对基础概念和 公式的掌握程度。
详细描述
基础题目通常包括简单的图形变换、基本的全等条件和简单的计算。通过这些 题目,学生可以熟悉全等三角形存在性问题的基本解题思路和方法,为解决更 复杂的问题打下基础。
中等难度题目解析
总结词
中等难度题目是在基础题目上的提升,需要学生具备一定的 推理和问题解决能力。
详细描述
这类题目通常涉及到更复杂的图形变换、多个全等条件的应 用以及一些计算技巧。学生需要通过仔细分析图形和条件, 逐步推导出结论,并能够运用所学知识解决实际问题。
高难度题目解析
总结词
高难度题目是全等三角形存在性问题的最高级别题目,对学生的推理、计算和问题解决能力有很高的要求。
九年级数学:第二十七章“相似”简介
初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 九年级数学教案编订:XX文讯教育机构第二十七章“相似”简介教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
>课程教材研究所李海东在教科书前面,已经研究图形的全等,也研究了一些图形的变换,如平移、轴对称、旋转等,本章将在前面的基础上进一步研究一种变换──相似。
研究相似变换的性质,相似三角形的判定等,并进一步研究一种特殊的相似变换──位似。
结合一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。
本章共安排三个小节和两个选学内容,教学时间大约需要13课时,具体安排如下(仅供参考):27.1 图形的相似2课时27.2 相似三角形6课时27.3 位似3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容在前面,我们已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的全等变换,“全等”是图形间的一种关系,具有这种关系的两个图形叠合在一起,能够完全重合,也就是它们的形状、大小完全相同。
“相似”也是指图形间的一种相互关系,但它与“全等”不同,这两个图形仅仅形状相同,大小不一定相同,其中一个图形可以看成是另一个图形按一定比例放大或缩小而成的,这种变换是相似变换。
当放大或缩小的比例为1时,这两个图形就是全等的,全等是相似的一种特殊情况。
从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章所研究的问题实际上是前面研究图形的全等和一些全等变换基础上的拓广和发展。
在后面,我们还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识。
函数图象上点的存在性问题中的全等相似与角度
函数图象上点的存在性问题中的全等相似与角度在函数图象上,存在性问题是指在特定的函数图象上是否存在满足特定条件的点或曲线。
全等相似是指,在两个函数图象之间是否存在一个相似的关系,即两个图象的形状和大小完全相同。
角度是函数图象中的重要概念,它是指两条曲线或直线之间的夹角大小。
对于存在性问题而言,我们可以根据函数的性质和图象的特点来判断是否存在满足一些条件的点或曲线。
首先,对于连续函数而言,由于连续函数的性质,可以通过利用函数的连续性来判断是否存在满足特定条件的点。
例如,在一个连续函数的图象上,如果可以找到满足f(a)<c<f(b)或f(a)>c>f(b)条件的两个点a和b,根据连续函数的介值定理,可以确定在这两个点之间一定存在一个点x,使得f(x)=c。
其次,对于极值点的存在性问题,我们可以通过导数的性质来判断。
如果一个函数在其中一点处的导数为零,那么该点可能是一个极值点。
当函数的导数在一些区间内既为正数又为负数时,这意味着在该区间中必然存在一个极大值点和一个极小值点。
对于全等相似问题,我们需要考虑两个函数图象的形状和大小是否相同。
如果两个函数图象的函数表达式相同,并且其图象上的点完全对应,那么这两个图象就是全等相似的。
例如,比较两个线性函数 y = kx,其中k1 ≠ k2 ,很明显它们并不是全等相似的,因为这两个函数之间不存在等比例关系。
在角度的问题中,我们需要考虑两个曲线或直线之间的夹角大小。
在函数图象中,我们可以通过求导数的方式找到两个曲线在其中一点处的切线斜率,然后计算两个切线之间的夹角。
另外,我们还可以使用两条直线的斜率来计算其夹角大小。
在直角坐标系中,两条曲线或直线之间的夹角可以通过向量的内积公式来计算。
总的来说,在函数图象上的存在性问题中,我们可以利用函数的连续性和导数的性质来判断点或曲线的存在性。
在全等相似问题中,我们需要比较两个函数图象的形状和大小。
而在角度的问题中,我们可以通过求导数或使用向量的内积公式来计算两个曲线或直线之间的夹角大小。
全等模型知识点总结
全等模型知识点总结在几何学中,全等模型是指两个图形在形状和大小上完全相同,被称为全等图形。
这意味着它们的所有对应边长度相等,对应角度相等,因此它们是相似的。
全等模型是几何学中的重要概念,它在解决问题和证明定理时起着重要的作用。
本文将对全等模型的相关知识点进行总结,包括全等模型的定义、性质、判定条件、应用以及相关定理等内容。
一、全等模型的定义全等模型是指两个图形在形状和大小上完全相同,其定义如下:定义1:如果两个图形A和B,它们之间存在一个一一对应关系,使得A中的每一个点都与B中的一个点对应,并且对应的边和对应的角度相等,则称图形A和图形B是全等的。
符号表示为A≌B。
根据这个定义,全等图形必顋满足以下条件:1. 对应的边相等:即A和B中的每一条边都有对应的边,且这些对应的边的长度相等。
2. 对应的角度相等:A和B中的每一个角度都有对应的角度,且这些对应的角度相等。
3. 所有对应的点都在同一直线上:即A和B中的每一个点都有对应的点,并且这些对应的点在同一条直线上。
二、全等模型的性质全等模型具有许多重要的性质,其中一些性质如下:1. 对应边和对应角相等:全等图形的对应边和对应角都相等,即它们所对应的边长度相等,对应的角度也相等。
2. 全等模型是相似的:由全等模型的定义可知,全等图形必须是相似的。
因此,全等模型也满足相似三角形的性质,如正弦定理、余弦定理等。
3. 全等模型的对应边相等性质:如果两个全等模型A和B,那么它们的对应边是两两相等的。
4. 全等模型的对应角相等性质:如果两个全等模型A和B,那么它们的对应角是两两相等的。
5. 全等模型的角平分线相等性质:如果两个全等模型A和B,那么它们的对应角的角平分线也相等。
6. 全等模型的对应中线相等性质:如果两个全等模型A和B,那么它们的对应中线也相等。
7. 全等模型的对应高相等性质:如果两个全等模型A和B,那么它们的对应高也相等。
