2016年历年江苏省淮安市数学中考真题及答案
历年中考数学模拟试题(含答案) (162)
江苏省淮安市2016年初中毕业暨中等学校招生文化统一考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列四个数中最大的数是A.-2B.-1C.0D.1 2.下列图形是中心对称图形的是A B C D 3.月球的直径约为3476000米,将3476000用科学记数法表示应为A. 0.3476×107B. 34.76×105C. 3.476×107D. 3.476×106 4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3、5、6、2、5、1,这组数据的众数是A.5B.6C.4D.2 5.下列运算正确的是A.236a a =a ⋅ B.()222ab =a b C.()235a=a D.824a a =a ÷6.估计71+的值A.在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间 7.已知a -b=2,则代数式2a -2b -3的值是 A.1 B.2 C.5 D.78.如图,在Rt ΔABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以M 、N 为圆心, 大于12MN 长为半径画弧,两弧交于点P ,作 射线AP 交边BC 于点D ,若CD =4,A B =15, 则ΔABD 的面积为A.15B.30C.45D.60二、填空题(本大题共有10小题,每小题3分,共30分) 9.若分式1x 5-在实数范围内有意义,则x 的取值范围是 . 10.分解因式:m 2-4= .题号 1 2 3 4 5 6 7 8 答案P DBC NMA11.点A (3,-2)关于x 轴对称的点的坐标是 . 12.计算:3a -(2a -b )= .13.一个不透明的袋中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 .14.若关于x 的x 2+6x+k=0一元二次方程有两个相等的实数根,则k = . 15.若点A (-2,3)、B (m ,-6)都在反比例函数()ky=k 0x≠的图像上,则m 的值是 .16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 17.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角为 ° 18.如图,在Rt ΔABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将ΔCEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .三、解答题(本大题共有10小题,共96分) 19.(本小题满分10分) (1)计算()3123++-1--(2)解不等式组2x 1x 54x 3x+2++⎧⎨⎩p f20.(本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(本小题满分8分)已知,如图,在菱形ABCD 中,点E 、F 分别为边AC 、AD 的中点,连接AE 、CF ,求证:ΔADE ≌ΔCDF22.(本小题满分8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
历年江苏省淮安市中考数学试卷含解析
历年江苏省淮安市中考数学试卷含解析历年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的绝对值是()A.B.﹣3C.D.32.(3分)计算a?a2的结果是()A.a3B.a2C.3aD.2a23.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×1074.(3分)如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A.B.C.D.5.(3分)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4 cmB.1cm,2cm,3cmC.3cm,4cm,5cmD.4cm,5cm,6cm6.(3分)2019年淮安市“周恩来读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数是()A.3B.4C.5D.67.(3分)若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k<﹣1B.k>﹣1C.k<1D.k>18.(3分)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是()A.B.C.D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)分解因式:1﹣x2=.10.(3分)现有一组数据2,7,6,9,8,则这组数据的中位数是.11.(3分)方程1的解是.12.(3分)若一个多边形的内角和是540°,则该多边形的边数是.13.(3分)不等式组的解集是.14.(3分)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是.15.(3分)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=.16.(3分)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)tan45°﹣(1)0;(2)ab(3a﹣2b)+2ab2.18.(8分)先化简,再求值:(1),其中a=5.19.(8分)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?20.(8分)已知:如图,在?ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.21.(8分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.22.(8分)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.(1)用树状图或列表等方法列出所有可能结果;(2)求两次摸到不同数字的概率.23.(8分)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求△ABB2的面积.24.(10分)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.25.(10分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.26.(12分)如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)点E是线段BD上的一点,过点E作x 轴的垂线,垂足为F,且ED=EF,求点E的坐标.(3)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的?若存在,求出点G的坐标;若不存在,请说明理由.27.(12分)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=°;②连接CE,直线C E与直线AB的位置关系是.(2)请在图③中画出△BPE,使点E 在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.2019年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的绝对值是()A.B.﹣3C.D.3【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:D.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.(3分)计算a?a2的结果是()A.a3B.a2C.3a D.2a2【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:原式=a1+2=a3.故选:A.【点评】本题考查了同底数幂的乘法,注意底数不变指数相加.3.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×107【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:36000000=3.6×107,故选:D.【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A.B.C.D.【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【解答】解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:故选:C.【点评】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5.(3分)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cmB.1cm,2cm,3cmC.3cm,4cm,5cmD.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点评】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.6.(3分)2019年淮安市“周恩来读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数是()A.3B.4C.5D.6【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:在这一组数据中,5是出现的次数最多,故这组数据的众数是5.故选:C.【点评】本题主要考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7.(3分)若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k <﹣1B.k>﹣1C.k<1D.k>1【分析】直接利用根的判别式进而得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴b2﹣4ac=4﹣4×1×(﹣k)=4+4k>0,∴k>﹣1.故选:B.【点评】此题主要考查了根的判别式,正确记忆公式是解题关键.8.(3分)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是()A.B.C.D.【分析】根据题意得到xy=矩形面积(定值),故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.【解答】解:∵根据题意xy=矩形面积(定值),∴y是x的反比例函数,(x>0,y>0).故选:B.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)分解因式:1﹣x2=(1+x)(1﹣x).【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.10.(3分)现有一组数据2,7,6,9,8,则这组数据的中位数是7.【分析】直接利用中位数的求法得出答案.【解答】解:数据2,7,6,9,8,从小到大排列为:2,6,7,8,9,故这组数据的中位数是:7.故答案为:7.【点评】此题主要考查了中位数,正确把握中位数的定义是解题关键.11.(3分)方程1的解是x=﹣1.【分析】方程两边都乘以最简公分母,转化成一元一次方程进行解答便可.【解答】解:方程两边都乘以(x+2),得1=x+2,解得,x=﹣1,经检验,x=﹣1是原方程的解,故答案为:x=﹣1.【点评】本题主要考查了解分式方程,是基础题,关键是熟记分式方程的解法和一般步骤.12.(3分)若一个多边形的内角和是540°,则该多边形的边数是5.【分析】n边形的内角和公式为(n﹣2)?180°,由此列方程求n.【解答】解:设这个多边形的边数是n,则(n﹣2)?180°=540°,解得n=5,故答案为:5.【点评】本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.13.(3分)不等式组的解集是x>2.【分析】根据“同大取大;同小取小;大小小大中间找;大大小小找不到.”这个规律求出不等式组的解集便可.【解答】解:根据“同大取大;同小取小;大小小大中间找;大大小小找不到.”得原不等式组的解集为:x>2.故答案为:x>2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.14.(3分)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是3.【分析】设该圆锥底面圆的半径是为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到2π×r×5=15π,然后解关于r的方程即可.【解答】解:设该圆锥底面圆的半径是为r,根据题意得2π×r×5=15π,解得r=3.即该圆锥底面圆的半径是3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.(3分)如图,l1∥l2∥l3,直线a、b与l1、l2、l 3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC =6,则EF=4.【分析】根据l1∥l2∥l3,由平行线分线段成比例定理得到成比例线段,代入已知数据计算即可得到答案.【解答】解:∵l1∥l2∥l3,∴,又AB=3,DE=2,BC=6,∴E F=4,故答案为:4.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系是解题的关键.16.(3分)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.【分析】连接PB,交CH于E,依据轴对称的性质以及三角形内角和定理,即可得到CH垂直平分BP,∠APB=90°,即可得到AP∥HE,进而得出∠BAP=∠BHE,依据Rt△BCH中,tan∠BHC,即可得出tan∠HAP.【解答】解:如图,连接PB,交CH于E,由折叠可得,CH垂直平分BP,BH=PH,又∵H为AB的中点,∴AH =BH,∴AH=PH=BH,∴∠HAP=∠HPA,∠HBP=∠HPB,又∵∠HAP+∠HPA+∠HBP+∠HPB=180°,∴∠APB=90°,∴∠APB=∠HEB=90°,∴AP∥HE,∴∠BAP=∠BHE,又∵Rt△BCH中,tan∠BHC,∴tan∠HAP,故答案为:.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)tan45°﹣(1)0;(2)ab(3a﹣2b)+2ab2.【分析】(1)直接利用二次根式的性质和特殊角的三角函数值、负指数幂的性质分别化简得出答案;(2)直接利用单项式乘以多项式运算法则进而计算得出答案.【解答】解:(1)tan45°﹣(1)0=2﹣1﹣1=0;(2)ab(3a﹣2b)+2ab2=3a2b﹣2ab2+2ab2=3a2b.【点评】此题主要考查了单项式乘以多项式和实数运算,正确掌握相关运算法则是解题关键.18.(8分)先化简,再求值:(1),其中a=5.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1)()?=a+2,当a=5时,原式=5+2=7.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.(8分)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.20.(8分)已知:如图,在?ABCD中,点E、F分别是边AD、BC 的中点.求证:BE=DF.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是?ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是?ABCD边AD、BC的中点,∴DEAD,BFBC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点评】此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.(8分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有40人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【分析】(1)用B级人数除以它所占的百分比得到调查的总人数;(2)计算出C级人数,然后补全条形统计图;(3)用800乘以样本中A级人数所占的百分比即可.【解答】解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800160,所以估计该企业员工中对安全生产知识的掌握能达到A级的人数为160人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.22.(8分)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.(1)用树状图或列表等方法列出所有可能结果;(2)求两次摸到不同数字的概率.