Fabrication of block copolymer brushes on hollow sphere surface via reverse iodine

合集下载

高分子专业英语词汇英汉对照关键词:英语高分子词汇英汉对照序号

高分子专业英语词汇英汉对照关键词:英语高分子词汇英汉对照序号

高分子专业英语词汇英汉对照关键词:英语高分子词汇英汉对照序号中文英文1 高分子 macromolecule, polymer 又称"大分子"。

2 超高分子 supra polymer3 天然高分子 natural polymer4 无机高分子 inorganic polymer5 有机高分子 organic polymer6 无机-有机高分子 inorganic organic polymer7 金属有机聚合物 organometallic polymer8 元素高分子 element polymer9 高聚物 high polymer10 聚合物 polymer11 低聚物 oligomer 曾用名"齐聚物"。

12 二聚体 dimer13 三聚体 trimer14 调聚物 telomer15 预聚物 prepolymer16 均聚物 homopolymer17 无规聚合物 random polymer18 无规卷曲聚合物 random coiling polymer19 头-头聚合物 head-to-head polymer20 头-尾聚合物 head-to-tail polymer21 尾-尾聚合物 tail-to-tail polymer22 反式有规聚合物 transtactic polymer23 顺式有规聚合物 cistactic polymer24 规整聚合物 regular polymer25 非规整聚合物 irregular polymer26 无规立构聚合物 atactic polymer27 全同立构聚合物 isotactic polymer 又称"等规聚合物"。

28 间同立构聚合物 syndiotactic polymer 又称"间规聚合物"。

29 杂同立构聚合物 heterotactic polymer 又称"异规聚合物"。

刚柔嵌段共轭聚合物自组装体系

刚柔嵌段共轭聚合物自组装体系

收稿:2008年12月,收修改稿:2009年3月*国家重点基础研究发展计划(973)项目(No.2009CB930602)、国家自然科学基金项目(No.90406021,20874048)、霍英东青年教师基金项目(No.111051)和江苏省自然科学基金(No.BK2008453)资助**Corresp onding author e mail:iamqlfan@njup ;wei huang @刚柔嵌段共轭聚合物自组装体系*李 迪 张 龙 范曲立**黄 维**(江苏省有机电子与信息显示重点实验室南京邮电大学信息材料与纳米技术研究院 南京210046)摘 要 刚柔嵌段共轭聚合物的自组装是超分子化学研究的热点之一。

本文综述了近年来刚柔嵌段共轭聚合物自组装体系的研究进展。

根据共轭刚性段的不同分类进行阐述,综述了聚芴、二(苯乙烯) 蒽、聚对苯撑、聚对苯乙烯撑、聚对苯撑乙炔、聚(2,5 苯甲酮)、聚噻吩、聚苯基喹啉等作为刚性链段的刚柔嵌段共轭聚合物自组装体系,介绍了刚柔嵌段共轭聚合物的合成和光物理性质;重点评述了刚柔嵌段共轭聚合物在不同溶剂、浓度、温度等条件下自组装形成一维、二维以及三维的周期性微结构,且具有方便的可控性。

概括了刚柔嵌段共轭聚合物自组装体系广阔的应用前景,尤其在光电器件领域有着潜在的应用价值。

最后展望了刚柔嵌段共轭聚合物自组装体系研究和发展的方向。

关键词 刚柔嵌段共聚物 共轭聚合物 自组装中图分类号:O631 1+3;TN383+1 文献标识码:A 文章编号:1005 281X(2009)12 2660 14Self Assembly of Conjugated Rod Coil Block CopolymersLi Di Zhang Long Fan Quli **Huang Wei**(Jiangsu Key Laboratory for Organic Elec tronics &Information Displays and Institute of Advanced Materials,Nanjing University of Posts and Telecommunications,Nanjing 210046,China)Abstract The self assembly of conjugated rod coil block copolymers has recently become one of the hot topics in the research of supramolecular che mistry.This article revie ws the program on the self assembly of conjugated rod coil block copolymers with different rod blocks,including polyfluorene,polydi(styryl) anthracene,poly(para phenylene),poly (para phenyleneethynylene ),poly (para phenylenevinylene ),poly (2,5 benzophenone ),polythiophene,poly (phenylquinoline ),etc.The syntheses and photophysical properties of conjugated rod c oil block c opolymers are introduced.The formation and regulation of well defined one ,two ,or three dimensional conjugated domains in nanoscale dimensions by the self assembly of these copolymers in different solvents,temperature and concentration are reviewed emphatically.The potential applications of the self assembly of conjugated rod c oil block copolymers in many fields,particularly in optoelectronic device,are summarized.Finally,the prospects for the self asse mbly of conjugated rod coil block copolymers are stated.Key words rod c oil block copolymers;conjugated polymers;self assemblyContents1 Introduction2 The syste m of conjugated rod c oil block copolymers2.1 Fluorene basedconjugatedrod coilblockcopolymers2.2 Di (styryl ) anthracene based c onjugated rod coilblock copolymers第21卷第12期2009年12月化 学 进 展PROGRESS I N C HE MISTRYVol.21No.12 Dec.,20092.3 Poly (para phenylene )or oligo (para phenylene)based conjugated rod coil block c opolymers 2.4 Poly (para phenyleneethynylene )or oligo (paraphenyleneethynylene ) based conjugated rod coilblock copolymers2.5 Poly (para phenylenevinylene )or oligo (paraphenylenevinylene) based conjugated rod coil block copolymers2.6 Poly(2,5 benzophenone) based c onjugated rod coil block copolymers 2.7 Polythiophene basedconjugatedrod coilblockcopolymers2.8 Poly(phenylquinoline) based conjugated rod coil block copolymers 2.9 Others 3 Conclusion1 引言在材料科学和有机电子学的研究中,设计大小和形状规则的纳米结构引起了科学家们的广泛兴趣。

DiblockCopolymer中层状结构之.

DiblockCopolymer中层状结构之.

Diblock Copolymer中層狀結構之Shear Alignment現象中央大學物理系陳培亮e-mail: peilong@.tw前言Diblock Copolymer之層狀結構方向在剪流下之反應是一在學術與應用上均為極為重要之課題,本文簡介目前實驗觀察之現象以及理論上對此問題之分析。

自聚合(self-assembly)系統近年來是在物理,化學及材料科學上積極研究的領域。

此類材料由於分子之間之特殊交互作用,在適當條件下會自動形成毫米(micrometer)尺寸以下之結構,省去了人為製造奈米(nanometer)結構在成本,精確度,製造時間上等等之限制。

因此在現今科學與技術研究對於奈米結構系統重視之時代趨勢下,自聚合材料自然佔有一極為重要之地位。

現有比較普遍之自聚合材料主要有block copolymer, surfactant system, 與液晶材料,本文將集中討論block copolymer。

Block copolymer 是指在一高分子系統中,其中每一個長鏈高分子不再是由單一重複之monomer所組成,而是由不同monomer組成之之鏈串接而成。

如圖一顯示了一些不同block copolymer之可能。

每一個不同粗細之線段可代表了數百以至於數十萬以上monomer之串鏈。

由圖一最簡單之block copolymer為AB copolymer,僅僅是由兩種monomer所組成,一般稱之為diblock copolymer。

一些更複雜之組成也如圖所示,而且我們可以想像為無窮無盡。

Diblock copolymer中自聚合現象通常是說當系統在高溫時,兩種不同monomers(稱之為A與B)可互相混合而形成一均勻材料。

熱力學上之解釋是此時系統之entropy克服了A與B分子間之排斥作用。

當系統溫度降低時,entropy之作用減少,A與B之排斥使系統產生相分離,也就是說系統會產生由A與由B組成之兩個不同之相(phases)。

METHODS FOR MANUFACTURING BLOCK COPOLYMERS AND ART

METHODS FOR MANUFACTURING BLOCK COPOLYMERS AND ART

专利名称:METHODS FOR MANUFACTURING BLOCK COPOLYMERS AND ARTICLESMANUFACTURED THEREFROM发明人:Jieqian Zhang,Phillip D. Hustad,PeterTrefonas, III,Mingqi Li,Valeriy V.Ginzburg,Jeffrey D. Weinhold申请号:US14745548申请日:20150622公开号:US20150376454A1公开日:20151231专利内容由知识产权出版社提供专利附图:摘要:Disclosed herein is an article comprising a substrate; upon which is disposed a composition comprising: a first block copolymer that comprises a first block and a second block; where the first block has a higher surface energy than the second block; a second block copolymer that comprises a first block and a second block; where the first block of the first block copolymer is chemically the same as or similar to the first block of the second block copolymer and the second block of the first block copolymer is chemically the same as or similar to the second block of the second block copolymer; where the first and the second block copolymer have a chi parameter greater than 0.04 at a temperature of 200° C.申请人:DOW GLOBAL TECHNOLOGIES LLC,ROHM AND HAAS ELECTRONIC MATERIALS LLC地址:Midland MI US,MARLBOROUGH MA US国籍:US,US更多信息请下载全文后查看。

人大考研-化学系研究生导师简介-金朝霞教授

人大考研-化学系研究生导师简介-金朝霞教授

爱考机构-人大考研-化学系研究生导师简介-金朝霞教授金朝霞教授金朝霞,1970年出生。

北京大学化学系理学学士(1991年);北京大学化学系助理工程师(1991年)、工程师(1996年);新加坡国立大学化学系哲学博士(2002年);韩国国立汉城大学物理系博士后研究(2001年-2002年)。

中国人民大学化学系副教授(2004年6月),教授(2011年7月)。

主要研究方向:a.限域条件下聚合物纳米结构的制备、性质与功能的研究 b.碳纳米材料与聚合物的复合材料的生物医学应用主要科研项目与课题在研课题:国家自然科学基金面上项目21074149(2011.1-2013.12),51173201(2012.1-2015.12)中国人民大学明德学者计划(2009.12-2012.12)北京分子科学国家实验室开放课题(2009.10-2011.12)已完成课题:国家自然科学基金青年项目(2005年,项目号50503025)其他科研项目:中国人民大学科研启动基金教育部归国留学人员启动基金已发表论文:1.S.L.Mei,L.Wang,X.D.Feng,Z.X.Jin*,Swellingofblockcopolymernanoparticles---apro cesscombiningdeformationandphaseseparation,Langmuir2013,29,4640-4646.2.S.L.Mei, Z.X.Jin*,Mesoporousblock-copolymernanospherespreparedbyselectiveswelling,Small2 013,9,322-329.3.S.L.Mei,X.D.Feng,Z.X.Jin*,Polymernanofibersbycontrollableinfilt rationofvapourswollenpolymersintocylindricalnanopores,SoftMatter,2013,9,945-951 .4.X.D.Feng,S.L.Mei,Z.X.Jin*,Wettabilitytransitioninducedtransformationandentra pmentofpolymernanostructuresincylindricalnanopores,Langmuir2011,27,14240-14247.5.S.L.Mei,X.D.Feng,Z.X.Jin*,FabricationofPolymerNanospheresBasedonRayleighInsta bilityinCapillaryChannels,Macromolecules2011,44,1615-1620.6.L.Zhang,D.A.Zha,T.T .Du.S.L.Mei,Z.J.Shi,Z.X.Jin*,Formationofsuperhydrophobicmicrospheresofpoly(viny lidenefluoride-hexafluoropropylene)/graphenecompositeviagelation,Langmuir2011,2 7,8943-8949.7.D.A.Zha,S.L.Mei,Z.Y.Wang,H.J.Li,Z.J.ShiandZ.X.Jin*,Superhydrophob icpolyvinylidenefluoride/grapheneporousmaterials,Carbon2011,49,5166-5172.8.K.K. Zhao,Z.Y.Wang,Z.J.Shi,Z.N.Gu,Z.X.Jin*,Fillingdouble-walledcarbonnanotubeswithWO 3andWnanowiresviaconfinedchemicalreactions,J.Nanosci.Nanotechnol.2011,11,2278-2 282.9.H.L.Fan,L.L.Wang,K.K.Zhao,N.Li,Z.J.Shi,Z.G.Ge,andZ.X.Jin*,Fabrication,Mec hanicalProperties,andBiocompatibilityofGraphene-ReinforcedChitosanComposites,Bi omacromolecules2010,11,2345-2351.10.Q.C.Zhao,J.Yin,X.D.Feng,Z.J.Shi,Z.G.GeandZ. X.Jin*,Abiocompatiblechitosancompositecontainingphosphotungsticacidmodifiedsing le-walledcarbonnanotubes,J.Nanosci.Nanotechno.2010,10,7126-7129.11.X.D.Feng,Z.X .Jin*,SpontaneousFormationofNanoscalePolymerSpheres,Capsules,orRodsbyEvaporatio nofPolymerSolutionsinCylindricalAluminaNanopores,Macromolecules2009,42,569-572.12.Q.C.Zhao,X.D.Feng,S.L.MeiandZ.X.Jin*,Carbonnanotubeassistedhighloadingandcon trolledreleaseofpolyoxometalatesinbiodegradablemultilayerthinfilm,Nanotechnolog y2009,20,105101.13.Z.G.Ge,Z.X.JinandT.Cao,Manufactureofdegradablepolymericscaff oldsforboneregeneration,Biomed.Mater.2008,3,22001.14.Z.X.Jin*,Z.YWang,Z.J.Shi,H .J.Lee,Y.W.ParkandK.Akagi,Thehierarchicalmicrostructureofhelicalpolyacetylenena nofibers,Curr.App.Phys.2007,7,367.15.H.J.Lee,Z.X.Jin,A.N.Aleshin,J.Y.Lee,M.J.Go h,K.Akagi,Y.S.Kim,D.W.Kim,Y.W.Park,"Dispersionandcurrent-voltagecharacteristics ofhelicalpolyacetylenesinglefiber",J.Am.Chem.Soc.2004,126,16722.16.Z.X.Jin,S.H. Goh,G.Q.Xu,Y.W.Park,Dynamicmechanicalpropertiesofmulti-walledcarbonnanotube/poly(acrylicacid)-surfactantcomplex,Synth.Met.2003,135(Sp.Iss.),735-736.17.Z.X.Jin ,K.PPramoda,G.Q.Xu,S.HGoh,Poly(vinylidenefluoride)-assistedmelt-blendingofmulti -walledcarbonnanotube/poly(methylmethacrylate)composites,Mater.Res.Bull.,2002,3 7,271-278.18.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Size-dependentopticallimitingb ehaviorofmulti-walledcarbonnanotubes,Chem.Phys.Lett.,2002,352,328-333.19.Z.X.Ji n,K.PPramoda,G.Q.Xu,S.HGoh,Dynamicmechanicalbehaviorofmelt-processedmulti-walle dcarbonnanotube/poly(methylmethacrylate)composites,Chem.Phys.Lett.,2001,337,43-47.20.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Characterizationandnonlinearpropertie sofapoly(acrylicacid)-surfactant-multi-walledcarbonnanotubecomplex,Chem.Phys.Le tt.,2000,332,461-466.21.Z.X.Jin,X.Sun,G.Q.Xu,S.H.Goh,Nonlinearopticalproperties ofsomepolymer/multi-walledcarbonnanotubecomposites,Chem.Phys.Lett.,2000,318,505 -510.22.Z.X.Jin,G.Q.Xu,S.H.Goh,Apreferentiallyorderedaccumulationofbromineonmul ti-wallcarbonnanotube,Carbon2000,38,1135-1139.。

材料科学专业英语词汇(S1)_材料专业英语词汇

材料科学专业英语词汇(S1)_材料专业英语词汇

s-n curvess-n 曲线saccharin 糖精sacrificial anodes 牺牲阳电极sacrificial red 祭红saddle 鞍座(陶)safety glass 安全玻璃safflower oil 红花子油saggar 匣钵sagging 下垂sago starch 西米淀粉sags 表膜不匀sails 帆salicylaldehyde hydrazone 柳醛? salicylanilide 柳醛苯胺saligenin 水杨醇salt bridge 盐效应salt cake 盐饼salt effect 无盐聚电解salt glaze 盐岫salt rejection 盐挡阻salt solutions 盐溶液saltfree polyelectrolyte solutions 质溶夜saltlike complexes 盐状复体saltpeter 硝石sampling 取样sampling probe function 取样探测功能sand 砂sand cloth 砂布sand filter 砂砾过滤器sand grinder 砂磨sand paper 砂纸sand seal 砂封sand-faced 砂面的sand-lime brick 砂灰砖sand-stone 砂石sanding 铺砂磨sanding disc 金刚砂研磨盘sandpaper 砂纸sandwich cells 夹层电池sandwich complex 夹层复体sandwich construction 夹层建筑sandwich panels 夹层仪表板sang de boeuf 宝石红sanitary earthenware 卫生陶器sanitary landfills 卫生填土santicizers 消毒剂saponification numbers 皂化值saponified acetate process 皂化醋纤法saponified acetate rayon 皂化醋纤嫘萦saponified poly 皂化聚醋酸乙烯sapphire 蓝宝石sapwood 边材saran 赛冉sarcosine 靛蓝 = 磺酸sarfish-type initiators 星鱼型引发剂satin glaze 缎光釉satin white 缎光白sato etching 佐藤蚀刻saturated calomel electrode 饱和甘汞电极saturated hydrocarbon polymers 饱聚体saturation coefficient 饱和系数saturation curve 饱和曲线saturn space vehicle 土星太空舱saucer pit defect 碟状坑缺陷sausage model 烧瓶型saw mark 锯痕saw wire 线锯钢线sawdust 锯屑scab 疤scale 垢(玻)scale wax 鳞状腊,块蜡scaling 片落scan bus method 扫描汇流排法scan path method 扫描路径法scan path test 扫描路径试验scaning electron microscopy 扫描电子显微镜scanned beam current 扫描波束电流scanning acoustic tomograph 超音波断层扫描摄影装置scanning auger electron microscope 扫描型奥格电子显微镜scanning electron microscope 扫描型电子显微镜scanning function 扫描功能scanning projection aligner 扫描型投影对准曝光器scanning transmission electron microscope 扫描透射型电子显微镜scanning tunneling microscopy 扫描隧道型显微镜学scarfjoint 嵌接scattering 散射scattering factor 散射引数scattering loss 散射损失scavenger 清扫机schematic editor 简图编辑器schiff bases 希夫咸schlieren optical system 暗线照像光学系统schreiner calendering 施赖讷压光scintillation 闪烁scintillation counters 闪烁计数机scission 切开scission yields 切开产率scorch time 焦化时间scotch kiln 苏格兰窑scotching 捣打scouring 洗涤scrap 残余物scrap rubber 废橡皮scraping 刮scrapings 刮料scraps 废坯scratch 刮线scratch tests 画痕试验screen 筛screen analysis 筛析screen pack 网包screen printing 网板印染screen printing inks 网板印染油墨screenback hardboard 单面光硬板screening 筛选screening agents 掩蔽剂screening tests 筛分试验screw closures 螺旋盖头screw extrusion 螺杆挤压screw injection-molding machine 螺杆射出模制机screw plasticating injection molding 螺杆塑炼射出模制screw plasticators 螺杆塑炼机screw preplasticators 螺杆预塑机screw press 螺旋压机screw-plunger perplastication system 螺杆活塞预塑系统screwless extruders 无螺杆挤压机screws 螺杆scribing 划片,划割,划线scroop 挤丝机scrubbing 洗气sculpture 雕刻sculpture techniques 雕刻技巧scum 浮霜(陶);浮沫(玻)scumming 乏光(搪)scurf 碳积sea of gate 标准闸门电子组件sea plants 海生植物sea-water magnesia 海水苦土seal 封sealant 封闭剂sealant-grade polysulfide polymers 封闭级多硫化物聚体sealed glass tubes 封闭玻璃管sealers 涂封物sealing 密封sealing glass 熔封玻璃seals 封印seals, cryogenic 低温封印seam 缝seamless flooring 无缝地板铺设search level 搜抹速度search speed 焊接工具保持部下降量,搭接深度season cracking 季候缝裂seasoning 风乾处理seat 座seaweed gums 海藻胶sebacic acid 皮脂酸sebacic acid derivatives 皮脂酸衍sebacic acid esters 皮脂酸酯secco etching 射哥蚀刻second bond off 第二接合点剥离second bonding 第二接合,第二压接second moment 次级偶甩second virial coefficient 第二展向系数second-order fluids 二级流体second-order termination 二级终止second-order transition 二级转变second-surface decorating 亮件背面装饰secondary acetate 仲醋纤secondary air 辅空气;二次空气secondary amines 仲胺secondary antioxidants 副抗氧化剂secondary cellulose acetate 仲醋纤secondary charge effect 二次充电效应secondary crusher 二次辊碎机secondary crystallization 二级晶化secondary electron emission 次生电发射secondary electron image survey function 二次电子影像观测功能secondary emulsifiers 次级乳化剂secondary ion mass spectroscopy 二次离子质谱学secondary mechanical relaxations 二次机械松弛secondary plasticizers 辅助塑化剂secondary structure 际会构架sectioning 割截sedimentary claysecondary clay sedimentation 沈积sedimentation coefficient 沈积系数sedimentation coefficient distribution 沈积系数分布sedimentation equilibrium 沈积平衡sedimentation velocity 沈积速率sedimentation-velocity 沈积速度法see saw type wire saw 交互转换式线锯seed chuck 籽晶夹头seed crystal 籽晶seed cut 种子棒切割seed fibers 种籽纤维seed flax 亚麻种籽seed lift rate 籽晶升降速率seed lift travel 籽晶升降行程seed rotation rate 籽晶旋转速率seed shaft 籽晶轴seeding 播种seedlac 粗虫胶seedmeal glues 籽肉胶seedmeal proteins 籽肉蛋白质segment anisotropies 段间向异性segment fraction of polymer 聚体片段segment-interaction parameters 段间互应变根segmental friction factors 段间磨擦因素segmental jump concept 段间跳跃概念segmented polyurethanes 段间聚胺酯segregation 偏析segregation of noncrystallizable impurities 不结晶什质的分离selection of materials 物料选择selective deposition 选择淀积selective precipitation 选择沈淀selectivity 选择性selectivity coefficient 选择系数selenium polymers 晒化物聚体selevtive elution 选择洗提self bias 自给偏压self diagnostic function 自我诊断功能self-aligned contact etching 自我对准接解孔蚀刻self-extinguishing 自行熄灭self-extinguishing property 自熄特性self-ignition temperature 自燃温度self-nucleating technique 自核技巧self-organization 自引组合self-potting tubing 自熔制管semi full cutting 半全切割semi-conducting glaze 半导性釉semi-conductor 半导体semi-continuous kiln 半连续窑semi-porcelain 半瓷semi-silica refractory 半矽质耐火物semi-vitreous 半瓷化;半玻化semiautomatic controls 半自动控制semiautomatic molds 半自动模semibleached pulp 半漂白纸浆semicarbazide 氨基semichemical pulp 半化学纸浆semichermical pulping 半化学纸浆法semiconducting jacket 半导包套semiconduction 半导性semiconductive polymers 半导聚体semiconductor bonding wafer 半导体接合晶圆semiconductor devices 半导体设备semiconductors 半导体semiconduting properties 半导特性semicrystalline polymers 半晶聚体semicustom ic 客户半定制ic semidurable fire-retardant finish 半永久性防火尾工semigloss paints 半有光油漆semigloss wall paints 半有光壁漆semimechanical pulping 半机械纸浆法semipermanent storage structures 半永久储存构架semipermeable membranes 半透膜semipositive molds 半溢式模semirigid cellular materials 半硬多孔物料semirigid cellular plastics 半硬多孔塑胶semitransparent materials 半透明物料sender 发送机sensitization 敏化sensitizers 敏化剂sentinel pyrometer 示温锭separan 赛派栏絮凝剂separate feeding 隔开输送separate-pot mold 分罐模separation by implantation of oxygen soi wafersimox soi 晶圆separation factor 分离因素sephadex chromatography 赛发呆移差术sepiolite 海泡石septaphosphate 七磷酸盐sequence 次序sequence control 次序控制sequence copolymers 定序共聚体sequence distribution 序列分配sequence, nonrandom 非随意序列sequence-length distribution 序列长度分配sequential damper 时序风门,时序排气器sequential pattern generator 序列图案产生器sericin 丝胶sericite 绢云母series-zone model 层域模式serine proteinases 丝氨酸蛋白质serpentine 蛇纹石serrated saddle 齿状垫座serum albumin 血清蛋白serving of cable 辫里sesquimethylolurea 倍半甲基set setting 定型,凝结set values 定型值seter 托架seting 装窑;凝结setting length of tool 压接头至超音波叭头之设定长度setting-up agent 釉稠调节剂setup boxes 装置匣sewage treatment 污水处理sewer brick 污[水]沟砖sewer pipe 污水管sewing 缝合sgraffito 刮花shadow wall 隔火墙shaft 炉颈shaft kiln 竖窑shale 页岩shale planer 开石机shallow pit defect 浅坑缺陷shape birefringence 气式双折射shape of beam 光束形状shape, cross-sectional 截面形状shaped articles 特型制品sharp fold surface 锐摺面sharpening 削尖shear 剪切shear creep 剪切蠕变shear degradation 剪切退解shear loading 剪切负荷shear modulus 剪切损失模数shear rate 剪切速率shear relaxation 剪切松弛shear storage modulus 剪切储存模数shear strain 剪应变shear strength 剪切强度shear stress 剪应力shear test 剪切试验shear waves 剪切波shear-cone preplasticator 剪锥预塑机shear-thickening materials 剪力增稠物料shear-thinning fluids 剪力减稠液shearing action 剪切作用shearing mode/failure mode 剪切模式/故障模式sheath 皮鞘sheath-and-core bicom-ponent fibers 鞘蕊双重纤维sheathing-siding 鞘边sheep stock 羊群sheepskins 羊皮纸sheet calendering 全张压延sheet casting 全张浇铸sheet extrusion 全张挤压sheet forming 全张成型sheet glass 平板玻璃sheet molding compounds 全张模制化物sheet polymers 成片聚体sheet rubber 成片橡胶sheeting 压片sheets 板片shelf aging 搁置老化shelf life 搁置寿命shellshelling shell flour 粉shell molding 箱模制shell moulding 壳模制造shellac 虫胶shellac modified 变性虫胶shellolic acids 脑酸shield 掩体shielding glass 屏遮玻璃(从原子能)shielding solvents 掩蔽溶剂shift factor 转移因素shikimic acid 草酸shock isolation 震荡隔离shock resistance 耐冲击性shoe applications 鞋靴用途shoe heels 鞋跟shoe parts 鞋靴零件shoe products 鞋靴产品shoe sloes 鞋底shoe-upper material 鞋面物料shore durometer 鞋靴硬度计shore hardness tester 萧氏硬度[试验]计short-fiber substrates 短纤维衬底short-oil alkyd resins 短油醇酸树脂short-term fracture 短期破断shorten material 减黏材料shortstops 急速中止shot 注射shot capacity 注射能力shoulder 肩部shoulder angle 过肩角shredding 撕裂shrend 水淬shrink mark 收缩记号shrinkage 收缩shrinkage volumetric 容量收缩shrinking stress 收缩应力shrinkproofing 防缩shut-off nozzles 停闭喷咀shutter 快门光闸shuttle kiln 梭动窑side arch 侧拱砖side chains 侧链side etching 侧面蚀刻side lap 侧搭side-by-side bicomponent fibers 并排双重纤维side-seam cements 边缝水泥siderite 菱铁矿sidewall protection layer 侧壁保护层siege 台座sieve 筛sigma-blade mixer 弓刀混合机标志sign off 签字保证sign off simulator 签字保证模拟器signal glass 号志玻璃signal strength 信号强度signs 标志silane diols 矽烷双醇silanemonols 矽烷单醇silanes 矽烷silanolates 矽烷醇衍silanols 矽烷醇silastic 矽橡胶silazane polymers 矽氮烷聚体silex 燧石silica 氧化矽,矽石silica and silicates 矽石及矽酸盐silica fabrics 矽石织物silica fibers 矽石纤维silica fireclay 矽石火黏土silica foam 矽石泡沫silica gel 矽凝胶silica glass 矽石玻璃silica glass membranes 矽石玻璃膜silica mm 矽石silica modulus 矽石模数silica retractory 矽石耐火物silica sand 矽砂silica sol 矽石溶胶silica, amorphous 非晶形矽石silica, synthetic 合成矽石silica-water solutions 矽石水溶液silicate 矽酸盐silicate bond 矽酸黏合剂silicate cement 矽酸盐水泥silicate glasses 矽酸盐玻璃silicon 矽素silicon carbide 碳化矽silicon carbide whiskers 碳化矽晶丝silicon carbide-tungsten wire composite properties 碳矽钨线混合体silicon compiler 矽晶自动编辑器silicon compounds 矽化物silicon oxyhydride 矽氧氢化物silicon polymers 矽聚体silicon-bridged polymers 矽乔聚体silicon-carbon bond 碳矽互silicon-nitrogen polymers 矽氮聚体silicon-nitrogen polymers, linear prepn 线式矽氮聚体silicon-oxygen polymers types 氧矽聚体silicon-oxygen tetrahedron 氧矽四面体silicone 矽峒silicone elastomers 聚矽氧弹体silicone emulsions 聚矽氧乳液silicone fluids 聚矽氧液体silicone gel 聚矽氧凝胶silicone greases 聚矽氧润膏silicone monomers 矽氧单体silicone rubber 聚矽氧橡胶silicone surfactants 聚矽氧界面活化剂silicones 聚矽氧silicones, cellular 蜂窝聚矽氧silicones, reinforced 加强聚矽氧silicones, rtv 室温硫化聚矽氧silicosis 矽肺病silk 蚕丝silk fibroin 蚕丝纤silk gum 蚕丝胶silk protein 丝蛋白silk-screen printing 丝网印刷silk-screen process 丝网印刷法;绢印法sillmanite 矽线石siloxanes 氧矽烷siloxazane polymers 环氧矽氮烷聚体silphenylenes 对一双甲矽烷苯silsesquioxanes silver 倍半氧矽烷银silt density index(sdi)淤泥密度指标(sdi) silver halides 卤化银silver ions 银离子silver luster 银光料silver nitrate 硝酸银silvering 上银silvichemicals 森林化物sily1 hydrides 甲矽烷基氢化物silylamine polymers 甲矽烷基胺聚体silylamines 甲矽烷基胺silylation 甲矽烷化silylization system 甲矽烷基化处理系统simple 凹坑,表面微凹simple extension 简单延伸simple microscope 普通显微镜simple proteins 简单simple shear 简单剪切simple shearing 简单剪切simulated annealing 模拟退火simultaneous grafting 同时接技simultaneous irradiation reactions 同时照射反应sin echo method 旋转回音化sinapy1 alcohol 芥子醇singeing 燃芒single cassette rotor 单个套装匣转子single crystal 单晶体single crystals 单晶single plate 单板single point boding 单端子接合single point tab bonding tool 单点tab 接合工具single side lapping machine 单面磨光机single side polishing machine 单面抛光机single station cleaning equipment 单站洗涤装置single t state 单介状态single wafer processing 单晶圆处理方式single wafer processing cleaner 单晶圆加工洗涤机single-base propellants 单基推进剂single-bridged coordination polymers 单桥配位聚合single-bridged polymers 单桥聚体single-bucket excavator 单斗挖掘机single-cavity centor-gated mold 单穴心闸模single-cavity hot-runner mold 单穴热道模single-crystal fibers 单晶纤维single-crystal patterns 单晶图案single-orifice designs 单孔设计single-point methods 单点法single-screw extruders 单螺杆挤压机single-screw, single-stage extruders 单螺杆单段挤压机single-spindle rotational-molding machine 单心轴回转模型机single-tab gate 单顶闸single-toggle jaw crusher 单肘颚轧机singulation/separate 分离sink mark 沈标sinter 烧结sintered glass 烧结玻璃sintering 熔结sinusoidal experiments 正弦试验sio2 film fluorine doped silicon dioxide 掺杂氟素二氧化矽膜sirtl etching 沙特蚀刻sisal fibers 剑麻纤维sit array 区分地段阵列site 区分地段,划分地段site array 区分地段阵列site binding 定位结合site flatness 区分地段平面度site fpd 区分地段焦点平面偏差site size 区分地段大小site tir 区分地段总指示器读数size 大小;度分;胶料size analysis 粒度分折sizing 上胶sizing materials 上胶物料skein dyeing 纱束染色skein-dyeing machine 纱束染色机skeleton oven 骨架炉skew 相位差,时间偏差skew rays 歪斜光skewback 拱座skid tests 滑距试验skiing 滑溜skim coat 平板纸光skimmed milk 脱脂奶skimmer 撇渣器skimmer block 阻渣砖skin 皮skins 皮类skip measurement 跳越测试skiving 削片slab glass 光学玻璃板slabstock 板材slack waxes 松蜡slag 熔渣slag cement 熔渣水泥slag notch 放渣口slag pocket 积渣室slaking 水化slashing 割裂sleeper wall 地龙墙sleeve 套筒sleeves 套筒slef-extinguishing plastics 自熄塑胶slew rate 转动数率,变化率sliced wafer 已切割晶圆slicing machine 切割机slide-off transfer 胶模印花纸slider-pad extruder 滑垫挤压机slip 滑脱slip additives 助滑添料slip agents 助滑剂slip depressants 抑滑剂slip glaze 泥釉slip joint 滑接头slip plane 滑动面slipware 泥釉陶slotting wheel 起槽磨轮slow pumping/slow roughing 缓慢排气slow vent 缓慢通气sludge removal system 淤泥排除系统slug 泥饼(陶);结块(玻);圆柱媒(泥) slugged bottom 厚底slugging 缓涌slump 坍度(泥);流动度(搪)slump test 流动度试验slurry 泥状研磨剂slurry polymerization 浆状聚合slurry separator 研磨剂分离器slurrying 浆化slush casting 熔附铸造slush cating slushing 熔附模制slushing 减水small-angle electron diffraction 小角电子绕射smalt 花?青;大青smart model 精灵模型smear test 画素之电荷流量试验smeatic state 碟状液晶态smectic phase 碟状液晶相smoke-gray film 烟灰薄膜smokeless powder 无烟火药smokes 烟雾smoothness 平滑度snack foods 小吃食品snakeskin glaze 蛇皮釉snap cure 快速硬化snitaryware 卫生陶瓷snubbing pin 制止销snyder process 斯奈德程序soak time 热炼时间soaking 浸热soaps 肥皂soapstone 皂石socket board 插座基板socket type contract 插座型接触soda cellulose 钠纤维素soda process 钠法soda pulping 钠制浆sodium 钠sodium 2,3,4,6,-tetrachlorophenoxide 2,3,4,6,-四氯苯酚钠sodium acetylide 乙炔钠sodium acrylate 丙烯酸钠sodium alginate 藻酸钠sodium amide 氨基化钠sodium azodiformate 偶氮双甲酸钠sodium bicarbonate 碳酸氢钠sodium borohydride 硼氢化钠sodium carbonate 碳酸钠sodium carboxymethy1-cellulose 甲基纤维素钠sodium carboxymethy1-hydroxyethylcellulose 甲基乙基纤维素钠sodium carrier 钠载体sodium caseinate 酪酸钠sodium cellulose glycolate 乙酸钠纤维素sodium ch1oroacetate 氯醋酸钠sodium chlorite 亚氯酸钠sodium chlorite bleaching 亚氯酸钠漂白sodium dichromate 重铬酸钠sodium dithionite 双硫研酸钠sodium doclecyl sulfate 双硫研酸钠sodium ethylenesulfonate 乙烯研酸钠sodium ethylenesulfonate polymers 乙烯磺钠聚体sodium gallate 没食子酸钠sodium hydrosulfite 次硫酸氢钠sodium hydroxide 氢氧化钠sodium hypotchlorite 次氯酸钠sodium metaborate 偏硼酸钠sodium methacrylate 甲基丙烯酸钠sodium methoxide 甲醇钠sodium o-phenylphenoxide 邻-苯基苯酚钠sodium p-styrenesulfonate 对-苯乙烯磺酸钠sodium perborate 高硼酸钠sodium peroxide 过氧化钠sodium phosphate glasses 磷酸钠玻璃sodium polyacrylate 聚丙烯酸钠sodium polyphosphate 聚磷酸钠sodium polyphosphate solution 聚酸钠溶液sodium polysulfides 多硫化钠sodium protocatechuate 原儿茶酸钠sodium sulfate 硫酸钠sodium tetraborate 四硼酸钠sodium thiocyanate 硫氰酸钠sodium tungstate 钨酸钠sodium-naphthalene complex 钠复体soft fibers 软纤维soft fibrids 软原纤质soft landing 软性着陆soft macro cell 软性巨集功能电路胞soft resin shellac 软树脂虫胶soft roughmg 软性排气soft vent 软性通气soft x rays 软x 光线soft-bake 软性烘烤处理soft-paste porcelain 软质瓷softeners 软化剂softening point 软化点softening points 软化点softpmud process 软泥法software error 软体错误softwood 软材soi lwood lignin 软木质素soil redeposition 土壤调节剂soil release 免污soil releasers 免污剂soil repellents 驱污剂soil retardancy 阻污剂soil retardants 阻污soil stabilization 土壤安定sol-air temperature 溶胶空气温度sol-to-gel transitions 溶胶凝胶转移solar absorptivity 阳光吸收性solar furnace 太阳炉solar radiation 阳光照射solar ulatraviolet radiation 阳光紫外线照射solarization 老化作用solder bonding 焊剂接合solder dip test system 浸焊测试系统solder dipping machine 浸焊剂装置solder plating machine 镀焊装置solder sealing equipment 焊料密封装置solder sleeve 焊铁套筒soldier block 立砌砖sole 炉底solid casting 实铸法solid dolution 固溶体solid fatty polyamides 固体脂肪聚醯胺solid fiber boxes 固体纤维盒solid phase epitaxial growth system 固相磊晶生长系统solid polysulfide elastomers 固体聚硫化物弹体solid propellants 啦体推进剂solid vaporizer 固体蒸发源solid-propellant motors 固体推进剂马达solid-propellant rockets 固体推进剂火箭solid-state measurements 固态测剂solid-state polymerization 固态聚合solidification ratio 固化比率solidification shrinkage crack solidus sols 溶胶soltion viscosity 溶液粘度solubility 溶度solubility coefficient 溶度系数solubility evaluation 溶度评估solubility fractionation 溶度分级solubility of polymers 聚体溶度solubility parameters 溶度参数solubility spectra 溶度谱solubilization 溶化solubilizer removal method 助溶剂除去法solubilizer-deficient feed method 助溶剂不足加料法solubilizing ability 溶化能力soluble polyurethane elastomers 可溶聚氨基甲酸乙弹性体solute 溶质solute-solvent interaction 溶质-溶剂相互作用solution adhesives 溶液粘着剂solution blending 溶液掺合solution ceramics 陶瓷护层solution chlorination 溶液氯化solution coating 溶液涂膜solution condensation 溶液缩合solution copolymerization 溶液共聚合solution dyeing 溶液染色solution extrusion 溶液挤压solution grafting 溶液接技solution heat treatment solution measurements 溶液测定solution polycondensation 溶液聚缩合solution polymrization 溶液聚合solution properties 溶液特性solution spinning 溶液纺丝solution techniques 溶液技术solution-solvent viscosity ratio 溶液溶剂粘度比solution-spun fibers 溶液纺丝纤维solutions 溶液solvent adhesives 溶剂粘着剂solvent bonding 溶剂黏合solvent casting 溶剂浇铸solvent cement 溶剂粘合剂solvent coating 溶剂涂膜solvent cracking 溶剂裂开solvent crazing 溶剂隙裂solvent extraction 溶剂萃取solvent finishing 溶剂尾工solvent gradient 溶剂坡度solvent hydrogen bonding 溶剂氢结合solvent molding 溶剂模制solvent processing 溶剂加工solvent release 溶剂脱离solvent resistance 溶剂抗性solvent selection 溶剂选择solvent transfer coefficients 溶剂移动系数solvent treatment 溶剂处理solvent welding 溶剂焊接solvent-based coatings 溶剂基涂膜solvent-based polishes 溶剂基擦亮剂solvent-bleeding resistance 抗溶剂渗出solvent-polymer systems 溶剂聚体系统solvent-segment interactions 溶剂段节相互反应solventless coating 无溶剂涂膜solvents 溶剂solvents for polymerization 聚合用溶液sonic measurements 声音测定sorbic acid 山梨酸sorbitol 山梨糖醇sorel cement 苏鲁水泥soret effect 抹瑞效应sori 弯度sori control system 弯度控制系统sorption 吸着sorption equilibrium 吸着平衡。