8. 全等模型的对应中线、高线所成角相等性质:如果两个全等模型A和B,那么它们的对应中线、高线所成角相等。
2020-2021学年初中数学精品课程:第15讲-函数图象上点的存在性问题中的全等、相似与角度(上)
2020-2021学年初中数学精品课程函数图象上的点与角度中考说明:特殊角一般指45°、30°、60°等;知识点:主要考查特殊直线y=tan a ·x+b与抛物线的交点【例1】如图,在平面直角坐标系xOy中,点P为抛物线y=x2上一动点,点A的坐标为(),14,是否存在点P,使∠P Ax分别为45°或30°?若存在,请求出点P的坐标;不存在,说明理由。
【例2】二次函数y=x2-2x-3的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,在二次函数的图象上是否存在点P,使得∠P AC为锐角?若存在,请你求出P点的横坐标的取值范围;若不存在,请你说明理由。
函数图象上点的存在性问题中的全等、相似与角度(上)【例3】二次函数图象经过点A (-3,0),B (-1,8),C (0,6),直线y x =+223与y 轴交于点D ,点P为二次函数图象上一动点,若∠P AD =45°,求点P 的坐标。
【例4】(2009—2010东城二模)如图,二次函数过A (0,m )、B (-3,0)、C (12,0),过A 点作x 轴的平行线交抛物线于一点D ,线段OC 上有一动点P ,连结DP ,作PE ⊥DP ,交y 轴于点E 。
⑴求AD 的长;⑵若在线段OC 上存在不同的两点P 1、P 2,使相应的点E 1、E 2都与点A 重合,试求m 的取值范围。
⑶设抛物线的顶点为点Q ,当60°≤∠BQC ≤90°时,求m 的变化范围。
附送名师心得做一名合格的高校教师,应做好以下三个方面:1. 因材施教,注重创新所讲授的每门课程应针对不同专业、不同知识背景的学生来调整讲授的内容和方法。
不仅重视知识的传授,更要重视学生学习能力、分析和解决问题能力的培养,因为这些才是学生终生学习的根本。
注重教学过程创新,不仅要体现在教学模式、教学方法方面,更主要的是体现在内容的创新与扩充、实践环节的同步改革上。
反比例函数背景下的全等、相似问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数
例题精讲考点1反比例函数与全等三角形综合问题【例1】.如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(﹣1,0),点B在反比例函数y=的图象上,且y轴平分∠BAC,则k的值是________解:如图,过点B作BD⊥x轴于D,在OA上截取OE=OC,连接CE,∵点C(﹣1,0),∴CO=1,∴CO=EO=1,∴∠CEO=45°,CE=,∵△BAC为等腰直角三角形,且∠ACB=90°,∴BC=AC,∠OCA+∠DCB=90°,∠CAB=45°,∵∠OCA+∠OAC=90°,∴∠OAC=∠BCD,在△OAC和△DCB中,∴△OAC≌△DCB(AAS),∴AO=CD,OC=BD=1,∵y轴平分∠BAC,∴∠CAO=22.5°,∵∠CEO=∠CEA+∠OAC=45°,∴∠ECA=∠OAC=22.5°,∴CE=AE=,∴AO=1+=CD,∴DO=,∴点B坐标为(,﹣1),∵点B在反比例函数y=的图象上,∴k=﹣1×=﹣,变式训练【变1-1】.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D 恰好落在反比例函数的图象上,则k的值为()A.B.﹣2C.4D.﹣4解:如图,过点D作DE⊥y轴于点E.由对称可知CD=BC,易证△DCE≌△BCO(AAS),∴CE=CO,DE=OB,∵∠BAC=30°,OA=3∴OC=OA=,∠OCB=30°,∴OB=OC=1,∴DE=OB=1,CE=OC=,OE=2,|k|=DE•OE=1×2=2,∵反比例函数图象在第二象限,∴k=﹣2,故选:B.【变1-2】.如图,点A是反比例函数y=图象上的一动点,连接AO并延长交图象的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足_______(填等量关系)解:如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE≌△COF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=﹣m,cF=n,∴OE=﹣m,AE=n,∴A(﹣m,n),∵点A是反比例函数y=图象上,∴﹣mn=4,即mn=﹣4,考点2反比例函数与相似三角形综合问题【例2】.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为()A.B.C.D.12解:过点M作MH⊥OB于H.∵AD∥OB,∴△ADM∽△BOM,∴=()2=,=4,∵S△ADM=9,∴S△BOM∵DB⊥OB,MH⊥OB,∴MH∥DB,∴===,∴OH=OB,=×S△OBM=,∴S△MOH∵=,∴k=,故选:B.变式训练【变2-1】.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,=,则k的值为()A.B.﹣C.﹣D.﹣3解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=()2=,=×4=2,又∵S△AOC=,∴S△OBD∴k=﹣.故选:B.【变2-2】.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延=8,则k等于长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC ()A.8B.16C.24D.28解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.=8,即BC×OE=2×8=16=BO×AB=|k|.又∵S△BEC又由于反比例函数图象在第一象限,k>0.所以k等于16.故选:B.【变2-3】.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,过点B作BC⊥OB,交反比例函数y=的图象上于点C,连接OC交AB于点D,若△BCD的面积为2,则k的值为()A.18B.20C.22D.21解:如图,过点A作AF⊥OB交x轴于F,交OC于点E,∵OA=AB,AF⊥OB,∴OF=FB=OB,∵BC⊥OB,∴AF∥BC,∴△ADE∽△BDC,,∴BC=2EF,设OF=a,则OB=2a,∴A(a,),C(2a,),∴AF=,BC=,∴AF=2BC=4EF,AE=AF﹣EF=3EF,∵△ADE∽△BDC,∴,∴=()2=,∵△BCD的面积为2,=,∴S△ADE∴=,∵=,∴EC=OE,∴=,∴=,=,∴S△AOE∵==,∴==,=S△AOE=×=10,∴S△AOF∴|k|=10,∵k>0,∴k=20.