【分析】(1)画出树状图即可;(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,由概率公式即可得出结果.【解答】解:(1)画树状图如图所示:所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,∴两次摸到不同数字的概率为.【点评】本题考查了树状图法求概率以及概率公式;由题意画出树状图是解题的关键.23.(8分)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求△ABB2的面积.【分析】(1)根据网格结构找出点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点B2的位置,然后连接即可;(3)利用正方形的面积减去三个三角形的面积,列式计算即可得解.【解答】解:(1)线段A1B1如图所示;(2)线段A1B2如图所示;(3)S4×42×22×42×4=6.【点评】本题考查了平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(10分)如图,AB 是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.【分析】(1)欲证明DE是⊙O的切线,只要证明∠ODE=90°即可;(2)过O作OG ⊥AF于G,得到AF=2AG,根据直角三角形的性质得到AGOA =1,得到AF=2,推出四边形AODF是菱形,得到DF∥OA,DF=OA=2,于是得到结论.【解答】解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AGOA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EFDF=1.【点评】本题考查切线的判定和性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(10分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【分析】(1)根据函数图象中的数据可以求得快车和慢车的速度;(2)根据函数图象中的数据可以求得点E和点C的坐标,从而可以求得y1与x之间的函数表达式;(3)根据图象可知,点F表示的是快车与慢车行驶的路程相等,从而以求得点F 的坐标,并写出点F的实际意义.【解答】解:(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y 1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(12分)如图,已知二次函数的图象与x轴交于A、B 两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)点E是线段BD上的一点,过点E作x轴的垂线,垂足为F,且ED=EF,求点E的坐标.(3)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的?若存在,求出点G的坐标;若不存在,请说明理由.【分析】(1)依题意,利用二次函数的顶点式即可求(2)可通过点B,点D求出线段BD所在的直线关系式,点E在线段BD上,即可设点E的坐标,利用点与点的关系公式,通过EF=ED即可求(3)先求线段AD所在的直线解析式,当点G在x轴的上方时,过点G作直线AD:3x﹣4y+9=0的垂线,交点垂足为Q(x,y),即可求△ADG与△BDG的高,利用三角形面积公式即可求.当点G在x轴的下方时,由AO:OB=3:5,所以当△ADG与△BDG的高相等时,即存在点G使得S△ADG:S△BDG =3:5,此时,DG的直线经过原点,设直线DG的解析式为y=kx ,求得与抛物线的交点即可.【解答】解:(1)依题意,设二次函数的解析式为y=a(x﹣1)2+3将点B代入得0=a(5﹣1)2+3,得a∴二次函数的表达式为:y(x﹣1)2+3(2)依题意,点B (5,0),点D(1,3),设直线BD的解析式为y=kx+b,代入得,解得∴线段BD所在的直线为yx,设点E的坐标为:(x,x)∴ED2=(x﹣1)2+(x3)2,EF∵ED=EF,∴(x﹣1)2+ (x3)2,整理得2x2+5x﹣25=0,解得x1,x2=﹣5(舍去)故点E的纵坐标为y∴点E的坐标为(3)存在点G,当点G在x轴的上方时,设点G的坐标为(m,n),∵点B的坐标为(5,0),对称轴x=1∴点A的坐标为(﹣3,0),∴设AD所在的直线解析式为y=kx+b,代入得,解得∴直线AD的解析式为y∴AD的距离为5,过点G作直线AD:3x﹣4y+9=0的垂线,交点垂足为Q(x,y),得,化简得由上式整理得,(32+42)[(x﹣m)2+(y﹣n)2]=(3m﹣4n+9)2∴|GQ|∴点G到AD的距离为:d1=||,由(2)知直线BD的解析式为:yx,∴BD的距离为5,∴同理得点G至BD的距离为:d2=||,∴,整理得6m﹣32n+90=0∵点G在二次函数上,∴n代入得6m﹣32[(m﹣1)2+3]+90=0,整理得6m2﹣6m=0?m(m﹣1)=0,解得m1=0,m2=1(舍去)此时点G的坐标为(0,)当点G在x轴下方时,如图2所示,∵AO:OB=3:5∴当△ADG与△BDG的高相等时,存在点G使得S△ADG:S△BDG=3:5,此时,DG的直线经过原点,设直线DG的解析式为y=kx,将点D代入得,k=3,故y=3x,则有整理得,(x﹣1)(x+15)=0,得x1=1(舍去),x2=﹣15当x=﹣15时,y=﹣45,故点G为(﹣15,﹣45),综上所述,点G的坐标为(0,)或(﹣15,﹣45).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.27.(12分)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段P B绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=50°;②连接CE,直线CE 与直线AB的位置关系是EC∥AB.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【分析】(1)①利用等腰三角形的性质即可解决问题.②证明∠ABC=40°,∠ECB=40°,推出∠ABC=∠ECB即可.(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明∠BCE∠BPE=40°即可解决问题.(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.【解答】解:(1)①如图②中,∵∠BPE =80°,PB=PE,∴∠PEB=∠PBE=50°,②结论:AB∥EC.理由:∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案为50,AB∥EC.(2)如图③中,以P为圆心,PB 为半径作⊙P.∵AD垂直平分线段BC,∴PB=PC,∴∠BCE∠BPE=40°,∵∠ABC=40°,∴AB∥EC.(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/9/2013:01:53;用户:中考数学李老师;邮箱:*****************************************.com;学号:30027651第1页(共27页)。
2016年江苏省淮安市中考数学试卷(含详细答案)
绝密★启用前江苏省淮安市2016年中考数学试卷数学本试卷满分150分,考试时间120分钟.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中最大的数是( )A.2-B.1-C.0D.12.下列图形是中心对称图形的是()A B C D3.月球的直径约为3476000米.将3476000用科学记数法表示应为 ( )A.70.347610⨯B.534.7610⨯C.73.47610⨯D.63.47610⨯4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1.这组数据的众数是( )A.5B.6C.4D.25.下列运算正确的是( )A.236a a a=B.222()ab a b=C.325()a a=D.824a a a÷=6.的值( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.已知2a b-=,则代数式223a b--的值是( )A.1B.2C.5D.78.如图,在Rt ABC△中,90C∠=,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若4CD=,15AB=,则ABD△的面积是( )A.15B.30C.45D.60二、填空题(本大题共10小题,每小题3分,共30分)9.若分式15x-在实数范围内有意义,则x的取值范围是.10.分解因式:24m-=.11.点2(3,)A-关于x轴对称的点的坐标是.12.计算:32()a a b--=.13.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.14.若关于x的一元二次方程260x x k++=有两个相等的实数根,则k=.15.若点3()2,A-、(),6B m-都在反比例函数(0)ky kx=≠的图象上,则m的值是.16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角为.18.如图,在Rt ABC△中,90C∠=,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本大题共10小题,共96分)19.(本小题满分10分)(1)计算:011)23-+--;(2)解不等式组:215,43 2.x xx x+<+⎧⎨>+⎩20.(本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成.在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务.王师傅原计划每小时检修管道多少米?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第1页(共20页)数学试卷第2页(共20页)数学试卷 第3页(共20页) 数学试卷 第4页(共20页)21.(本小题满分8分)已知,如图,在菱形ABCD 中,点E 、F 分别为边CD 、AD 的中点,连接AE ,CF .求证:ADE CDF △≌△.22.(本小题满分8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别有数字1,2,3,4.转动A 、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在两个扇形的交线上时,重新转动转盘).(1)用树状图或列表等方法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率.23.(本小题满分8分)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是 ”的问卷调查,要求学生只能从“A (植物园),B (花卉园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是 ;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24.(本小题满分8分)小华想测量位于池塘两端的A 、B 两点的距离.他沿着与直线AB 平行的道路EF 行走,当行走到点C 处,测得45ACF ∠=,再向前行走100米到点D 处,测得60BDF ∠=.若直线AB 与EF 之间的距离为60米,求A 、B 两点的距离.25.(本小题满分10分)如图,在Rt ABC △中,90B ∠=,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使2BCM A ∠=∠.(1)判断直线MN 与O 的位置关系,并说明理由; (2)若4OA =,60BCM ∠=,求图中阴影部分的面积.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)26.(本小题满分10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量 后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x (千克),在甲采摘园所需总费用为1y (元)、在乙采摘园所需总费用为2y (元),图中折线OAB 表示2y 与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元; (2)求1y 、2y 与x 的函数表达式;(3)在图中画出1y 与x 的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x 的范围.27.(本小题满分12分)如图,在平面直角坐标系中,二次函数214y x bx c =-++的图像与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为()4,0-.(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图像上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF .设平行四边形CDEF 的面积为S . ①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图像上时,请直接写出此时S 的值.28.(本小题满分14分) 问题背景:如图①,在四边形ADBC 中,90ACB ADB ∠=∠=,AD BD =,探究线段AC 、BC 、CD 之间的数量关系.小吴同学探究此问题的思路是:将BCD △绕点D 逆时针旋转90到AED △处,点B 、C 分别落在点A 、E 处(如图②),易证点C 、A 、E 在同一条直线上,并且CDE △是等腰直角三角形,所以CE =,从而得出结论:AC BC +=.图①图②图③简单应用:(1)在图①中,若AC =BC =则CD = .(2)如图③,AB 是O 的直径,点C 、D 在O 上,AD BD =,若13AB =,12BC =,求CD 的长. 拓展规律:(3)如图④,90ACB ADB ∠=∠=,AD BD =,若AC m =,()BC n m n =<,求CD 的长(用含m ,n 的代数式表示).(4)如图⑤,90ACB ∠=,AC BC =,点P 为AB 的中点.若点E 满足13A E A C =,CE CA =,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是.图④-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)江苏省淮安市2016年中考数学试卷数学答案解析一、选择题 1.【答案】D【解析】∵2101-<<<-,∴最大的数是1.故选D. 【提示】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答. 【考点】实数大小比较 2.【答案】C【解析】把选项中的每一个图形绕它的中心旋转180°后,判别旋转后的图形与原来的图形是否重合.A 、B 、D 三个选项中的图形都只是轴对称图形,C 选项中的图形既是轴对称图形也是中心对称图形,故选C. 【提示】根据中心对称图形的特点即可求解. 【考点】中心对称图形 3.【答案】D【解析】将3476000用科学记数法表示应为63.47610⨯,故选C.【提示】科学记数法的表示形式为n 10a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【考点】科学记数法表示较大的数 4.【答案】A【解析】∵进球5个的有2个球队,∴这组数据的众数是5,故选A.【提示】众数就是出现次数最多的数,据此即可求解. 【考点】众数 5.【答案】B【解析】23235a a a a +==,故选项A 错误;222()ab a b =,故选项B 正确;23236)(a a a ⨯==,故选项C 错误;2222a a a +=,故选项D 错误.故选B.【提示】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.【考点】幂的乘方与积的乘方,合并同类项,同底数幂的乘22数学试卷 第9页(共20页) 数学试卷 第10页(共20页)55【答案】(1)60)补全条形图如图:22.【答案】(1)根据题意,列表法如下:或画树状图如下:数学试卷第11页(共20页)数学试卷第12页(共20页)数学试卷 第13页(共20页) 数学试卷 第14页(共20页)2π411642336023-=)所以当530x ≤≤时,选择甲采摘园所需总费用最少数学试卷 第15页(共20页)数学试卷 第16页(共20页)22111148(8)482242t t t t +-++-=-∴此时CDF S S ==△.数学试卷 第17页(共20页) 数学试卷 第18页(共20页)6数学试卷第19页(共20页)数学试卷第20页(共20页)。
2016年江苏省淮安市中考数学试卷
________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
将 指 针所 落 扇形 中的 两 个数 字相 乘 (当 指针 落 在两 个扇 形 的交 线上 时 ,重 新转 动 转 盘). (1)用树状图或列表等方法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率.