呼吸图案法制备聚苯乙烯有序多孔膜

呼吸图案法制备聚苯乙烯有序多孔膜

呼吸图案法制备聚苯乙烯有序多孔膜陈春华;宁文生;沈荷红;金杨福【摘要】有序多孔膜是一种可以应用于众多领域的功能性材料,建立简单、低廉和安全的制备方法能够强有力地推进多孔膜材料的广泛利用.本文用水作为模板剂,以溶解于甲苯的工业通用级聚苯乙烯(PS,PG-22)溶液为成膜材料,利用呼吸图案法成功地制备出多孔膜,并采用扫描电镜(SEM)对所制的多孔膜形貌进行了观察,分别研究了动态和静态气氛、制膜液用量、质量浓度、环境湿度等条件对孔径大小和分布的影响.结果表明,制备有序多孔膜的适宜条件为:在环境温度25℃和用甲苯为溶剂时,聚合物质量浓度为25 mg/mL,用量0.8 mL,环境湿度85%(相对湿度),并保持静态气氛.采用聚苯乙烯溶液多次涂覆方法可以增加多孔膜厚度,有利于提高其机械强度,也为有序多孔碳材料的制备奠定了基础.%Ordered porous film is one kind of functional materials which can be applied in many fields. The preparation method, easy, low-cost and safe, is able to promote porous films into wide application. Breath figure method was used to prepare porous films from polystyrene ( PS, PG-22 ) solved in toluene with water as templating agent. The morphology of the porous film was observed by scanning electron microscopy ( SEM) . The influences of polymer concentration, dosage, humidity, and dynamic or static atmosphere on the structures of porous films were investigated. The results show that the optimal parameters to prepare ordered porous polystyrene films are 25 mg/mL (polymer concentration), 0.8 mL (the dosage of PS solution) and 85% RH( environmental humidity ) under 25 ℃ static atmosphere and toluene as solvent. Multi-coating process with polystyrene can increase the thicknessand the strength of ordered porous films, which lays a foundation for preparation of porous bulk carbon materials.【期刊名称】《材料科学与工艺》【年(卷),期】2016(024)006【总页数】6页(P67-72)【关键词】聚苯乙烯;甲苯;呼吸图案法;有序多孔膜;多次涂覆【作者】陈春华;宁文生;沈荷红;金杨福【作者单位】浙江工业大学化学工程学院,杭州310032;浙江工业大学化学工程学院,杭州310032;浙江工业大学化学工程学院,杭州310032;浙江工业大学材料科学与工程学院,杭州310032【正文语种】中文【中图分类】O631有序多孔材料在微容器和微反应器[1]、图案化模板[2]、细胞培养支架[3]、超疏水表面[4]、催化剂载体[5]、光电材料[6]等研究领域有着重要的应用前景.在各种制备有序多孔材料的方法中,呼吸图案法擅长于制备聚合物多孔结构材料,其孔径介于几百纳米到几十微米之间,与传统的模板法相比,呼吸图案法具有实验操作简单、条件温和且可以通过实验条件对孔径大小实现调控等优点,同时,通过对这些成膜材料进行二次化学处理可以极大地扩展多孔膜所能应用的领域,这些独特的优势使其在多孔材料制备领域备受欢迎.1994年,Francois等[7]首次以PS苯撑嵌段聚合物为成膜材料,利用呼吸图案法成功制备出了蜂窝状多孔膜.在此之后的很长一段时间内,人们都认为只有以星型结构或者能实现胶束组装的嵌段聚合物为成膜材料才能通过呼吸图案法制备出有序多孔结构膜[8-9].随着对呼吸图案法研究的深入,包括线形聚合物[10]、星形聚合物[11]、梳形共聚物[12]、两亲性共聚物[13]、棒线嵌段共聚物[14]、聚合物-冠醚嵌段共聚物[15]、有机/无机杂化物[16]和聚离子复合物[17]在内的一系列聚合物有序多孔薄膜被制备出来.这些聚合物存在着共同的特点,聚合物分子中都含有亲水和疏水基团,在液滴的冷凝阶段,聚合物在亲水/疏水的平衡作用下沉淀析出的同时也有效地保持了水滴的有序排列.Cui等[18]以聚乙烯基吡咯烷酮(PVP)与PS共混制备出了蜂窝状有序膜.Tian等[19]以不含强极性基团的疏水性线性聚合物聚苯醚为成膜材料,获得了蜂窝状多孔结构膜.唐林等[20]以自制的聚(苯乙烯-b-丙烯腈)(PS-b-PAN)嵌段共聚物为成膜材料,利用呼吸图案法成功制备出了以六方阵列形式排列的有序多孔膜.Li课题组[21]在PS共聚物中添加表面活性剂聚苯乙烯-b-聚二甲基硅氧烷,在甲醇蒸汽气氛中对其孔结构进行了研究,最终得到了圆柱状的有序多孔结构.申延明等[22]以不含极性端基的工业线性 PS(Mw =235 000)为膜材料,实现了利用呼吸图案法在高湿度条件下制备蜂窝状多孔膜.本文以工业通用级PS(PG-22,Mw=150 000)为成膜材料,探讨利用呼吸图案法在高湿度环境中制备有序多孔膜的可能性,并在单层膜的基础上进行多次涂覆,研究多层膜的形成规律,为后续有序多孔碳材料的制备及应用奠定了基础.1.1 多孔膜的制备1.1.1 试剂及原料聚苯乙烯(PG-22,Mw=150 000,奇美实业有限公司),甲苯(分析纯,杭州双林化工试剂厂).1.1.2 多孔膜的制备称取一定量的PS于容量瓶当中,往容量瓶中加入一定体积的甲苯,密封后经过超声波震荡溶解成制膜溶液备用.利用注射器将一定量的溶液均匀涂抹在5 cm×5 cm 的干净玻璃上,将玻璃片在一定的湿度条件下放置于25℃气氛中,等待甲苯挥发完毕后,得到PS有序多孔膜.多次涂覆制膜的操作步骤为:在第一层多孔膜制备完成后,利用注射器再在其上均匀涂抹相同量的制膜溶液,并在相同的条件下进行成膜操作,以此类推,得到不同涂覆次数的样品.1.2 样品的表征膜的结构观察:日本Hitachi公司的S-4700扫描电镜(SEM),加速电压15 kV,观察前对样品表面进行镀铂处理.2.1 制膜溶液量对孔结构的影响呼吸图案法是以低沸点有机溶剂挥发导致的水滴凝结为动态模板来制备有序多孔结构,实验的关键在于制备过程中水滴是否稳定,而制膜溶液量、溶剂种类、环境温度、湿度、聚合物浓度、动静态气氛等因素对这个动态过程都有着一定的影响,决定着有序多孔结构能否形成以及膜的多孔结构与形态[23].为了研究制膜溶液用量对膜多孔形貌的影响,分别将0.8、1.0、1.2 mL的PS甲苯溶液均匀地涂抹在5 cm×5 cm的玻璃板基底上,其中溶质的质量浓度为25 mg/mL,再将玻璃板放置在25℃、环境湿度85%的静态气氛中成膜,结果如图1所示.3个膜中都形成了贯穿孔,制膜液用量为0.8 mL时,所形成的孔径相近;随着制膜液用量的增加,出现了大孔和小孔并存的现象,其中的大孔直径变得更大.聚合物成膜时,由于玻璃基板的面积保持不变,制膜溶液一次注入量的多少决定了溶液层厚度,从而影响甲苯溶剂完全挥发所需的时间,相应地决定了水滴的生长时间[24].水滴半径与生长时间的关系为[25]式中:R为水滴半径;t为水滴的生长时间.当制膜溶液用量较少时,溶液层厚度也小,甲苯挥发所需的时间较短,溶液表面冷凝的水滴大小适中,因此得到的膜具有直径相近的孔;随着制膜溶液用量的增加,溶剂完全挥发所需的时间被延长,水滴在溶液表面凝结和生长的时间也就越长,不同阶段形成的水滴直径不同,而且其中的部分相邻水滴发生相互接触而融合成更大的水滴,它是图1(b)和1(c)中出现大孔的原因,因此得到的多孔膜形貌变得越来越不规则.2.2 制膜溶液浓度对孔结构的影响在温度25℃、相对湿度85%的静态气氛中,固定制膜溶液量为0.8 mL,考察了溶液中PS质量浓度对多孔膜的影响,图2是PS质量浓度分别为15、25、35和45 mg/mL时所制得的多孔膜的SEM照片.由图2可知,随着聚合物质量浓度逐渐增大,膜的孔径逐渐减小,4种情况下所获得的孔径都比较均匀,孔直径分别为20、10、2.5、1.5 μm.根据拉乌尔定律式中:P0为纯溶剂的蒸汽压;P为溶剂蒸汽压;χB为PS的质量浓度.当制膜溶液中PS质量浓度增大时,溶剂甲苯蒸汽压P减小,导致甲苯的挥发速度变慢,使得溶液表面与环境间的温度差变小,由于单位时间内液滴半径的增加与温度差成正比[26],遵循公式式中:ΔT=Tr-Ts,Tr为环境温度,Ts为表面温度.因此,随着溶液质量浓度的增加,膜的孔径越来越小.2.3 环境湿度对多孔结构的影响呼吸图案法是以低沸点有机溶剂挥发导致的水滴凝结为动态模板来制备有序多孔结构,一定的环境湿度是形成水滴模板的前提条件,因此环境湿度的大小必然对所形成多孔膜的结构产生直接的影响.在环境温度25℃、制膜液用量0.8 mL时,采用25 mg/mL的PS甲苯溶液研究环境湿度(相对湿度分别为60%、85%、95%)对薄膜多孔结构与形貌的影响.由图3可得知:在环境相对湿度为60%条件下所制得的聚合物膜为无色透明的,没有形成通透的孔;85%环境湿度时,形成了孔径均匀的膜;但环境湿度增加到95%,由于冷凝到聚合物表面的液滴增多,相邻液滴之间融合、生长,孔径也就逐渐增大,分布较广.2.4 流动气氛对孔结构的影响成膜环境气氛的流动性对所形成膜的孔结构有着显著的影响.在保持和图2相同的湿度、温度和制膜溶液用量的前提下,研究了PS质量浓度分别为15、25、35mg/mL制膜溶液在流动气氛中所形成的膜形貌,结果见图4.与在静态气氛下制备的膜(图2)相比,流动气氛制的膜是大孔和小孔同时共存,PS质量浓度为15 mg/mL时,孔的形状不规则;PS质量浓度为25和35 mg/mL时,孔都呈现圆形.这可能是因为,随着PS质量浓度的提高,甲苯挥发时间缩短,有利于孔形成速度加快,而溶液粘度增加有利于冷凝下来的水滴保持圆形.比较图2和图4可知,在制膜溶液的浓度相同时,在静态气氛下得到的膜孔径均小于对应的动态气氛下形成的膜.呼吸图案法实验的关键在于对水滴的控制[27],当样品处于流动气氛中时,容易造成局部的湿度偏高,液滴的生长过程难以控制,气流也能引起水滴之间的聚结,因此得到直径大小不等的孔.2.5 涂覆次数对多孔结构的影响在确定了制备具有均匀孔径的单层膜方法基础上,进一步开展了通过多次涂覆制膜溶液制备多层复合膜的工作,以探讨涂覆次数对于多孔膜结构与形貌影响.实验是在25℃和相对湿度为85%的静态气氛下进行的,PS甲苯溶液质量浓度为25mg/mL,制膜溶液每次的用量为0.8 mL,所制的多孔膜形貌如图5所示.从图5可以直观地看到,随着涂覆次数的增加,多次涂覆后的孔形成位置是在第一层膜孔的上方形成的,而孔径呈现逐渐增大的趋势,但如其中的插图所示,多次涂覆后的孔径分布仍然较窄,孔径分别处于10~20 μm、20~30 μm、30~50μm和50~60 μm的范围.利用游标卡尺测量这4个样品的厚度,分别为30、50、80、100 μm,随着膜厚度的增加,膜的机械强度也能提高,将能延长膜的使用寿命.本文以工业通用PS(PG-22)为成膜材料,利用呼吸图案法成功制备出了有序多孔膜.通过对制膜液用量、溶液浓度、环境湿度、动静态气氛等成膜条件的研究,发现适宜的制备多孔膜条件为:在环境温度为25℃,甲苯为溶剂时,制膜溶液量为0.8mL,溶液质量浓度为25 mg/mL,环境湿度85%,并保持静态气氛.在单层膜的基础上,利用多次涂覆的方法成功制备出了厚度在30~100 μm内的孔结构相对有序的多孔聚合物膜,它可以提高膜的机械性能和使用寿命.【相关文献】[1]ZHANG W X,WAN L S,MENG X L,et al.Macro⁃porous,protein⁃containing films cast from water⁃in⁃oil emulsions featuring a block⁃copolymer[J].Soft Mat⁃ter,2011,7(9):4221-4227.[2]GALEOTTI F,MROZ W,BOLOGNESI A.CdTe nanocrystal assemblies guided by breath figure tem⁃plates[J].Soft Matter,2011,7(8):3832-3836.[3]LI L,CHEN C,LI J.Breath figures:fabrication of honeycomb porous films induced by marangoni instabilities[J].Mater Chem,2009,19(18):2789.[4]YABU H,SHIMOMURA M.Single⁃step fabrication of transparent superhydrophobic porous polymer films[J].Chemistry of Materials,2005,17(21):5231-5234.[5]WAN L S,LI Q L,CHEN P C.Patterned biocatalytic films via one⁃step self⁃assembly [J].Chem Commun,2012,48(37):4417-4419.[6]WANG J,SHEN H X,WANG C F.Multifunctional ionomer⁃derivedhoneycomb⁃patterned architectures and their performance in light enhancement oflight⁃emitting diodes[J].J Mater Chem,2012,22(9):4089-4092.[7]WIDAWSKI Q,RAWISO M,FRANCOIS B.Self⁃organized honeycomb morphology ofstar⁃polymer polystyrene films[J].Nature,1994,369:387-389.[8]STENZEL⁃ROSENBAUM M H,DAVIS T P,FANE A G,etal.Porouspolymerfilmsand honeycomb structures made by the self⁃organization of well⁃defined macromolecular structures created by living radical polymerization techniques we acknowledge a DAAD (German Academic Exchange Service)scholarship(HSPIII)forDr.M.H.stenzel⁃rosenbaum[J].Angew Chem Int Ed,2001,40:3428-3430.[9]JENEKHE S A,CHEN X L.Self⁃assembly of ordered microporous materials fromrod⁃coil block copolymers[J].Science,1999,283(5400):372-375.[10]PENG J,HAN Y,YANG Y.The influencing factors on the macroporous formation in polymer films by water droplet templating[J].Polymer,2004,45:447-449.[11]LORD H T,QUINN J F,ANGUS S D.Microgel stars via reversible addition fragmentation chain transfer(RAFT)polymerisation⁃a facile route to macroporous membranes, honeycomb patterned thin filmsand inverse opal substrates[J].J Mater Chem,2003,13(11):2819-2824.[12]HERNÁNDEZ⁃GUERRERO M,DAVIS T P,BARN⁃ER⁃KOWOLLIK C,et al.Polystyrene comb polymers built on cellulose or poly(styrene⁃co⁃2⁃hydroxyethyl⁃methacrylate)backbones as substrates for the prepara⁃tion of structured honeycomb films[J].Eur Polym J,2005,41(10):2264-2277.[13]WANG C,LIU Q,SHAO X,et al.One step fabrica⁃tion of nanoelectrode ensembles formed via amphiphilic block copolymers self⁃assembly and selectivevoltam⁃metric detection of uric acid in the presence of high as⁃corbic acid content [J].Talanta,2007,71(71):178-185.[14]WIDAWSKI G,RAWISO B,FRANCOIS B.Membra⁃nas porosas con estructura de panal formadas a partir de condensación de agua[J].Nature,1994,369(2):387-391.[15]PENG J,HAN Y C,FU J,et al.Formation of regular hole pattern in polymer films [J].Macromolecular Chem Phys,2003,204(1):125-130.[16]LI X,ZHANG L,WANG Y,et al.A bottom⁃up approach to fabricate patterned surfaces with asymmetrical TiO2microparticles trapped in the holes of honeycomblike polymer film[J].J Am Chem Soc,2011,133(11):3736-3739.[17]MARUYAMA N,KOITO T,SAWADAISHI T.Water⁃assisted formation of micrometer⁃size honeycomb patterns of polymers[J].Langmuir,2000,15(16):6072-6082.[18]CUI L,PENG J,DING Y,et al.Ordered porous polymerfilms via phase separation in humidity environment[J].Polymer,2005,46(14):5334-5338.[19]TIAN Y,JIAO Q,DING H,et al.The formation of honeycomb structure in polyphenylene oxide films[J].Polymer,2006,47(11):3866-3873.[20]唐林,马晓燕,宋颖,等.利用呼吸图案法制备聚(苯乙烯-b-丙烯腈)有序多孔薄膜[J].物理化学学报,2013,29(5):1107-1114.TANG Lin,MA Xiaoyan,SONG Ying,et al.Ordered porous films prepared by the breath figure method based on polystyrene⁃b⁃polyacrylonitrile[J].Acta Phys⁃Chim Sin,2013,29(5):1107-1114. [21]ZHANG A,WANG J,LI L,et al.Formation of breath figure arrays in methanol vapor assisted by surface active agents[J].ACS Appl,Mater:Interfaces,2014,6(11):8921-8927.[22]申延明,刘东斌,李士凤,等.聚苯乙烯蜂窝状多孔膜的制备及应用[J].功能材料,2012,12(43):1548-1552.SHEN Yanming,LIU Dongbin,LI Shifeng,et al.Synthesis and application of polystyrene porous film with honeycomb pattern[J].Journal of Functional Materials,2012,12(43):1548-1552.[23]栗志广,马晓燕,洪清,等.呼吸图案法制备蜂窝状有序多孔薄膜及其功能化应用[J].物理化学学报,2015,31(3):393-411.LI Zhiguang,MA Xiaoyan,HONG Qing,etal.Functional applications of ordered honeycomb⁃patterned porous films based on the breath figure technique[J].Acta Phys⁃Chim Sin,2015,31(3):393-411.[24]孙航,吴立新.水滴模板法构筑蜂窝状有序多孔膜[J].化学进展,2010,9(22):1784-1798.SUN Hang,WU Lixin.Ordered honeycomb⁃patterned films via breath figures [J].Progress in Chemistry,2010,9(22):1784-1798.[25]FRANCOIS B,PITOIS O.Crystallization of condensa⁃tion droplets on a liquid surface[J].Colloid Polym Sci,1999,277:574-578.[26]BEYSENS D,STEYER A,GUENOUN P,et al.How does dew form[J].Phase Transitions,1991,31(1):219-246.[27]SRINIVASARAO M,COLLINGS D,PHILIPS A,et al.Three⁃dimensionally ordered array of air bubbles in a polymer film[J].Science,2001,292(5514):79-83.。