故选:B.1.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,且△ABC的面积为3,则k等于()A.4B.2C.3D.1解:连接BC,过点C作CM⊥OB于M,∵OC=CA,即=,∴==,又∵△ABC的面积为3,=,∴S△OBC又∵CM∥AB,∴==,∴==,=S△OBC==|k|,∴S△OMC∵k>0,∴k=1,故选:D.2.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.3.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为()A.B.C.D.解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,=×|1|=,S△BOD=×|﹣5|=,∴S△AOC∵∠AOB=90°,∴∠BOD+∠AOC=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD,而∠ACO=∠BDO,∴△AOC∽△OBD,∴=()2==,∴=,在Rt△AOB中,tan∠BAO==,故选:B.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连接AD.若AD=3,则△ABO的周长为()A.12B.6+C.6+2D.6+2解:如图,过点D作DE⊥AO于E,∵点D是BO的中点,∴AD=BD=DO=3,∴BO=6,∵DE⊥AO,AB⊥AO,∴AB∥DE,∴,∴AB=2DE,AO=2EO,=DE×EO=,∵S△DEO=AB×AO=2,∴S△ABO∵AB2+AO2=OB2=36,∴(AB+AO)2=36+8,∴AB+AO=2,∴△ABO的周长=AO+BO+AB=6+2,故选:D.5.如图,长方形ABCD的顶点A、B均在y轴的正半轴上,点C在反比例函数y=(x>0)的图象上,对角线DB的延长线交x轴于点E,连接AE,已知S△ABE=1,则k的值是()A.1B.C.2D.4解:延长DC与x轴交于点F,∵ABCD是矩形,∴AD=BC,AD∥BC∥OE,∴△ABD∽△OBE,∴=,即:AD•OB=AB•OE,=1=AB•OE,又∵S△ABE∴AD•OB=AB•OE=2=BC•OB,=BC•OB=2=|k|,即:S矩形OBCF∴k=2或k=﹣2(舍去),故选:C.6.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为3.解:设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣3(不合题意舍去),∴点P(1,3),∴3=,解得k=3.故答案为:3.7.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.8.在平面直角坐标系xOy中,点A,B在反比例函数y=(x>0)的图象上,且点A与点B关于直线y=x对称,C为AB的中点,若AB=4,则线段OC的长为2.解:设A(t,),∵点A与点B关于直线y=x对称,∴B(,t),∵AB=4,∴(t﹣)2+(﹣t)2=42,即t﹣=2或t﹣=﹣2,解方程t﹣=﹣2,得t=﹣﹣2(由于点A在第一象限,所以舍去)或t=﹣+2,经检验,t=﹣+2,符合题意,∴A(﹣+2,+2),B(+2,﹣+2),∵C为AB的中点,∴C(2,2),∴OC==2.故答案为2.9.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图象上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.10.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,∵∠AED=∠COD=90°,∠ADE=∠CDO∴△ADE∽△CDO,∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD,∴BO=OD,∵∠ABC=90°,∴∠OCD=∠DAE=∠ABE,∴△ABE∽△DCO,∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=12.解:如图,过点D、E分别作x轴的垂线,垂足分别为F、G,=S矩形OADF=2S△OEG=k,则S△OBC又∵EG∥BC,∴△OEG∽△OBC,∴=()2=2,∴=,∴=,∴==,∴=,∴k=12.故答案为12.12.如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值为1.解:作BH⊥x轴,垂足为H,AM⊥y轴,垂足为M,∵∠OAB=60°,∠AOB=90°,∴△BHO∽△AMO,∴,令OM=a,则BH=,代入反比例函数y2=﹣得:x=,∴OH=,得:AM=,∴,又∵AM•OM=m,∴m=1.故答案为1.13.如图,线段OA与函数y=(x>0)的图象交于点B,且AB=2OB,点C也在函数y =(x>0)图象上,连结AC并延长AC交x轴正半轴于点D,且AC=3CD,连结BC,若△BCD的面积为3,则k的值为.解:如图,分别过点A,B,C作x轴的垂线,垂足分别为M,E,F.∴BE∥CF∥AM,∴OB:OA=BE:AM=OE:OM=1:3,CD:AD=DF:DM=CF:AM=1:4,设点B的坐标为(a,b),∴OE=a,BE=b,∴AM=3BE=3b,OM=3OE=3a,∴CF=AM=b,∴C(a,b),∴OF=a,∴FM=OM﹣OF=a,∴DF=FM=a,∴OD=OM﹣DF﹣FM=a.∵△BCD的面积为3,∴△ABC的面积=3×△BCD的面积=9,∴△ABD的面积=12.∴△BOD的面积=×△ABD的面积=6.∴•OD•BE=a×b=6.解得k=ab=.故答案为:.14.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连接BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为2.解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故答案为:2.15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)=6,则k=的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC.解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C (m ,),则OM =m ,CM =,∵OE ∥CM ,AE =CE ,∴==1,∴AO =m ,∵DN ∥CM ,CD =2BD ,∴===,∴DN =,∴D 的纵坐标为,∴=,∴x =3m ,即ON =3m ,∴MN =2m ,∴BN =m ,∴AB =5m ,∵S △ABC =6,∴5m •=6,∴k =.故答案为:.16.如图,A 为反比例函数(其中x >0)图象上的一点,在x 轴正半轴上有一点B ,OB =4.连接OA ,AB ,且OA =AB =2.过点B 作BC ⊥OB ,交反比例函数(其中x >0)的图象于点C ,连接OC 交AB 于点D ,则的值为.解:过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数(其中x>0)图象上的一点,∴k=2×6=12.∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC=3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴,故答案为.17.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,=×4=2,=,∴S△AOM∴=()2,=,∴S△ODN∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,=+=,∴S△OEF故答案为.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=8.解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣8n+16,CD=(m+n﹣4),DA=n,即2n2﹣8n+16=(m+n﹣4)×n,解得:mn=8=k,故答案为8.19.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴=2,于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE 则k的值是4.解:(解法一)过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4;(解法二)设点D的坐标为(m,n)(m>0,n>0),则CD=m,OC=n,∵CD∥x轴,∴∠ACD=∠OEC.∵四边形ABCD为平行四边形,BC⊥AC,∴DA⊥AC,AD=BC,∴∠DAC=∠COE=90°,∴△COE∽△DAC,∴=,即=,∴mn=BC•CE.=BC•CE=2,∵S△BCE=4.∴mn=2S△BCE∵点D在反比例函数y=(x>0)的图象上,∴k=mn=4.故答案为:4.20.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为H,AH交OC于点M,如图,∵OA=AB,AH⊥OB,∴OH=BH=OB=×4=2,A(2,),C(4,),∵AH∥BC,∴MH=BC=,∴AM=AH﹣MH=﹣=,∵AM∥BC,∴△ADM∽△BDC,∴==.21.如图,点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,AC⊥y轴于点C,BD⊥y轴于点D,交于点E,若BO=CE,则k的值为.解:过点A作AP⊥x轴于点P,过点B作BQ⊥x轴于点Q,∵AC=BD=,∴点A的横坐标为,点B的横坐标为﹣,∵点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,∴点A的纵坐标为6,点B的纵坐标为﹣3,∵AC⊥y轴,BD⊥y轴,∴CD=AP+BQ=9,OD=3,AC∥BD,∴∠CAE=∠DBE,∠ACE=∠BDE,∴△ACE≌△BDE(AAS),∴CE=DE=CD=,∵BO=CE,∴BO=,在Rt△BOD中,由勾股定理可得BD2+OD2=OB2,即,解得k=或k=﹣(舍去),故答案为:.22.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数的图象经过线段DC的中点N,若BD=4,则ME的长为.解:在菱形ABCD中,AB=BC,BD⊥AC,OB=OD==2,∠ABC=2∠OBC,∴点D(0,2),设点C(m,0),∵点N为CD的中点,∴点,∵反比例函数的图像经过点N,∴,解得:,即点,∴,∴,,∴∠OBC=30°,∴∠ABC=60°,∴△ABC为等边三角形,∴,∵AE⊥BC,∴,∴.故答案为:.23.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y==S1,S△OEF=S2,用含m的代数式表示.也过E、F两点,记S△CEF解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.24.如图,在平面直角坐标系中,点P、Q在函数y=(x>0)的图象上,PA、QB分别垂直x轴于点A、B,PC、QD分别垂直y轴于点C、D.设点P的横坐标为m,点Q的纵坐标为n,△PCD的面积为S1,△QAB的面积为S2.(1)当m=2,n=3时,求S1、S2的值;(2)当△PCD与△QAB全等时,若m=3,直接写出n的值.解:(1)∵当m=2时,y==6,∴P(2,6).∵PA⊥x轴,PC⊥y轴,∴PC=OA=2,PA=OC=6.∵当m=3时,x==4,∴Q(4,3).∵QB⊥x轴,QD⊥y轴,∴DQ=OB=4,QB=OA=3,∴CD=OC﹣OD=3,AB=OB﹣OA=2,∴S1=CD•CP=×3×2=3,S2=AB•QB=×2×3=3.(2)∵m=3,∴P(3,4),∴PC=OA=3,当△PCD≌△QBA时,∵QB=PC=3,∴n=3;当△PCD≌△ABQ时,∵PC=OA=3,∴AB=PC=3,∴OB=OA+AB=3+3=6.∵点Q在反比例函数y=的图象上,∴y==2,∴n=2.综上所述,n=2或3.25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在反比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.解:(1)连接OE,如图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴,又∵∠B=∠B,∴△BDE∽△BCA,∴∠BED=∠BAC,∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).27.