23.(本小题满分 8 分)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动.
7.已知 a b 2,则代数式 2a 2b 3的值是
()
A.1
B.2
C.5
D.7
8.如图,在 Rt△ABC 中, C 90 ,以顶点 A 为圆心,适当长为
半径画弧,分别交边 AC 、 AB 于点 M 、 N ,再分别以点 M 、
无
N 为圆心,大于 1 MN 的长为半径画弧,两弧交于点 P ,作射
() D.1
()
卷
A
B
C
D
3.月球的直径约为 3 476 000 米.将 3 476 000 用科学记数法表示应为
()
上 A. 0.347 6 107 C. 3.476107
B. 34.76105 D. 3.476106
4.在“市长杯” 足球比赛 中,六支参 赛球队进球 数如下(单 位:个) :3,5,6,2,5,1.这组
25.(本小题满分 10 分)如图,在 Rt△ABC 中, B 90 ,点 O 在边 AB 上,以点 O 为圆 心, OA 为半径的圆经过点 C ,过点 C 作直线 MN ,使 BCM 2A . (1)判断直线 MN 与 O 的位置关系,并说明理由; (2)若 OA 4 , BCM 60 ,求图中阴影部分的面积.
2013-2018年江苏省淮安市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2018年江苏省淮安市中考数学试题汇编(含参考答案与解析)1、2013年江苏省淮安市中考数学试题及参考答案与解析 (2)2、2014年江苏省淮安市中考数学试题及参考答案与解析 (19)3、2015年江苏省淮安市中考数学试题及参考答案与解析 (40)4、2016年江苏省淮安市中考数学试题及参考答案与解析 (63)5、2017年江苏省淮安市中考数学试题及参考答案与解析 (85)6、2018年江苏省淮安市中考数学试题及参考答案与解析 (105)2013年江苏省淮安市中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.12.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a33.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<14.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.55.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.68.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.10.方程210x+=的解集是.11.点A(﹣3,0)关于y轴的对称点的坐标是.12.一组数据3,9,4,9,5的众数是.13.若n 边形的每一个外角都等于60°,则n= .14.如图,三角板的直角顶点在直线l 上,看∠1=40°,则∠2的度数是 .15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点.若DE=3,则BC= .16.二次函数y=x 2+1的图象的顶点坐标是 .17.若菱形的两条对角线分别为2和3,则此菱形的面积是 .18.观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 . 三、解答题(本大题有10小题,共96分.) 19.(10分)计算:(1)(π﹣5)0﹣|﹣3|(2)2123121a a a a a -⎛⎫++⋅⎪--⎝⎭. 20.(6分)解不等式:x+1≥2x+2,并把解集在数轴上表示出来.21.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点. (1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(8分)如图,在平行四边形ABCD 中,过AC 中点0作直线,分别交AD 、BC 于点E 、F . 求证:△AOE ≌△COF .23.(10分)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:解答下列问题:(1)本次调查中的样本容量是;(2)a=,b=;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.24.(10分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)25.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=35,求⊙0的半径.27.(12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.28.(12分)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.1【知识考点】有理数大小比较.【思路分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答过程】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.【解答过程】解:(2a)3=8a3;故选D.【总结归纳】此题考查了幂的乘方与积的乘方,同底数幂的乘法与幂的乘方很容易混淆,一定要记准法则是解题的关键.3.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<1 【知识考点】不等式的解集.【思路分析】根据口诀:大小小大中间找即可求解.【解答过程】解:不等式组1xx⎧⎨⎩<≥的解集是0≤x<1.故选D.【总结归纳】本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.5【知识考点】反比例函数图象上点的坐标特征.【思路分析】把点(5,﹣1)代入已知函数解析式,借助于方程可以求得k的值.【解答过程】解:∵反比例函数kyx=的图象经过点(5,﹣1),∴k=xy=5×(﹣1)=﹣5,即k的值是﹣5.故选A.【总结归纳】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π【知识考点】弧长的计算.【思路分析】根据弧长的公式进行计算即可.【解答过程】解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长12064180ππ⨯==.故选B.【总结归纳】本题考查了弧长的计算.此题属于基础题,只需熟记弧长公式即可.6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个【知识考点】实数与数轴;估算无理数的大小.1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答过程】解:∵12,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【总结归纳】本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.6【知识考点】等腰三角形的性质;三角形三边关系.【思路分析】因为已知长度为3和1两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答过程】解:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选B.【总结归纳】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°【知识考点】圆周角定理.【思路分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【解答过程】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°.故选A.【总结归纳】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.【知识考点】特殊角的三角函数值.【思路分析】根据特殊角的三角函数值计算即可.【解答过程】解:sin30°=12,故答案为12.【总结归纳】本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.10.方程210x+=的解集是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:2+x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.点A(﹣3,0)关于y轴的对称点的坐标是.【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.【解答过程】解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).【总结归纳】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.一组数据3,9,4,9,5的众数是.【知识考点】众数.【思路分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答过程】解:这组数据中出现次数最多的数据为:9.故众数为9.故答案为:9.【总结归纳】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.13.若n边形的每一个外角都等于60°,则n=.【知识考点】多边形内角与外角.【思路分析】利用多边形的外角和360°除以60°即可.【解答过程】解:n=360°÷60°=6,故答案为:6.【总结归纳】此题主要考查了多边形的外角和定理,关键是掌握多边形的外角和等于360度.14.如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是.【知识考点】余角和补角.【思路分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=40°,即可求得∠2的度数.【解答过程】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.【总结归纳】本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.15.如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=.【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【解答过程】解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×3=6.故答案为:6.【总结归纳】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.16.二次函数y=x2+1的图象的顶点坐标是.【知识考点】二次函数的性质.【思路分析】根据顶点式解析式写出顶点坐标即可.【解答过程】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【总结归纳】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.17.若菱形的两条对角线分别为2和3,则此菱形的面积是.【知识考点】菱形的性质.【思路分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答过程】解:由题意,知:S菱形=12×2×3=3,故答案为:3.【总结归纳】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=12×两条对角线的乘积;具体用哪种方法要看已知条件来选择.18.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.【知识考点】单项式.【思路分析】先看系数的变化规律,然后看x的指数的变化规律,从而确定第2013个单项式.【解答过程】解:系数依次为1,3,5,7,9,11,…2n﹣1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为2,。
江苏省淮安市中考数学试卷含答案解析(word版)
江苏省淮安市中考数学试卷一.选择题(本大题共8小题,每小题3分,共24分,在每小题给出四个选项中,恰有一项是符合题目要求)1.(3分)﹣3相反数是()A.﹣3B.﹣C.D.32.(3分)地球与太阳平均距离大约为150000000km.将150000000用科学记数法表示应为()A.15×107B.1.5×108C.1.5×109D.0.15×1093.(3分)若一组数据3.4.5.x.6.7平均数是5,则x值是()A.4B.5C.6D.74.(3分)若点A(﹣2,3)在反比例函数y=图象上,则k值是()A.﹣6B.﹣2C.2D.65.(3分)如图,三角板直角顶点落在矩形纸片一边上.若∠1=35°,则∠2度数是()A.35°B.45°C.55°D.65°6.(3分)如图,菱形ABCD对角线AC.BD长分别为6和8,则这个菱形周长是()A.20B.24C.40D.487.(3分)若关于x一元二次方程x2﹣2x﹣k+1=0有两个相等实数根,则k值是()A.﹣1B.0C.1D.28.(3分)如图,点A.B.C都在⊙O上,若∠AOC=140°,则∠B度数是()A.70°B.80°C.110°D.140°二.填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把正确答案直接写在答题卡相应位置上)9.(3分)(a2)3=.10.(3分)一元二次方程x2﹣x=0根是.11.(3分)某射手在相同条件下进行射击训练,结果如下:射击次数n102040501002005001000击中靶心频数m919374589181449901击中靶心频率0.9000.9500.9250.9000.8900.9050.8980.901该射手击中靶心概率估计值是(精确到0.01).12.(3分)若关于x.y二元一次方程3x﹣ay=1有一个解是,则a=.13.(3分)若一个等腰三角形顶角等于50°,则它底角等于°.14.(3分)将二次函数y=x2﹣1图象向上平移3个单位长度,得到图象所对应函数表达式是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A.B为圆心,大于AB长为半径画弧,两弧交点分别为点P.Q,过P.Q两点作直线交BC于点D,则CD长是.16.(3分)如图,在平面直角坐标系中,直线l为正比例函数y=x图象,点A1坐标为(1,0),过点A1作x轴垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到正方形A n B n C n D n面积是.三.解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要文字说明.证明过程或演算步骤)17.(10分)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣3.19.(8分)已知:如图,▱ABCD对角线AC.BD相交于点O,过点O直线分别与AD.BC相交于点E.F.求证:AE=CF.20.(8分)某学校为了解学生上学交通方式,现从全校学生中随机抽取了部分学生进行“我上学交通方式”问卷调查,规定每人必须并且只能在“乘车”.“步行”.“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了名学生;(2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式人数.21.