材料化工专业英语生词本

材料化工专业英语生词本

材料化工专业英语生词本Synthesis 合成Properties 性质Anatase 锐钛矿rutile 金红石brookite板钛矿Crystalline 结晶的nanometer 纳米nanorods/wires纳米棒/线nanocrystals 纳米晶体nanocarriers 纳米载体nanoparticles (NPs)纳米颗粒nanocomposite纳米复合Hierarchical Nanostructures 分层纳米材料titanium dioxide TiO2 polymorphs of titania 多晶型 TiO2 amorphous 非晶的Three-dimensional 3Dfacile and controlled 容易控制hydrothermal 热液的annealing 退火investigate 调查,研究radially 放射状地petal 花瓣thin 薄的thick 厚的morphology 形态The surface area 表面积adsorption-desorption 吸附-解析(ads)orption isotherms 吸附等温线the Brunauer-Emmett-Teller BET 比表面积测试法specific surface areas 比表面积sensitivity 灵敏、灵敏性ethanol 乙醇、酒精ethylene glycol 乙二醇EG化学式C2H6O2分子式:HOC2H4OHsensor 传感器、感应器solar cells太阳能电池biosensors 生物传感器catalyst 催化剂Catalysis 催化photo-catalytic 光催化的inorganic 无机的objective 目标optimize 使完善、使优化optical 光学的magnetic 磁的application 应用bandgap 带隙transition metal oxides 过渡金属氧化物paint 油漆、颜料gas sensor 气敏元件、气敏传感器Li-ion battery 锂离子电池Electrochromic 电致变色的Photochromism 光致变色macro/mesoporous materials 宏/介孔材料CVD(Chemical Vapor Deposition, 化学气相沉积)Anodic 阳极的hydrothermal method 水热法Template 样板、模板oriented attachment 定向附着primary nanoparticle 初级纳米粒子anisotropic非等方性的、各向异性的capping agents 盖髓剂kirkendall effect柯肯达尔效应tetragonal structure 四方结构photovoltaic cells 光伏电池smart surface coatings 智能表面涂层single-phase 单相precursor 先驱、前导Herein 在此处、鉴于、如此 Nanoflakes 纳米片metal-enhanced fluorescence 金属增强荧光fluorophores 荧光团The Royal Society of Chemistry 英国皇家化学学会ESI (Electronic Supplementary Material) 电子补充材料 Innovative 创新的 Polymer 聚合物 Chemical 化学品 Silica 硅 FITC (fluorescein isothiocyanate )荧光异硫氰酸酯EiTC ( Eosin isothiocyanate ) 异硫氰酸曙红Fluorescence spectra 荧光光谱 control sample 对照样品 Dissolve 溶解Characterization 表征 analytical grade 分析纯 ethanol 乙醇ethylene glycol 乙二醇 ammonia aqueous solution (28 wt %)氨水溶液(100公斤里含28公斤) acetone 丙酮分子式:C3H6O 简式:CH3COCH3EtoH 乙醇 ( PS :Et 代表乙基CH3CH2- Me 代表甲基CH3-)TEOS (tetraethyl orthosilicate ) 原硅酸四乙酯the TEOS concentration TEOS 浓度 CTAB (hexadecyltrimethylammonium bromide ) 十六甲基溴化铵The CTAB surfactant CATB 表面活性剂Sinopharm Chemical Reagent Co. 国药集团化学试剂有限公司Polyvinylpyrrolidone (PVP, Mw = 55000) 聚乙烯吡咯烷酮(PVP ,MW = 55000=兆瓦,百万瓦特(megawatt))Rhodamine B (Rh B) 玫瑰精,若丹明B poly(allylamine hydrochloride) (PAH, Mw = 56000) 聚(烯丙胺盐酸盐) Deionized water 去离子水PAH ( polycyclic aromatic hydrocarbon )多环芳族烃 Via 经由、通过the three-neck flask 三颈烧瓶 oil bath 油浴precipitate 沉淀centrifugation 离心分离 rpm 每分钟转数 core-shell 核-壳a surfactant-templating sol-gel approach 表面活性剂模板溶胶 - 凝胶法homo-dispersed solution 均聚物分散夜agitate 搅拌ultrasonically and mechanically 超声波地、机械地solvent extraction method 溶剂萃取法reflux 回流an impregnation method 浸渍方法 vial 小瓶 dilute 稀释composite 合成物、复合物TEM (Transmission electron microscopy )透射电子显微镜copper grids 铜网carbon films 碳膜SEM(Scanning electron microscopy)扫描电子显微镜Spray 喷FESEM(Field-emission scanning el ectron microscopy)场发射扫描电子显微镜LCSM(Laser confocal scanning microscopy )激光共聚焦扫描显微镜X-ray diffraction (XRD) X 射线衍射X-ray diffractometer X射线衍射仪Nitrogen 氮Micromeritcs n. 微晶(粒)学,粉末工艺学;粉体学degas除去瓦斯vacuum 真空BET(The Brunauer-Emmett-Teller) pore volume 孔体积spectrofluorometer 荧光分光剂spectrophotometer分光光度计bandpass 带通PMT voltage (Photomultiplier Tube)光电倍增管电压Confocal luminescence images共聚焦荧光图像Silver 银silica spacer 硅垫片fabricate制造; 伪造; 组装; 杜撰the metal-enhancedMEF(the metal-enhanced fluorescence )金属增强荧光Fluorescence quenching 荧光猝灭FRET (Fo¨rs ter resonance energy transfer )福斯特共振能量转移Optimization 最佳化; 最优化excited-state 激发态plasmon 等离子基元quantum yields 量子产率quantum dots 量子点resonance n.共振,共鸣, 反响, 回声donor–acceptor pairs 给体- 受体对proximity 接近efficiency 效率the transfer distances 传输距离deposite 被沉淀,存放plastic planar substrate塑料平面基板photoluminescence (PL)光致发光luminescent 发光的single nanoparticle sensing单一纳米粒子传感dielectric电介质; 绝缘体adj.非传导性的RE complexes稀土复合Polyelectrolytes聚合高分子电解质Electrolyte电解质Multilayer 多层Concentric 同中心的functionalized organic molecules 官能有机分子conjugation 结合,配合tedious and fussy繁琐和挑剔obstacle n.障碍, 阻碍, 妨害物controlled release,控释detection and probe applications 检测和探头应用general一般的; 综合的; 普通的universal普遍的, 通用的, 全体的Inspired 启发Possess 拥有Pore 孔drugs and macro-molecules 药物和大分子herein在此处, 鉴于, 如此Ag@SiO2@mSiO2(Ag-core@silica-spacer@mesoporo us silica )The preparation procedure编制程序Water-soluble可溶于水的; 水溶性的,微溶于水A high-temperature solvothermal method一种高温溶剂热法Solvent 溶剂Esolution 分辨率twinned structures 联动结构,孪生结构concentration 浓度tune 调节is ascribed to 归因于dilute稀释spherical morphology 球形形态type-IV curves IV型曲线polyelectrolytesodium chloride食盐; 氯化钠plasmonic absorption电浆吸收an intuitive way 以直观的方式unambiguous 不含糊的, 明白的demonstrate 证明antibody 抗体NSF(National Sanitation Foundation)美国国家卫生基金会PRC(The People's Republic of China)中华人民共和国Shanghai Municipality上海市Shanghai Leading Academic Discipline Project上海重点学科建设项目Tri-functional hierarchical三官能分层DSSCs(dye-sensitized solar cells)染料敏化太阳能电池DOI(Digital Object Unique Identifier)是一种数字对象标识体系acid thermal method 酸热法titanium n-butoxid正丁醇钛acetic acid乙酸、醋酸kinetic 动能light-scattering 光散射photoelectrodes 光电极opto-electronic 光电的calcine煅烧short-circuit photocurrent density短路光电流密度open-circuit voltage开路电压compared to 相比,把什么比作什么electron 电子recombination rates 重组率oxide 氧化物inorganic 无机的sub-microspheres 亚微球beads珠子To date 迄今a ruthenium complex light-harvester钌络合物的光收割机volatile 挥发性的photoanode光阳极superior 好的,卓越的photons 光子photovoltaic performance光伏性能In addition to 除。

材料科学专业英语词汇UV

材料科学专业英语词汇UV

材料科学专业英语词汇U Vulexite 硼酸钠方解石ultimate analysis 元素分析ultimate line 住留谱线ultimate properties 极限特性ultimate strain 极限应变ultimate strength 极限强度ultra filter 超泸器ultra marine 群青ultra-high-molecular-weight polyethylene 超高分子量聚乙烯ultra-micro crystal 超微晶体ultra-micro-analysis 超微分析ultra-microscope 起显微镜ultra-red ray 红外线ultra-violet absorbing glass 吸紫外线玻璃ultra-violet ray intercepting glass 防紫外线玻璃ultra-violet ray transmitting glass 透紫外线玻璃ultrabasic rock 超硷性岩ultracentrifugation 超离心分离ultrafiltration 超滤ultrafiltration membranes 超滤膜ultramarine blue 群青ultrasonic cleaning equipment 超音波洗涤装置ultrasonic degradation 超音波退解ultrasonic energy 超音波装置ultrasonic equipment 超音波设备ultrasonic fabrication 超音波能ultrasonic frequencies 超音频率ultrasonic horn 超音波喇叭形辐射体ultrasonic inserting 超音波嵌镶ultrasonic power density 超音波输出功率密度ultrasonic radiation 超音波辐射ultrasonic sensing method 超音波感测器ultrasonic sewing 超音波缝制ultrasonic spray cleaning equipment 超音波喷洗洗条装置ultrasonic test 超声检测ultrasonic testing 超音波试验ultrasonic welding 超音波焊接ultrasonic wire bonder 超音波引线压接机ultrasonic wire bonding 超音波引线压接ultraviolet absorbers 紫外光吸收剂ultraviolet absorption 紫外光吸收ultraviolet accelerometer 紫外光加速计ultraviolet inhibitors (see ultravioler-radiation absorbers)紫外光抑制剂ultraviolet irradiation 紫外光照射ultraviolet lamp heating CVD system 紫外线灯加热型CVD系统ultraviolet preirradiation 紫外光前照射ultraviolet radiation 紫外光辐射ultraviolet-absorption spectra 紫外光吸收光谱ultraviolet-absorption spectroscopy 紫外光吸收分光器ultraviolet-radiation absorbers 紫外光吸收剂umber 棕土unaccomplished moisture change 未完成水份变化unbleached sulfate pulp 未漂白硫酸盐纸浆unbleached sulfite pulp 未漂白亚硫酸盐纸浆unbound moisture 非结合水份undecylenic acid 十一烯酸undecylenyl alcohol 十一烯醇under water conveyor 水中输送机under-burnt 欠热under-clay 下盘黏土under-cooling 过冷under-etching 蚀刻不足under-glaze color 釉下色料under-glaze decoration 釉下彩undercoat 底涂层undercure 欠硫化undercuring 欠硫化undercut 切割不足,蚀刻不足underdrain equipment 底座排水装置underground contruction 地下建筑underwriter's laboratories 保险业实验室uniaxial crystal 单轴晶釉uniaxial orientation 单轴定向uniaxial orientation distribution 单轴定向分布uniaxial orientation parameter 单轴定向参数uniform copolymers 均匀共聚体uniformly extension 均匀延伸uniformly labeled substances 均匀标志物质union fabrics 混织品unit capacitance 单位容量unit cell constants 单位细胞定数unit of traversing the reel 拉绕线架unit per hour 每单位小时universal stage 万向承台unloader 卸载机,卸货机unpaired electrons 弧单电子unpaired-electron concentration 弧单电子浓度unperturbed chain 未干扰练unperturbed dimensions 未干扰量次亏氢酸unsaturated acids (see acid, unsaturated)亏氢化合物unsaturated rubbers 亏氢橡胶unsaturated-site reactions 亏氢位反应unsaturation 不饱和unsintered tape 不烧结带unzipping (see depolymerization)解练up cutting 上行切割up set 上移安置up-draught kiln 升焰窑up-draw process 上引法(玻)up-flow filter 往上流过滤器up-take 升道(玻)upper criticalsolution temperatures 上临界溶解温度upper lapping plate 上方磨盘/上定盘upper surface grinding width 上侧平面研磨宽度upstroke press 上升冲程压机uranium 铀uranium alkoxide polymer 铀醇聚体use temperature 使用温度user interface(GUI)图表使用者介面utilities/utility program 应用工程,公用设施utility box 公用设施箱UV irradiation equipment 紫外线照射装置UV oven 紫外线乾燥炉uvarovite 钙铬石榴子石您正浏览的文章《材料科学专业英语词汇(U)》由第一范文网()整理,访问地址为:00vacuum bag 真空袋vacuum bag molding 真空袋模制vacuum chuck of rotary table 旋转台真空吸盘vacuum chuck stage 真空吸盘夹片台vacuum drawing 真空拉制vacuum drying equipment 真空乾燥设备vacuum embedding 真空嵌置vacuum evaporation system 真空蒸镀系统vacuum firing 真空烧制vacuum forming 真空成形vacuum hopper 真空喂料斗vacuum kneader 真空捏和机vacuum loading systems 真空加料系统vacuum metallizing (see also metallizing)真空喷金属vacuum mixer 真空混合机vacuum molding 真空成型vacuum pad 真空吸盘vacuum plate 真空吸附板vacuum press 真空压机vacuum pugmill 真空捏泥机vacuum venting 真空通气vacuum-forming molds 真空成形模vacuum-metallized aluminum coatings 真空喷铝箔vacuum/ nonvacuum 真空吸附/非真空吸附vacuum/nonvacuum 真空吸附/非真空吸附valine 深感印刷valley printing 砾壳斗valley tile 天沟瓦valonia 阀节喷嘴valve gating nozzles 阀valving 阀调Van der Pauw's method 范德伯斯法vanadium compounds 钒化合物vanadium yellow 钒黄vane feeder 叶轮饲机vanillin 香草精vapor barriers (see barriers, vapor)汽障壁vapor diffusion 蒸汽扩散vapor drying equipment 蒸汽乾燥设备vapor phase cleaning equipment 汽相洗条设备vapor phase epitaxial growth system 汽相磊晶生长系统vapor-deposition polymerization 蒸汽凝积聚合vapor-phase acetylene process 气相乙炔方法vapor-phase chromatography (see gas chromatography)气相移差术vapor-phase reactions 气相反应vapor-pressure lowering 蒸气压落降vapor-pressure osmometer 蒸开压渗压计vaporization 汽化vaporized solution source CVD 汽化液体源CVD variable-heating-rate method 可变加热法variable-height impact tester (VHIT)可变高度冲击试验机varistor [热]变[富]阻器;[热]变[电]阻体varnish gums 胶漆varnish resins 树鲁漆varnished cambric 涂漆麻纱varnishes 水漆vascular grafts 血管接枝vat dyeing 瓮染法vat dyes 瓮染料Vebe apparatus 韦伯仪器vector correlation method 向量相关法vegetable fault 植物杂质vegetable fiberboard 植物纤维板vegetable fibers (see fibers, vegetable)植物纤维vegetable oils 植物油vegetable parchment 假羊皮纸vegetable tannages 植物鞣革vegetable waxes 木蜡vegetable-oil acids 植物油酸vehicular applications 车辆用途vehicular armor 车辆装甲veil mats 罩网vein graphite 脉石墨vein quartz 脉石英Vello machine 韦乐制管棒机vellum 牛皮纸vellum glaze 革光釉velocities 速度velocity 速度velocity gradient 速率坡veneering 面饰法vent 通气孔venting 通气verdazyl polyradicals 四联氮基聚基verge 山墙詹口Verilog hardware description languageVerilog 硬体记述语言vermiculite 屋石Vertical Bridgman method 垂直型布里志曼法vertical lighting 纵向照度,竖直照明vertical low pressure CVD system 垂直型低压CVD装置vertical molding machines 直立模造机vertical pugmill 立式捏泥机vertical spindle rotary table surface grinding machine 垂直轴旋转盘表面研磨机vertical-movement blow-molding machines 直动吹模机vertical-surface laminates 直纹层板vertically braided hose 纵编结管vesicular structure 多孔结构vessel members 管节vetch seed flour 大巢菜粉VHDL initiative towards ASICVHDL 推动ASIC资料库标准或活动VHDL simulator VHDL模拟器VHSIC hardware description language 超大规模积体电路(VHSIC)viability control 生育控制vibrating ball mill 振动球磨机vibrating conveyer 振运机vibrating screen 振动筛vibration damping 振动衷减vibration frequencies 振动频率vibration insulators 隔振器vibration modes 振动模式vibrational scattering 振动散射vibrational transitions 指动史换vibrational-rotational states 振动转动体态vibratory multi-band saw 震动式多条带锯子vibroscope 示振器Vicat needle 非卡针vicat softening-point test 域克软点试验Vickers hardness tester 韦克硬度计Vicotoria green 维多利选绿vicuna wool 驼马毛view port 观察窗口vignetting 晕迈玻璃法Vigoureux pronting 维高力斯印刷vinal fibers 聚乙烯醇纤维vinyl -2-bromomyristate2- 溴十四酸乙烯vinyl 1-naphthoate1- 奈酸乙烯vinyl 10,12-octadecadienoate10,12- 烯十八碳酸乙烯vinyl 12-hydroxystearate12 羟硬酯酸乙烯vinyl 2-bromocaprate2- 溴癸酸乙烯vinyl 2-bromocaproate2- 溴已酸乙烯vinyl 2-bromolanrate2- 溴十二酸乙烯vinyl 2-bromopalmitate2- 溴软脂酸乙烯vinyl 2-bromostrarate2- 溴硬脂酸乙烯vinyl 2-chloroethyl ether2- 氯乙基乙烯醚vinyl 2-naphthoate2- 奈酸乙烯vinyl 2-naphthoxyacetate2- 奈氧基醋酸乙烯vinyl 2-naphthylacetate2- 奈基醋酸乙烯vinyl 9,10-dihydroxystearate9,10- 双羟基硬脂酸乙烯vinyl 9,10-epoxystearate9,10- 环氧硬脂酸乙烯vinyl 9-hydroxystearate9- 羟硬酯酸乙烯vinyl abietate 松香酸乙烯vinyl acetate 醋酸乙烯vinyl acetate copolymer 醋酸乙烯共聚体vinyl acetate polymerization 醋酸乙烯聚合vinyl acetate polymers (see poly vinyl acetate)醋酸乙烯聚体vinyl acetate-grafted cotton 醋酸乙烯接枝棉vinyl acrylate 丙稀酸乙烯vinyl adipate 已二酸乙烯vinyl alcohol polymers (see poly vinyl alcohol)乙烯醇聚体vinyl alkyl ether polymers 乙烯基烷基醚聚体vinyl ally1 adipate 已二酸乙烯丙烯vinyl ally1 sebacate 泌酸乙烯丙烯vinyl allyl diglycolate 氧化双乙酸乙烯丙烯vinyl allyl fumarate 反丁烯二酸乙烯丙烯vinyl allyl succinate 琥珀酸乙烯丙烯vinyl amyl succinate 戊基琥珀酸乙烯vinyl anthracene-1-carboxylate1- 羰酸※乙烯vinyl atropate 苯基丙烯酸乙烯vinyl benzenesulfonate 苯矿酸乙烯聚体vinyl benzoate 苯甲酸乙烯vinyl boron compounds 乙烯基硼化物vinyl brassylate 十一碳双酸乙烯vinyl bromide copolymers 溴乙烯共聚体vinyl bromide polymers 溴乙烯聚体vinyl bromoacetate 溴醋酸乙烯vinyl butoxyacetate 丁氧基醋酸乙烯vinyl butyl ether polymers 乙烯基丁基迷聚体vinyl butyl sulfate 硫酸乙烯丁基vinyl butyral polymers 缩丁醛乙烯聚体vinyl butyrate 丁酸乙烯vinyl campholate 冰片酸乙烯vinyl caprate 癸酸乙烯vinyl caproate 已酸乙烯vinyl caprylate 辛酸乙烯vinyl chloride 氯乙烯vinyl chloride copolymers 氯乙烯共聚体vinyl chloride fibers 氯乙烯纤维vinyl chloroacetate 氯化醋酸乙烯vinyl chlorodifluoroacetate 一氯二氟醋酸乙烯vinyl chloroformate 氯甲酸乙烯vinyl chloropropionate 氯丙酸乙烯vinyl cinnamate 苯乙烯酸乙烯vinyl compounds 乙烯化物vinyl copolymerization 乙烯共聚合vinyl coumarilate 苯并伏喃酸乙烯vinyl crotonate 丁烯酸乙烯vinyl cyanide polymers 青乙烯聚体vinyl cyclohexyl carboxylate 环已基羧酸乙烯vinyl decanoate 癸酸乙烯vinyl decyl adipate 已二酸乙烯癸基vinyl dialkyldithiocarbamates 双烷基双硫代氨基甲酸乙烯vinyl dichloroacetate 二氯醋酸乙烯vinyl diethylcarbamate 双乙基氨基甲酸乙烯vinyl dispersions 乙烯播散剂vinyl dodecanoate 十二酸乙烯vinyl ehyl ether polymers 乙烯乙基迷聚体vinyl ehyl malonate2- 乙基已基苯二甲酸乙烯vinyl ehyl oxalate 丙二酸乙烯,乙基vinyl enanthate 庚酸乙烯vinyl episulfide 环硫乙烯vinyl ester polymers 乙烯酯聚体vinyl ether polymers 乙烯迷聚体vinyl ethers 乙烯迷vinyl ethyl brassylate 十三碳双酸乙烯,乙基vinyl ethyl fumarate 反丁烯二酸乙烯,乙基vinyl ethyl phthalate 草酸乙烯,乙基vinyl ethyl sulfate 苯二甲酸乙烯,乙基vinyl ferrocene 硫酸乙烯,乙基vinyl fibers 乙烯基铁并vinyl film 乙烯纤维vinyl floor tile 乙烯地砖vinyl flooring 乙烯薄膜vinyl fluoride 氟乙烯vinyl fluoride polymers 氟乙烯聚体vinyl foam 乙烯泡沫vinyl formal polymers 缩甲醛乙烯聚体vinyl formate 甲酸乙烯vinyl fumarate 反丁烯二酸乙烯vinyl furoate 伏喃酸乙烯vinyl hexanoate 已酸乙烯vinyl hexyl glutarate 戊二酸乙烯,已基vinyl hydroquinone dibenzoate 双苯甲酸乙烯基辊vinyl hydroquinones 乙烯基辊vinyl hydroxyacetate 羟醋酸乙烯vinyl isobutyl ether polymers 乙烯基异丁基迷聚体vinyl isobutyrate 异丁酸乙烯vinyl isocaproate 异已酸乙烯vinyl isocyanate 异氰酸乙烯vinyl isocyanate polymers 异氰酸乙烯聚体vinyl isoheptanoate 异庚酸乙烯vinyl isononanoate 异壬酸乙烯vinyl isooctanoate 异辛酸乙烯vinyl isophthalate 异苯二甲酸乙烯vinyl isothiocyanate 异硫代氰酸乙烯vinyl isovalerate 异戊酸乙烯vinyl ketal polymers 乙烯基缩醛聚体vinyl ketone polymers 乙烯酮聚体vinyl ketones 乙烯酮vinyl ketostearate 氧化硬脂酸乙烯vinyl lactate 乳酸乙烯vinyl laurate 月桂酸乙烯vinyl levulinate 乙醯丙酸乙烯vinyl linoleate 亚麻仁油酸乙烯vinyl m-anisate 间甲氧基苯甲酸乙烯vinyl m-chlorobenzoate 邻氯苯甲酸乙烯vinyl m-nitrobenzoate 邻硝基苯甲酸乙烯vinyl maleate 顺丁烯二酸乙烯vinyl methacrylate 甲基丙稀酸乙烯vinyl methanesulfonate 甲矿酸乙烯vinyl methoxyacetate 甲氧基醋酸乙烯vinyl methoxycinnamate 甲氧基桂皮酸乙烯vinyl methyl adipate 甲基已二酸乙烯vinyl methyl ether polymers 乙烯基甲基迷聚体vinyl methyl fumarate 甲基反丁烯二酸乙烯vinyl methyl maleate 甲基顺丁烯二酸乙烯vinyl methyl sebacate 甲基泌酸乙烯vinyl methyl succinate 甲基琥珀酸乙烯vinyl methyl terephthalate 甲基双苯二甲酸乙烯vinyl monomers 乙烯单体vinyl myristate 荳寇酸乙烯vinyl n-octoate 正辛酸乙烯vinyl nonyl brassylate 十一碳双酸乙烯vinyl o-acetylsalicylate 氧领乙醯基水杨酸乙烯vinyl o-chlorobenzoate 间氯苯甲酸乙烯vinyl octadecanoate 十八碳酸乙烯vinyl octyl phthalate 苯二甲酸乙烯,辛基vinyl oleate 油酸乙烯vinyl p-chlorobenzoate 对氯苯甲酸乙烯vinyl p-cyanobenzoate 对青苯甲酸乙烯vinyl p-dimethylaminobenzoate 对双甲胺基苯甲酸乙烯vinyl p-methoxybenzoate 对甲氧基苯甲酸乙烯vinyl p-nitrobenzoate 对硝基苯甲酸乙烯vinyl p-phenylbenzoate 双苯基苯甲酸乙烯vinyl pacetylbenzoate 对乙醯基苯甲酸乙烯vinyl palmitate 棕榈酸乙烯vinyl perfluorobutyrate 全氟丁酸乙烯vinyl perfluorocaprate 全氟癸酸已烯vinyl perfluorocaproate 全氟已酸乙烯vinyl perfluorocyclo-hexanecarboxylate 全氟环已基羧酸乙烯vinyl perfluoropropionate 全氟丙酸乙烯vinyl perfluorovalerate 全氟戊酸乙烯vinyl phenylacetate 苯基醋酸乙烯vinyl pinonate 蒎酮酸乙烯vinyl pivalate 三甲基醋酸乙烯vinyl plastics 乙烯塑胶vinyl plastisols 乙烯塑料溶胶vinyl polymerization 乙烯聚合vinyl polymers 乙烯聚体vinyl propionate 丙酸乙烯vinyl propionate polymers 丙酸乙烯聚体vinyl propylsulfate 硫酸乙烯,丙基vinyl β-hydroxybutyrate 贝他-羟丁酸乙烯vinyl-asbestos floor tile 乙烯聚体石棉地板砖vinyl-coated fabrics 乙烯树脂涂盖织物vinyl-cotton 乙烯棉vinyl-p-anisate 对甲氧基苯甲酸乙烯vinyl1 bromide 溴乙烯vinylacetylene 乙烯基乙炔vinylamine copolymers 乙烯胺共聚体vinylamine polymers 乙烯胺聚体vinylamines 乙烯胺类vinylarene polymers 芳乙烯聚体vinylarenes 芳乙烯类vinylaromatic monomers 芳乙烯单体vinylaromatic polymers 芳乙烯聚体vinylathraquinones 乙烯基※辊vinylation (see acetylene and acetylenic)乙烯化vinylbenzene polymers 乙烯基苯聚体vinylcaprolactam polymers 已内醯胺乙烯聚体vinylcarbazole polymers 乙烯基卡唑聚体vinylclohexane polymers 乙烯基环已烷聚体vinylcycloalkane polymers 乙烯基环烷聚体vinylcycloalkanes 乙烯基环烷类vinylcyclobutane polymers 乙烯基环烷聚体vinylcycloheptane polymers 乙烯基环庚烷聚体vinylcyclohexane 乙烯基环已烷vinylcyclohexene 乙烯基环已烯vinylcyclohexene dioxide 乙烯基环已烯过氧物vinylcyclopentane polymers 乙烯基环戊烷聚体vinylcyclopropane 乙烯基环丙烷vinylcyclopropane polymers 乙烯基环丙烯聚体vinyldimethoxyborane 乙烯基双甲氧基硼烷vinylene carbonate polymers 碳酸次乙烯聚体vinylethylene 乙烯基乙烯vinylidene bromide 双溴亚乙烯vinylidene chlordide 双氯亚乙烯vinylidene chloride copolymers 双氯亚乙烯聚体vinylidene cyanide 双氰亚乙烯vinylidene cyanide polymers 双氰亚乙烯聚体vinylidene fibers 亚乙烯纤维vinylidene fluoride 双氟亚乙烯vinylidene fluoride polymers 双氟亚乙烯聚体vinylimidazole polymers 乙烯基咪唑聚体vinylisonitriles 异青乙烯vinylmercaptan polymers 乙烯基硫醇聚体vinylnapthalene polymers 乙烯奈聚体vinylon fibers 维尼龙纤维vinylphenolthiazine 乙烯基酚硫脺vinylphenylphosphinic acid 苯基次膦酸乙烯vinylphosphine oxides 乙烯基膦化氧vinylphosphonic acid 乙烯基亚膦酸vinylpyridine 乙烯基比啶vinylpyridine derivatives 乙烯基比啶衍vinylpyridine polymers 乙烯基比啶聚体virtual ICE(ICE)虚拟ICE virtual socket interface 虚拟插座介面virtual tester 虚拟测试器viscometer 黏度计viscosity 黏度viscosity index 黏度指数viscosity measurements 黏度测量viscosity number 黏度值viscosity ratio 黏度比viscosity-concentration relationship 黏度浓度关系viscosity-index 黏度指数改进剂viscous deformation 黏性变形viscous flow 黏流viscous sublayer 黏性内层viscous systems 黏性系统viscous-drag extruders 黏性拖引挤制机visible dichroism 感眼两色性visual inspection machine 目视检验设备vitreous 玻化;瓷化vitreous enamel 珐琅;搪瓷vitreous silica 玻化石英vitreous slip 化粧土vitreous-china sanitary-ware 玻化卫生瓷vitrfication 玻化作用,瓷化作用vitrified earthenware 玻化陶器vitrified grinding wheel 陶瓷化研磨轮vitrified pot 烧固熔罐voge-angle abrader 瓦安磨耗仪vogel\'s red 铁红void 空隙,空洞void content 空隙内容voids 空隙voigt element 活格元voigt model 活格模型volatile products 挥发产物volatile thinners 挥发稀释剂voltage breakdown 电压崩溃voltage contrast/potential contrast 电压对比/电位对比voltage gradient 电压坡voltage life 电压寿命voltage source voltage measurement 施加电压电压测试voltage source(force)current measurement 施加电压之电流测试voltage-stress gradient 电压应力坡volume changes 容积变化volume crystallinity 容积结晶度volume flow 容积流量volume fraction 容积比volume method 容积法volume resistivity 容积电阻volume-fixed diffusion coefficient 定容扩散系数volumetric determination 容量测定volumetric methods 容量法voluminal dilatation 容积膨胀von mises criterion vortexes 冯密士准则vortexes 漩涡VRAM emulator VRAM仿真器Vulcanite 硬橡皮Vulcanization 硫化vulcanization accelerators 硫化加速剂vulcanization retarders 硫化延迟剂vulcanized fiber 硫化纤维vulcanized oils 硫化油类vulcanized polymers 硫化聚体vulcanized products 硫化产物vulcanized rubber 硫化橡胶vulcanizing agents 硫化剂vulcanizing time 硫化时间Vycor 维柯玻璃(商名)您正浏览的文章《材料科学专业英语词汇(V)》由第一范文网()整理,访问地址为:00。