如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A、B作y较的垂线,垂足分别为点C、D,AC =BD,连接AB交y轴于点F.(1)求k;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2.(3)连接CE、DE,当∠CED=90°时,求A的坐标.(1)解:∵点E(2,1)是反比例函数y=(x>0)图象上的点,∴k=1×2=2;(2)证明:∵点A的横坐标为a,∴点A的纵坐标为,∵AC=BD,∴B(﹣a,﹣),∵AC∥BD,∴∠CAF=∠DBF,∠ACF=∠BDF,∵AC=BD,∴△ACF≌△BDF(ASA),∴CF=DF,∴m=﹣,∴am=﹣2;(3)解:∵∠CED=90°,CF=DF,∴CD=2EF,∴=2,由(2)知,=﹣m,∴﹣4m=2,解得m=1或﹣,当m=1时,a=﹣2(舍去),当m=﹣时,a=,∴A(,).28.已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,=2S△AOE=1;∴S△BOE(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,=×OE×(﹣b)=×(﹣b)=﹣,∴S△POE∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.。
高三数学复习(理):第2讲 第4课时 利用导数研究不等式的恒成立或存在性问题
第4课时 利用导数研究不等式的恒成立或存在性问题[学生用书P58]不等式恒成立求参数(多维探究)方法一 分离参数法(2020·湖北武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.【解】 (1)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .令f ′(x )>0,得ln x +1>0,解得x >1e ,所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞.综上,f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)因为g ′(x )=3x 2+2ax -1,由题意得2x ln x ≤3x 2+2ax +1恒成立.因为x >0,所以a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去).当x 变化时,h ′(x ),h (x )的变化情况如下表:x(0,1) 1 (1,+∞) h ′(x )+ 0 -h (x ) 极大值所以当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,所以若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,即a ≥-2,故实数a 的取值范围是[-2,+∞).(1)分离参数法解含参不等式恒成立问题的思路用分离参数法解含参不等式恒成立问题是指在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的最值就可以解决问题. (2)求解含参不等式恒成立问题的关键是过好“双关”转化关 通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对∀x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min )求最值关求函数g (x )在区间D 上的最大值(或最小值)问题已知函数f (x )=ax e x -(a +1)(2x -1).(1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程;(2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 解:(1)若a =1,则f (x )=x e x -2(2x -1).即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2,所以所求切线方程为3x +y -2=0.(2)由f (1)≥0,得a ≥1e -1>0, 则f (x )≥0对任意的x >0恒成立可转化为a a +1≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0),则F ′(x )=-(2x +1)(x -1)x 2e x. 当0<x <1时,F ′(x )>0;当x >1时,F ′(x )<0,所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以F (x )max =F (1)=1e .于是aa +1≥1e ,解得a ≥1e -1. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e -1,+∞. 方法二 等价转化法(2020·高考全国卷Ⅰ)已知函数f (x )=e x +ax 2-x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【解】 (1)当a =1时,f (x )=e x +x 2-x ,f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)f (x )≥12x 3+1等价于⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1e -x ≤1. 设函数g (x )=⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1e -x (x ≥0),则 g ′(x )=-⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1-32x 2+2ax -1e -x =-12x [x 2-(2a +3)x +4a +2]e -x=-12x (x -2a -1)(x -2)e -x .(i)若2a +1≤0,即a ≤-12,则当x ∈(0,2)时,g ′(x )>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不符合题意.