(8分)一只不透明袋子中装有三只大小.质地都相同小球,球面上分别标有数字1.﹣2.3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 横坐标,再从余下两个小球中任意摸出一个小球,记下数字作为点A 纵坐标. (1)用画树状图或列表等方法列出所有可能出现结果; (2)求点A 落在第四象限概率.22.(8分)如图,在平面直角坐标系中,一次函数y=kx +b 图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 图象相交于点C ,点C 横坐标为1.(1)求k.b 值;(2)若点D 在y 轴负半轴上,且满足S △COD =S △BOC ,求点D 坐标.23.(8分)为了计算湖中小岛上凉亭P 到岸边公路l 距离,某数学兴趣小组在公路l 上点A 处,测得凉亭P 在北偏东60°方向上;从A 处向正东方向行走200米,到达公路l 上点B 处,再次测得凉亭P 在北偏东45°方向上,如图所示.求凉亭P 到公路l 距离.(结果保留整数,参考数据:≈1.414,≈1.732)24.(10分)如图,AB是⊙O直径,AC是⊙O切线,切点为A,BC交⊙O于点D,点E是AC中点.(1)试判断直线DE与⊙O位置关系,并说明理由;(2)若⊙O半径为2,∠B=50°,AC=4.8,求图中阴影部分面积.25.(10分)某景区商店销售一种纪念品,每件进货价为40元.经市场调研,当该纪念品每件销售价为50元时,每天可销售200件;当每件销售价每增加1元,每天销售数量将减少10件.(1)当每件销售价为52元时,该纪念品每天销售数量为件;(2)当每件销售价x为多少时,销售该纪念品每天获得利润y最大?并求出最大利润.26.(12分)如果三角形两个内角α与β满足2α+β=90°,那么我们称这样三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC长.27.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+4图象与x轴和y 轴分别相交于A.B两点.动点P从点A出发,在线段AO上以每秒3个单位长度速度向点O作匀速运动,到达点O停止运动,点A关于点P对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分面积为S,求S与t函数表达式;(3)若正方形PQMN对角线交点为T,请直接写出在运动过程中OT+PT最小值.参考答案与试题解析一.选择题(本大题共8小题,每小题3分,共24分,在每小题给出四个选项中,恰有一项是符合题目要求)1.(3分)﹣3相反数是()A.﹣3B.﹣C.D.3【分析】根据只有符号不同两个数互为相反数解答.【解答】解:﹣3相反数是3.【点评】本题考查了相反数定义,是基础题,熟记概念是解题关键.2.(3分)地球与太阳平均距离大约为150000000km.将150000000用科学记数法表示应为()A.15×107B.1.5×108C.1.5×109D.0.15×109【分析】根据科学记数法表示方法可以将题目中数据用科学记数法表示,本题得以解决.【解答】解:150000000=1.5×108,故选:B.【点评】本题考查科学记数法﹣表示较大数,解答本题关键是明确科学记数法表示方法.3.(3分)若一组数据3.4.5.x.6.7平均数是5,则x值是()A.4B.5C.6D.7【分析】根据平均数定义计算即可;【解答】解:由题意(3+4+5+x+6+7)=5,解得x=5,故选:B.【点评】本题考查平均数定义,解题关键是根据平均数定义构建方程解决问题,属于中考基础题.4.(3分)若点A(﹣2,3)在反比例函数y=图象上,则k值是()A.﹣6B.﹣2C.2D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.【点评】本题考查了反比例函数图象上点坐标特征,利用函数图象上点坐标满足函数解析式是解题关键.5.(3分)如图,三角板直角顶点落在矩形纸片一边上.若∠1=35°,则∠2度数是A.35°B.45°C.55°D.65°【分析】求出∠3即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.【点评】此题考查了平行线性质.两直线平行,同位角相等应用是解此题关键. 6.(3分)如图,菱形ABCD对角线AC.BD长分别为6和8,则这个菱形周长是()A.20B.24C.40D.48【分析】由菱形对角线性质,相互垂直平分即可得出菱形边长,菱形四边相等即可得出周长.【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形周长L=4AB=20.故选:A.【点评】本题考查了菱形面积计算,考查了勾股定理在直角三角形中运用,考查了菱形各边长相等性质,本题中根据勾股定理计算AB长是解题关键,难度一般.7.(3分)若关于x一元二次方程x2﹣2x﹣k+1=0有两个相等实数根,则k值是()A.﹣1B.0C.1D.2【分析】根据判别式意义得到△=(﹣2)2﹣4(﹣k+1)=0,然后解一次方程即可.【解答】解:根据题意得△=(﹣2)2﹣4(﹣k+1)=0,解得k=0.故选:B.【点评】本题考查了根判别式:一元二次方程ax2+bx+c=0(a≠0)根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等实数根;当△=0时,方程有两个相等实数根;当△<0时,方程无实数根.8.(3分)如图,点A.B.C都在⊙O上,若∠AOC=140°,则∠B度数是()A.70°B.80°C.110°D.140°【分析】作对圆周角∠APC,如图,利用圆内接四边形性质得到∠P=40°,然后根据圆周角定理求∠AOC度数.【解答】解:作对圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对圆心角一半.二.填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把正确答案直接写在答题卡相应位置上)9.(3分)(a2)3=a6.【分析】直接根据幂乘方法则运算即可.【解答】解:原式=a6.故答案为a6.【点评】本题考查了幂乘方与积乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n (n是正整数).10.(3分)一元二次方程x2﹣x=0根是x1=0,x2=1.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程解法是解本题关键.11.(3分)某射手在相同条件下进行射击训练,结果如下:射击次数n102040501002005001000击中靶心频数m919374589181449901击中靶心频率0.9000.9500.9250.9000.8900.9050.8980.901该射手击中靶心概率估计值是0.90(精确到0.01).【分析】根据表格中实验频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.90上下波动,所以该射手击中靶心概率估计值是0.90,故答案为:0.90.【点评】本题考查了利用频率估计概率思想,解题关键是求出每一次事件频率,然后即可估计概率解决问题.12.(3分)若关于x.y二元一次方程3x﹣ay=1有一个解是,则a=4.【分析】把x与y值代入方程计算即可求出a值.【解答】解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程解,方程解即为能使方程左右两边相等未知数值.13.(3分)若一个等腰三角形顶角等于50°,则它底角等于65°.【分析】利用等腰三角形性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形顶角等于50°,又∵等腰三角形底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.【点评】本题考查了三角形内角和定理和等腰三角形性质,熟记等腰三角形性质是解题关键.14.(3分)将二次函数y=x2﹣1图象向上平移3个单位长度,得到图象所对应函数表达式是y=x2+2.【分析】先确定二次函数y=x2﹣1顶点坐标为(0,﹣1),再根据点平移规律得到点(0,﹣1)平移后所得对应点坐标为(0,2),然后根据顶点式写出平移后抛物线解析式.【解答】解:二次函数y=x2﹣1顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点坐标为(0,2),所以平移后抛物线解析式为y=x2+2.故答案为:y=x2+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后形状不变,故a不变,所以求平移后抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后坐标,利用待定系数法求出解析式;二是只考虑平移后顶点坐标,即可求出解析式.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A.B为圆心,大于AB长为半径画弧,两弧交点分别为点P.Q,过P.Q两点作直线交BC于点D,则CD长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.【点评】本题考查基本作图,线段垂直平分线性质,勾股定理等知识,解题关键是学会添加常用辅助线,构造直角三角形解决问题.16.(3分)如图,在平面直角坐标系中,直线l为正比例函数y=x图象,点A1坐标为(1,0),过点A1作x轴垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到正方形A n B n C n D n面积是()n﹣1.【分析】根据正比例函数性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1面积.正方形A2B2C2D2面积,总结规律解答.【解答】解:∵直线l为正比例函数y=x图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3面积==()3﹣1,…由规律可知,正方形A n B n C n D n面积=()n﹣1,故答案为:()n﹣1.【点评】本题考查是正方形性质.一次函数图象上点坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题关键.三.解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要文字说明.证明过程或演算步骤)17.(10分)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:【分析】(1)先代入三角函数值.计算零指数幂.化简二次根式.去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式解集,再求其公共解集即可.【解答】解:(1)原式=2×+1﹣3+2=+1﹣=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥,得:x≥1,则不等式组解集为1≤x<3.【点评】本题主要考查解一元一次不等式组和实数运算,解题关键是掌握解不等式组应遵循原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数混合运算顺序和运算法则.18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣3.【分析】原式利用分式混合运算顺序和运算法则化简,再将a值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=﹣3时,原式==﹣2.【点评】本题主要考查分式化简求值,解题关键是熟练掌握分式混合运算顺序和运算法则.19.(8分)已知:如图,▱ABCD对角线AC.BD相交于点O,过点O直线分别与AD.BC相交于点E.F.求证:AE=CF.【分析】利用平行四边形性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.【点评】此题主要考查了全等三角形判定与性质以及平行四边形性质,熟练掌握全等三角形判定方法是解题关键.20.(8分)某学校为了解学生上学交通方式,现从全校学生中随机抽取了部分学生进行“我上学交通方式”问卷调查,规定每人必须并且只能在“乘车”.“步行”.“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了50名学生;(2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式人数.【分析】(1)根据乘车人数及其所占百分比可得总人数;(2)根据各种交通方式人数之和等于总人数求得步行人数,据此可得;(3)用总人数乘以样本中步行人数所占比例可得.【解答】解:(1)本次调查中,该学校调查学生人数为20÷40%=50人,故答案为:50;(2)步行人数为50﹣(20+10+5)=15人,补全图形如下:(3)估计该学校学生中选择“步行”方式人数为1500×=450人.【点评】此题主要考查了条形统计图.扇形统计图综合运用,读懂统计图,从统计图中得到必要信息是解决问题关键.条形统计图能清楚地表示出每个项目数据.21.(8分)一只不透明袋子中装有三只大小.质地都相同小球,球面上分别标有数字1.﹣2.3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A横坐标,再从余下两个小球中任意摸出一个小球,记下数字作为点A纵坐标.(1)用画树状图或列表等方法列出所有可能出现结果;(2)求点A落在第四象限概率.【分析】(1)首先根据题意列出表格,然后根据表格即可求得点A坐标所有可能结果;(2)从表格中找到点A 落在第四象限结果数,利用概率公式计算可得.【解答】解:(1)列表得:1﹣2 3 1 (1,﹣2)(1,3) 2 (﹣2,1) (﹣2,3)3 (3,1) (3,﹣2)(2)由表可知,共有6种等可能结果,其中点A 落在第四象限有2种结果, 所以点A 落在第四象限概率为=.【点评】此题考查了列表法或树状图法求概率知识.此题难度不大,注意列表法或树状图法可以不重复不遗漏列出所有可能结果,列表法适合于两步完成事件;树状图法适合两步或两步以上完成事件;注意概率=所求情况数与总情况数之比.22.(8分)如图,在平面直角坐标系中,一次函数y=kx +b 图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 图象相交于点C ,点C 横坐标为1.(1)求k.b 值;(2)若点D 在y 轴负半轴上,且满足S △COD =S △BOC ,求点D 坐标.【分析】(1)利用一次函数图象上点坐标特征可求出点C 坐标,根据点A.C 坐标,利用待定系数法即可求出k.b 值;(2)利用一次函数图象上点坐标特征可求出点B 坐标,设点D 坐标为(0,m )(m <0),根据三角形面积公式结合S △COD =S △BOC ,即可得出关于m 一元一次方程,解之即可得出m 值,进而可得出点D 坐标.【解答】解:(1)当x=1时,y=3x=3,∴点C 坐标为(1,3).将A (﹣2,6).C (1,3)代入y=kx +b , 得:, 解得:. (2)当y=0时,有﹣x +4=0,解得:x=4,∴点B 坐标为(4,0).设点D 坐标为(0,m )(m <0),∵S △COD =S △BOC ,即﹣m=××4×3,解得:m=4,∴点D 坐标为(0,4).【点评】本题考查了两条直线相交或平行问题.一次函数图象上点坐标特征.待定系数法求一次函数解析式以及三角形面积,解题关键是:(1)根据点坐标,利用待定系数法求出k.b 值;(2)利用三角形面积公式结合结合S △COD =S △BOC ,找出关于m 一元一次方程.23.