甲基丙烯酸二乙氨基乙酯的合成工艺改进

甲基丙烯酸二乙氨基乙酯的合成工艺改进

甲基丙烯酸二乙氨基乙酯的合成工艺改进朱凤丽;隋晓彤;赵静;米承敬;唐林生【摘要】对以甲基丙烯酸甲酯和二乙氨基乙醇为原料,氢氧化锂为催化剂,通过酯交换合成甲基丙烯酸二乙氨基乙酯的改进工艺进行了研究.该工艺以正己烷为携甲醇溶剂,采用分水器从反应体系中不断地分出甲醇.得到较佳反应条件:n(甲基丙烯酸甲酯)∶n(二乙氨基乙醇)∶n(催化剂)=2.4∶1∶0.42,反应时间为6h,反应温度约70℃.在以上条件下,目标产物的含量为94.96%,收率为93.16%.该工艺具有反应条件温和、催化剂廉价易得、产品含量及收率高、设备简单等优点.%2-Diethylaminoethyl methacrylate was synthsezied through improved transesterification process by using diethylaminoethanol(DEA) and methyl methacrylate(MMA) as raw materials,LiOH as catalyst where methanol was continuously separated from the reaction system with water separator and n-hexane as a methanol-carring agent.The results revealed that the optimum reaction conditions were as follows:n(MMA)∶ n(DEA) ∶n(LiOH) =2.4 ∶ 1 ∶ 0.42,reaction time being 6 h,and reation temperature being about 70 ℃.Under the above conditions,the yield of the products could be up to 93%,the purity was close to 95%.The process has some advantages such as mild reaction condition,cheap catalyst,high yield and purity as well as simple equipment.【期刊名称】《青岛科技大学学报(自然科学版)》【年(卷),期】2018(039)003【总页数】4页(P21-24)【关键词】甲基丙烯酸二乙氨基乙酯;酯交换;工艺改进【作者】朱凤丽;隋晓彤;赵静;米承敬;唐林生【作者单位】青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042【正文语种】中文【中图分类】O613.5甲基丙烯酸二乙(甲)氨基乙酯是一类重要的阳离子单体,可用于制备水处理剂、抗静电剂、助留剂、施胶剂、粘合剂、医用缓释剂等许多精细化学品[1-4]和功能性聚合物等[5-8],也可作为纤维的改性单体,以改善纤维对颜料和染料的亲合性[9-11]。

专业英语 高分子专业术语

专业英语 高分子专业术语
H
C
H
C
H
C
H
C
H
C
H
C
H
Repeating Unit
重复单元——化学组成和结构可重复的最小单位
重复单元也称链节(chain unit) 重复单元的数量 或链节数n又称聚合度(degree of polymerization)
H H C H
H
H
单体
C H
C H
C
n
重复单元
H
Homopolymer 均聚物——由同一种单体聚合而成
名称 聚乙烯 聚丙烯 聚异丁烯 聚苯乙烯 聚氯乙烯 聚二氯乙烯 聚氟乙烯 聚四氟乙烯 聚丙烯腈
Name

缩写符号
polyethylene PE polypropene PP polyisobutylene PIB polystyrene PS poly(vinyl chloride) PVC poly(vinyl dichloride) PVDC poly(vinyl fluoride) PVF poly(tetrafluroethylene) PTFE poly(acrylonitrile) PAN
Graft polymer A A A A A AA A B B B B B B
聚合物的命名(Nomenclature of Polymers) 不像无机或有机小分子有一套以其化学结构 为基础的系统命名方法;目前多种命名方法并存: a) 基于其组成来源的命名方法(Source-based); b) 基于结构的命名方法(Structure-based); c) 商品名及一些约定俗成的命名方法(Trade name) 其命名很难看出结构特点,但较为简单,目前仍 广为流传

Emerging methods for the fabrication of polymer capsules

Emerging methods for the fabrication of polymer capsules

ReviewEmerging methods for the fabrication of polymer capsulesJiwei Cui,Martin P.van Koeverden,Markus Müllner,Kristian Kempe,Frank Caruso ⁎Department of Chemical and Biomolecular Engineering,The University of Melbourne,Parkville,Victoria 3010,Australiaa b s t r a c ta r t i c l e i n f o Available online 19October 2013Keywords:NanoparticlesPolymer architecture AssemblyLayer-by-layer Drug delivery NanotechnologyHollow polymer capsules are attracting increasing research interest due to their potential application as drug delivery vectors,sensors,biomimetic nano-or multi-compartment reactors and catalysts.Thus,signi ficant effort has been directed toward tuning their size,composition,morphology,and functionality to further their application.In this review,we provide an overview of emerging techniques for the fabrication of polymer capsules,encompassing:self-assembly,layer-by-layer assembly,single-step polymer adsorption,bio-inspired assembly,surface polymerization,and ultrasound assembly.These techniques can be applied to prepare polymer capsules with diverse functionality and physicochemical properties,which may ful fill speci fic requirements in various areas.In addition,we critically evaluate the challenges associated with the application of polymer capsules in drug delivery systems.©2013Elsevier B.V.All rights reserved.Contents1.Introduction ...............................................................142.Methods for polymer capsule assembly ...................................................152.1.Self-assembly ...........................................................152.2.LbL assembly ...........................................................162.2.1.Different layering methods .................................................162.2.2.Assembly interactions ...................................................162.2.3.Templates and polymer building blocks ...........................................172.3.Single-step adsorption of polymers to assemble polymer capsules...................................172.3.1.Mesoporous silica-templated capsules ............................................172.3.2.Bromo iso butyramide-mediated assembly ..........................................182.3.3.Polyrotaxane capsules ...................................................182.4.Bio-inspired polymer capsules ...................................................192.5.Surface and interfacial polymerization methods ............................................212.5.1.Grafting from hard templates ................................................212.5.2.Continuous assembly of polymers .............................................222.5.3.Soft template polymerization methods ...........................................222.6.Ultrasonic assembly of polymer capsules ...............................................243.Applications ...............................................................253.1.Biomimetic microreactors .....................................................253.2.Drug and vaccine delivery .....................................................264.Future perspectives ............................................................26Acknowledgments ...............................................................27References (27)1.IntroductionPolymeric capsules,containers with a structure composed of a hollow core and a polymeric shell,have shown potential application as drug carriers,microreactors,sensors,and arti ficial organellesAdvances in Colloid and Interface Science 207(2014)14–31⁎Corresponding author.Tel.:+61383443461;fax:+61383444153.E-mail address:fcaruso@.au (F.Caruso).0001-8686/$–see front matter ©2013Elsevier B.V.All rights reserved./10.1016/j.cis.2013.10.012Contents lists available at ScienceDirectAdvances in Colloid and Interface Sciencej o u r n a l h o m e pa g e :ww w.e l s e v i e r.c o m /l o c a t e /c i s[1–3].Generally,there are two main approaches to produce polymer capsules;template-free and template-assisted techniques.The most commonly used methods are the self-assembly of block copolymers [4],which is a template-free method,and the layer-by-layer(LbL) technique[5],which makes use of a sacrificial template.In recent years,several alternative techniques have been developed to endow polymer capsules with novel and interesting properties.A plethora of different polymers can be used to tune the properties of polymeric capsules for a desired purpose.Besides(natural)biopolymers,well-established controlled polymerization and efficient post-polymerization functionalization techniques have become indispensable tools to syn-thesize polymers of tailored length,composition and functionality. Hence,it is now feasible to prepare polymer capsules of diverse size, composition,morphology,and properties.In this review,we focus on the methodologies for the fabrication of polymer capsules via self-assembly and template-assisted approaches. We briefly highlight the application of polymer capsules as controlled drug and vaccine delivery vectors,and biomimetic microreactors. Emerging topics of interest,such as the assembly of capsules with different geometry(e.g.,shape and size)to modulate biological responses are also discussed.2.Methods for polymer capsule assembly2.1.Self-assemblyPolymersomes are synthetic vesicles comprising amphiphilic block copolymers,that is,polymers that consist of both hydrophilic and hydrophobic blocks,and can be considered the polymer analog of liposomes[4].Similarly,polymersomes are spherical structures with an aqueous core which is enclosed by a bilayer membrane.However polymersomes exhibit far greater mechanical stability than natural lipid membranes[4,6,7].Consequently,they hold great potential to be used in drug or gene delivery,as they are able to encapsulate or load therapeutic molecules into their core and/or the membrane compartment.Most reported polymersomes are based on diblock copolymers and triblock terpolymers(Fig.1).However,the desire to vary membrane conformation,increase functionality or mimic the asymmetric character of biological membranes has also led to the use of rather complex multiblock copolymers,or even blends of block copolymers.Synthetic polymers offer almost infinite options to control the structural and physicochemical properties of membranes and vesicles. While there are already excellent reviews on polymersomes and their potential applications,we focus here on their preparation and highlight the most commonly used methods for the fabrication of polymersomes.Polymersomes are formed via self-assembly or self-organization of block copolymers.The ratio of hydrophobic to hydrophilic block is therefore of great importance.Similar to surfactants,this ratio will dictate the self-assembly into either spherical or worm-like micelles or polymersomes[9].There are numerous studies highlighting the diversity of block copolymer assembly,their intermediate structures and potential applications[1,8,10–22].The most commonly used preparation methods for polymersomes are solvent-switching techniques (solvent displacement)[23,24]and polymer rehydration techniques (solvent free approach)[6,25–27].Solvent-switching generally describes the addition of a block selective solvent to a block copolymer solution in a good solvent for both blocks.This technique is not limited to,but mostly performed with,water as the selective solvent[16,28].Whereas the hydrophilic parts of the polymer prefer contact with water,the hydrophobic parts tend to avoid and minimize contact with water and hence are attracted to each other[8].This procedure is also referred to as‘phase inversion’. The addition of water can thereby be performed either slowly (drop-wise or during dialysis)or by a fast injection to the organic solution.Based on the same principle,it is also possible to form polymersomes directly in water.This can be achieved by dissolving an amphiphilic block copolymer directly in water(for example under the aid of sonication[29]or detergent[30,31]).Stimuli-responsive bishydrophilic block copolymers dissolved in water are reported to form polymersomes under external stimuli,such as pH[18,32–35],temperature[28,35–38], or light[39].An applied stimulus is then used to render one block hydrophobic,which subsequently triggers the self-assembly into polymersomes.Often,stimuli-responsiveness is reversible,which can be used to disassemble the polymersome again,leading to the release of encapsulated or loaded substances[40].Another commonly used method to prepare polymersomes is the rehydration of thinfilms of amphiphilic block copolymers.TheFig.1.(a)Schematic diagram of the structure of a polymersome in water,showing the hydrophobic membrane(red)and hydrophilic corona(blue).Polymersome membrane conformation formed by self-assembly of(b)AB diblock and(c)ABA triblock copolymers,and(d)ABC triblock terpolymers.Adapted with permission from Ref.[8].Copyright2009The Royal Society of Chemistry.15J.Cui et al./Advances in Colloid and Interface Science207(2014)14–31polymers arefirst dissolved in an organic solvent,followed by thinfilm formation via solvent evaporation.The subsequent addition of water results in rehydration of thefilm which,in turn,swells the polymer layers and forms protrusions that detach from the surface and close to form vesicles[8].Polymersome formation occurs purely in water and is essentially solvent-free;however,it strongly depends on the kinetics of the rehydration process.Faster rehydration,for example under the aid of vigorous mixing or sonication,leads to nanometer-sized vesicles.Other methods used to produce polymersomes include oil-in-water (o/w)emulsions[40,41],water-in-oil-in-water(w/o/w)double emulsions[42–45],inkjets[46],microfluidic devices[44,47–49], and electroformation[4].A common issue with non-templated techniques in general,and specifically with self-assembled polymersomes,is their polydispersity in size.Post-treatment,such as extrusion[50],sonication[26],or freeze–thaw cycles[26]have proved useful to homogenize polymersome size distributions.Recently,monodisperse polymer vesicles have also been produced via a template-directed approach combining photolithography and the rehydration technique[51].By using monodispersed templates,around which the polymer coating is formed,the LbL approach produces monodisperse polymer capsules.2.2.LbL assemblyIn the last20years,the layer-by-layer(LbL)technique has attracted significant interest in the fabrication of multilayer thinfilms[5,52–57]. Owing to its simplicity and versatility,researchers have reported numerous materials,templates and strategies which can be utilized for LbL assembly.A distinct advantage of the LbL technique is the precise control overfilm properties,such as thickness and morphology that can be obtained.In general,LbL assembly is suitable for the fabrication of multilayerfilms on planar as well as particle supports.In recent years, research has been devoted to developing methods to overcome the issues accompanied by the transition to particle templates,such as mechanical stability and aggregation.The assembly of polymers onto (sacrificial)spherical substrates yields nano-and microcapsules after removal of the template[5,56,58].The multilayer structure of these capsules enables the combination of different properties in one system, mostly governed by the material.These systems can be rendered responsive to external stimuli or allow for the loading with different cargoes[59,60],which are of interest for therapeutic delivery and microreactor applications[61–64].In the following subchapters layering methods and driving forces for multilayer assembly on particle supports that have been reported to date are briefly summarized.Furthermore,selected examples of polymeric materials applied for LbL assembly are presented.2.2.1.Different layering methodsIn template-assisted assembly,films can be formed by either surface-confined polymerization(Section 2.5)or by depositing (multiple)layers via LbL assembly[65].In recent years,different techniques have been applied for the fabrication of LbL capsules, including centrifugation,filtration and electrophoretic approaches (Fig.2).Depending on the type of polymers and templates,the tech-nique has to be chosen carefully to allow for optimal particle coating.Commonly,centrifugation of the particle suspension is employed to separate the free polymer from the coated particles(Fig.2a).However, this process requires multiple centrifugation and washing steps, rendering it time-consuming and labor-intensive.Furthermore, it suffers from the necessity to sediment the coated particles, which can promote aggregation,especially for smaller-sized templates. In contrast,the sequential addition technique uses precise concentrations of the layering material to coat the particles in suspension[66].Thus, there is no need for centrifugation;however,the precise control of all suspension components is rather complicated and does not prevent the formation of agglomerates.To overcome some of these drawbacks, other processes have been developed over the last decades.Membrane filtration(Fig.2b)[58]as well as electrophoretic polymer assembly (EPA)(Fig.2c)[67]represent continuous LbL processes.Both approaches allow the particles to remain suspended,lowering their tendency to agglomerate.In the membranefiltration approach,template particles and polymer are suspended in a stirred tank to achieve layer deposition. Free polymer is subsequently separated from coated particles by applying a pressure differential across thefilter membrane while adding a washing medium.Additional layer deposition is achieved by repeatedly adding oppositely changed polymer followed by a washing step.This approach is significant because it allows large quantities of microcapsules from diverse templates to be produced using an automated technique.However,appropriate selection offilter material, to prevent polymer adsorption andfilter obstruction,and the speed of filter cake formation,which leads to particle aggregation and damage, are critical factors that affect the process.Alternatively,the EPA method utilizes an agarose hydrogel to suspend template particles;layer deposition is then achieved by electrophoresis of polymers through the agarose gel.This technique allows a diverse size range of particles to be layered.However,successful layer deposition requires that the materials are mobile in electroosmoticflow,and separation of the coated particles from the immobilizing matrix requires the application of heat and centrifugation.2.2.2.Assembly interactionsFor the fabrication of LbL capsules,numerous interactions have been employed to date(Fig.3)[68].The alternate adsorption ofmaterialsFig.2.Schematic representation of LbL assembly of polymer capsules with different approaches:(a)centrifugation;(b)filtration;and(c)electrophoretic polymer assembly.Adapted with permission from Ref.[67].Copyright2013Wiley-VCH Verlag GmbH&Co.KGaA.16J.Cui et al./Advances in Colloid and Interface Science207(2014)14–31through complementary interactions can be realized by three main strategies:(a)electrostatic interactions between oppositely charged polyelectrolytes[69],(b)hydrogen bonding of hydrogen bond donor and acceptor polymers[70–72],and(c)covalent bonding for direct multilayer buildup and stabilization of pre-formedfilms[73],res-pectively.Besides,other chemical and physical interactions have been used to assemble and/or stabilize multilayerfilms,including: (d)DNA hybridization[74–79],(e)stereocomplexation[80,81], (f)hydrophobic[82],and(g)host–guest interactions[83–85]. The variety of interactions which can be applied for the fabrication of multilayerfilms further demonstrates the enormous potential of LbL assembly for the fabrication of smart delivery systems.2.2.3.Templates and polymer building blocksThe choice of the template,as well as the polymer system are crucial factors for the fabrication of polymer capsules with distinct properties and hence,applications.While the polymer system directly determines the properties of the capsules,template choice is of equal importance since the size and shape of thefinal capsules are mainly dependent on the templates.Suitable templates should be stable during LbL assembly and the process of template dissolution should not affect the structure and stability of the capsule shell.The most commonly used templates, along with their size range,shape,monodispersity,and the method of core removal are listed in Table1.As capsule wall materials,a large number of materials/polymers (Table2)have been used.Due to this variety,capsules can be tailor-made for certain applications by simply choosing the functional material.Among the materials available,polyelectrolytes are the most frequently used polymers for the fabrication of LbL polymer capsules.In recent years,functional polymers that are able to form multilayers through different assembly interactions(Fig.3)have been employed to assemble functional capsules.Particular attention has been focused on hydrogen bonding systems and efficient coupling reactions.For the former,hydrogen bonding donor(e.g.,PMA,PGA) and acceptor(e.g.,PVPON,PEG)polymers have been extensively studied because of their capability to form stable hydrogen bonding films.For covalent coupling of layers,polymers modified with, e.g.,alkyne and azide groups as well as aldehyde/epoxy and amino groups,which are able to undergo copper-catalyzed azide-alkyne cycloadditions(CuAAC),imine formations and ring-opening reactions, respectively,have been studied.Increasingly research is focused on using biomolecules,such as carbohydrates and peptides,due to their biodegradability.A summary of selected polymer examples,and their associated interactions as described above,is provided in Table2.2.3.Single-step adsorption of polymers to assemble polymer capsulesDespite significant progress in preparing LbL capsules using templated assembly,due to precise control over the size,composition,wall thickness and functionalities,LbL assembly typically requires multiple polymer adsorption steps,which can be time and material consuming. An alternative route to prepare polymer capsules in a minimum of steps is to exploit a surface-mediated,single-step deposition of polymer onto sacrificial templates.2.3.1.Mesoporous silica-templated capsulesMesoporous particles with large surface areas are able to entrap materials for the preparation of nanostructured materials[148–150],Fig.3.Different polymer interactions for the assembly of multilayer capsules(center).Interactions clockwise from left:(a)electrostatic;(b)hydrogen bonding;(c)covalent bonding;(d)DNA hybridization;(e)stereocomplexation;(f)hydrophobic;and(g)host–guest interactions.17J.Cui et al./Advances in Colloid and Interface Science207(2014)14–31since adsorption is a surface driven phenomenon.Recently,a general and facile approach has been reported for the fabrication of polymer capsules via the single-step adsorption of polymers in solid core/ mesoporous shell(SC/MS)silica particle templates,followed by cross-linking of the polymer chains,and subsequent removal of the templates(Fig.4)[151].Its versatility is proven in generating single-component capsules of synthetic polyelectrolytes(i.e.,PAH), polypeptides(i.e.,PLL and PGA),and polypeptide-drug conjugates (PGA-Dox).This approach offers several distinct advantages.First,it eliminates the need for multiple polymers and/or multiple polymer adsorption steps.Secondly,this method combines the versatility and benefits of the solid core particles(high stability and monodispersity)and the high loading of mesoporous shells to prepare thick-walled polymer capsules with controlled drug payload. In this technique,the size and thickness of the capsules can be controlled by the diameter of the solid core and shell thickness of the SC/MS template,respectively[152].However,the wall thickness of the capsules is also influenced by the molecular weight of the polymers, due to molecular weight-dependent infiltration of polymers into the mesopores[151],which demonstrates that size matching between the mesopores and polymers is critical,as small pore sizes will exclude larger molecules[153–155].2.3.2.Bromoisobutyramide-mediated assemblyFilm fabrication based upon the non-covalent interaction between various biopolymers and bromo iso butyramide(BrIBAM)moieties has been recently reported by Mertz et al.[156].In this method, biopolymers were adsorbed to the surface of BrIBAM-functionalized templates,which produced biopolymer capsules following template removal(Fig.5a).The versatility of the technique was demonstrated by forming capsules using a range of biopolymers,including the enzymes alkaline phosphatase(AP),horseradish peroxidase(HRP) and lysozyme(LYS),the antibody immunoglobulin G(IgG),the hormone insulin(INS),the polypeptide poly-L-lysine(PLL),single-and double-stranded DNA(DNA ss and DNA ds),and the poly-saccharide dextran(DEX)(Fig.5b–i).It was proposed that the adsorption of protein to the template and stabilization of thefilm was due to non-covalent halogen bonding between BrIBAM groups and the biopolymers[156],analogous to previously observed interactions between proteins and DNA with various bromoamide compounds[157].Due to the moderate mechanical stability of the protein capsules fabricated using a single adsorption step,two techniques were devised to improve the robustness of BrIBAM-mediated capsules.Cross-linking of the core-shell particles with an amine reactive cross-linker,followed by core removal produced stable capsules with improved colloidal stability in comparison to non-cross-linked BrIBAM capsules[158]. Importantly,the cross-linking process did not compromise the catalytic activity of the two capsule systems fabricated from enzymes,and allowed the fabrication of sub-micron sized protein capsules,which could not be achieved using a non-cross-linked BrIBAM adsorption process.Alternatively,mechanically stable capsules could be obtained by refunctionalization of a single layer core-shell particle with BrIBAM groups.Following this,additionalfilm deposition was achieved by repeated protein adsorption and BrIBAM refunctionalization[128].When the sequential adsorption process utilized the non-brominated IBAM,reduced layer buildup was observed compared to the BrIBAM case,supporting the conclusion thatfilm assembly was due to a combined halogen and hydrogen bonding network between BrIBAM groups and protein chains.2.3.3.Polyrotaxane capsulesDue to their novel material properties,the assembly of polymer nanostructures from supramolecular building blocks,in particular polymeric rotaxanes or polyrotaxanes(PRXs),is an emergingfield of research.PRXs are macromolecules that consist of a non-covalent, mechanically interlocked structure of cyclic molecules threading a linear backbone axis,analogous to beads on a necklace[159–161]. Among PRX materials,cyclodextrin(CD)and PEG-derived PRXs possess several advantages compared to alternative systems,due to the low inherent cytotoxicity of CDs and PEG,as well as low cost and commercial availability.The dynamic nature of this threading/dethreading requires that the free PEG chain ends are stoppered with bulky blocking groups to produce stable PRX molecules[160,161].Through the use of stimuli-responsive blocking groups,e.g.,redox or pH,PRXs can be engineered with degradable properties[162–164].The non-covalent nature of the material imparts several favorable properties.For example,variation of the molecular weight of the axial component and threading degree allows the persistence length and rigidity of the PRXs to be tuned [165,166].Moreover the non-covalent interaction between the cyclic and axial components allows both rotational and longitudinal movement of the cyclic component on the backbone axis.Importantly,this mobility results in improved multivalent binding interactions,due to the ability of the binding ligand to adopt a more favorable binding conformation, in comparison to covalent macromolecular building blocks[160,161]. These unique and interesting properties have led to increasing research interest into PRX building blocks.The presence of multiple hydroxyl groups around the CD torus allows the PRXs to be readily ing this approach,Dam and Caruso synthesized polyanion and polycation PRXs by functionalization of theαCD hydroxyl groups with carboxyl and amino moieties, respectively.These PRX polyelectrolytes were subsequently used to fabricate PRXfilms[162]and capsules[164]using the LbL technique. Due to the presence of a disulfide containing blocking group at the chain ends,incubation of the PRXfilms with the intracellular reducing agent glutathione(GSH)resulted in unblocking of the chain end,causing dethreading of theαCDs and subsequentfilm degradation intoαCD and PEG components.An alternative approach to LbL assembly,is the use of a radial assembly technique pioneered by Wu and Li,in which the PRX orientation is ideally directed away from the substrate,analogous to substrate tethered polymer brushes[167].In this example,gold nanoparticles(AuNPs)were PEG functionalized,then subsequently threaded withαCD.Following blocking of the free PEG chain end with2,4,6-trinitrobenzene sulfonic acid(TNBS),and intermolecularTable1Templates used for the fabrication of polymer capsules.Adapted with permission from Ref.[86].Copyright2004Wiley-VCH Verlag GmbH&Co.KGaA.Template Size(μm)Shape Monodispersity Core removal RefMelamine formaldehyde0.3–12Spherical Very high HCl(0.1M)[56] Polystyrene0.1–10Spherical Very high THF,DMF[87] SiO2(solid/porous)0.03–100Spherical,different aspect ratios High–very high HF/NH4F[88,89] CaCO3/MnCO32–10Spherical Medium EDTA[90–92] Red blood cell4–8Discocytes High NaClO(pH≈12)[93,94]Emulsion0.3–100Spherical Low Organic solvent[95,96] Bubble1–20Spherical Low N/A[97]18J.Cui et al./Advances in Colloid and Interface Science207(2014)14–31covalent cross-linking between the αCD toroids,PRX nanocapsules were obtained following AuNP etching (Fig.6).Alternatively,Dam and Caruso demonstrated the radial assembly of PRX capsules using pre-synthesized αCD/PEG PRXs [163].Alkyne end-functional PRXs were grafted to the surface of azido-functional silica particles.Following cross-linking of the PRX shell with a disul fide cross-linker and silica etching,hollow PRX capsules were e of a disul fide containing cross-linker and blocking group allowed degradation of the capsules to free PEG and αCD upon exposure to GSH.In combination with their readily tunable properties,the non-covalent nature of PRX building blocks,which engenders them withunique physicochemical properties,is likely to see increasing application in the assembly of polymer nano-and microcapsules for next generation applications.2.4.Bio-inspired polymer capsulesInspired by the adhesive properties of mussel proteins,polydopamine (PDA)films can be coated on a wide range of planar substrates via covalent polymerization and non-covalent self-assembly in typically alkaline solution [168–170].Based on this mussel-inspired catechol chemistry,PDA capsules have been prepared via single-step assembly of PDA films on silica particles,followed by template removal [171,172].Table 2Selected polymers and their respective modi fications applied for the fabrication of LbL capsules (a:electrostatic,b:hydrogen-bonding,c:covalent,d:DNA hybridization,e:stereocomplexation,f:hydrophobic interactions,g:host –guest interactions).PolymerModi fication (chemistry)Interaction Reference Synthetic polymers 01Poly(styrene sulfonate)sodium salt (PSS)a [56]02Poly(allylamine)(PAH)a [56](Imine formation)c [98]β-Cyclodextrin/ferroceneg [83]03Poly(diallyldimethylammonium)chloride (PDADMAC)a [99]04Poly(ethyleneimine)(PEI)a [100]05Na fion/Fe 3+a [101]06Poly(4-vinylpyridine)(P4VP)a [100,102]07Poly(meth)acrylic acid (PMA/PAA)a [103]Cysteamine (disul fide)b [104,105]PDS a (disul fide)b [106,107]Alkyne/azide (CuAAC)b,c [108]Alkene (thiol-ene)b [109]Azobenzene g [84]08Poly(2-diisopropylaminoethyl methacrylate)(PDPA)Alkyne (CuAAC)b [110]09Poly(N -vinylpyrrolidone)(PVPON)Alkyne (CuAAC)b [111,112]10Poly(hydroxy-propylmethacrylamide)(PHPMA)Dimethylaminoethyl (hydrolytically cleavable linker)a [113]Oligonucleotided [79]11Poly(N -isopropylacrylamide)(PNIPAM)Alkyne,azide (CuAAC)c [114]12Poly(diethylene glycol methacrylate-r -oligoethylene glycol methacrylate)(P(DEGMA-r-OEGMA))Alkyne (CuAAC)b [115]13Poly(methyl methacrylate)(PMMA)Isotactic/syndiotactic e [81]14Poly(glycidyl methacrylate)(PGMA)(Ring-opening)c [116]15NDR/MPR bAryl diazonium (azo coupling)c [117]16Poly(ferrocenylsilane)(PFS)Sulfonate/ethyl dimethyl ammonium a[118]Polypeptides,proteins,and DNA17Alkyne,azide (CuAAC)b [119,120]Poly-L -glutamic acid (PGA)Alkyne,azide (CuAAC)c [121]18Poly-L -aspartic acid a [122]Adamantaneg [85]19Poly-L -lysine (PLL)(Imine formation)a [123](Carbodiimide chemistry)c [124](CuAAC)c [121]20Poly-L -arginine a [113]21ProteinsAlbumin,protaminea [125–127]Bromo iso butyramide (BrIBAM)b [128](Glutaraldehyde)c [129]22Silk proteins PGA/PLLa [130,131](Physical cross-links,β-sheets)f [82]23Oligonucleotidesd [74–79]Polysaccharides 24DextranSulfatea [132–134]Alkyne,azide (CuAAC,carbonate linker)c [135]Carboxymethyl/α-cyclodextring [84]Dialdehyde/β-cyclodextrin (hydrolytically cleavable linker)g [85]25Chitosana [136]Quaternized a [137]Sulfate a [138]26Hyaluronic acid Alkylateda [137]27Alginatea [125]Dialdehyde (imine formation)c [139]Other 28Liposomes (Capsosomes)a,f [140–147]a Pyridine dithioethylamine.bN -methyl-2-nitro-diphenylamine-4-diazoresin/m -methylphenol-formaldehyde resin.19J.Cui et al./Advances in Colloid and Interface Science 207(2014)14–31。