(ii)若0<2a +1<2,即-12<a <12,则当x ∈(0,2a +1)∪(2,+∞)时,g ′(x )<0;当x ∈(2a +1,2)时,g ′(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a <12时,g (x )≤1.(iii)若2a +1≥2,即a ≥12,则g (x )≤⎝ ⎛⎭⎪⎫12x 3+x +1e -x . 由于0∈⎣⎢⎡⎭⎪⎫7-e 24,12,故由(ii)可得⎝ ⎛⎭⎪⎫12x 3+x +1e -x ≤1. 故当a ≥12时,g (x )≤1.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞.根据不等式恒成立求参数范围的关键是把不等式转化为函数,利用函数值与最值之间的数量关系确定参数满足的不等式,解不等式即得参数范围.函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值;(2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a-3x ,令g (x )=2ln x +x -a +3x ,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数;在区间(1,e]上,g ′(x )>0,函数g (x )为增函数.由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4,所以实数a 的取值范围是(-∞,4].不等式能成立或有解求参数的取值(范围)(师生共研)已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.【解】 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减;当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a );由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间;当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x ,则ax ≤ln x x ,即a ≤ln x x 2.则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max. 设h (x )=ln x x 2,由h ′(x )=1-2ln x x 3,令h ′(x )=0,得x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:x(0,e) e (e ,+∞) h ′(x )+ 0 - h (x ) 极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12e .(1)含参数的能成立(存在型)问题的解题方法①a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;②a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .(2)含全称、存在量词不等式能成立问题①存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;②任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min .已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值. 解:(1)由f (x )=x ln x ,得f ′(x )=1+ln x ,令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e .所以f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. 所以f (x )在x =1e 处取得极小值,且为f ⎝ ⎛⎭⎪⎫1e =-1e ,无极大值. (2)由f (x )≤-x 2+mx -32,得m ≥2x ln x +x 2+3x. 问题转化为m ≥⎝ ⎛⎭⎪⎫2x ln x +x 2+3x min . 令g (x )=2x ln x +x 2+3x =2ln x +x +3x (x >0).则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 由g ′(x )>0,得x >1,由g ′(x )<0,得0<x <1.所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以g (x )min =g (1)=4,则m ≥4.故m 的最小值为4.[学生用书P59]核心素养系列4 逻辑推理——两个经典不等式的活用逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).(1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.【解】 (1)选B.因为f (x )的定义域为{x +1>0,ln (x +1)-x ≠0, 即{x |x >-1,且x ≠0},所以排除选项D.当x >0时,由经典不等式x >1+ln x (x >0),以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),所以ln(x +1)-x <0(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A ,C ,易知B 正确.(2)证明:令g (x )=f (x )-⎝ ⎛⎭⎪⎫12x 2+x +1=e x -12x 2-x -1,x ∈R , 则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立,所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点.已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e. 【解】 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1.(2)证明:由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n . 从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解】 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.