(8分)为了计算湖中小岛上凉亭P 到岸边公路l 距离,某数学兴趣小组在公路l 上点A 处,测得凉亭P 在北偏东60°方向上;从A 处向正东方向行走200米,到达公路l 上点B 处,再次测得凉亭P 在北偏东45°方向上,如图所示.求凉亭P 到公路l 距离.(结果保留整数,参考数据:≈1.414,≈1.732)【分析】作PD ⊥AB 于D ,构造出Rt △APD 与Rt △BPD ,根据AB 长度.利用特殊角三角函数值求解.【解答】解:作PD⊥AB于D.设BD=x,则AD=x+200.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴CD=tan30°•AD,即DB=CD=tan30°•AD=x=(200+x),解得:x≈273.2,∴CD=273.2.答:凉亭P到公路l距离为273.2m.【点评】此题考查是直角三角形性质,解答此题关键是构造出两个特殊角度直角三角形,再利用特殊角三角函数值解答.24.(10分)如图,AB是⊙O直径,AC是⊙O切线,切点为A,BC交⊙O于点D,点E是AC中点.(1)试判断直线DE与⊙O位置关系,并说明理由;(2)若⊙O半径为2,∠B=50°,AC=4.8,求图中阴影部分面积.【分析】(1)连接OE.OD,如图,根据切线性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线判定定理得到DE为⊙O切线;(2)先计算出∠AOD=2∠B=100°,利用四边形面积减去扇形面积计算图中阴影部分面积.【解答】解:(1)直线DE与⊙O相切.理由如下:连接OE.OD,如图,∵AC是⊙O切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC中点,O点为AB中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O切线;(2)∵点E是AC中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分面积=2•×2×2.4﹣=4.8﹣π.【点评】本题考查了切线性质:圆切线垂直于经过切点半径.若出现圆切线,必连过切点半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形面积公式.25.(10分)某景区商店销售一种纪念品,每件进货价为40元.经市场调研,当该纪念品每件销售价为50元时,每天可销售200件;当每件销售价每增加1元,每天销售数量将减少10件.(1)当每件销售价为52元时,该纪念品每天销售数量为180件;(2)当每件销售价x为多少时,销售该纪念品每天获得利润y最大?并求出最大利润.【分析】(1)根据“当每件销售价每增加1元,每天销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数性质,即可解答.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.【点评】此题主要考查了二次函数应用,根据已知得出二次函数最值是中考中考查重点,同学们应重点掌握.26.(12分)如果三角形两个内角α与β满足2α+β=90°,那么我们称这样三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC长.【分析】(1)根据“准互余三角形”定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A.B.F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题.相似三角形判定和性质.“准互余三角形”定义等知识,解题关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.27.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+4图象与x轴和y 轴分别相交于A.B两点.动点P从点A出发,在线段AO上以每秒3个单位长度速度向点O作匀速运动,到达点O停止运动,点A关于点P对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q坐标是(4,0);(2)在运动过程中,设正方形PQMN与△AOB重叠部分面积为S,求S与t函数表达式;(3)若正方形PQMN对角线交点为T,请直接写出在运动过程中OT+PT最小值.【分析】(1)先确定出点A坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形面积减去三角形面积,②利用矩形面积减去三角形面积,③利用梯形面积,即可得出结论;(3)先确定出点T运动轨迹,进而找出OT+PT最小时点T位置,即可得出结论.【解答】解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);故答案为(4,0);(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①方法得,DN=t,CN=t,∴S=S矩形OENP ﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S=(2t+4)(6﹣3t)=﹣3t2+12;梯形OBDP(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT最小值,由对称知,OO'=2OG,易知,OH=2,∵OA=6,AH==2,∴S=OH×OA=AH×OG,△AOH∴OG=,∴OO'=在Rt△AOH中,sin∠OHA===,∵∠HOG+∠AOG=90°,∠HOG+∠OHA=90°,∴∠AOG=∠OHA,在Rt△OFO'中,O'F=OO'sin∠O'OF=×=,即:OT+PT最小值为.【点评】此题是一次函数综合题,主要考查了正方形面积,梯形,三角形面积公式,正方形性质,勾股定理,锐角三角函数,用分类讨论思想解决问题是解本题关键,找出点T位置是解本题(3)难点.。
江苏省淮安市 2016年中考数学真题试卷附解析
2016年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2016·江苏淮安)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.1【考点】有理数大小比较.【分析】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答.【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.【点评】本题考查了有理数的大小比较,是基础题,熟记比较方法是解题的关键.2.(2016·江苏淮安)下列图形是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(2016·江苏淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3476000用科学记数法表示应为3.476×106.故选:C.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·江苏淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.2【考点】众数.【分析】众数就是出现次数最多的数,据此即可求解.【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选A.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.5.(2016·江苏淮安)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.6.(2016·江苏淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.7.(2016·江苏淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.7【考点】代数式求值.【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.【点评】此题主要考查了代数式求值,利用整体思想代入求出是解题关键.8.(2016·江苏淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP 交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2016·江苏淮安)若分式在实数范围内有意义,则x的取值范围是x≠5.【考点】分式有意义的条件.【分析】分式有意义时,分母x﹣5≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣5≠0,解得x≠5.故答案是:x≠5.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零.10.(2016·江苏淮安)分解因式:m2﹣4=(m+2)(m﹣2).【考点】因式分解-运用公式法.【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a ﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.11.(2016·江苏淮安)点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(2016·江苏淮安)计算:3a﹣(2a﹣b)=a+b.【考点】整式的加减.【专题】计算题.【分析】先去括号,然后合并同类项即可解答本题.【解答】解:3a﹣(2a﹣b)=3a﹣2a+b=a+b,故答案为:a+b.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.13.(2016·江苏淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.【考点】概率公式.【分析】直接利用黄球个数除以总数得出摸出黄球的概率.【解答】解:∵一个不透明的袋子中装有3个黄球和4个蓝球,∴从袋子中随机摸出一个球,摸出的球是黄球的概率是:.故答案为:.【点评】此题主要考查了概率公式的应用,正确掌握概率公式是解题关键.14.(2016·江苏淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=9.【考点】根的判别式.【分析】根据判别式的意义得到△=62﹣4×1×k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根,∴△=62﹣4×1×k=0,解得:k=9,故答案为:9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(2016·江苏淮安)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m 的值是1.【考点】反比例函数图象上点的坐标特征.【分析】由点A的坐标利用反比例函数图象上点的坐标特征即可得出k值,再结合点B在反比例函数图象上,由此即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(﹣2,3)在反比例函数y=(k≠0)的图象上,∴k=﹣2×3=﹣6.∵点B(m,﹣6)在反比例函数y=(k≠0)的图象上,∴k=﹣6=﹣6m,解得:m=1.故答案为:1.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征得出与点的坐标有关的方程是关键.16.(2016·江苏淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:10【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可.17.(2016·江苏淮安)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是120°.【考点】圆锥的计算.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为120.【点评】本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.(2016·江苏淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2016·江苏淮安)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.【考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【分析】(1)本题涉及零指数幂、绝对值、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:(1)(+1)0+|﹣2|﹣3﹣1=1+2﹣=2;(2),不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负整数指数幂等考点的运算.同时考查了解一元一次不等式组,解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(2016·江苏淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【考点】分式方程的应用.【分析】设原计划每小时检修管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.【点评】本题考查分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.其中找到合适的等量关系是解决问题的关键.21.(2016·江苏淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【考点】菱形的性质;全等三角形的判定.【专题】证明题.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.22.(2016·江苏淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由两个数字的积为奇数的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(2016·江苏淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C (湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是60;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由A的人数及其人数占被调查人数的百分比可得;(2)根据各项目人数之和等于总数可得C选项的人数;(3)用样本中最想去湿地公园的学生人数占被调查人数的比例乘总人数即可.【解答】解:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.故答案为:60.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(2016·江苏淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF 行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【考点】解直角三角形的应用.【专题】探究型.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题.25.