材料科学专业英语词汇(F)_材料专业英语词汇

材料科学专业英语词汇(F)_材料专业英语词汇

f.d.p (firths decay proof)f.d.p [不锈]钢f.s.l. 一种含0.05%c, 18.5%cr, 10%ni 之低碳不锈钢faber du faur retort 法普佛甑fabriacation 制造,打造构制,组合face brick 饰砖face down bonding/face bonding 面朝下接合face wall 面墙face-centered cubic (f.c.c.)面心立方face-centered cubic (fcc)面心立方face-centered cubic lattice 面心立方格子face-centered orthorhombic 面心斜方facet 小面facience 法恩陶facing brick 面砖facing sand 面砂facing target sputtering (fts)system 相面对靶子溅镀系统factor of safety 安全因数fahlum metal 法鲁金属(pb60%, sn40%)fail bit map 错误位元图表fail mark 不良记号fail-make inspection function 不良标记检查功能failure analysis 损坏分析failure analysis memory 故障解析记忆器falling weight test 落重试验false path problem 错误路径问题false set 假凝famille noire enamel 黑地彩famille rose 胭脂红;粉彩famille verte 绿地形family box 族系箱family head 族系原头faraday effect 法拉第夜应faraday system 法拉第系统fast breeder reactor 快滋生反应,快增殖反应器fast neutron 快中子(能量超过0.1mev)fast traverse 快速通过速度fat clay 富黏土(从土木)fat sand 高黏土砂fatigue corrosion 疲劳腐蚀fatigue crack 疲劳裂痕fatigue fracture 疲劳破裂fatigue limit 疲劳限fatigue notch factor 疲劳凹痕因数fatigue test 疲劳试验fatigue test machine 疲劳试验机fatigue tester 疲劳试验机fault 缺陷fault analysis 故障分析fault circuit 故障电路fault coverage 故障概括率fault dictionary 故障辞典fault simulator 故障模拟器fayalite 铁橄榄石,铁矽酸盐faying surface1 接合面2 待接合面feal 费尔合金(25%al, 其余为fe 有良好制振性) feather combing 梳花feather marking 羽状痕迹feed gums 种籽胶feed ring 环冒口feed riser 冒口feed water 给水feeder 饲机feeder channel 饲槽feeder gate 饲料闸feeding rod 冒口搅棒feldspar 长石feldspathic glaze 长石岫feldspathoid 似长石felsophyne 矽长斑石felsparfeldspar feltmetal 金属纤维毡feran 包铝钢条fermi level 费米准位(原子)fermi surface 费米面(原子)fermium (fm, 100)镄fernichrome 费理铬(一种能封入铅玻璃内之材料,含37%fe,30%ni,25%co,8%cr)ferrari cement 佛拿里水泥ferric oxide 三氧化二铁ferrimagnetism 亚铁磁性ferrious material 铁系金属ferrite1 肥粒铁2 磁性氧化物ferrite (ceramic)1肥粒铁2磁性氧化物ferrite grain size 肥粒铁晶粒度ferrite martensite 肥粒形麻田散体ferritic cast iron 肥粒铁铸铁ferritic decarburized depth 脱炭层之肥粒铁深度ferritic stainless steel 肥粒铁不锈钢ferro boron 硼铁ferro-alloy (ferroalloy)合金铁ferro-bronge 铁青铜(8%fe, 0.7%cr, 其余为cu)ferro-chrome 铬铁ferro-electric materials 铁电材料(如batio3)ferro-manganese 锰铁ferro-molybdenum 钼铁ferro-phosphorus 磷铁ferro-silicon 矽铁ferro-titanium 钛铁ferro-tungsten 钛铁ferro-vanadium 钨铁ferrochrome-silicon 矽铬铁ferroele ctric 强电介体(从电机)ferroelectric thin film 铁电薄膜强诱电体薄膜ferrograph 磁滞仪ferrolum 包铅钢ferromagnetic 强磁的ferromagnetic domain wall 铁磁区壁ferromagnetic spinel 铁磁性尖晶石ferromagnetism 铁磁性,强磁性ferromanganese-silicon 矽锰铁ferron 福朗(含35%ni, 15%cr,其余为铁的一种抗氧化合金) ferronickel 镍铁ferrose-forric oxide 磁性氧化铁(fe3o4) ferroselenium 矽铁ferrostan 电镀马口铁(镀锡冷卷钢)ferrous alloy 铁合金ferrous metallurgy 钢铁冶金学ferrous oxide 氧化亚铁ferrox cube 软磁磁体族ferry 福里合金(一种含55%cu, 45%ni 之高电阻材料,类似康史登钢)fertile material 可育材料fery radiation pyrometer 费氏辐射高温计fetrafluoroethylene oxide 氧化四氟乙烯fettling 修整(1 铸件加工前之修整 2 炉衬之修整) fiber metal 纤维金属fiber reinforced plastice (frp)纤维加强塑胶fiber stress 纤维应力fiberfax 岩绒,金刚纤维fiberglass 玻璃纤维fibre, ceramic 陶瓷纤维fibrous falc 纤维状滑石fibrous structure 纤维组织fick's first law 菲克(扩散)第一定理fick's law 菲克[扩散]定律fick's second law 菲克(扩散)第二定理fiducial mark 基准标记field batch weight 工地盘重field control 工地控制field effect transistor (fet)场效应电晶体field-drain pipe 工地排水管figured glass 压花玻璃filberflow 纤维流纹filed programmable gate array 现场可程式闸门阵列filed programmable interconnect 现场可程式互接filler 填充料filler metal 熔填金属fillet 接合剂渗出痕迹,接合轮廓film strength 乾釉强度film test 薄膜试验filter (活性炭)过滤器filter block 泸砖filter candle 泸筒filter cke 泸饼filter cloth 滤布filter press 压滤机filtration equipment with coagulation 凝聚过滤设备fin 缝翅final energy magnet 终极能量磁铁final polishing 最後加工抛光仕上研磨final test 最後测试final wafer test 晶圆後端测试fine aggregate 细骨材fine alignment 精细对准fine gilt 薄层镀金fine grain 细晶粒,细[颗]粒fine grinder 细研机fine grinding 细磨fine pearlite 微粒波来铁fine pitch 精细节距fine powder 超微粒fine-grained steel 细晶粒钢fineness moldulus 细度模数fineness of cement 水泥细度finess number 粒度(铸砂)finger gate 指形铸口finial 屋脊饰fining 澄清finishability 饰面难易度finished steel 精炼钢finishing impression 完成型finishing machine 整面机finishing mill 完成巴机finishing roll 未巴辊finishing temperature 完成温度fink process 芬克浸铝法finkle-mchr process 芬克莫尔法finl set 终凝finyl chloride polymers 氯乙烯聚体fir brick 火砖fir resistance 耐火性fire back 垫[背]火砖fire box 火箱fire brick 耐火砖fire bridge 火坝fire clay 耐火泥fire crack 热裂fire finished 火修光fire magnesite-chrome brick 烧镁铬砖fire mark 火痕fire pillar 火柱fire polished 火焰磨光fire proofing tile 坐火瓦fire refining 火法精炼fire sand 耐火砂fire welding 固态接合,接火fire-box steel 火箱钢fire-cracking 热裂firecaly 火黏土fired chrome brick 烧铬砖fired magnesite brick 烧镁砖firestone 耐火石firing1 烧成2点火firing expansion 烧制膨胀firing range 烧制范围firing shrinkage 烧[成][收]缩firingtemperature 烧成温度first bonding 第一接合,第一压接first coat1 底漆2 第一涂层first dislocation generation 初次发生位错first stage annealing 第一段退火firsts 一级品firth hardometer 费氏硬度计firty 耐火性fish scale 鳞状破面fish-scale 鳞剥fisheyes 鱼眼(因氢脆性之裂开面)fishtail 鱼尾式fissile material 可分裂材料fission 分裂fission fragment 分裂碎片fission poison 分裂毒物fission product 分裂产物fissionable material 可分裂材料fissium 分裂碎片合金fitting 配件five points thickness variation5 点厚度变动fixed carbon 固定碳fixing block 受钉砖块fixture board 夹具基板fizeau interferometer method 菲氏干涉计法flabby cast 软铸物flake1 小片2 裂纹3 白疵flake graphite 片状石墨flake graphite cast iron 片状石墨铸铁flaking 剥落flame annealing 火焰退火flame cleaning 火焰清除法flame cutting 火焰切割flame hardening 火焰硬化flame photometer 焰度计flame plating 焰镀[法]flame scaling 焰烤锌皮法flame sensor 火焰感测器flame softening 火焰软化flame spectro fluorimetry 火焰光谱分析flame spraying 火焰喷涂flame straightening 火焰矫直flame strengthening 火焰强化flame-plating 火焰涂层flame-spraying 焰喷[法]flame-tempering 火焰回火flameless combustion 无焰燃烧flanging 摺缘flappin [of copper] 翻搅flare bed 发焰道flare test 顶进定量变形试验(与drift test 同) flaring 扩口flash 飞边,溢边flash and fire point test 闪点及燃点试验flash lamp annealer 闪光灯退火处理机flash memory e/w cycle test system 快闪记忆体删除写入周期测试系统flash point 闪点flash radiography 闪烁放射性摄影flash roasting 闪燃煆烧flash shield 溢边护罩flash wall 闪火墙flash welding 闪电熔接flash-butt welding 闪电对头熔接flask1 砂箱2 烧瓶flat bar1 扁条2 扁条钢flat collet 平面吸具flat dies 平模flat grain 平纹flat zone length 热平坦区长度flat-die forging 平模锻造,平模锻件flat-die hammer 平模鎚flat-ware 浅皿flatness 平面度flatness quality area 平面度适用区域flats 扁钢(1/8~1/4寸厚两尺以卷宽之卷钢片)flattener 矫平机具flatting 平整[法]flemish bond 法式砌法(从土木)flexibility 凸挠性flexural strength 抗弯强度flexure tests 弯曲试验flint 火石,燧石flint clay 燧石黏土flint glass 火石玻璃flint shot 燧石粒flip chip bonder 倒装片接合机flip chip bonding 侧装片接合float glass process 浮制玻板法float polishing 浮动抛光float test index 浮游试验指数floatation equipment 漂浮分离设备floater 浮舟(玻)floating agent 浮剂floating die 浮动模floating license 浮动许可证floating zone crystal growing 浮融带晶体生长法floating zone melting method 浮动区熔法floating-zone refining 浮融带纯化floc testwater test flocculant 絮凝剂flocculation 絮凝,凝聚flong 纸型(活字版铸版用)flood casting 泄注法floor brick 地砖floor molding 地模法floor planner 平面规划器floor quarryquarry tile floor tile 铺地砖flotation 浮选flow ability 流动性flow ability of sand 铸砂流动性flow blue 霁青flow brightening 亮锡法flow coating 流动施膜flow line1 加工流程2 锻造流线flow line network 流线网,流程网flow machine 致流机flow off 溢流口flow pattern defect 流体图案缺陷flow spinning 切刀旋转法flow stress 流度应力flow table 流度台flow test 流度试验flow through 溢流道flow welding 熔流熔接fluctuating stress 波动应力flue gas 烟道气fluid-energy mill 流体能磨fluidity 流体性fluidity index 流体性指数fluidized bed 流体化床fluidized sand 流动性铸砂fluidized sand molding 流动性铸砂造模法fluidized-bed coating 流体床法护膜fluon 氟罗央(ptfe 的商业名称) fluorescence 萤光fluorescence analysis 萤光分析fluorescence particle inspection 烛光颗粒检验fluorescent material 萤光材料fluorescent penetrant test 萤光透入剂试验fluorite 萤石fluorite (fluorspar)萤石fluoroscopy 萤光分析术fluorspar 萤石flush quenching 闪激卒火flux1 助熔剂2焊剂3熔剂4通量(磁电)flux factor 熔剂因数flux line 玻膏面flux-covering 熔剂覆盖fluxing 熔剂处理fly ash 飞灰flying arch 跳顶拱flying saw 随动锯机flying shear 随动剪机flying spot microscope 飞点式显微镜foam concrete 泡沫混凝土foam glass 泡沫玻璃foamed clay 起泡黏土foamed concrete 起泡混凝土foaming 起泡focal plane 焦点平面focal plane deviation 焦点平面偏差fog quenching 喷雾卒火foil 箔foil heat treatment 箔袋热处理fold 摺痕folding defect 摺叠瑕疵follow board 嵌模板fool's gold 愚人金(黄铁矿fes2) foolner process 福药法(磷酸盐处理) foot print 脚印footing 基脚foppl test 福贝耳[硬度]试验forbidden band 禁带(原子)force fill process 加压填埋空隙forced draft 强制通风forced gas convection 强制气对流fore blow 前期吹风fore hand welding 前进熔接fore hearth 前炉foreign atom 外来原子forge hammer 锻鎚forge iron 锻铁forge rolls 锻辊forge welding 锻造熔接,锻接forgeability 锻造性forged steel 锻钢forging 1锻造2锻件forging dies 锻模forging machine 锻机forging, closed-die 1闭模锻造 2 闭模forging, cold 冷模forging, flat-die 1 平模锻造 2 平模forging, hammer 鎚锻forging, hand 手工锻造forging, high-energy-rate 高能率锻造forging, high-velocity 高速锻造forging, hot 热锻forging, machine 机械锻造forging, open-die1 开模锻造2 开模锻件forging, pancake 扁圆锻件forging, press 压机锻造forging, roll 轧机锻造forging, smith 手工锻造forging, upset1 锻粗锻造2 锻粗锻件fork 铁叉form chamfering 整形去角取面formability 成形性formal verification 正式验证formatter 格式编制器forming 成形forming gas 组成气体forming, bulge 胀大成形forming, compression 压缩成形forming, contour roll 型辊成形forming, creep 潜伸成形forming, drop hammer 落鎚成形forming, electrohydraulic 电液成形forming, electromagnetic 电磁成形forming, explosive 爆炸成形forming, high-energy-rate 高能井成形forming, hydraulic 液压成形forming, magnetic pulse 电磁震动成形forming, multiple-slide 多滑块成形forming, press 压机成形forming, press-brake 折条机成形forming, radial-fraw 径拉成形forming, rubber-diaphram 橡胶膜成形forming, rubber-pad 橡胶垫成形forming, rubber-punch 橡胶冲成形forming, shrink 收缩成形forming, stretch 拉伸成形forming, three-roll 三辊成形forming, wacuum 真空成形forming, wire 线料成形forms 模板forrester flotation machine 富尔斯特浮还机forsterite 镁橄榄石forsterite (mg2sio4)矽酸镁石forward annotation 正向注解forward extrusion 顺向挤制forward spinning 顺向旋挤forward welding 前进熔接foucault current method 傅科电流法fouling 积垢(船底海藻贝壳)fouling index(fi)污浊指标(fi)fouling resistance 防垢性(铅底) foundation 基础founder 铸工founding 铸造foundry1 铸造2铸造场foundry coke 铸焦foundry defects 铸疵foundry ladle 铸造浇斗,铸造盛通foundry losses 铸造损耗foundry pig 铸造生铁foundry pig iron 铸造用生铁foundry returns 回炉料foundry sand 铸砂foundry type metal 手植活字合金four (point)probe method 四(点)探针法four-high mill 四辊巴机,四重式轧机four-way type 四方向方式fourier transform infrared spectroscopy 傅立叶转换红外光谱学four(point)probe method 四(点)探针法fractional crystallization 分段结晶fractography 断口型像学fracture mechanics 破断力学,破坏力学fracture stress 破断应力fracture surface 破断面fracture test 破断试验fracture toughness 破裂韧性fracture transition 脆断转移[温度]frame filter press 框式压泸机frame memory 视帧记忆器;图框记忆器frame work structure 构架结构framework 架构francium (fr, 87)金法frand-read source 法一瑞式[差排]源frank partial dislocation 法兰克部份差排frary metal 法拉钡合金(一种铅钨钡合金)free carbon 游离碳free cementite 游离雪明碳铁free cutting brass 易切黄铜free cutting bronze 易切青铜free cutting steel 易切钢free electron 自由电子free energy 自由能free ferrite 游离肥料铁free lime 游离石灰free water 游离水份free-cutting metal 易切金属free-flow bender 开放弯曲机freeze-casting 冻铸法freezing 冷凝,冻结凝固freezing and thawing test 冻结融解试验freezing cuve 冷凝曲线freezing method 冷凝法freezing point1 凝固点; 2 冰点freezing range 凝固范围french chalk 法兰西白呈(即滑石3mgo4sio2、h2o)french metal 法兰西金属(一种精炼锑)french process 法兰西法(一种提锌法)frenkel defect 佛兰克缺陷(晶格缺陷)fresh water 淡水fretling corrosion[ 紧压]磨蚀,移擦腐蚀friction element 摩擦元件friction oxidation 摩擦氧化friction pressfriction-screw press friction sawing 摩擦锯切friction screw press 摩擦螺杆压机friction welding 摩擦熔接frictional loss 摩擦损耗frifluoroacetylnitrile 亚硝酸三氟乙醯fringe 晕纹frit 熔块;玻料fritted glass ware 玻釉玻璃器fritted glaze 熟釉;玻料釉fritted porcelain 玻料瓷fritting1 烧结(同sintering) 2 上釉料frizzling 绉缩(陶)frog ring 辙叉环fromont test 傅瑞孟[冲击]试验front end design 前端设计front side reference method 前侧基准法front slagging 前渣法frontier alloy 佛兰提合金(一种铝锌合金) frost glass 磨砂玻璃froth flotation 泡漆浮选fry's reagent 傅蕊族剂fuel cell 燃料电池fuel cell stack 燃料电池堆fuel cycle 燃料循环fuel element 燃料元件fuel fabrication 燃料构制fuel oil 燃料油fuel ratio 燃料比fuel reprocessing 燃料再处理fugacity (fugasity)1 挥发度 2 挥发性full annealing 完主退火full automatic growing furnace 全自动成长炉full cutting 全切割full hardening 完全硬化full insert 整体嵌件full mold process 全模法full site 全体区分地段full-killed steel 全静钢full-mould casting process 金模铸造法fuller 半圆型鎚fuller earth 漂白土fuller's ideal curve 富乐理想曲线fullering 歛缝,填隙fullering bar 填隙棒fullering fmpression 歛缝型fully-killed steel 全静钢fulminates 雷酸盐(不稳定易爆材料)fume 烟气function test 功能测试functional ceramics 功能陶瓷functional description language 功能记述语言functional schematic editor 功能检图编辑器fundamental vector furnace 基本向量炉fundation translation vector 基本平移向量funerary ware 明器furnace angle 炉体倾斜角furnace annealer 电热炉退火处理机furnace lift travel 炉移动行程furnace lining 炉衬furnace tube cleaning equipment 炉心管洗涤设备furnace, baking 烘焙炉furnace, batch [type] 批式炉furnace, bell-type 钟罩式炉furnace, bogie hearth 钟罩式炉,拖车式炉furnace, box 箱式炉furnace, car bottom 车底式炉furnace, chain type 链式炉furnace, continuous 连续式炉furnace, continuous-strand 连绩回式炉furnace, conveyor (conveyer)输送带炉furnace, direct arc 直接电弧炉furnace, high frequency 高周波电炉furnace, holding 保温炉furnace, indirect arc 间接电狐炉furnace, lift off cover 离盖式炉furnace, overhead conveyer 高吊输送炉furnace, pit 坑式炉furnace, preheating 预热炉furnace, pusher 推式炉furnace, remelting 再泰炉furnace, roller hearth 滚子炉furnace, rotary-hearth 转膛炉furnace, screw feed 螺旋送料炉furnace, slot-type 槽式炉furnace, tunnel 隧道炉furnace, walking beam 动梁炉fuse data 熔丝资料fuse link 链丝熔丝fuse-quench process 熔化急冷法fused alumina 熔凝铝氧fused quartz 熔凝石英fused sand 熔砂fused silica 熔矽石fused zone 泰融带fused-cast refractory 熔铸耐火材料fused-salt electrolysis 泰盐电解fused-silica frick 熔凝矽砖fused-silica refractory 泰凝矽质耐火材料fusible alloy 易熔合金fusible pluger 易熔塞fusing pyrometer 融点高温计fusion1 熔化,熔解 2 熔合(核子)fusion casting 熔铸法fusion of packing materials 填料熔合fusion penetration 熔融穿入fusion point 熔融点fusion range 熔融区fusion sawing 熔融锯fusion temperature 熔融温度fusion welding 熔融泰接fusion-flow test 熔流试验(搪瓷) fuzzy texture 疏松结构(搪瓷)。

材料专业英语词汇

材料专业英语词汇

材料专业英语词汇AAbrasive. 研磨剂。

一种硬质、耐磨材料(一般为陶瓷),用于研磨、碾碎或切割其他材料。

Absorption吸收。

一种光学现象,指光的光子能量由于电子极化或电子激发被某一种物质吸收。

Acceptor level.受主能级。

对于半导体或绝缘体,处于禁带底部的能级有可能接受价带的电子并留下空穴。

此类能级一般由杂质原子引入。

Activatioin energy (Q).激活能。

反应发生所需的能量,例如扩散激活能。

Activation polarization.活化极化。

一系列步骤中,进行最缓慢的步骤控制着电极反应速度的条件下造成的极化称为活化极化。

Addition (or chain reaction) polymerization.加聚作用(链式反应聚合)。

此过程中,两个具有不同功能的独立个体呈链状聚合在一起,形成线性聚合物大分子。

Adhesive.胶粘剂。

可以使两个物体(称为被粘物)的表面连接在一起的物质。

Age hardening. See Precipitation时效强化,见沉淀强化。

Allotropy.同素异形性。

一种物质(一般为基本固体)可能存在两种或者更多的晶体结构的现象。

Alloy.合金。

两种或多种元素组成的金属。

Alloy Steel.合金钢。

含有适当浓度合金元素(除了C 和残余的Mn,Si,S和P)的铁(或铁基)合金。

这些合金元素的加入通常可以改善合金的力学性能和耐蚀性。

Alternating copolymer. 交替共聚物。

两种不同单体沿分子链相间排列的共聚物。

Amorphous.无定形的。

(一种物质)具有非晶体结构。

Anelastic deformation.滞弹性变形。

具有时间依赖性的弹性(非永久性)变形。

Anion.负离子,阴离子。

负电量的,非金属离子。

Anisotropic.各向异性。

不同晶向上具有不同的性质。

Annealing.退火。

一类热处理术语,此类热处理可以改变材料组织和性能。

文献检索Word 文档

文献检索Word 文档

碳纳米管的研究检索题目:纳米管的研究检索检索时间:2010年10月20检索地点:图书馆一:分别用scifinder数据库和EBSCOhost 数据库检索一个课题的相关文献(一)检索方式:Scifinder检索词Carbon nanotubes(碳纳米管)Bibliographic Information(文献信息)The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers.Soitong, Tawat; Pumchusak, Jantrawan. Department of Physics and Materials Science, Faculty of Science, NANOTEC Center of Excellence, Chiang Mai University, Chiang Mai, Thailand. Journal of Materials Science No pp. yet given. Publisher: Springer, CODEN: JMTSAS ISSN: 0022-2461. Journal written in English. AN 2010:1306008 CAPLUSAbstract(摘要)This study aimed at the fabrication of lightwt. and high performance nanocomposite fibers. Polypropylene/multiwalled carbon nanotubes (PP/MWCNTs) nanocomposite fibers (0-5 wt% of MWCNTs) were prepd. via melt spinning process. The MWCNTs were dispersed in the dispersing agent before mixing with PP powder. After mixing, the dispersing agent was removed. Then the nanocomposites were spun into fibers. The fibers were spun and stretched with 7.5 draw ratios. Crystn. behavior and thermal properties of PP/MWCNTs nanocomposite fibers were studied using the differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The DSC curves of PP/MWCNTs nanocomposite fibers showed the crystn. peak at a temp. higher than that of neat PP fibers. These results revealed that the MWCNTs acted as nucleating sites for PP crystn. The addns. of MWCNTs into PP leaded to an increase in both crystn. temp. and crystn. enthalpy. However, no significant changes in the melting temps. of the PP nanocomposites were detected. Degrdn. temp. of samples obtained from the TGA curves showed increase thermal degrdn. behavior for thePP/MWCNTs with the content of MWCNTs. It was found that the increase of tensile strength and modulus corresponded well with the increase of crystallinity of the composite fibers. (二)检索方式:EBSCOhost作者:Nagarajan, R.1Bradley, R. Ashton1Nair, Bindu R.1来源: Journal of Chemical Physics; 9/14/2009, Vol. 131 Issue 10, p104906, 13p, 3 Graphs文献类型: Article主题语: *THERMODYNAMICS*CHEMISTRY, Physical & theoretical*THERMODYNAMIC potentials*CARBON nanotubes*NANOTUBES*FULLERENES摘要:Two molecular modes of amphiphilic block copolymer-carbon nanotube interactions have been identified in the literature, one involving the adsorption of individual block copolymer molecules on the carbon nanotubes and the other involving the adsorption of multimolecular, spherical micelles. In both cases, the nature of stability imparted to the dispersion of carbonnanotubes in the aqueous medium is kinetic, controlled by the steric barrier imposed by theadsorbed individual block copolymer molecules or the adsorbed micelles. In this study, wepropose another mode of molecular interaction, wherein the block copolymer moleculesself-assemble around the nanotube, generating aggregates in which the nanotubes aresolubilized. In this case, the resulting system is a thermodynamically stable nanocolloidalsolution, similar to aqueous surfactant solutions, in contrast to the kinetically stabilizednanotube dispersions. To examine whether such solubilization of nanotubes is possible, wehave constructed a simple phenomenological theory for the free energy change associated with solubilization and have performed illustrative numerical simulations based on the theory. Thecalculated results for the commercially available symmetric PEO-PPO-PEO triblock copolymersand for the PEO-PPO diblock copolymers having the same composition and molecular weight as the triblocks show that indeed the block copolymer molecules are capable of solubilizing thecarbon nanotubes. While the block copolymers whose natural curvature is cylindrical are the best candidates to solubilize the nanotubes, other block copolymers whose natural curvature is spherical or lamellar, are also found capable of solubilizing the nanotubes. Mostinterestingly, the solubilization is found to be size specific suggesting that this can be developed into a practical method to fractionate carbon nanotubes by their diameter. These results are applicable to both single-walled and multiwalled carbon nanotubes and the generalconclusions are valid also for other diblock and triblock copolymers. [ABSTRACT FROMAUTHOR]Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without thecopyright holder's express written permission. However, users may print, download, or emailarticles for individual use. This abstract may be abridged. No warranty is given about theaccuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)作者单位:1Molecular Sciences and Engineering Team, Natick Soldier Research, Development and Engineering Center, Kansas Street, Natick Massachusetts 01760ISSN :00219606DOI:10.1063/1.3216569入藏编号:44169286数据库: Academic Source Premier二:检索与化学有关的专利一项检索工具:万方数据检索途径:专利检索专利名称:一种碳纳米管电子发射体及其制备方法申请(专利)号: CN200910022662.8申请日期: 2009-5-22公开(公告)日: 2009-12-2公开(公告)号: CN101593649主分类号: H01J9/02(2006.01)I分类号:申请(专利权)人: 彩虹集团公司发明(设计)人: 李军主申请人地址: 712021陕西省咸阳市彩虹路1号专利代理机构: 西安通大专利代理有限责任公司代理人:陆万寿国别省市代码: 陕西;61主权项: 1、一种碳纳米管电子发射体制备方法,其特征在于,该方法按照以下步骤:(1)制备碳纳米管浆料:用一端附有催化剂金属颗粒的碳纳米管粉、有机溶剂、金属填料和低玻粉制备碳纳米管浆料;碳纳米管浆料中碳纳米管的质量分数为8%-20%、金属填料质量分数为5%-12%、低玻粉的的质量分数为5%-12%,余量为有机溶剂;所述碳纳米管粉的直径为20-40纳米、长度为20-40微米;(2)印刷碳纳米管浆料:用精密丝网印刷机,采用250目的不锈钢丝网将配制好的碳纳米管浆料印刷于制作好ITO电极的玻璃基板上;(3)制备定向碳纳米管电子发射体:碳纳米管一端的金属颗粒在磁场的磁力作用下带动碳纳米管的一端向上移动,最后大部分碳纳米管将转动到与基板面垂直的方向,然后将基板在120℃干燥20分钟后进行烧结;将烧结后的带有垂直碳纳米管的基板放入氢等离子体中,用等离子体轰击基板表面,同时将尾气抽走,获得碳纳米管电子发射体。