①因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x <x .②故当x ∈(1,+∞)时恒有1<x -1ln x <x .[学生用书P291(单独成册)]1.(2021·贵阳市第一学期监测考试)已知函数f (x )=a sin x -x +b (a ,b 均为正常数),h (x )=sin x +cos x .设函数f (x )在x =π3处有极值,对于一切x ∈⎣⎢⎡⎦⎥⎤0,π2,不等式f (x )>h (x )恒成立,求b 的取值范围.解:f ′(x )=a cos x -1.由已知得:f ′⎝ ⎛⎭⎪⎫π3=0,所以a =2, 所以f (x )=2sin x -x +b ,不等式f (x )>h (x )恒成立可化为sin x -cos x -x >-b ,记函数g (x )=sin x -cos x -x ,x ∈⎣⎢⎡⎦⎥⎤0,π2,则g ′(x )=cos x +sin x -1=2sin ⎝ ⎛⎭⎪⎫x +π4-1,x ∈⎣⎢⎡⎦⎥⎤0,π2, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,1≤2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以g ′(x )>0在⎣⎢⎡⎦⎥⎤0,π2上恒成立,所以函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,最小值为g (0)=-1, 所以b >1,所以b 的取值范围是(1,+∞).2.(2020·江西五校联考)已知函数f (x )=e x +bx .(1)讨论f (x )的单调性;(2)若b =1,当x 2>x 1>0时,f (x 1)-f (x 2)<(x 1-x 2)·mx 1+mx 2+1)恒成立,求实数m 的取值范围.解:(1)由f (x )=e x +bx 得f ′(x )=e x +b ,若b ≥0,则f ′(x )>0,即f (x )=e x +bx 在(-∞,+∞)上是增函数; 若b <0,令f ′(x )>0得x >ln(-b ),令f ′(x )<0得x <ln(-b ),即f (x )=e x +bx 在(-∞,ln(-b ))上单调递减,在(ln(-b ),+∞)上单调递增.(2)由题意知f (x )=e x +x ,f (x 1)-f (x 2)<(x 1-x 2)(mx 1+mx 2+1),即f (x 1)-mx 21-x 1<f (x 2)-mx 22-x 2,由x 2>x 1>0知,上式等价于函数φ(x )=f (x )-mx 2-x =e x -mx 2在(0,+∞)上为增函数,所以φ′(x )=e x-2mx ≥0(x >0),即2m ≤e x x (x >0). 令h (x )=e x x (x >0),则h ′(x )=e x (x -1)x 2, 当h ′(x )<0时,0<x <1;当h ′(x )>0时,x >1;当h ′(x )=0时,x =1. 所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=e ,则2m ≤e ,即m ≤e 2,所以实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,e 2. 3.(2021·福州市适应性考试)已知f (x )=2x ln x +x 2+ax +3.(1)当a =1时,求曲线y =f (x )在x =1处的切线方程;(2)若存在x 0∈⎝ ⎛⎭⎪⎫1e ,e ,使得f (x 0)≥0成立,求a 的取值范围. 解:f ′(x )=2(ln x +1)+2x +a .(1)当a =1时,f (x )=2x ln x +x 2+x +3,f ′(x )=2(ln x +1)+2x +1,所以f (1)=5,f ′(1)=5,所以曲线y =f (x )在x =1处的切线方程为y -5=5(x -1),即y =5x .(2)存在x 0∈⎝ ⎛⎭⎪⎫1e ,e ,使得f (x 0)≥0成立,等价于不等式a ≥-2x ln x +x 2+3x 在⎝ ⎛⎭⎪⎫1e ,e 上有解. 设h (x )=-2x ln x +x 2+3x,则h ′(x )=-x 2+2x -3x 2=-(x +3)(x -1)x 2, 当1e <x <1时,h ′(x )>0,h (x )为增函数;当1<x <e 时,h ′(x )<0,h (x )为减函数.又h ⎝ ⎛⎭⎪⎫1e =-3e 2-2e +1e ,h (e)=-e 2+2e +3e , 故h ⎝ ⎛⎭⎪⎫1e -h (e)<0, 所以当x ∈⎝ ⎛⎭⎪⎫1e ,e 时,h (x )>h ⎝ ⎛⎭⎪⎫1e =-3e 2-2e +1e , 所以a >-3e 2-2e +1e, 即a 的取值范围为⎝ ⎛⎭⎪⎫-3e 2-2e +1e ,+∞. 4.(2021·合肥第一次教学检测)已知函数f (x )=(x +1)ln x ,g (x )=a (x -1),a ∈R .(1)求直线y =g (x )与曲线y =f (x )相切时,切点T 的坐标;(2)当x ∈(0,1)时,g (x )>f (x )恒成立,求a 的取值范围.解:(1)设切点坐标为(x 0,y 0),由f (x )=(x +1)·ln x ,得f ′(x )=ln x +1x +1,则⎩⎨⎧ln x 0+1x 0+1=a ,(x 0+1)ln x 0=a (x 0-1), 所以2ln x 0-x 0+1x 0=0. 令h (x )=2ln x -x +1x ,则h ′(x )=-x 2-2x +1x 2≤0,所以h (x )在(0,+∞)上单调递减,所以h (x )=0最多有一个实数根.又h (1)=0,所以x 0=1,此时y 0=0,即切点T 的坐标为(1,0).(2)当x∈(0,1)时,g(x)>f(x)恒成立,等价于ln x-a(x-1)x+1<0对x∈(0,1)恒成立.令H(x)=ln x-a(x-1)x+1,则H′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,H(1)=0.①当a≤2,x∈(0,1)时,x2+2(1-a)x+1≥x2-2x+1>0,所以H′(x)>0,H(x)在x∈(0,1)上单调递增,因此当x∈(0,1)时H(x)<0.②当a>2时,令H′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1与x1x2=1得,0<x1<1.所以当x∈(x1,1)时,H′(x)<0,H(x)单调递减,所以当x∈(x1,1)时,H(x)>H(1)=0,不符合题意.综上所述,a的取值范围是(-∞,2].。