(2016·江苏淮安)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .(1)判断直线MN 与⊙O 的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC ﹣S △OAC 计算即可.【解答】解:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S 阴=S 扇形OAC ﹣S △OAC =﹣=﹣4.【点评】本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型.26.(2016·江苏淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【考点】分段函数;函数最值问题.【分析】(1)根据单价=,即可解决问题.(2)y1函数表达式=50+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.【解答】解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为30.(2)由题意y1=18x+50,y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.【点评】本题考查分段函数、一次函数,单价、数量、总价之间的关系,解题的关键是熟练掌握待定系数法,学会利用图象确定自变量取值范围,属于中考常考题型.27.(2016·江苏淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.【考点】二次函数综合题.【专题】综合题.【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c 即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标=S△CDF+S△OCD=S△ODF+S△OCF,利用(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0);(2)①连结OF,如图,设F(t,﹣t2+t+8),=S△CDF+S△OCD=S△ODF+S△OCF,∵S四边形OCFD∴S△CDF=S△ODF+S△OCF﹣S△OCD=•4•t+•8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.28.(2016·江苏淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC或PQ=AC.【考点】圆的综合题.【分析】(1)由题意可知:AC+BC=CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD 的长度;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.【解答】解:(1)由题意知:AC+BC=CD,∴3+2=CD,∴CD=3,;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD=m2+n2﹣=,∵m<n,∴CD=;(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.【点评】本题考查圆的综合问题,每一问都紧扣着前一问的结论,涉及勾股定理、圆周角定理,旋转的性质等知识,解题的关键是就利用好已证明的结论来进行解答,考查学生综合运用知识的能力.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.。
2016年江苏省淮安市中考数学试卷(含答案解析)
卷试学数考中市安淮省苏江年2016题大本题(择、选一四的出给题小每,在分24,共分3题小,每题小8有共中项选个在涂填号代母字的前项选确正将请,的求要目题合符是项一有恰,)上置位应相卡题答四列下)安淮•2016()分3(.1 )(是数的大最中数个 1 .0 D.1 C﹣.2 B﹣.A2 )(是的形图称对心中是形图列下)安淮•2016()分3(..D.C.B.A)安淮•2016()分3(.3记学科用3476000将,米3476000为约径直的球月(为应示表法数)8642×3.476.D10×3.476.C10×34.76.B10×0.3476.A 10中赛比球足”杯长市“在)安淮•2016()分3(.4单(下如数球进队球赛参支六,,6,5,3:)个:位)(是数众的据数组这,1,5,2.6 C.5 B.A2 .4 D (是的确正算运列下)安淮•2016()分3(.5 )422532222632a.D=a)a (.Cb=a)ab(.B=aa•a.A =a+a)(值的+1计估)安淮•2016()分3(.6 4和3在.C 间之3和2在.B 间之2和1在.A 间之5和4在.D 间之已)安淮•2016()分3(.7 )(是值的3﹣2b﹣2a式数代则,b=2﹣a知1 B.A7 .5 D.2 C.ABC△Rt在,图如)安淮•2016()分3(.8,心圆为A点顶以,°C=90∠,中别分,弧画径半为长当适,心圆为N,M点以别分再,N,M点于AB,AC交于大若,D点于BC边交AP线射作,P点于交弧两,弧画径半为长的MN )(是积面的ABD△则,AB=15,CD=445 D.30 C.15 B.A60 .,分3题小每,题小10有共题大本(题空填、二过答解出写需不,分30共相卡题答在写接直案答把请,程)上置位应数实在式分若)安淮•2016()分3(.9围范值取的x则,义意有内围范.是 2 4=﹣m:式因解分)东广•2015()分3(.10 .关)2﹣,3(A点)安淮•2016()分3(.11 .是标坐的点的称对轴x于.分3(.12 =)b﹣2a(﹣3a:算计)安淮•2016()这,球蓝个4和球黄个3有装中子袋的明透不个一)安淮•2016()分3(.13率概的球黄是球的出摸,球个一出摸机随中子袋从,同相全完外色颜除球些.是2于关若)安淮•2016()分3(.14的等相个两有+6x+k=0x程方次二元一的x k=则,根数实.)3,2﹣(A点若)安淮•2016()分3(.15数函例比反在都)6﹣,m(B、上象图的)0≠k(y= .是值的m则,安淮•2016()分3(.16该则,4和2为别分长边两的形角三腰等个一知已)三腰等.是长周的形角安淮•2016()分3(.17圆该则,6为长线母,2为径半面底的锥圆个一若)面侧锥.°是角心圆的图开展2016()分3(.18,BC=8,AC=6,°C=90∠,中ABC△Rt在,图如)安淮•AC边在F点EF线直沿CEF△将,点动的上BC边为E点,CF=2且并,上,折翻是值小最的离距AB边到P点则,处P 点在落C点.分96共,题小10有共题大本(题答解、三,答作内域区定指卡题答在请,说字文的要必出写应时答解)骤步算演或程过明证、明10﹣()安淮•2016()分10(.19 3﹣2|﹣+|)+1(:算计)1.:组式等不解)2(米600长条一修检傅师王)安淮•2016()分8(.20若用划计,道管水来自的,中程过修检际实在,成完时小干,倍 1.2的划计原是度长道管修检时小每成完时小2前提果结?米少多道管修检时小每划计原傅师王,务任分8(.21边为别分F、E点,中ABCD 形菱在,图如:知已)安淮•2016().CDF≌△ADE△:证求,CF,AE接连,点中的AD、CD.22字数有标别分,等相积面形扇个三的A盘转,图如)安淮•2016()分8(B、A 动转.4,3,2,1字数有别分,等相积面形扇个四的B盘转,3,2,1指当(乘相字数个两的中形扇落所针指将,时动转止停盘转当,次一各盘转.)盘转动转新重,时上线交的形扇个四在落针用)1(;果结的现出能可有所出列法表列或图状树个两求)2(.率概的数奇为积的字数同富丰了)为安淮•2016()分8(.23自大近亲“行举校学,某活生余课的们学然问的”?是点景的去想最你“为题主行进生学分部了取抽机随,现动活外户”森(D,)园公地湿(C,)园卉花(B,)园物植(A“从能只生学求要,查调卷统的整完不幅两下如了制,绘果结查调据,根项一择选中点景个四”)园公林.图计:题问列下答解请)1(;是量容本样的查调次本;图计统形条全补)2(该若)3(.数人生学的园公地湿去想最校该计估试,生学名3600有共校学他.离距的点两B、A的端两塘池于位量测想宇小)安淮•2016()分8(.24再,°ACF=45∠得测,处C点到走行当,走行EF路道的行平AB线直与着沿为离距的间之EF与AB线直.若°BDF=60∠得,测处D点到米100走行前向.离距的点两B、A求,米60.25,上AB边在O,点°B=90,∠中ABC△Rt,在图)如安淮•2016()分10(.A∠BCM=2∠使,MN线直作C点过,C点过经圆的径半为OA,心圆为O点以;由理明说并,系关置位的O⊙与MN线直断判)1(.积面的分部影阴中图求,°BCM=60∠,OA=4若)2(乙、甲)安淮•2016()分10(.26价售销,同相质品莓草的园摘采莓草家两:是案方惠优的园摘采甲,案方惠优了出推均家两,”间期一五“.同相也格:是案方惠优的园摘采乙;惠优折六莓草的摘采,票门的元60买购需园进客游优折打分部过超,后量数定一过超莓草的园摘采,票门买购需不园进客游用费总需所园摘采甲在,)克千(x为量摘采莓草的客游某设,间期惠优.惠x与y示表OAB线折中图,)元(y为用费总需所园摘采乙在,)元(y为122的间之.系关数函;前惠优园摘采两乙、甲)1(元克千每是格价售销莓草的;式达表数函的x与y、y求)2(21少较用费总需所园摘象采甲择选出写并,图数函的x与y出画中图在)3(1,时.围范的x量摘采莓草2)分12(.27y=数函次二,中系标坐角直面平在,图如)安淮•2016(+bx+cx﹣三C、B、A于交轴标坐与象图的坐的B点,)8,0(为标坐的A点中其,点.)0,4﹣(为标数函次二该求)1(;标坐的C点及式达表的标坐的D)点2(,点动的上象图内限象一第在数函次二该为F,点)4,0为(CDEF 形边四行平设,CDEF形边四行平作边邻为CF、CD以,CF、CD 接连.S为积面的;值大最的S求①点在②时此出写接直,请时上象图数函次二该在落E点,当中程过动运的F .值的S)安淮•2016()分14(.28 :景背题问ACB=∠,中ADBC形边四在,①图如,AC段线究探,AD=BD,°ADB=90∠数的间之CD,BC .系关量:是路思的题问此究探学同吴小AED△到°90转旋针时逆,D点绕BCD△将,点处线直条一同在E,A,C点证,易)②图如处(E,A点在落别分C,B CE=以所,形角三角直腰等是CDE△且并,上:论结出得而从,CD.CDAC+BC=:用应单简 CD=则,BC=2,AC=若,中①图在)1(.⊙上在D、C点,径直的O⊙是AB,③图如)2(,BC=12,AB=13若,=,.长的CD求律规展拓:AC=m若,AD=BD,°ADB=90∠ACB=∠,④图如)3(求,)n<m(BC=n,的n,m含用(长的CD )示表式数代AC=BC,°ACB=90∠,⑤图如)4(,ACAE=足满E点若,点中的AB为P点,CE=CA 是系关量数的AC与PQ段线则,点中的AE为Q点,.年江苏省淮安市中考数学试卷2016析解题试与案答考参题大本题(择、选一四的出给题小每,在分24,共分3题小,每题小8有共选个在涂填号代母字的前项选确正将请,的求要目题合符是项一有恰,中项)上置位应相卡题答下)安淮•2016()分3(.1 )(是数的大最中数个四列.1 C﹣.2 B﹣.A1 .0 D .较比小大数理有】点考【有据根】析分【一于大数正,数负于大零,零于大数正,法方较比小大数理.答解数负切,1<0<1﹣<2∵﹣:解】答解【.1是数的大∴最.D选故了查考题本】评点【的题解是法方较比记熟,题础基是,较比小大的数理有.键关是形图列下)安淮•2016()分3(.2 )(是的形图称对心中D.C.B.A ..形图称对心中】点考【心中据根】析分【.解求可即点特的形图称对是不、A:解】答解【;误错项选此故,形图称对心中称对心中是不、B ;误错项选此故,形图此故,形图称对心中是、C ;确正项选误错项选此故,形图称对心中是不、D ..C:选故形图称对心中了查考题本】评点【形图个一把果如,内面平一同在:念概的旋点一某绕就形图个这么那,合重全完形图原和能形图的后转旋,度180转.形图称对心中做叫安淮•2016()分3(.3记学科用3476000将,米3476000为约径直的球月)为应示表法数)(8642×3.476.C10×34.76.B10×0.3476.A10×3.476.D10数的大较示表—法数记学科】点考【.n形的10×a为式形示表的法数记学科】析分【确.数整为n,10<|a|≤1中其,式看,要时值的n定数小与值对绝的n,位少多了动移点数,小时a成变数原把,时1<值对绝的数原;当数正是n,时1>值对绝数原.当同相数位的动移点.数负是n6应示表法数记学科用3476000将:解】答解【.10×3.476为.C:选故。
2016年江苏省淮安市中考数学试卷(含解析)
2016年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2016•淮安)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)(2016•淮安)下列图形是中心对称图形的是()A.B.C.D.3.(3分)(2016•淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×1084.(3分)(2016•淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.25.(3分)(2016•淮安)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a46.(3分)(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.78.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2016•淮安)若分式在实数范围内有意义,则x的取值范围是.10.(3分)(2015•广东)分解因式:m2﹣4=.11.(3分)(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是.12.(3分)(2016•淮安)计算:3a﹣(2a﹣b)=.13.(3分)(2016•淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.14.(3分)(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=.15.(3分)(2016•淮安)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是.16.(3分)(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.(3分)(2016•淮安)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.18.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF 翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•淮安)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.20.(8分)(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的 1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(8分)(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.22.(8分)(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.23.