高分子材料专业词典

高分子材料专业词典

[二]茂金属催化剂|metallocene catalyst1,1-亚乙烯基单体|vinylidene monomer1,2-polybutadiene|1,2-聚丁二烯1,2-polyisoprene|1,2-聚异戊二烯1,2-二取代乙烯单体|vinylene monomer1,2-聚丁二烯|1,2-polybutadiene1,2-聚异戊二烯|1,2-polyisoprene1,2-亚乙烯基单体|vinylene monomer1,4-polybutadiene|1,4-聚丁二烯1,4-聚丁二烯|1,4-polybutadiene2,2'- azobisisobutyronitrile|2,2′偶氮二异丁腈, AIBN2,2′偶氮二异丁腈|2,2'- azobisisobutyronitrile, AIBN3,4-polyisoprene|3,4-聚异戊二烯3,4-聚异戊二烯|3,4-polyisopreneabhesive|阻黏剂ablative polymer|烧蚀橡胶ablator|烧蚀剂accelerated ageing|加速老化accelerated sulfur vulcanization|促进硫化acetal resin|缩醛树脂acetylenic polymer|乙炔类橡胶acrolein polymer|丙烯醛类橡胶acrylate rubber|丙烯酸酯橡胶acrylic fiber|聚丙烯腈纤维,腈纶acrylic polymer|丙烯酸[酯]类橡胶acrylic resin|丙烯酸[酯]类树脂acrylonitrile styrene resin|丙烯腈-苯乙烯树脂, ASacrylonitrile-butadiene-styrene resin|丙烯腈-丁二烯-苯乙烯树脂, 简称“ABS树脂”activated monomer|活化单体activated polycondensation|活化缩聚activating accelerator|活化促进剂activation grafting|活化接枝activator|活化剂active carbon fiber|活性碳纤维active center|活性中心activity of initiator|引发剂活性addition fragmentation chain transfer|加成断裂链转移addition polymer|加[成]聚[合]物addition polymerization|加聚additive|添加剂adhesion|粘合adhesive|粘合剂,又称“胶粘剂”adjacent re-entry model|相邻再入模型adsorption polymerization|吸附聚合after-treating agent|后处理剂agar-agar|琼脂agglomerating agent|附聚剂aggregate|聚集体aggregation|聚集albumin|白蛋白aldehyde polymer|醛类橡胶alfin initiator|烯醇钠引发剂aliphatic epoxy resin|脂肪族环氧树脂aliphatic polyester|脂肪族聚酯alkyd resin|醇酸树脂alkyllithium initiator|烷基锂引发剂allene polymer|丙二烯橡胶allyl resin|烯丙基树脂allylic polymerization|烯丙基聚合alternating copolymer|交替共聚物alternating copolymerization|交替共聚合aluminate coupling agent|铝酸酯偶联剂amine cellulose|胺纤维素amino resin|氨基树脂Aminotriazine resin|三聚氰胺树脂amorphous orientation|非晶取向amorphous phase|非晶相,无定形相amorphous region|非晶区amorphous state|非晶态amphiphilic block copolymer|两亲嵌段共聚物amphiphilic polymer|两亲橡胶amylopectin|支链淀粉amylose|直链淀粉amylum|淀粉anaerobic adhesive|厌氧黏合剂analysis of end group|端基分析anion exchange resin|负离子交换树脂anion radical initiator|负离子自由基引发剂anionic cyclopolymerization|负离子环化聚合anionic electrochemical polymerization|负离子电化学聚合anionic exchange membrane|负离子交换膜anionic isomerization polymerization|负离子异构化聚合anionic polymerization|负离子聚合,阴离子聚合anisotropic membrane|各向异性膜anti-aging agent|防老剂anti-corrosion agent|防蚀剂anticracking agent|抗龟裂剂antidegradant|抗降解剂anti-fatigue agent|抗疲劳剂antifoaming agent|消泡剂antioxidant|抗氧剂antiozonant|防臭氧剂anti-reversion agent|抗硫化返原剂antiseptic|防霉剂anti-skinning agent|防结皮剂antistatic additive|抗静电添加剂antistatic agent|抗静电剂apparent molar mass|表观摩尔质量apparent molecular weight|表观分子量apparent shear viscosity|表观剪切黏度aramid fiber|聚芳酰胺纤维,芳纶,芳香尼龙aromatic polyamide|聚芳酰胺aromatic polyester|芳香族聚酯aromatic polysulfonamide|聚芳砜酰胺artificial ageing|人工老化as-formed fiber|初生纤维association polymer|缔合橡胶asymmetric induction polymerization|不对称诱导聚合asymmetric selective polymerization|不对称选择性聚合asymmetric stereoselective polymerization|不对称立体选择性聚合atactic block|无规立构嵌段atactic polymer|无规立构橡胶atacticity|无规度,无规立构度atom transfer radical polymerization|原子转移自由基聚合, A TRP autoacceleration effect|自动加速效应autocatalytic polycondensation|自催化缩聚auto-vulcanization|常温硫化auxiticity|拉胀性average degree of polymerization|平均聚合度average functionality|平均官能度Avrami equation|阿夫拉米方程axialite|轴晶azeotropic copolymer|恒[组]分共聚物azeotropic copolymerization|恒组分共聚合azo polymer|偶氮类橡胶azo type initiator|偶氮[类]引发剂backbitting transfer|尾咬转移bacterial degradation|细菌降解bag molding|袋模塑ball viscometer|落球黏度计ball viscosity|落球黏度ball-spring [chain] model|球-簧链模型banded texture|条带织构barrier polymer|阻透橡胶batch polymerization|分批聚合,间歇聚合bead polymerization|珠状聚合bead-rod model|珠-棒模型bending modulus|弯曲模量bending strain|弯曲应变bending strength|弯曲强度bending stress|弯曲应力benzoyl peroxide|过氧化苯甲酰, BPObiaxial drawing|双轴拉伸biaxial orientation|双轴取向bicomponent catalyst|双组分催化剂bifunctional initiator,difunctional initiator|双官能引发剂bifunctional monomer|双官能[基]单体bimetallic catalyst|双金属催化剂bimetallic μ-oxo alkoxides catalyst|μ氧桥双金属烷氧化物催化剂bimodal decomposition|亚稳相分离bimolecular termination|双分子终止bin cure|自硫[化]binary copolymer|二元共聚物binary copolymerization|二元共聚合Bingham fluid|宾汉姆流体bioactive polymer|生物活性高分子biocide|抗微生物剂biocompatibility|生物相容性biodegradable polymer|生物降解高分子biodegradation|生物降解bioelastomer|生物弹性体bioerodable polymer|生物可蚀性高分子biomedical polymer|生物医用高分子biomimetic polymer|仿生高分子biopolymer|生物高分子biorientation|双轴取向bisphenol A epoxy resin|双酚A环氧树脂bisphenol A polycarbonate|双酚A聚碳酸酯blend|共混blended spinning|共混纺丝block|嵌段block copolymer|嵌段共聚物block copolymerization|嵌段共聚合block poly(ester ether)|嵌段聚醚酯block polymer|嵌段橡胶block polymerization|嵌段聚合blood compatibility|血液相容性blow molding|吹塑blown extrusion|吹胀挤塑Boltzmann superposition principle|玻耳兹曼叠加原理boron carbide fiber|碳化硼纤维boundary phase|界面相branch chain|支链branched polymer|支化橡胶branching density|支化密度branching index|支化系数breaking strength|断裂强度bridged metallocene|桥基茂金属Brinell hardness|布氏硬度brittle cracking|脆性开裂brittle ductile transition|脆-韧转变brittle fracture|脆性断裂brittleness(brittle) temperature|脆化温度brush polymer|刷状橡胶bulk modulus|本体模量bulk polymerization|本体聚合bulk viscosity|本体黏度butadiene-acrylonitrile rubber|丁腈橡胶butyl rubber|丁基橡胶butyral resin|缩丁醛树脂calenderability|压延性calendering|压延,又称“轧光”capillary viscometer|毛细管黏度计carbamide resin|聚脲树脂,又叫“碳酰胺树脂”carbanionic polymerization|碳负离子聚合carbenium ion polymerization|碳正离子聚合carbocationic polymerization|碳正离子聚合carbocyclic ladder polymer|碳环梯形橡胶carbon chain polymer|碳链橡胶carbon fiber|碳纤维carbon nano-tube|碳纳米管carboxy terminated nitrile rubber|羧基丁腈橡胶carboxymethyl cellulose|羧甲基纤维素cast|铸塑cast molding|铸塑成型cast polymerization|铸塑聚合,浇铸聚合cation exchange membrane|正离子交换膜cation exchange resin|正离子交换树脂cationic catalyst|正离子催化剂cationic initiator|正离子引发剂cationic polymerization|正离子聚合,阳离子聚合cauliflower polymer|花菜状橡胶ceilling temperature of polymerization|聚合最高温度cellulose|纤维素cellulose acetate|乙酸纤维素,醋酸纤维素cellulose nitrate|硝酸纤维素,硝化纤维素chain axis|链轴chain backbone|主链,链骨架chain branching|链支化chain breaking|链断裂chain conformation|链构象chain end|链末端chain entanglement|链缠结chain extender|扩链剂,链增长剂chain flexibility|链柔性chain folding|链折叠chain growth|链增长chain initiation|链引发chain orientational disorder|链取向无序chain polymer|链型橡胶chain polymerization|链[式]聚合chain propagation|链增长chain repeating distance|链重复距离chain rigidity|链刚性chain scission degradation|断链降解chain segment|链段chain terminating agent|链终止剂chain termination|链终止chain transfer|链转移chain transfer agent|链转移剂chain transfer constant|链转移常数charge transfer complex|电荷转移复合物, CTC charge transfer initiation|电荷转移引发charge transfer polymerization|电荷转移聚合chelate polymer|螯合橡胶chelating ion-exchanger|螯合型离子交换剂chelating resin|螯合型树脂chemical crosslinking|化学交联chemical degradation|化学降解chemical fiber|化学纤维chemical foam|化学发泡chemical foaming agent|化学发泡剂chiral polymer|手性高分子chitin|甲壳质chlorinated polyethylene (CPE)|氯化聚乙烯chloroprene rubber|氯丁橡胶chlorosulfonated polyethylene|氯磺化聚乙烯chromatographic fractionation|色谱分级cis-1,4-polybutadiene|顺[式]-1,4-聚丁二烯cis-1,4-polybutadiene rubber|顺丁橡胶cis-1,4-polyisoprene|顺[式]-1,4-聚异戊二烯cistactic polymer|顺式有规橡胶coalescence|聚集,凝聚coating|涂料coaxial extrusion|同轴挤塑coextrusion|共挤出coextrusion blow molding|共挤吹塑coherent elastic scattering of radiation|辐射的相干弹性散射cohesional entanglement|凝聚缠结coiled conformation|卷曲构象coil-globule transition|线团-球粒转换coiling type polymer|线团状橡胶coinitiator|共引发剂coinjection molding|共注塑cold drawing|冷拉伸cold flow|冷流cold rolling|冷轧cold stretching|冷拉伸collagen|骨胶原colorant|色料,着色剂column fractionation|柱分级comb polymer|梳形橡胶commodity polymer|通用高分子comonomer|共聚单体compatibility|相容性compatibilizer|增容剂compatiibilization|增容作用complex compliance|复数柔量complex dielectric permittivity|复数介电常数complex initiation system|复合引发体系complex modulus|复数模量complex viscosity|复数黏度composite|复合材料composite molding|复合成型compositional heterogenity|组成非均一性compression forming|压缩成型compression molding|模压成型compression set|压缩永久变形compressive deformation|压缩变形compressive strength|压缩强度computer simulation|计算机模拟concentration quenching|浓度猝灭condensation polymerization,polycondensation|缩聚反应condensed phase|凝聚相condensed state|凝聚态condensing process|凝聚过程conducting polymer|导电橡胶configurational disorder|构型无序configurational unit|构型单元confined chain|受限链confined state|受限态conformational disorder|构象无序conformational repeating unit|构象重复单元conjugate fiber|组合纤维conjugate spinning|复合纺丝conjugated monomer|共轭单体conjugated polymer|共轭橡胶constitution controller|结构控制剂constitutional heterogenity|组成非均一性constitutional repeating unit|重复结构单元constitutional unit|结构单元constrained geometry metallocene catalyst|限定几何构型茂金属催化剂continuous polymerization|连续聚合continuous vulcanization|连续硫化contour length|伸直长度controlled radical polymerization|控制自由基聚合,可控自由基聚合, CRP coordinated anionic polymerization|配位负离子聚合coordinated cationic polymerization|配位正离子聚合coordinated ionic polymerization|配位离子聚合coordination polymer|配位橡胶coordination polymerization|配位聚合coplasticizer|辅增塑剂copolycondensation|共缩聚copolyester|共聚酯copolyether|共聚醚copolymer|共聚物copolymerization|共聚合copolymerization equation|共聚合方程copolyoxymethylene|共聚甲醛core shell copolymer|核-壳共聚物core shell latex polymer|核-壳胶乳橡胶cospinning|共纺coumarone-indene resin|苯并呋喃-茚树脂coupling agent|偶联剂coupling polymerization|偶联聚合coupling termination|偶合终止crack|裂缝crack (俗称)|龟裂craze|银纹creep|蠕变creep compliance|蠕变柔量critical aggregation concentration|临界聚集浓度critical micelle concentration,CMC|临界胶束浓度critical molecular weight|临界分子量cross propagation|交叉增长cross termination|交叉终止crosslinked polymer|交联橡胶crosslinking|交联crosslinking density|交联密度crosslinking index|交联指数crude rubber|生橡胶crystalline fold period|晶体折叠周期crystalline polymer|结晶橡胶crystallinity|结晶度cure|固化curing|固化curing agent|固化剂cyclic monomer|环状单体cycloaddition polymerization|环加成聚合cycloalkene polymerization|环烯聚合cyclopolymerization|环化聚合cyclosiloxane polymerization|环硅氧烷聚合dead end polymerization|无活性端聚合,死端聚合dead milled|过炼deflection|挠曲deformation|形变,变形deformation set|永久变形degradable polymer|降解性高分子degradation|降解,退化degradation (degradative) chain transfer|退化链转移degree of branching|支化度degree of crosslinking|交联度degree of crystallinity|结晶度degree of orientation|取向度degree of polymerization|聚合度degree of swelling|溶胀度demulsifier|破乳剂dendrimer|树状高分子dendrite|树枝[状]晶体dendritic polymer|树状高分子denier|旦, 纤度单位, 9000米纤维重1克为1旦deoxyribonucleic acid|脱氧核糖核酸, DNA depolarization|解偏振作用depolymerase|解聚酶depolymerization|解聚dextran|葡聚糖,又称“右旋糖酐”dextrin|糊精diacetylene polymer|二乙炔橡胶diad|二单元组diallyl polymer|二烯丙基橡胶diblock copolymer|二嵌段共聚物dielectric dissipation factor|介电损耗因子dielectric loss constant|介电损耗常数dielectric relaxation time|介电弛豫时间diene monomer|双烯单体,二烯单体diene polymer|双烯橡胶diene polymerization|双烯[类]聚合differential fiber|改性纤维,俗称“差别纤维”diffusion controlled termination|扩散控制终止dimer|二聚体dimethyl silicone rubber|二甲基硅橡胶discotic phase|盘状相disorientation|解取向dispersant agent|分散剂dispersion polymerization|分散聚合disproportionation termination|歧化终止dissymmetry of scattering|散射的非对称性double stranded helix|双[股]螺旋double-strand polymer|双股橡胶drag reducer|减阻剂drape molding|包模成型draw ratio|拉伸比drier|催干剂dry jet wet spinning|干喷湿法纺丝dry spinning|干纺dry wet spinning|干湿法纺丝ductile fracture|延性破裂dye sensitized phtoinitiation|染料敏化光引发dynamic light scattering|动态光散射dynamic mechanical behavior|动态力学行为dynamic transition|动态转变dynamic viscoelasticity|动态黏弹性dynamic viscosity|动态黏度dynamic vulcanization|动态硫化dystectic polymer|高熔橡胶e value|e值ebonite|硬质胶efficiency of grafting|接枝效率elastic deformation|弹性形变elastic hysteresis|弹性滞后elastic recovery|弹性回复elasticity|弹性elastomer|高弹体,弹性体elastomeric state|高弹态electroactive polymer|电活性橡胶electrochromic polymer|电致变色橡胶electroluminescent polymer|电致发光橡胶electrolytic polymerization|电解聚合electrorheological fluid|电流变液electrostatic spinning|静电纺丝element polymer|元素高分子elimination polymerization|消除聚合elongation|伸长态elongation at break|断裂伸长eluant|洗脱剂elution fractionation|洗脱分级,淋洗分级elution volume|洗脱体积embedding|埋置,又称“包埋”emulsifier free emulsion polymerization|无乳化剂乳液聚合emulsion flash spinning process|乳液闪蒸纺丝法emulsion polymerization|乳液聚合emulsion polymerized butadiene styrene rubber|乳聚丁苯橡胶, ESBR emulsion spinning|乳液纺丝enantioasymmetric polymerization|对映[体]不对称聚合enantiosymmetric polymerization|对映[体]对称聚合end capping|封端end-to-end distance|末端距end-to-end vector|末端间矢量engineering plastic|工程塑料enzymatic polymerization|酶聚合作用enzyme like polymer|类酶高分子epichloro-hydrin rubber|氯醚橡胶epitaxial crystallization|外延结晶,附生结晶epitaxial growth|外延晶体生长,附生晶体生长epoxy resin|环氧树脂equilibrium melting point|平衡熔点equilibrium polymerization|平衡聚合equilibrium swelling|平衡溶胀equitactic polymer|全同间同等量橡胶equivalent chain|等效链erythro-diisotactic polymer|赤型双全同立构橡胶erythro-disyndiotactic polymer|赤型双间同立构橡胶ester exchange polycondensation|酯交换型聚合ethylene propylene diene monomer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylene monomer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene rubber|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene terpolymer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylenecopolymer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene vinyl acetate copolymer (EVA)|乙烯-乙酸乙烯酯共聚物Eucommea rubber|杜仲胶excess Rayleigh ratio|超瑞利比excimer fluorescence|激基缔合物荧光exciplex fluorescence|激基复合物荧光excluded volume|排除体积expanding foam|发泡expansion factor|溶胀因子extended-chain crystal|伸展链晶体extension ratio|拉伸比extensional viscosity|拉伸黏度external plasticization|外增塑作用external releasing agent|外脱模剂extraction fractionation|萃取分级extrusion|挤出,又称“压出”extrusion blow molding|挤出吹塑extrusion draw blow molding|挤拉吹塑成型e值|e valuefatigue resistance|疲劳强度fatigue strength|疲劳强度ferroelectric polymer|铁电橡胶ferromagnetic polymer|铁磁橡胶fiber|纤维fiber forming|成纤fiber reinforced plastic|纤维增强塑料fibril|原纤fibrous crystal|纤维晶fine polymer|精细高分子fire retardant|防火剂flame retardant|阻燃剂flash polymerization|闪发聚合,暴聚flexible chain|柔性链flexible chain polymer|柔性链橡胶flexomer|挠性橡胶flexural strength|弯曲强度Flory-Huggins theory|弗洛里-哈金斯理论flow birefringence|流动双折射fluorinated triazine rubber|三嗪氟橡胶fluorocarbon resin|氟碳树脂fluoroelastomer|氟橡胶fluoroether rubber|氟醚橡胶fluoroethylene resin|氟树脂fluororubber|氟橡胶fluorosilicone rubber|氟硅橡胶foam molding|泡沫塑料成型foaming agent|发泡剂fold domain|折叠微区fold plane|折叠面fold surface|折叠表面folded chain|折叠链folded-chain crystal|折叠链晶体formalized PV A fiber|聚乙烯醇缩甲醛纤维,维尼纶four center polymerization|四中心聚合fractionation|分级fracture mechanics|断裂力学fracture toughness|断裂韧性free radical chain degradation|自由基链降解free radical isomerization polymerization|自由基异构化聚合free radical lifetime|自由基寿命free radical polymerization|自由基聚合,游离基聚合freely-jointed chain|自由连接链freely-rotating chain|自由旋转链frictional coefficient|摩擦系数fringed-micelle model|缨状微束模型fully oriented yarn|全取向丝functional coating|功能涂料functional fiber|功能纤维functional monomer|官能单体functional polymer|功能高分子functionality|官能度furan resin|呋喃树脂furfural phenol resin|糠醛苯酚树脂furfural resin|糠醛树脂fusion casting|熔铸gas aided injection molding|气辅注塑gas phase polymerization|气相聚合gaseous polymerization|气相聚合Gaussian chain|高斯链gel|凝胶gel chromatography|凝胶色谱法gel effect|凝胶效应gel point|凝胶点gel spinning|凝胶纺[丝]gelatin|明胶geometrical equivalence|几何等效glass transition|玻璃化转变glass-transition temperature|玻璃化转变温度glassy state|玻璃态global chain orientation|[分子]链大尺度取向globular-chain crystal|球状链晶体good solvent|良溶剂gradient copolymer|梯度共聚物graft copolymer|接枝共聚物graft copolymerization|接枝共聚合graft polymer|接枝橡胶graft polymerization|接枝聚合grafting degree|接枝度grafting site|接枝点group transfer polymerization,GTP|基团转移聚合gum|树胶Gutta percha|古塔波胶halogenated butyl rubber|卤化丁基橡胶hardening agent|增硬剂head-to-head polymer|头-头橡胶head-to-tail polymer|头-尾橡胶heat curing|热硫化heat distortion temperature|热畸变温度heat of polymerization|聚合热heat stabilizer|热稳定剂helical polymer|螺旋形橡胶helix chain|螺旋链heterochain polymer|杂链橡胶heterocyclic polymer|杂环高分子heterofiber|异质复合纤维heterogeneous polymerization|非均相聚合heterogeneous vulcanization|不均匀硫化heteropolymer|杂聚物heterotactic polymer|杂同立构橡胶,异规橡胶Hevea|三叶橡胶H-film|H-膜high density polyethylene|高密度聚乙烯, HDPEhigh elastic deformation|高弹形变high impact polystyrene|高抗冲聚苯乙烯, HIPShigh modulus polymer|高模量橡胶high performance polymer|高性能高分子high polymer|高聚物high-pressure spinning|高压纺丝hollocellulose|全纤维素hollow fiber|中空纤维homofiber|单组分纤维homogeneous metallocene catalyst|均相茂金属催化剂homogeneous polymerization|均相聚合homopolycondensation|均相缩聚homopolymer|均聚物homopolymerization|均聚反应homopropagation|同种增长Huggins coefficient|哈金斯系数Huggins equation|哈金斯公式hybrid composite|混杂复合材料hydrocarbon resin|烃类树脂hydrodynamic volume|流体力学体积hydrodynamically equivalent sphere|流体力学等效球hydrogen transfer polymerization|氢转移聚合hydrogenated butadiene-acrylonitrile rubber|氢化丁腈橡胶hydrogenated rubber|氢化橡胶hydrolytic degradation|水解降解hydrophilic polymer|亲水橡胶hydrophobic polymer|疏水橡胶hydroxyethyl cellulose|羟乙基纤维素hyperbranched polymer|超支化橡胶H-膜|H-filmideal copolymerization|理想共聚合identity period|等同周期imbedding|镶铸immiscibility|不混容性immortal polymerization|不死的聚合impact modifier|抗冲改性剂impact molding|冲压成型impact moulding|冲压模塑impact strength|冲击强度impregnation|浸渍impression molding|触压成型in situ composite|原位复合材料in situ polymerization|原位聚合incompatibility|不相容性indene resin|茚树脂indentation hardness|压痕硬度induced decomposition|诱导分解induction period|诱导期inert filler|惰性填料inflation|充气吹胀inherent viscosity|比浓对数黏度inhibition|阻聚作用inhibitor|阻聚剂inifer|引发-转移剂iniferter|引发-转移-终止剂initiator|引发剂initiator efficiency|引发剂效率initiator transfer agent|引发-转移剂initiator transfer agent terminator|引发-转移-终止剂injection compression molding|注塑压缩成型injection molding|注射成型injection welding|注塑焊接inorganic organic polymer|无机-有机高分子inorganic polymer|无机高分子insertion polymerization|插入聚合integrated rubber|集成橡胶intelligent polymer|智能橡胶intercalation polymerization|插层聚合interchain interaction|链间相互作用interchain spacing|链间距intercondensation polymer|共缩聚物interfacial polycondensation|界面缩聚interfacial polymerization|界面聚合intermiscibility|相溶性internal plasticization|内增塑作用internal releasing agent|内脱模剂interpenetrating polymer networks|互穿聚合物网络, IPN intrinsic viscosity|特性黏数inverse dispersion polymerization|反相分散聚合inverse emulsion polymerization|反相乳液聚合ion exchange polymer|离子交换橡胶ion exchange resin|离子交换树脂ion pair polymerization|离子对聚合ionic copolymerization|离子共聚合ionic polymer|离子橡胶ionic polymerization|离子聚合ionioic initiator|负离子引发剂ionomer|离子交联橡胶irrecoverable deformation|不可回复形变irregular block|非规整嵌段irregular polymer|非规整橡胶isomerization polymerization|异构化聚合isoprene rubber|异戊橡胶isospecific polymerization|全同立构聚合isotactic block|有规立构嵌段isotactic polymer|全同立构橡胶,等规橡胶isotactic polypropylene|全同立构聚丙烯,等规聚丙烯, iPP isotacticity|等规度,全同立构[规整]度jet molding|射流注塑jet spinning|喷射纺丝Kelvin model|开尔文模型kinetic chain length|动力学链长kneading|捏和ladder polymer|梯形橡胶lamella|片晶lamellar crystal|片晶laminate|层压材料Langmuir Blodgett film|LB膜(LB film)laser confocal fluorescence microscopy|激光共聚焦荧光显微镜laser fiber|激光光纤late transition metal catalyst|后过渡金属催化剂latent curing agent|潜固化剂latex|胶乳LB膜|Langmuir Blodgett film (LB film)light initiated polymerization|光引发聚合light screener|光屏蔽剂light stabilizer|光稳定剂lignin|木素limiting viscosity number|特性黏数linear low density polyethylene|线型低密度聚乙烯, LLDPE linear polymer|线型橡胶linear viscoelasticity|线性黏弹性liquid crystal polymer|液晶高分子liquid crystal spinning|液晶纺丝liquid crystal state|液晶态liquid rubber|液体橡胶living anionic polymerization|活性负离子聚合living cationic polymerization|活性正离子聚合living polymer|活性高分子living polymerization|活性聚合living radical polymerization|活性自由基聚合living ring opening polymerization|活性开环聚合logarithmic normal distribution|对数正态分布,又称“对数正则分布”logarithmic viscosity number|比浓对数黏度long chain branched polyethylene|长支链聚乙烯long period|长周期long range order|长程有序long-chain branch|长支链long-range intramolecular interaction|远程分子内相互作用long-range structure|远程结构loss modulus|损耗模量low angle laser light scattering|小角激光光散射low density polyethylene|低密度聚乙烯, LDPElower critical solution temperature|最低临界共溶温度, LCST lubricant|润滑剂lyotopic liquid crystal|溶致性液晶lyotropic liquid crystalline polymer|溶致液晶高分子macrocyclic polymer|大环橡胶macroinitiator|大分子引发剂macroion|高分子离子macromer, macromonomer|大分子单体macromolecular isomorphism|高分子[异质]同晶现象macromolecule|高分子macroporous polymer|大孔橡胶macroreticular resin|大网络树脂magnetic polymer|磁性橡胶main chain liquid crystalline polymer|主链型液晶橡胶mass distribution function|质量分布函数mass polymerization|本体聚合masterbatch|母胶mastication|素炼matrix|基体matrix polymerization|模板聚合Maxwell model|麦克斯韦模型mean square end to end distance|均方末端距mean square radius of gyration|均方旋转半径mechanical failure|力学破坏mechanochemical degradation|力化学降解medical polymer|医用高分子melamine resin|三聚氰胺-甲醛树脂melamine-formaldehyde resin|三聚氰胺-甲醛树脂melt [flow] index|熔体流动指数melt adhesive|热熔胶melt phase polycondensation|熔融缩聚melt spinning|熔纺metal complex catalyst|金属络合物催化剂metallocene catalyst|[二]茂金属催化剂metastable state|亚稳态metathesis polymerization|易位聚合methyl cellulose|甲基纤维素methylal resin|缩甲醛树脂methylaluminoxane|甲基铝氧烷, MAOmethylvinyl silicone rubber|甲基乙烯基硅橡胶micro emulsion polymerization|微乳液聚合micro wave curing|微波硫化microgel|微凝胶microphase|微相milling|混炼miscibility|混容性mixing|混炼modulus of elasticity|弹性模量moisture proof agent|防潮剂molar mass average|摩尔质量平均molar mass exclusion limit|摩尔质量排除极限molding|模塑,又称“模压”molecular assembly|分子组装,分子组合molecular composite|分子复合材料molecular dynamics simulation|分子动力学模拟molecular nucleation|分子成核作用molecular weight distribution,MWD|分子量分布molecular weight exclusion limit|分子量排除极限monodisperse polymer|单分散橡胶monodispersity|单分散性monofil|单丝monofilament|单丝monomer|单体monomer casting|单体浇铸monomeric unit|单体单元Monte Carlo simulation|蒙特卡洛模拟Mooney index|门尼粘度morphology of polymer|聚合物形态学most probable distribution|最概然分布,曾用名“最可几分布”moulding curing|模压硫化multiaxial drawing|多轴拉伸multicomponent copolymer|多组分共聚物multifilament|复丝multi-layer blow molding|多层吹塑multilayer copolymer|多层共聚物multi-layer extrusion|多层挤塑multiphase polymer|多相橡胶multipolymer|多元橡胶multi-strand polymer|多股橡胶nanocomposite|纳米复合材料nano-fiber|纳米纤维natural fiber|天然纤维natural polymer|天然高分子natural resin|天然树脂natural rubber|天然橡胶natural silk|蚕丝necking \t又称“细颈现象”|颈缩现象nematic phase|向列相nerviness|回缩性,弹性复原network|网络network density|网络密度network polymer|网络橡胶Newtonian fluid|牛顿流体Newtonian shear viscosity|牛顿剪切黏度nitrile rubber|丁腈橡胶nitrosofluoro rubber|亚硝基氟橡胶nitroxide mediated polymerization|氮氧[自由基]调控聚合non conjugated monomer|非共轭单体non polar monomer|非极性单体non-linear viscoelasticity|非线性黏弹性non-Newtonian fluid|非牛顿流体non-polar polymer|非极性橡胶non-pressure cure|无压硫化non-shrink|防缩non-uniform polymer|多分散性橡胶non-woven fabrics|无纺布normal stress|法向应力nucleation|成核作用number distribution function|数量分布函数number-average molar mass|数均分子量number-average molecular weight|数均分子量oil-extended rubber|充油橡胶olefine copolymer (OCP)|烯烃共聚物oligomer|低聚物,齐聚物oligomerization|低聚反应oligomerization(曾用名)|齐聚反应open vulcanization|无模硫化optical active polymer|光活性橡胶optical bleaching agent|荧光增白剂organic inorganic hybrid material|有机-无机杂化材料organic polymer|有机高分子organometallic polymer|金属有机橡胶over cure|过硫oxetane polymer|氧杂环丁烷橡胶oxidative coupling polymerization|氧化偶联聚合oxidative polymer|氧化性橡胶oxidative polymerization|氧化聚合paint|油漆paraformaldehyde\t又称“多聚甲醛”|低聚甲醛parallel-chain crystal|平行链晶体partial ladder polymer|部分梯形橡胶particle scattering factor|粒子散射因子particle scattering function|粒子散射函数paste molding|糊塑pearl polymerization|珠状聚合peeling strength|剥离强度pentad|五单元组penultimate effect|前末端基效应peptizer|塑解剂,胶溶剂periodic copolymer|周期共聚物peroxide crosslinking|过氧化物交联persistence length|相关长度persistent radical|持续自由基persulphate initiator|过硫酸盐引发剂perturbed dimension|扰动尺寸petroleum resin|石油树脂phase inversion polymerization|相转化聚合phase separation|相分离phenol ether resin|苯酚醚树脂phenol-formaldehyde resin|酚醛树脂phenolic resin|酚醛树脂photo oxidative degradation|光氧化降解photo polymerization|光[致]聚合photoageing|光老化photoconductive fiber|光导纤维photoconductive polymer|光[电]导橡胶photocrosslinkable polymer|光交联橡胶photocrosslinking|光交联photo-cure|光固化photocureable polymer|光固化橡胶photodegradable polymer|光降解橡胶photodegradation|光降解photoelastic polymer|光弹性橡胶photoiniferter|光引发转移终止剂photoinitiator|光敏引发剂photoluminescence polymer|光致发光橡胶photopolymer|感光橡胶photoresist|光致抗蚀剂,光刻胶photoresponsive polymer|光响应高分子photosensitive polymer|光敏橡胶photosensitized polymerization|光敏聚合photostabilizer|光稳定剂physical ageing|物理老化physical crosslinking|物理交联physical entanglement|物理缠结physical foam|物理发泡physical foaming agent|物理发泡剂piezoelectric polymer|压电高分子pilling effect|起球现象plasma polymerization|等离子体聚合plasma processing|等离子体加工plastic|塑料plastic alloy|塑料合金plastic deformation|塑性形变plastic flow|塑性流动plastication|塑炼plasticization|增塑作用plasticizer|增塑剂plasticizer extender|增塑增容剂plasticizing|塑化plastisol|增塑溶胶plastomer|塑性体Poisson's ratio|泊松比polar monomer|极性单体polar polymer|极性橡胶poly (aryl ether)|芳香族聚醚poly(1-butene)|聚1-丁烯poly(1-octene)|聚(1-辛烯)poly(4-methyl-1-pentene)|聚4-甲基-1-戊烯poly(8 amino caprylic acid)|聚(8-氨基辛酸),尼龙8,聚酰胺8 poly(acrylic acid)|聚丙烯酸poly(aryl sulfone)(PAS)|聚芳砜poly(butylene terephthalate)|聚对苯二甲酸丁二酯poly(chlorotrifluoroethylene)|聚三氟氯乙烯, PCTFEpoly(diphenyl ether sulfone)|聚二苯醚砜poly(ether amide)|聚醚酰胺poly(ether sulfone)|聚醚砜poly(ether-ether-ketone)|聚醚醚酮, PEEKpoly(ether-ketone)|聚醚酮, PEKpoly(ether-ketone-ketone)|聚醚酮酮, PEKKpoly(ether-urethane)|聚醚氨酯poly(ethylene oxide)\t又称“聚氧化乙烯(polyoxyethylene)”|聚环氧乙烷poly(ethylene terephthalate)|聚对苯二甲酸乙二酯poly(glutamic acid)|聚谷氨酸,聚2-氨基戊二酸poly(hexamethylene adipamide)|聚己二酰己二胺poly(lactic acid)|聚乳酸poly(methyl methacrylate)|聚甲基丙烯酸甲酯poly(oxyethylene glycol)|聚乙二醇poly(perfluoropropene)|聚全氟丙烯poly(p-phenylene sulfide)|聚对亚苯硫醚,俗称"聚苯硫醚"poly(p-phenylene terephthalate)|聚对苯二甲酸对苯二酯poly(p-phenylene)|聚对亚苯poly(propylene oxide)\t又称“聚氧化丙烯(polyoxytrimethyl-ene)”|聚环氧丙烷poly(pyromellitimido-1,4-phenylene)|聚均苯四酰亚胺-1,4-亚苯poly(tetrafluoroethylene)|聚四氟乙烯poly(tetramethylene terephthalate)|聚对苯二甲酸丁二酯poly(vinyl acetate)|聚乙酸乙烯酯,聚醋酸乙烯酯poly(vinyl alcohol)|聚乙烯醇poly(vinyl butyral)|聚乙烯醇缩丁醛poly(vinyl chloride)|聚氯乙烯poly(vinyl fluoride)|聚氟乙烯poly(vinyl formal)|聚乙烯醇缩甲醛poly(vinylene chloride)|聚1,2-二氯亚乙烯poly(vinylidene chloride)|聚偏二氯乙烯,聚偏[二]氯乙烯poly(vinylidene fluoride)|聚偏二氟乙烯,聚偏[二]氟乙烯poly(βalanine)|聚(β-氨基丙酸),尼龙3,聚酰胺3poly(ωamino caproic acid)|聚(ω-氨基己酸),尼龙6,聚酰胺6 polyacetylene|聚乙炔polyacrylate|聚丙烯酸盐,聚丙烯酸酯polyacrylonitrile|聚丙烯腈polyaddition|聚加成反应polyaddition (曾用名)|逐步加成聚合polyalkenamer|开环聚环烯烃polyallomer|异质同晶橡胶polyamide|聚酰胺polyamide fiber|聚酰胺纤维,锦纶,尼龙polyampholyte|两性聚电解质polyamphoteric electrolyte|两性聚电解质。