第1讲第二轮复习之函数图象上点的存在性专题——全等构造相似构造与角度的和差目标班学生版
第1讲第二轮复习之函数图象上点的存在性专题——全等构造相似构造与角度的和差目标班学生版在函数图象上,存在着一些特殊的点,如顶点、零点、极值点等。
在这节课中,我们将通过全等构造、相似构造以及角度的和差来讨论函数图象上点的存在性问题。
全等构造是指利用函数图象上已知的点与线段的全等关系构造出其他点。
例如,对于函数y=f(x),如果我们已知点A(x₁,y₁),那么我们可以通过构造点B,使得AB与X轴全等。
具体的构造过程是:先找到A关于X 轴的对称点A',然后连接A'与波浪线f(x),交点B即为所求。
这样,我们就利用全等构造得到了函数图象上与A关于X轴全等的点B。
相似构造是指利用函数图象上已知的点与线段的相似关系构造出其他点。
例如,对于函数y=f(x),如果我们已知两点A(x₁,y₁)和B(x₂,y₂),且已知线段AB与X轴的比例为k:1,那么我们可以通过构造点C,使得线段AC与X轴的比例也为k:1、具体的构造过程是:连接A和B,通过A点作出线段AE与X轴垂直且比例为k:1,然后连接E与波浪线f(x),交点C 即为所求。
这样,我们就利用相似构造得到了函数图象上与A、B关于X 轴比例相同的点C。
角度的和差可以帮助我们构造出两条直线的交点。
例如,对于函数y=f(x),如果我们已知直线L₁与X轴的夹角为α,且已知直线L₂与X轴的夹角为β,那么我们可以通过构造点A,使得直线L₁与波浪线f(x)相交于A,并与X轴的夹角为α,直线L₂与波浪线f(x)相交于B,并与X轴的夹角为β,则A和B的交点即为所求。
具体的构造过程是:通过点A 作出与直线L₁夹角为α的直线,与波浪线f(x)交于A;通过点B作出与直线L₂夹角为β的直线,与波浪线f(x)交于B;连接A和B,交点即为所求。
通过全等构造、相似构造以及角度的和差,我们可以在函数图象上准确地构造出我们所需要的点,从而解决函数图象上点的存在性问题。
这些构造方法既简单又直观,可以提高我们对函数图象的理解和把握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【真题模拟】 【例 1】(2009—2010 昌平二模)抛物线 y=ax2+bx-4a 经过 A(1,0)、 C(0,4)两点,与 x 轴交于另一点 B。 ⑴求抛物线的解析式; ⑵已知点 D(m,1-m)在第二象限的抛物线上,求点 D 关于直线 BC 的对称点的坐标;
⑶在⑵的条件下, 点 P 为抛物线 y ax 2 bx c 上一动点(不与 A 、 B重 合),过点 P 作 x 的垂线交线段 CD 于 Q ,若∠AQD 45 ∠BQC , 直接写出点 P 的横坐标。
y B
C A O x
D
2
2.抛物线 y
1 2 3 x x 1过点 A 1,0 , B x2 ,0 ,交 y 轴正半轴于 2 2 点C ,在抛物线上(在 B 点的右侧)是否存在一点 P ,使得 PCB CBA ACB ?若存在,求出点 P 的坐标;若不存在, 请说明理由。
4.(2009 海淀二模)如图,已知抛物线 3 y (3 m ) x 2( m 3) x 4m m 的顶点 A 在双曲线 y 上, x 直线 y=mx+b 经过点 A,与 y 轴交于点 B,与 x 轴交于点 C。
2 2
⑶过点 B 作 x 轴的平行线与双曲线交于点 G,点 M 在直线 BG 上, 且到抛物线的对称轴的距离为 6。设点 N 在直线 BG 上,请你直接 写出使得∠AMB+∠ANB=45的点 N 的坐标。
3.在平面直角坐标系 xOy 中,抛物线 y x 2 bx c 与 x 轴交于 A 、B 两点(点 A 在点 B 的左侧) ,与 y 轴交于点 C ,顶点为 D ,且点 B 的 坐标为 1,0 ,点 C 的坐标为 0 ,3 . ⑴求抛物线及直线 AC 的解析式; ⑵ E 、F 是线段 AC 上的两点,且 AEO ABC ,过点 F 作与 y 轴平 行的直线交抛物线于点 M ,交 x 轴于点 N 。当 MF DE 时,在 x 轴 上是否存在点 P , 使得以点 P 、A 、F 、M 为顶点的四边形是梯形? 若存在,请求出点 P 的坐标;若不存在,请说明理由; ⑶若点 Q 是位于抛物线对称轴左侧图象上的一点, 试比较锐角 QCO 与 BCO 的大(直接写出结果,不要求写出求解过程,但要写出此 时点 Q 的横坐标 x 的取值范围)。
⑶设抛物线的顶点为点 Q,当 60°≤∠BQC≤90°时,求 m 的变化范 围。
1
板块二
二次函数与多个角:在抛物线上找点,满足两角和(差)关系 在点 B 的左侧),与 y 轴交于 C 点,在二次函数的图象上是 否存在点 P, 使锐角∠PCO>∠ACO?若存在, 请你求出 P 点的横坐标的取值范围;若不存在,请你说明理由。
y
y
⑴确定直线 AB 的解析式; ⑵将直线 AB 绕点 O 顺时针旋转 90,与 x 轴交于点 D,与 y 轴交于 点 E,求 sin∠BDE 的值;
A
A
O
D
x
3
【例 3】(2008 年北京中考)在平面直角坐标系 xOy 中,抛物线 y=x2 +bx+c 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴 交于点 C,点 B 的坐标为(3,0),将直线 y=kx 沿 y 轴向上平 移 3 个单位长度后恰好经过 B,C 两点。 ⑴求直线 BC 及抛物线的解析式; ⑵设抛物线的顶点为 D,点 P 在抛物线的对称轴上,且∠APD= ∠ACB,求点 P 的坐标; ⑶连结 CD,求∠OCA 与∠OCD 两角和的度数。
⑶在⑵的条件下, 连接 BD, 点 P 为抛物线上一点, 且∠DBP=45°, 求出点 P 的坐标。
【例 2】(2009—2010 东城二模)如图,二次函数过 A(0,m)、B(-3,0)、 C(12,0),过 A 点作 x 轴的平行线交抛物线于一点 D,线段 OC 上有一动点 P,连结 DP,作 PE⊥DP,交 y 轴于点 E。 ⑴求 AD 的长; ⑵若在线段 OC 上存在不同的两点 P1、P2,使相应的点 E1、E2 都 与点 A 重合,试求 m 的取值范围。
【探索 7】二次函数 y=x2-2x-3 的图象与 x 轴交于 A、B 两点(点 A
测 试 题
21 1. 如图, 平行四边形 ABCD 的顶点 A 12 ,0 ,B 0 ,9 ,C 0 , , 4 2 抛物线 y ax bx c 经过点 A 、 B 。 ⑴求点 D 的坐标. 21 3 ⑵关于 x 的方程 ax 2 bx c 求抛物线的解 x 有且只有一个解, 4 4 析式.