(8分)(2016•淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24.(8分)(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.25.(10分)(2016•淮安)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.26.(10分)(2016•淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.27.(12分)(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF 的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.28.(14分)(2016•淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED 处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.2016年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2016•淮安)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.1【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.2.(3分)(2016•淮安)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.(3分)(2016•淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×108【解答】解:将3476000用科学记数法表示应为3.476×106.故选:C.4.(3分)(2016•淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.2【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选A.5.(3分)(2016•淮安)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选B.6.(3分)(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.7.(3分)(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.7【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.8.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2016•淮安)若分式在实数范围内有意义,则x的取值范围是x≠5.【解答】解:依题意得:x﹣5≠0,解得x≠5.故答案是:x≠5.10.(3分)(2015•广东)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).11.(3分)(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).12.(3分)(2016•淮安)计算:3a﹣(2a﹣b)=a+b.【解答】解:3a﹣(2a﹣b)=3a﹣2a+b=a+b,故答案为:a+b.13.(3分)(2016•淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.【解答】解:∵一个不透明的袋子中装有3个黄球和4个蓝球,∴从袋子中随机摸出一个球,摸出的球是黄球的概率是:.故答案为:.14.(3分)(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=9.【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根,∴△=62﹣4×1×k=0,解得:k=9,故答案为:9.15.(3分)(2016•淮安)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是1.【解答】解:∵点A(﹣2,3)在反比例函数y=(k≠0)的图象上,∴k=﹣2×3=﹣6.∵点B(m,﹣6)在反比例函数y=(k≠0)的图象上,∴k=﹣6=﹣6m,解得:m=1.故答案为:1.16.(3分)(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1017.(3分)(2016•淮安)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是120°.【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为120.18.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF 翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•淮安)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.【解答】解:(1)(+1)0+|﹣2|﹣3﹣1=1+2﹣=2;(2),不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.(8分)(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.21.(8分)(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).22.(8分)(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.23.(8分)(2016•淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是60;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.【解答】解:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.故答案为:60.24.(8分)(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.(10分)(2016•淮安)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【解答】解:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形O AC﹣S△O AC=﹣=﹣4.26.(10分)(2016•淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【解答】解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为30.(2)由题意y1=18x+50,y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5≤x≤30.27.(12分)(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF 的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0);(2)①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OC FD=S△C DF+S△OC D=S△OD F+S△OC F,∴S△C DF=S△OD F+S△OC F﹣S△OC D=•4•t+•8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△C D F=﹣(7﹣3)2+25=9,∴此时S=2S△C DF=18.28.(14分)(2016•淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED 处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC 或PQ=AC.【解答】解:(1)由题意知:AC+BC=CD,∴3+2=CD,∴CD=3,;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD=m2+n2﹣=,∵m<n,∴CD=;(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.参与本试卷答题和审题的老师有:星期八;sd2011;HLing;sjzx;gbl210;nhx600;lbz;zgm666;三界无我;曹先生;1987483819;张其铎;弯弯的小河;HJJ;****************;zcx;gsls;神龙杉(排名不分先后)菁优网2016年7月3日。
2016年江苏省淮安市中考数学试卷(含解析版).doc
2016年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)下列图形是中心对称图形的是()A. B. C. D.3.(3分)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102 B.34.76×104 C.3.476×106 D.3.476×1084.(3分)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.25.(3分)下列运算正确的是()A.a2•a3=a6 B.(ab)2=a2b2 C.(a2)3=a5 D.a2+a2=a46.(3分)估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间7.(3分)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.78.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)若分式在实数范围内有意义,则x的取值范围是.10.(3分)分解因式:m2﹣4= .11.(3分)点A(3,﹣2)关于x轴对称的点的坐标是.12.(3分)计算:3a﹣(2a﹣b)= .13.(3分)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.14.(3分)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k= .15.(3分)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是.16.(3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.(3分)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.20.(8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.22.(8分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.23.(8分)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24.(8分)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF 行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.25.(10分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.26.(10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.27.(12分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.28.(14分)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD= .(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n 的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q 为AE的中点,则线段PQ与AC的数量关系是.2016年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.1【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.2.(3分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.(3分)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×108【解答】解:将3476000用科学记数法表示应为3.476×106.故选:C.4.(3分)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.2【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选A.5.(3分)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选B.6.(3分)估计+1的值()。
2016年江苏省淮安市中考数学试卷-答案
18.【答案】
【解析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵ , ,∴ ,∴ ,∵ , , ,∴ , ,∴ ,∴ ,∵ ,∴ ∴点P到边AB距离的最小值是 .故答案为: .
【提示】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用 ,得到 求出FM即可解决问题.
【考点】翻折变换(折叠问题)
三、解答题
19.【答案】(1)
(2)不等式组的解集为:
【解析】(1)原式 .
(2)
不等式①的解集为: ,
不等式②的解集为: .
故不等式组的解集为: .
【提示】(1)本题在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;
(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.
8.【答案】B
【解析】由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵ ,∴ ,∴△ABD的面积 .故选B.
【提示】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得 ,然后根据三角形的面积公式列式计算即可得解.
【考点】角平分线的性质
二、填空题
江苏省淮安市2016年中考数学试卷
数学答案解析
一、选择题
1.【答案】D
【解析】∵ ,∴最大的数是1.故选D.
【提示】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答.
【考点】实数大小比较
2.【答案】C
【解析】把选项中的每一个图形绕它的中心旋转180°后,判别旋转后的图形与原来的图形是否重合.A、B、D三个选项中的图形都只是轴对称图形,C选项中的图形既是轴对称图形也是中心对称图形,故选C.