专业英语(复材和高分子)(DOC)

专业英语(复材和高分子)(DOC)

复合材料英汉双语词汇Acetyl||乙酰Acid-proof paint||耐酸涂料, 耐酸油漆Acrylic fiber||丙烯酸纤维Acrylic resin||丙烯酸树脂Active filler||活性填料Adapter assembly||接头组件Addition polyimide||加成型聚酰亚胺Addition polymer||加聚物Adjusting valve||调整阀,调节阀Adhersion assembly||粘合装配Adhersion bond||胶结Adjustable-bedpress||工作台可调式压力机Adjuster shim||调整垫片Adjusting accuracy||调整精度,调校精度Admissible error||容许误差Admissible load||容许载荷Adsorbed layer||吸附层Advanced compositematerial||先进复合材料,高级复合材料Advanced developmentvehicle||试制车,预研样车AE(AutomobileEngineering)||汽车工程技术Aeolotropic material||各向异性材料Aerated plastics||泡沫塑料, 多孔塑料Aerodynamic body||流线型车身Aft cross member||底盘/车架后横梁Air bleeder||排气孔Air clamp||气动夹具Air deflector||导流板;导风板,气流偏转板Air intake manifold||进气歧管Air servo||伺服气泵Air-tight joint||气密接头All-plastic molded||全塑模注的All polysterseat||全聚酯座椅Alligatoring||龟裂,涂膜皱皮,外表裂痕Amino resin||氨基树脂Angular test||挠曲试验Anti-chippingprimer||抗破裂底漆〔底层涂料〕Apron||防护挡板Aramid fibrecomposites||芳胺纤维复合材料Assembly drawing||装配图Assembly jig||装配夹具Assembly part||装配件,组合件Autoclave forming||热压罐成型Autocorrection||自动校正Automatic compensation||自动补偿Automatic feed||自动进料Automobile instrument||汽车仪表板Automotive transmission||汽车传动装置,汽车变速器Auxiliary fasiaconsole||副仪表板Axial strain||轴向应变Axle bushing||轴衬Axle fairing||底盘车桥整流罩A Stage||A 阶段(某些热固性树脂聚合作用的初期阶段) AAC(AuxiliaryAir Control)||辅助空气控制ABC(Active BodyControl)||主动式车身控制装置Abherent||阻粘剂Ability meter||测力计,性能测试仪ABL (Ablative)||烧蚀剂Ablation||烧蚀Ablative compositematerial||烧蚀复合材料Ablative insulativematerial||烧蚀绝热材料Ablative polymer||烧蚀聚合物Ablative prepreg||烧蚀性预浸料Ablative resistance||耐烧蚀性ABR(AcrylateButadience Rubber)||丙烯酸丁二烯橡胶Abradant material||研磨材料,磨料Abrade||研磨;用喷砂清理Abrasion||磨耗Abrasion coefficient||磨耗系数Abrasion loss||磨耗量,磨损量Abrasion performance||磨耗性Abrasion-proofmaterial||耐磨材料Abrasion resistantpaint||耐磨涂料Abrasion test||磨损试验Abrasive blastsystem||喷砂清理系统Abrasive cloth||砂布Abrasive disc||砂轮盘,砂轮片Abrasive finishing||抛光Abrasive ***||砂纸Abrasive resistance||耐磨性ABS(AcrylonitrileButadiene Styrene)resin||ABS树脂,丙烯腈-丁二烯-苯乙烯(热塑性)树脂ABSM(AmericanBureau of Standard Materials)||美国标准材料局Absolute dynamicmodulus||绝对动态模量Absolute error||绝对误差Absorbent material||吸收性材料,吸收性物质,吸声材料,吸收剂Absorber||减振器,阻尼器,缓冲器ACA(AutomotiveComposite Alliance)||汽车复合材料协会ACC(AutomaticClutch Control)||自动离合器操纵控制Accelerant||促进剂,加速剂Accelerated agingtest||加速老化试验,人工老化试验Accelerator pedalshaft||加速踏板轴Accelerator pumpnozzle||加速泵喷嘴Acceptable life||有效使用寿命Acceptance testspecification||验收测试标准Access panel||罩板,盖板Accessory||配件,附属品Accessory equipment||辅助设备Accessory kit||附件包,成套附件Accumulator can||储电池外壳Accumulator package||蓄压器组件,蓄压器单元Accuracy in calibration||校准精度Accuracy of finish||最终加工精度Accuracy of manufacture||制造精度Accuracy of positioning||定位精度Accuracy of repetition||重现精度,复制精度Acetal matrixcomposites||缩醛树脂基复合材料Acetal plastic||缩醛塑料,聚甲醛塑料Acetal resin||缩醛树脂Acetamide||乙酰胺Acetate fiber||醋酸纤维,乙酸纤维Acetone||丙酮Back corner panel||后围角板Back panel||后围板Back side panel||后侧板Back wall pillar||后围立柱Backer||衬料Baffler||挡板,阻尼器;导流叶片Bag Molding||气囊施压成型(袋模法) Baggage holder||行李架Barrier coat||阻挡层;防渗涂层Batch mixing||分批混合,批混Batching unit||分批加料装置Bearing assembly||轴承组合件Biaxial winding||双角缠绕, 双轴缠绕Binder fiber||粘合纤维Bipolymer||二元共聚物Bismaleimidecomposites||双马来酰亚胺复合材料Blank placement||坯料的放置Blanket||玻璃纤维毡;坯料Blanking press||冲压机, 冲割压力机Blending resin||掺合树脂BMC(Bulk MouldingCompound)||团状膜塑料BMI (Bismaleimide)||双马来酰亚胺Body back panel||车身后板Body back wall||车身驾驶室后围Body bracket||车身支架Body controlmodule||车身控制模块Body frame (Bodyskeleton)||车身骨架Body front panel||车身驾驶室前围板Body monocoque||单壳体车身,单壳式结构车身Body outer panel||驾驶室覆盖件;驾驶室覆盖件Body structuralmember||车身结构件Body trim||车身装饰件Bonded rivetedstructure||胶铆结构Bonnet||发动机罩Brake||制动器Brake arrangement||制动装置Brinell hardnesstest||布氏硬度试验Brittle coating||脆性涂层Bulk coat||整体涂层Bulk heat treatment||整体热处理Bulk mouldingcompound||(增强塑料)预制整体模塑料Bumper bracket(holder)||保险杠托架Bus brake system||客车制动系Butt flange||对接法兰Butt joint||对接接头;对接Butterfly valve||节流阀,节气门BWI (Body InWhite)||白车身Cab deflectorshield||驾驶室导流板Cab fairing||驾驶室整流罩Cab floor||驾驶室地板Cab mounting||驾驶室悬置CAD(ComputerAided Design)||计算机辅助设计CAE (ComputerAided Engineering)||计算机辅助工程设计Calibration tolerance||校准公差Calibrating instrument||校准仪表Camouflage paint||覆面漆, 盖面涂料, 伪假漆Cantilever beamimpact test||悬臂梁冲击试验Carbon-felt reinforcedcarbon composites||碳毡增强碳复合材料Carbon fiberclutch||碳纤维离合器Carbon filamentcloth||碳丝织物Case extension||外壳的伸出局部,延伸外壳Casing gasket||外壳密封垫Catalyst manifold||固化剂总成Catalyst pump||固化剂泵Catalyst ratio||固化剂比率Cavity||模槽,型腔;凹模Cavity block||阴模Cavity depth||模槽深度Cellular board||蜂窝状板,多孔板Cellular plastics||泡沫塑料,多孔塑料Centre boss||轮毂Centre pin||销轴,枢轴,主销Centrifugal castingmoulding||离心浇铸成型Centrosymmetry||中心对称层板Ceramic matrixcomposites||陶瓷基复合材料Charge||填充气体,填充料Chasis||底盘;机壳,车架Chlorinated polyethlene||聚氯乙烯Chopped fiber||短切纤维Chopped randommat||短切无序毡Chopped strand||短切原丝CIRTM(Co-InjectionRTM)||共注射RTMClamping fixture||夹具,夹紧装置Clamping force||夹持力,合模力Class A su***ce||A级外表Clear coat||透明涂层,透明罩漆,清漆层Clear coat finish||清漆涂层Clicker die||冲模Climb milling||同向铣削, 顺铣Clipping press||切边压力机Closure pressingspeed||合模速度CMM(Closed MouldMoulding)||闭合模塑CMT(CompressionMolding||挤压成型工艺CNC(ComputerizedNumerical Control〕||电脑数值控制Coarse grinding||粗磨,用砂轮初加工Coating defect||涂层缺陷Collision test||碰撞试验,撞车试验Combination property||综合性能Concept design||概念设计Convection modulus||对流模量Convergence test||收敛试验Cooling fixture||冷却夹具Cooling tower||冷却塔Crazing||龟裂,细裂纹Cresol resin||甲酚树脂Cutting felt||毡的剪切Cutting-off bushing||环形下料模; 下料环Damped structure||阻尼缓冲结构Damper bracket||件振器支架Dashboard illumination||仪表板照明Dash trimming||前围板衬板Deburring||去毛刺,倒角,除飞边Deepdrawing forming||深拉成型Deflection test||挠曲试验Dent resistance||耐冲击性Design freedom||设计自由度Detail drawing||祥图,零件图Die assembly||压模装置Die casting||压模铸件,压模铸法Dimethyl fomamide||二甲基甲酰胺Dimethyl ketone||二甲基甲酮; 丙酮Dip pretreatment||浸渍预处理Die prime coat||浸渍打底漆Dimensional stability||尺寸稳定性Dip coating||浸涂Dip forming||浸渍成型Durability testing||耐久性试验,寿命试验Dwell||保压,暂停加压;滞留时间Dynamometer||测力计Edge effect||边缘效应,边界效应Edge feed||边缘进料Edge gate||侧浇口Ejection force||脱模力Ejector||起模杆Ejector guidepillar||推板导套Ejector housing||支架Elasticizer||增塑剂Elastomeric composites||高弹体复合材料Elongation atbreak||断裂延伸率Energy absorbingfoam||吸能泡沫塑料Epoxy resin||环氧树脂Ether ketone||酮醚Explosion proof||防爆Exterior bodypanelling||车身外板部蒙皮Exterior trim||外饰,外饰件Fabric composites||织物复合材料Fabric impregnation||织物浸渍Fabric preform.|织物预成型Fabric prereg||织物预浸料Fabrication parameter||制造参数Fabrication procedure||制造工序Fabricating machinery||加工设备Face plate coupling||法兰式连接Factory primer||工厂底漆,工厂防锈漆Fairing||整流罩,整流装置Fairing panel||前裙板Fascia bracket||仪表板支架Fascia mask||仪表板罩板Fastening clamp||夹紧装置,紧固夹子Fatigue tensiontest||拉伸疲劳性试验FCM(Fibrous Compositematerial)||纤维复合材料FEA(Finite ElementAnlysis)||有限元分析Feed system||供料系统Feeding pump||供应泵Feeding speed||进给速度Female groove||凹模Female mould(tooling)||阴模Fender||翼子板;护板Fender apron||挡泥板Fender innerpanel||翼子板内衬护板Fiber compositelaminate||纤维复合材料层板Fiber mat layer||纤维毡层Finisher(Finishingcomponent)||装饰件Flange||法兰, 凸缘Flange fitting||法兰式管接头Flash||毛边Flash mold||毛边模具Front sheet metal||车前板制件Fuselage fairing||机身整流装置Gage kit||仪表组,仪表套件Gas cavity||气泡,砂眼Gauge panel||仪表板Gear assembly||齿轮传动装置, 减速器Gearbox cover||变速器壳盖Gear bracketsupport||齿轮托支架Gel coat||胶衣,凝胶涂层Gel coat drum||胶衣圆桶Gel coat flowmonitor||胶衣流量监控器Gel time||凝胶时间Glass fiber windingmachine||玻璃纤维缠绕机Glass wool||玻璃棉Glass yarn||玻璃丝Guiding device||导向装置Gunk||预混料Gusset||角撑件Gutter channel||流水槽Hand lay-up ||手工铺叠,手工铺贴Hardness testingmachine||硬度测试仪Hauling truck||拖车Header boardoutside panel||前板外板Headrest||靠枕Heat barriermaterial||隔热材料Heat forming||热成型High molecularmaterial||高分子材料High pressurebag molding||高压袋成型工艺High pressureinjection moulding||高压注射成型,高压注射模塑High-strengthstructural adhesives||高强度结构粘合剂High temperaturecoating||高温涂层Hose support||软管支架Hub assembly||毂组件Hub bearing||车轮轮毂轴承Hydraulic device||液压装置Hydraulic engine||液压发动机Hydrostatic strength||流体静力强度IMC(In-Mold Coating)||模具内部涂层Immersion paint||浸漆Immersion test||浸渍试验,浸泡试验Immovable support||固定刀架Impact analysis||碰撞试验撞击分析Impact bending||冲击挠曲Impact specimen||冲击试样Impegnate||浸渍Impelling strength||冲击韧性Injection head||注射头Injection-mouldedcomposites||注射模塑复合材料Injection mouldedpart||注塑制件Injection nozzle||注射喷口,压注喷口Intermittententry||间歇供应,不连续供应Intermittentfailure||间接性故障Izod test||悬臂冲击试验Jack||千斤顶,起重器;传动装置Jack engine||辅助发动机Jackbit insert||切刀,刀具,刃口Jacket||护套,套管,保护罩,蒙皮Jar-proof||防震的Jaw||钳口;定位销Jell||胶凝,凝固,固结Jet milling||喷射研磨Jig||夹具,定位模具Jig-adjusted||粗调的Job program||工作程序Joining nipple||接合螺管Joining on butt||对头接合Joint face ofa pattern||分模面Joint gate||分型面内浇口Joint packing||填充垫圈,接合填密Joint sealingmaterial||填缝料Joint-shapedsupport||铰接支架Joint strenght||连接强度Jump welded tube||对缝焊管,焊接管Junction bolt||接合螺栓Junction point||接点Keeping life||保存期,产品有效期Kenel||型芯Ketene||乙烯酮, 烯酮Ketene dimethyl||二甲酮Ketimide||酰基酮亚胺Ketimine||酮亚胺Ketoamine||酮胺,氨基酮Ketol||乙酮醇Ketone||甲酮Keying strength||咬合强度Knife holder||刀具,刀架Knockout||脱模Knockout pin||脱模销Knockout plate||脱模板Knoop scale||努氏硬度标度Knuckle joint||铰链连接Koplon||高湿模量粘胶纤维Koroseal||氯乙烯树脂Lacquer||挥发性漆;涂漆Lacquer finish||喷漆,上漆,罩光Lacquer formation||漆膜形成,成漆Lacquer putty||腻子,整面用油灰Lacquering ||上清漆Laminate constructionthickness||结构层厚度Laminated panel||薄层状板Laminated plastics||层压塑料制品, 塑料层板Laminated thermosettingplastics||层压热固塑料Latex paints||清漆Lay-up||(塑料,夹板的)铺叠成型Light-alloy bodypart||轻合金车身零件Lining ||衬里,衬垫Loaded haul cycle||载货行程Location bearing||定位轴承Location guide||固定导杆,定位导杆Location hole||定位孔Location tolerance||位置公差, 安装公差Locatin pin||定位销Lock bolt||锁紧螺钉Low pressureinjection moulding||低压模塑成型Low shrink resin||低收缩树脂Luggage rack||行李架Machining accuracy||加工精度Machining center||加工中心Main shaft gearbushing||主轴齿轮衬套Mandrel ||卷芯,模芯;芯轴Manifold hood||歧管外罩Manual Lay-Up||人工手糊Manual spray-up||手工喷射Manual truck||手推车Manufacturingdrawing||制造图纸Matched molds||合模Matrix ||基体,基质Mechanical properties||机械性能Metal bonding||金属粘结Metal-workingmachine||金属加工机床Methanol||甲醇Mismachiningtolerance||加工误差Modular||组装式的Mofulus of elasticity||弹性模量Mould operation||模具操作Moulded plastics||模压塑料Moulding||嵌条;成型;装饰件Mount support||装配支架Multi-axial stress||多轴向应力Multi-tool machining||多刀切削加工Needled mat||针刺毡,针织毡Non-ductile fracture||无塑性破坏Nontwisting fiber||不加捻纤维Notched izodtest||带缺口悬臂梁式冲击试验Nozzle||管嘴,喷嘴Numerically controlledengine lathe||数控普通车床Nylon resin||尼龙树脂OEM (OriginalEquipment Manufacturer) ||原始设备生产商Offset cab||侧置驾驶室On-site forming||现场发泡On-site winding||现场缠绕成型Open molding||敞开式模塑法Opening mould||开模Optimized design||优化设计Orifice||注孔Orthophenyl tolylketone||邻苯基甲苯基酮Orthophthalicresin ortho||邻苯二甲酸树脂Osmotic pressure||渗透压力Outboard wing||外翼Outer panel skin||蒙皮Oven heating||烘箱加热,加热固化Over-engineering||过份设计的Over flow||溢流Over-spray||过喷Overhead travelingcrane||高空移动行车Overhead-valveengine||顶置气门发动机Overhung trailer||外伸式拖车Oxide paint||氧化物涂料Package power||动力装置总成Packed ||紧密的,密实的;有密封的,有填料的Packing||衬垫;填料,密封填料;包装PAD(Paint AsRequired)||按需涂漆Paint base coat||上底漆Paint blemish||涂漆缺陷Paint blower||喷漆用压力机,喷漆枪Paint brush||涂漆刷Paint dilution||油漆稀释PE(Polyethlene)||聚乙烯Pedestal mounted||落地安装的Phenolic plastic||酚醛塑料Phenyl ketone||苯基甲酮Pit mounted||嵌入式安装Pivotal arm||枢轴Platic structuralcomponent||塑料结构零部件Plastic upholstery||(座椅)塑料蒙面Play compensation||间隙补偿PLC(ProgrammableLogical Controller) ||可编程序逻辑控制器Polycarbonateplastics||聚碳酸脂塑料Polyester resin||聚脂树脂Polyimide||聚酰亚胺Polymer||聚合物,高分子,多聚体Polyurethanefoam||聚氨酯泡沫塑料Polyvinyl||聚乙烯的, 聚乙烯Polyvinyl fluoride||聚氟乙烯Prefabricatedparts||成品零部件,制造好的零部件Propylene resin||丙烯类树脂Protecting lacquer||防护漆PSF(PolystyreneFoam)||聚苯乙烯泡沫塑料PTFE(Polytetrafluoroethylene)||聚四氟乙烯Pultrusion||拉挤成型Putty knife||油灰〔腻子〕刮铲QC(Quality Control)||质量控制QCS(Quality ControlStandard)||质量管理控制标准QR(Quality Requirements)||质量规格Quality certification||质量认证Quantity production||大量〔成批〕生产,大规模生产Quantity production||大量〔成批〕生产,大规模生产Quarter panelbrace||后侧围板支撑件Quarter panellower extension||后侧围板下延伸部Quarter trimcap||后侧围装饰板盖Quarte wheelhouse||后侧围轮滚罩,后侧围车轮室Quasi-isotropiclaminate||准各向同性层板Quench||淬火Rack truck||架子车, 移动架Radial dispersion||径向位移Radial loading||径向力(载荷)Radial pump||径向离心泵Radiation protectivepaint||防辐射涂料Radiator||散热器Rag||毛刺RARTM(Rubber-assistedRTM)||橡胶辅助RTM(用橡胶取代芯材的热膨胀RTM) Reactive resin||活性树脂, 反响型树脂Rear skirt rail||后围裙边梁Reciprocatingengine||活塞式发动机, 往复式发动机Reinforcement||车身加强件,增强材料;构架Repeat accuracy||重复精确度Repeatability||设备重复定位精度Resin formulation||树脂配方Retaining nest||定位槽Return trip||回程,返回行程Rib||筋,加强筋RIFT(Resin InfusionUnder Flexible Tooling)||挠性上模具树脂浸渍工艺RIM(ReactionInjection Molding)||反响注射模塑Safety hood||平安罩Sample testing||样品试验Sand wet||(车身/涂装)湿砂打磨Sandwich body||夹层结构车身Sandwich construction||夹层结构Sandwich panel||多层板,复合板Shaft assembly||轴组件Skin coat||表层;罩面层Solvent reclaim||溶剂的回收Stiffener||加强件Storage modulus||储能模量Stress at definiteelongation||定伸应力Stretched actylicplastic||拉伸丙烯酸塑料String milling||连续铣削Stroke||(悬架)减振器,冲程Structural instrumentpanel||结构仪表板Structural layer||结构层Styrene||苯乙烯Styrofoam||聚苯乙烯泡沫塑料Su***ce mat||外表薄毡Synthetic resinpaint||合成树脂涂料Tack strength||粘着强度Tail gate||(卡车等的)后挡板Teflon||聚四氟乙烯(塑料, 绝缘材料)TERTM(Thermal-ExpansionResin Transfer Molding)||热膨胀树脂传递模塑Thermoplasticplastics||热塑性塑料Thermoset resin||热固性树脂Thickening agent||增粘剂Trim waste||内饰废料Trimming orientation||修边定位Turbulent heating||湍流加热Turndown ratio||衰减比率Twisting stress||扭胁强, 扭应力U bolt||U形螺栓U bolt plate||U形螺栓垫板Ultimate mechanicalstrength||极限机械强度Ultraviolentsensitive coating||紫外线感光涂层Undercoat paint||头道漆Uniaxial drawing||单轴拉伸Unsaturated polyesterresin||非饱和聚酯树脂Unyielding support||不可压缩支架, 刚性支架Upper yield stress||上屈服应力Urethane coating||氨基甲酸乙酯涂层UVRTM(Ultra-violetRTM)||紫外线固化RTM〔利用紫外线进行固化〕VA RTM (VacuumAssisted Resin Transfer Molding) ||真空辅助RTM Vacuum bag molding||真空袋模制法VARI(Vacuum AssistedResin njection)||真空辅助树脂注射Variable speed||无级变速Ventilation duct||通风管Ventilator(Ventilatingequipment)||通风装置Vibratory stress||振动应力VIMP (VariableInfusion Molding Process)||可变浸渍模塑Vinyl chlorideresin||聚氯乙烯树脂VOC(VolatileOrganic Compound)||挥发性有机化合物Volume modulus||体积模数Vortex generator||(车身)扰流器,导流板VRV(Vacuum ReducerValve)||真空减压阀Warping stress||翘曲应力Waste utilization||废物利用,废物处理Water shield||防水罩,挡泥板;密封条Water tolerance||耐水性Wedge gripping||楔形夹具Wheel fender||翼子板Wing trussgrid||翼子〔挡泥〕板加强件Winding||缠绕Wingtip assembly||翼尖整流罩Wire drawing||拉丝Wiring press||卷边压力机, 嵌线卷边机Workpiece grippe||工件夹子〔持器〕,机械手Woven rovingfabric||〔玻璃纤维〕无捻粗纱布织物Xylenol CarboxylicAcid||二甲苯酚酸Xlylene||亚二甲苯基Xyster||刮刀X alloy||铜铝合金Xenidium||胶合板Xenidium||胶合板Xylene ||二甲苯Xylene resin||二甲苯树脂Yard-crane||移动吊车,场内移动起重机Yarn count||纱线支数,丝线支数Yarn strength||纱线强度,长丝强度Yield limit||屈服极限,屈服点Yield point underbending stress||弯曲应力下的屈服点Yield stress||屈服应力, 屈服点Yield stresscontrolled bonding||屈服应力粘结Zedeflon||四氟乙烯均聚物Zero checker||定零位装置, 零位校验Zero clearance||零间隙Zero compensation||零位补偿Zero initialcondition||零初始条件Zero setting||(仪表)零位调整, 置零Zero shrinkageresin||零收缩树脂Zone control||区域控制高分子专业必备英语词汇1 高分子macromolecule, polymer 又称"大分子"。