2016年江苏省各市中考数学试卷汇总(13套)
文件清单:2016年中考真题精品解析数学(江苏宿迁卷)精编word版(原卷版)2016年江苏省苏州市中考数学试卷(解析版)江苏省南京市2016年中考数学试题(解析版)江苏省南通市2016年中考数学试题(word版,含解析)江苏省常州市2016年中考数学试题(图片版,含答案)江苏省徐州市2016年中考数学试题(word版,含解析)江苏省扬州市2016年中考数学试题(word版,含答案)江苏省无锡市2016年中考数学试题(word版,含解析)江苏省泰州市2016年中考数学试题(word版,含解析)江苏省连云港市2016年中考数学试卷(word版含解析)江苏省镇江市2016年中考数学试题(扫描版,含答案)淮安中考数学2016(含答案)2016年中考真题精品解析数学(江苏宿迁卷)精编word版一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.22.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.下列计算正确的是()A.B.C.D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.18.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,二、填空题(共8小题)9.因式分解:= .10.计算:= .11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共10小题)17.计算:.18.解不等式组:.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A.B.C.D.【答案】D.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.1【答案】B.考点:翻折变换(折叠问题).8.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,【答案】C.【解析】试题分析:∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.学科网考点:抛物线与x轴的交点.二、填空题(共8小题)9.因式分解:= .【答案】2(a+2)(a﹣2).【解析】试题分析:= =2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.10.计算:= .【答案】x.【解析】试题分析:===x.故答案为:x.考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.【答案】1:2.考点:相似三角形的性质.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.【答案】:k<1.【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.【答案】.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:.【答案】.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.解不等式组:.【答案】1<x<2.【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.试题解析:,由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2).【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②.【解析】试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.考点:几何变换综合题.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1);(2);(3)25.【解析】试题分析:(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由=可知OP最大时,最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP的最大值=OC+PO=,∴最大值==.学科网(3)M与N所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1= .12.当x= 时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D ,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得C D=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△A DC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以A C为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。
2016淮安中考数学试卷及答案
2016淮安中考数学试卷及答案【篇一:江苏省淮安市2016年中考数学试卷(解析版)】ss=txt>参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中最大的数是()a.﹣2 b.﹣1 c.0 d.1【考点】有理数大小比较.【分析】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答.【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选d.【点评】本题考查了有理数的大小比较,是基础题,熟记比较方法是解题的关键.2.下列图形是中心对称图形的是()a. b. c. d.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.【解答】解:a、不是中心对称图形,故此选项错误;b、不是中心对称图形,故此选项错误;c、是中心对称图形,故此选项正确;d、不是中心对称图形,故此选项错误.故选:c.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.月球的直径约为3476000米,将3476000用科学记数法表示应为()【考点】科学记数法—表示较大的数.故选:c.4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()a.5 b.6 c.4 d.2【考点】众数.【分析】众数就是出现次数最多的数,据此即可求解.【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选a.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.5.下列运算正确的是()a.a2?a3=a6b.(ab)2=a2b2c.(a2)3=a5d.a2+a2=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.【解答】解:a、a2?a3=a2+3=a5,故本选项错误;b、(ab)2=a2b2,故本选项正确;d、a2+a2=2a2,故本选项错误.故选b.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.6.估计+1的值()a.在1和2之间 b.在2和3之间 c.在3和4之间 d.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出【解答】解:∵2<∴3<∴+1<4,<3,的取值范围,进而得出答案. +1在在3和4之间.故选:c.【点评】此题主要考查了估算无理数大小,正确得出7.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()a.1 b.2 c.5 d.7【考点】代数式求值.【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=1.故选:a.【点评】此题主要考查了代数式求值,利用整体思想代入求出是解题关键.的取值范围是解题关键.a.15 b.30 c.45 d.60【考点】角平分线的性质.【分析】判断出ap是∠bac的平分线,过点d作de⊥ab于e,根据角平分线上的点到角的两边距离相等可得de=cd,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得ap是∠bac的平分线,过点d作de⊥ab于e,∴de=cd,故选b.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.若分式在实数范围内有意义,则x的取值范围是x≠5.【考点】分式有意义的条件.【分析】分式有意义时,分母x﹣5≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣5≠0,解得x≠5.故答案是:x≠5.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零.10.分解因式:m2﹣4= (m+2)(m﹣2).【考点】因式分解-运用公式法.【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.11.点a(3,﹣2)关于x轴对称的点的坐标是.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:点a(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.计算:3a﹣(2a﹣b)=【考点】整式的加减.【专题】计算题.【分析】先去括号,然后合并同类项即可解答本题.【解答】解:3a﹣(2a﹣b)=3a﹣2a+b=a+b,故答案为:a+b.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.【篇二:2016年江苏省淮安市中考数学试卷】ass=txt>一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2016?淮安)下列四个数中最大的数是()a.﹣2 b.﹣1 c.0 d.12.(3分)(2016?淮安)下列图形是中心对称图形的是()a.b.c.d.3.(3分)(2016?淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()4.(3分)(2016?淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()a.5 b.6 c.4 d.25.(3分)(2016?淮安)下列运算正确的是()236222235224a.a?a=ab.(ab)=abc.(a)=ad.a+a=a6.(3分)(2016?淮安)估计+1的值()a.在1和2之间 b.在2和3之间 c.在3和4之间 d.在4和5之间7.(3分)(2016?淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()a.1 b.2 c.5 d.7a.15 b.30 c.45 d.60二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2016?淮安)若分式在实数范围内有意义,则x的取值范围是.210.(3分)(2016?广东)分解因式:m﹣4=.11.(3分)(2016?淮安)点a(3,﹣2)关于x轴对称的点的坐标是.12.(3分)(2016?淮安)计算:3a﹣(2a﹣b)=13.(3分)(2016?淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.14.(3分)(2016?淮安)若关于x的一元二次方程x+6x+k=0有两个相等的实数根,则k=.215.(3分)(2016?淮安)若点a(﹣2,3)、b(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是.16.(3分)(2016?淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016?淮安)(1)计算:((2)解不等式组:. +1)+|﹣2|﹣3 0﹣120.(8分)(2016?淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(8分)(2016?淮安)已知:如图,在菱形abcd中,点e、f 分别为边cd、ad的中点,连接ae,cf,求证:△ade≌△cdf.22.(8分)(2016?淮安)如图,转盘a的三个扇形面积相等,分别标有数字1,2,3,转盘b的四个扇形面积相等,分别有数字1,2,3,4.转动a、b转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.23.(8分)(2016?淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“a(植物园),b(花卉园),c(湿地公园),d(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.(1)判断直线mn与⊙o的位置关系,并说明理由;26.(10分)(2016?淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线oab表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.27.(12分)(2016?淮安)如图,在平面直角坐标系中,二次函数y=﹣x+bx+c的图象与坐标轴交于a、b、c三点,其中点a的坐标为(0,8),点b的坐标为(﹣4,0).(1)求该二次函数的表达式及点c的坐标;(2)点d的坐标为(0,4),点f为该二次函数在第一象限内图象上的动点,连接cd、cf,以cd、cf为邻边作平行四边形cdef,设平行四边形cdef的面积为s.①求s的最大值;②在点f的运动过程中,当点e落在该二次函数图象上时,请直接写出此时s的值.228.(14分)(2016?淮安)问题背景:简单应用:(1)在图①中,若ac=,bc=2,则cd=.(2)如图③,ab是⊙o的直径,点c、d在⊙上,=,若ab=13,bc=12,求cd的长.拓展规律:【篇三:江苏省淮安市2016年中考数学试卷及答案解析】ss=txt>参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中最大的数是()a.﹣2 b.﹣1 c.0 d.1【考点】有理数大小比较.【分析】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答.【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选d.【点评】本题考查了有理数的大小比较,是基础题,熟记比较方法是解题的关键.2.下列图形是中心对称图形的是()a. b. c. d.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.【解答】解:a、不是中心对称图形,故此选项错误;b、不是中心对称图形,故此选项错误;c、是中心对称图形,故此选项正确;d、不是中心对称图形,故此选项错误.故选:c.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.月球的直径约为3476000米,将3476000用科学记数法表示应为()【考点】科学记数法—表示较大的数.故选:c.4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()a.5 b.6 c.4 d.2【考点】众数.【分析】众数就是出现次数最多的数,据此即可求解.【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选a.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.5.下列运算正确的是()a.a2?a3=a6b.(ab)2=a2b2c.(a2)3=a5d.a2+a2=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.【解答】解:a、a2?a3=a2+3=a5,故本选项错误;b、(ab)2=a2b2,故本选项正确;d、a2+a2=2a2,故本选项错误.故选b.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.6.估计+1的值()a.在1和2之间 b.在2和3之间 c.在3和4之间 d.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出【解答】解:∵2<∴3<∴+1<4,<3,的取值范围,进而得出答案. +1在在3和4之间.故选:c.【点评】此题主要考查了估算无理数大小,正确得出7.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()a.1 b.2 c.5 d.7【考点】代数式求值.【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=1.故选:a.【点评】此题主要考查了代数式求值,利用整体思想代入求出是解题关键.的取值范围是解题关键.a.15 b.30 c.45 d.60【考点】角平分线的性质.【分析】判断出ap是∠bac的平分线,过点d作de⊥ab于e,根据角平分线上的点到角的两边距离相等可得de=cd,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得ap是∠bac的平分线,过点d作de⊥ab于e,∴de=cd,故选b.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.若分式在实数范围内有意义,则x的取值范围是x≠5 .【考点】分式有意义的条件.【分析】分式有意义时,分母x﹣5≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣5≠0,解得x≠5.故答案是:x≠5.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零.10.分解因式:m2﹣4= (m+2)(m﹣2).【考点】因式分解-运用公式法.【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.11.点a(3,﹣2)关于x轴对称的点的坐标是(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:点a(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.计算:3a﹣(2a﹣b)= a+b .【考点】整式的加减.【专题】计算题.【分析】先去括号,然后合并同类项即可解答本题.【解答】解:3a﹣(2a﹣b)=3a﹣2a+b=a+b,故答案为:a+b.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.。