【高分子专业英语翻译】

【高分子专业英语翻译】

【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。

乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。

水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。

在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。

乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。

单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。

单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。

更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。

这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。

第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。

构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。

以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。

这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。

大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。

和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institutionand sharing with colleagues.Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third partywebsites are prohibited.In most cases authors are permitted to post their version of thearticle(e.g.in Word or Tex form)to their personal website orinstitutional repository.Authors requiring further informationregarding Elsevier’s archiving and manuscript policies areencouraged to visit:/copyrightFabrication of block copolymer brushes on hollow sphere surface via reverse iodine transfer polymerizationLi-Ping Wang a ,b ,Li-Hua Dong a ,c ,Jing-Cheng Hao a ,⇑,Xin-Hu Lv b ,Wen-Zhi Li b ,Yu-Chao Li b ,Jin-Ming Zhen b ,Yu-Cheng Hao b ,Fei Ma baKey Laboratory of Colloid and Interface Chemistry,Shandong University,Ministry of Education,Jinan 250100,China bCollege of Materials Science and Engineering,Liaocheng University,Liaocheng 252059,China cSchool of Chemistry and Chemical Engineering,Taishan Medical University,Taian,Shandong 271000,Chinaa r t i c l e i n f o Article history:Received 1March 2011Accepted 1May 2011Available online 9May 2011Keywords:Polymer brushes Hollow sphere RITP‘‘Living’’characteristica b s t r a c tThe block copolymer brushes grafted from hollow sphere surface via reverse iodine transfer polymeriza-tion (RITP)were investigated in this work.A sufficient amount of azo initiator was introduced onto hol-low sphere surface firstly.Then the monomer methyl methacrylate (MMA)was polymerized via surface-initiated reverse iodine transfer polymerization (RITP)using azo group modified hollow sphere as initi-ator.The microstructure of the samples was characterized by FT-IR,1H NMR,respectively.Results indi-cated that the poly(methyl methacrylate)(PMMA)with end functionality of alkyl iodine group had grafted from hollow sphere surface.TEM observations showed that the average diameter of hollow core was central at 1.3–1.4l m and the average wall thickness increased from 103nm to 138nm and 172nm after grafting polymerization of MMA and Tb complex,respectively.The closely linear plots of molecular weight (M n )versus conversion,linear kinetic plots for the free polymer formed in solution and the ability to extend the chains by sequential addition of monomer indicated that the RITP was a controlled process with a ‘‘living’’characteristic.Crown Copyright Ó2011Published by Elsevier Inc.All rights reserved.1.IntroductionControlled/‘‘living’’free radical polymerization is one of the most effective routes to prepare well-defined polymers (predeter-mined molecular weight,narrow distribution,and tailored archi-tectures).The most prominent living free radical polymerization techniques are iniferter (initiation-transfer-termination)method [1],nitroxide-mediated polymerization (NMP)[2],atom transfer radical polymerization (ATRP)[3,4],reversible addition-fragmen-tation chain transfer (RAFT)[5,6],iodine transfer polymerization (ITP)[7],and reverse iodine transfer polymerization (RITP)[8–10].Iodine transfer polymerization (ITP)was discovered by Tatemoto in late 1970s [11],and studied with much interest since the mid-1990s.By using an initiating radical,iodofluorocom-pounds could enter in a controlled process,based on a degenera-tive transfer (DT).The ITP process was first applied to the copolymerization of vinylidene fluoride with hexafluoropropene and was rapidly extended to other common nonhalogenated vinyl monomers.However,ITP exhibits two important limitations [12,13].Firstly,in the initiation system,the chain transfer agents (such as 2-iodo-perfluoropropane,1-iodo-1-chloroethane and 1-phenylethyl iodide)used in ITP are unstable which is due to the weak C–I bond and thus lead to inconvenience upon storage.Secondly,ITP of monomers involving tertiary propagating radicals (such as methacrylates with 1-phenylethyliodide as transfer agent)was not successful because it would require more activated iodoal-kyl compounds such as ethyl 2-iodo-2-methylpropionate,which are inherently even more unstable.To overcome these drawbacks,Tatemoto and Nakagawa [11]reported a new process called re-verse iodine transfer polymerization (RITP)which is based on a di-rect reaction of radicals with molecular iodine I 2.In this way,the reversible chain transfer agent is generated in situ in the reaction mixture,thus avoiding its preliminary synthesis and storage.At present,the study of RITP is relative few and mostly focuses on the investigations of the mechanism.In this work,we wish to report the first successful use of RITP technique to synthesize well-controlled polymer brushes from inorganic substrate.Hollow sphere is a kind of inorganic microspheres with abundant hydroxyl on its surface.It has large inner void,low density and high surface area which account for its actual and potential applications in imaging [14],wave absorber [15],acoustic [16],sensing devices [17],controlled drug-delivery carriers [18]and so on [19,20].Therefore,hollow sphere appears very attractive to be used as the inorganic substrate.The overall synthesis route is listed in Scheme 1.0021-9797/$-see front matter Crown Copyright Ó2011Published by Elsevier Inc.All rights reserved.doi:10.1016/j.jcis.2011.05.003⇑Corresponding author.E-mail address:wangliping5@ (J.-C.Hao).2.Experimental2.1.ReagentsUnless otherwise indicated,chemicals were obtained from commercial suppliers and used as received.The monomer methyl methacrylate(MMA)(AR,Shanghai Chemical Reagent Plant)was washed with10%NaOH and ion-free water,stirred over CaH2 and distilled under reduced pressure prior to use.4,40-azobis (4-cyanopentanoic acid)(ACPA)was purchased from Sigumas Co. The hollow sphere and the4,40-azobis(4-cyanopentanoic acid chloride)(ACPAC)were synthesized following a previously de-scribed procedure respectively[21,22].2.2.InstrumentationThe structure of samples was characterized by Nicolet-5700 Fourier transform infrared spectroscopy(FT-IR)from400cmÀ1to 4000cmÀ1by the KBr pellet methods.The molecular weights and polydispersities(PDI)of the polymers were determined via an alli-ance GPCV2000(Waters,USA)gel permeation chromatographer (GPC)using THF as the eluent at aflow rate of1.0mL minÀ1and operated at40°C.The compositions and the structures of the poly-mers obtained by RITP of MMA were determined by Varian Mer-cury Plus400MHz nuclear magnetic resonance instrument,using CDCl3as a solvent and tetramethylsilane(TMS)as internal refer-ence.Transmission electron microscopy(TEM)analysis was per-formed on a JEOL JEM-1400transmission election microscope. The elemental analyses(EA)for C,H,and N were performed on a GmbH VarioEL elemental analyse system.Fluorescence excitation and emission spectra were recorded on an Edinburgh Instruments FLS920spectrofluorimeter from a450W stable xenon lamp.The thermal decomposition behavior of the materials was examined by means of thermogravimetry(TG)with a heating rate of 10°C minÀ1in the nitrogen atmosphere on a model STA449C simultaneous DSC–TGA(Netzsch Instruments,Germany).L.-P.Wang et al./Journal of Colloid and Interface Science361(2011)400–4064012.3.Synthesis of azo groups immobilized hollow sphereThe target compound was synthesized according to our previ-ous work[23].Typically,hollow sphere(1g),(3-aminopropyl)tri-ethoxysilane(KH-550)(1mL)and toluene20mL were mixed and heated at80°C for11h under nitrogen atmosphere.The mixture wasfiltrated and thefiltrate was washed with toluene to remove excess compound KH-550to give amino-functionalized hollow sphere(Hollow sphere-NH2),which was dried at25°C in vacuum. Elem.Anal.Calcd.(%):C,18.6;H,2.9;N,2.8.Hollow sphere-NH2(1g)was dispersed in dichloromethane (10mL)and0.2g ACPAC was added.The reaction mixture was stir-red at room temperature for6h and stopped to remove the excess ACPAC byfiltration.The whitefiltrate was washed thoroughly with mixed solvent of ethanol and water(V/V=1:1),ethanol and ether to afford azo groups immobilized hollow sphere.Elem.Anal.Calcd. (%):C,19.6;H,3.1;N,4.5.The amount of surface immobilized azo group can be tenta-tively estimated(N@N/hollow sphere=I c)by the following relation:I c¼WN@NÀWN14Â2ð1Þwhere W N@N and W N is the nitrogen weight(per centum)of azo groups immobilized hollow sphere and amino-functionalized hol-low sphere resulted from the element analysis data,respectively. The estimated I c for hollow sphere is0.60mmol gÀ1.2.4.Synthesis of Tb complexSalicylic acid(1.10g,8mmol)and MMA(1.42ml,4mmol)were dissolved in anhydrous ethanol.Terbium nitrate(1.38g,4mmol) was added under stirring and refluxing for6h resulting in the Tb complex(Scheme2).2.5.PMMA brushes growing from hollow sphere surface by RITP methodA mixture of azo groups immobilized hollow sphere(0.11g,azo group content:$0.066mmol)and cyclohexanone(6mL)in the flask was ultrasonically agitated for30minutes and then iodine (0.008g,0.031mmol)and degassed MMA(6mL,0.056mol)were added.After three freeze–thaw-pump cycles,theflask was heated at70°C in an oil bath.The polymerization was conducted in the dark under nitrogen atmosphere with magnetic stirring.After reac-tion,the colloidal stability of the composite hollow spheres isfine because of the kind compatibility of PMMA grafted from hollow sphere surface and the PMMA formed in solution.Theflask was cooled in an ice bath and the mixture was diluted with tetrahydro-furan(THF).The hollow sphere substrate with grafted PMMA(hol-low sphere-g-PMMA)was separated by centrifugation.The crude product was extracted with THF and dried at40°C in vacuum to afford hollow sphere-g-PMMA.2.6.Diblock copolymer brushes on the hollow sphere surfaceAs shown in Scheme1,the synthesis of diblock copolymer brushes was carried out on the hollow sphere-g-PMMA substrate. The procedures were similar to those used for synthesis of the hol-low sphere-g-PMMA hybrid material,except using hollow sphere-g-PMMA hybrid particles as macro chain transfer agent and Tb complex as the second monomer via a conventional ITP process.A general procedure is as follows:The mixture of hollow sphere-g-PMMA hybrid particles(0.02g)and16mL ethanol inflask was ultrasonically agitated for30min and then the AIBN(0.0066g, 0.04mmol)and Tb complex(4mmol)were added.Theflask was subsequently evacuated andflushed with nitrogen.The polymeri-zation was carried out under nitrogen in a70°C oil bath for16h, stopped byfiltration and washing with excess THF to remove un-grafted Tb complex.Finally,the resulting brown powder was dried at40°C in vacuum.3.Results and discussion3.1.Surface-initiated RITP on the functionalized hollow sphere substrateThe hollow sphere-g-PMMA hybrid materials were prepared using RITP method.The chemical state and the topography of the402L.-P.Wang et al./Journal of Colloid and Interface Science361(2011)400–406hollow sphere-g-PMMA hybrid materials were probed by FT-IR,1H NMR and TEM,respectively.Fig.1shows the infrared spectrum of hollow sphere before(Fig.1a)and after(Fig.1b and c)grafting polymerization.In Fig.1a,the peak at3414cmÀ1was attributed to the O–H stretching vibrations of hydroxyl group in hollow sphere,the peak at1087cmÀ1was assigned to the Si–O–Si stretch-ing vibration and the peak at962cmÀ1was a result of Si–OH vibra-tion.The peaks at3000–2800cmÀ1resulted from the C–H stretching vibrations and the peak at1619cmÀ1came from C@C stretching vibrations of benzene ring,which was a result of the small quantity of undissolved polystyrene in hollow sphere.As for Fig.1b,the disappeared peaks at3000–2800cmÀ1and 1619cmÀ1was due to the polystyrene in hollow sphere dissolved in cyclohexanone during reaction.The absorption peak at 2957cmÀ1came from C–H stretching vibration and the peak at 1730cmÀ1represented the C@O stretching vibration of PMMA which indicated the successful grafting between hollow sphere and PMMA.After grafting copolymerization for16h on the hollow spheres-g-PMMA substrate(Fig.1c),several changes were ob-served,the new peak at1615cmÀ1belonged to C@C stretching vibrations of benzene ring in salicylic acid and the strong new peak at1399cmÀ1means COOÀof salicylic acid complexes with Tb3+. The existence of benzene ring and COOÀgives the direct proof for successful grafting of Tb complex on hollow spheres-g-PMMA substrate.The ability to extend the chains by sequential addition of monomer indicated that the process of grafting polymerization on hollow spheres surface is a controlled/‘‘living’’polymerization.In order to get more information about the microstructures of hollow spheres,TEM was performed.The hollow nature of the microspheres was observed in the contrast between the thin dark edge and pale center in TEM observations,as shown in Fig.2.From the TEM images,we can alsofind that the dark edge become thick-er with the process of grafting polymerization.The average diam-eter of the hollow spheres before grafting polymerization centered at1.3–1.4l m with an average wall thickness of103nm indicated by the size distribution histogram.After grafting polymerization of MMA and Tb complex(Fig.2b and c),the average wall thickness in-creased to138nm and172nm,respectively,according to the size distribution histogram,which corresponded to the successful grafting process.L.-P.Wang et al./Journal of Colloid and Interface Science361(2011)400–4064031H NMR spectrum of PMMA formed in solution was performed to verify the reverse iodine transfer polymerization mechanism re-ported previously(Fig.3)[12,13].The signal at2.9ppm is assignedto the methylene(–CH2–C(CH3)(CO2CH3)–I)in the b position of io-dine(c)at the chain end.The signals centered at0.84,1.81,and 3.60ppm are attributed to the methyl–CH3(b),the methylene –CH2–(a),and the methoxy–OCH3(d)groups of the monomer units in PMMA chain respectively.The1H NMR results are consis-tent with chemical shifts of[–CH2–C]nÀ1–(CH3)(CO2CH3)–CH2–C (CH3)(CO2CH3)–I given in the literature[13].3.2.Controlled graft polymerization of PMMA on hollow sphere surfaceA living polymerization is characterized by narrow polydisper-sity products,linear increase in molecular weight with conversion, and the ability to extend the chains by sequential addition of monomer.Table1summarizes the results of all polymerization under various experimental conditions.They offer the narrowTable1Polymerization of methyl methacrylate(MMA)by reverse iodine transfer polymerization(RITP)performed at70°C.Sample Time(h)M n a(Â10À4g molÀ1)M w a(Â10À4g molÀ1)PDI b Conv.(%)Polymer content(wt%)HS-g-PMMA-4h49.7214.78 1.5229.5713.4 HS-g-PMMA-6h612.3516.41 1.3248.0216.2 HS-g-PMMA-8h812.7516.29 1.2451.2119.3 HS-g-PMMA-12h1214.6317.88 1.2280.6920.1 HS-g-PMMA-b-Tb complex-16h c16 5.75 6.44 1.1248.0428.4a Free polymer formed in the solution,obtained by GPC with standard polystyrene as reference.b PDI:molecular weight distribution is calculated from Mw/M n.c HS-g-PMMA-b-complex-16h:using HS-g-PMMA-12h as macroinitiator.polydispersity,the molecular weight increased with the polymeri-zation time.To prove the living nature of reverse iodine transfer polymerization fatherly,the relationship plot between molecularweight and monomer conversion and the kinetic plots are drawed according to Table1.In Fig.4,the linear relationship between the molecular weight of the free polymer formed in the solution and the monomer con-version was observed.Although the exact molecular weight of polymer grafted on the inorganic substrate is not known,its molec-ular weight is expected to be proportional to that of the polymer formed in the solution[24].The closely linear increase in molecu-lar weight with monomer conversion indicated that the process of surface-initiated reverse iodine transfer polymerization of MMA is controlled.The kinetic plots of Ln[M]0/[M](where[M]is the concentration of monomer)versus polymerization time was shown in Fig.5.The linearfirst-order kinetics plot suggested that the radical concentra-tion was constant throughout the polymerization.However,there exist about a two hours induction period.3.3.The ability to form block copolymer brushes on hollow sphere substrateAccording to the mechanism of RITP,the polymer prepared via the RITP-mediated process has an end functionality of alkyl iodine group.Thus,the graft chains prepared in this way on hollow sphere substrate can be used as macroinitiator for subsequent block polymerization or further functionalization.The Tb complex was chosen for the block copolymerization as the Tb complex repeat unit contains MMA group,which can serve as a monomer in the following iodine transfer polymerization(ITP).After the graft copolymerization proceeded for16h on the hol-low sphere-g-PMMA substrate in an ethanol medium,the diblock polymer brushes grafted from hollow sphere surface(hollow sphere-g-PMMA-b-Tb)came into being.Thefluorescence proper-ties of the sample were determined by spectrofluorimeter.Fig.6 shows the excitation spectra of hollow sphere-g-PMMA-b-Tb com-plex.The excitation spectrum of the resulting hybrid materials was obtained by monitoring the emission of Tb3+ions at548nm.The excitation spectrum is dominated by a broad band from290to 330nm in narrow region and the maximum peak is at310nm, which can be attributed to the characteristic absorption of the lan-thanide complexes arising from the efficient transition based on the conjugated double bonds of the aromatic cycle of salicylic acid ligand.These excitation spectra bands are the effective absorption for the luminescence of Tb3+.As a result,the strong green lumines-cence was observed(see Fig.7),indicating that the effective energy transfer took place between the aromatic ligand and the chelated Tb3+ions.In the emission spectrum,there are four characteristic fluorescence emission bands associated with Tb3+.The band at 489nm is assigned to the5D4?7F6electron transition of Tb3+.L.-P.Wang et al./Journal of Colloid and Interface Science361(2011)400–406405The band at around544nm is associated with the5D4?7F5tran-sition of Tb3+,and the bands at about583nm and621nm corre-sponded to the5D4?7F4and5D4?7F3electron transition of Tb3+respectively.Thefluorescence properties analysis and the EDS results conformed that the Tb complex has grafted from the hollow sphere-g-PMMA substrate successfully,which indicated that most of the PMMA chains were living and took part in the de-sired graft copolymerization.3.4.The grafted polymer content of the hybrid materialsFig.8displays the TGA curves of hollow sphere,HS-g-PMMA and HS-g-PMMA-b-Tb complex.The data show three loss zones associated with the evaporation of excess H2O molecules under 100°C(zone I),organic groups on hollow sphere(zone II)and the inorganic salts is remained(zone III).The organic content can be determined from the difference in weight loss between100 and500°C.The polymer contents calculated for the hybrid mate-rial are also summarized in Table1.The value obtained are rela-tively high(13.5–20.1wt%)which accords with the relatively high grafting rate.The grafted polymer content(calculated from TGA data)vs polymerization time was plotted as illustrated in Fig.9.The grafted polymer content exhibited a nearly linear in-crease of polymerization pared with the weight loss curves of the HS-g-PMMA,the loss ratio of HS-g-PMMA-b-Tb com-plex at zone II is larger and the quantity of last remains is smaller than that of the HS-g-PMMA.The calculated organic content of HS-g-PMMA-b-Tb complex(using HS-g-PMMA-12h as macroinitiator) is28.4wt%which is larger than that of HS-g-PMMA-12h,20.1wt%. That is,the Tb complex grafted on hollow sphere is about8.3wt%. The Tb3+content in the hollow spheres can be estimated by the following relation:Tb3þwt%¼M TbTb complexÂ8:3wt%¼159Â8:3wt%¼2:5wt%ð2Þwhere M Tb and M Tb complex is the molecular weight of Tb and Tb complex respectively.The calculated Tb3+wt%in the hollow spheres is about2.5wt%.4.ConclusionThe optical-functional diblock copolymer brushes grafted from hollow sphere surface were synthesized by surface-initiated re-verse iodine transfer polymerization(RITP).After immobilization of the azo initiator,PMMA chains were successfully grafted from the surface of hollow sphere.Moreover,the PMMA grafted from hollow sphere surface had the ability to extend the chains by sequential addition of Tb complex,illustrating the living nature of the polymerization process.TEM images clearly revealed the hollow structure of the hollow spheres and the increase of the average wall thickness with the grafting polymerization.Fluores-cence spectra confirmed that the PMMA-b-Tb complex grafted hol-low sphere hybrid materials exhibited strongfluorescence properties.This work presented a new method to synthesize opti-cal-functional hybrid material with controlled molecular weights and‘‘well-defined’’structures,which may extend potential appli-cations of hollow sphere and RITP.AcknowledgmentThis research was supported by scientific research start up fund for doctor of Liao-Cheng University.References[1]T.Sato,S.Tsuji,H.Kawagauchi,Ind.Eng.Chem.Res.47(2008)6358–6361.[2]Y.K.Chong(bill),F.Ercole,G.Moad,E.Rizzardo,S.H.Thang,A.G.Anderson,Macromolecules32(1999)6895–6903.[3]K.Matyjaszewski,J.Xia,Chem.Rev.101(2001)2921–2990.[4]C.Y.Lin,M.L.Coote,A.Gennaro,K.Matyjaszewski,J.Am.Chem.Soc.130(2008)12762–12774.[5]S.Liu,K.D.Hermanson,E.W.Kaler,Macromolecules39(2006)4345–4350.[6]P.He,L.He,Biomacromolecules10(2009)1804–1809.[7]C.Boyer,D.Valade,L.Sauguet,B.Ameduri,B.Boutevin,Macromolecules38(2005)10353–10362.[8]J.Tonnar,croix-Desmazes,B.Boutevin,Macromolecules40(2007)186–190.[9]J.Tonnar,croix-Desmazes,B.Boutevin,Macromolecules40(2007)6076–6081.[10]B.N.Patra,D.Rayeroux,croix-Desmazes,React.Funct.Polym.70(2010)408–413.[11]M.Tatemoto,T.Nakagawa,Daikin Kogyo Co.,Ltd.,Japan.DE.2729671,1978.[12]croix-Desmazes,R.Severac,B.Boutevin,Macromolecules38(2005)6299–6309.[13]C.Boyer,croix-Desmazes,J.J.Robin, B.Boutevin,Macromolecules39(2006)4044–4053.[14]Q.Peng,Y.Dong,Y.Li,Angew.Chem.Int.Ed.42(2003)3027–3033.[15]M.Han,Y.Ou,L.Deng,J.Magn.Magn.Mater.321(2009)1125–1129.[16]M.Y.Shatalov,S.V.Joubert,C.E.Coetzee,I.A.Fedotov,J.Sound Vib.322(2009)1038–1047.[17]Z.Wu,M.Zhang,K.Yu,S.Zhang,Y.Xie,Chem.Eur.J.14(2008)5346–5352.[18]S.H.Im,U.Jeong,Y.N.Xia,Nat.Mater.4(2005)671–675.[19]X.He,W.Yang,L.Yuan,X.Pei,J.Gao,Mater.Lett.63(2009)1138–1140.[20]C.Oh,Y.G.Lee,C.U.Jon,S.G.Oh,Colloid Surface A337(2009)208–212.[21]M.Chen,L.Wu,S.Zhou,B.You,Adv.Mater.18(2006)801–806.[22]G.Zhai,W.H.Yu,E.T.Kang,K.G.Neoh,C.C.Huang,D.J.Liaw,Ind.Eng.Chem.Res.43(2004)1673–1680.[23]L.P.Wang,W.Z.Li,L.M.Zhao,C.J.Zhang,Y.D.Wang,L.L.Kong,L.L.Li,Mater.Res.Bull.45(2010)1314–1318.[24]W.H.Yu,E.T.Kang,K.G.Neoh,Ind.Eng.Chem.Res.43(2004)5194–5202.406L.-P.Wang et al./Journal of Colloid and Interface Science361(2011)400–406。

相关文档
最新文档