【月考试卷】山东省滨州市2016年3月八年级下段考数学试卷含答案解析
山东省滨州市八年级下学期数学3月月考试卷
山东省滨州市八年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·武威月考) 在实数范围内,有意义,则x的取值范围是()A . x≥0B . x≤0C . x>0D . x<02. (2分)(2017·鞍山模拟) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠BAC 的正切值是()A . 2B .C .D .3. (2分) (2020八下·木兰期末) 下列根式中,属于最简二次根式的是()A .B .C .D .4. (2分) (2019八下·江津月考) 若=,则的取值范围是().A . a>1B . a≥1C . a<1D . a≤15. (2分) (2018七上·郑州期中) 下列说法正确的是()A . 两点之间,直线最短B . 平面上A,B两点间的距离是线段ABC . 若线段,则点C是线段AB的中点D . 平面上有三点A,B,C,过其中两点的直线有三条或一条6. (2分) (2017七下·南充期中) 下列各组数中互为相反数的是()A . -2与B . -2与C . -2与D . | -2 |与27. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕AC所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()A . 30πB . 40πC . 50πD . 60π8. (2分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE.若AC=12,△OAE的周长为15,则▱ABCD的周长为()A . 18B . 27C . 36D . 429. (2分)下列命题中,真命题是()A . 两个无理数相加的和一定是无理数B . 三角形的三条中线一定交于一点C . 菱形的对角线一定相等D . 同圆中相等的弦所对的弧一定相等10. (2分) (2019七下·江苏期中) 下列等式正确的是()A .B .C .D .二、填空题 (共6题;共8分)11. (1分)在实数范围内因式分解:x3﹣2x2y+xy2=________12. (1分) (2019八上·长沙月考) 若a , b , c为三角形的三边长,且a , b满足 +(b﹣7)2=0,那么c的取值范围是________.13. (2分)如图,矩形ABCD中,DE⊥AC于点E,∠EDC:∠EDA=1:3,且AC=12,则DE的长度是________ (结果用根号表示).14. (1分)(2019·广西模拟) 一个三角形的三边长分别是m2-1,2m,m2+1,则三角形中最大角是________?15. (1分) (2019八下·鹿邑期中) 如图,四边形是正方形,延长到点,使,则的度数是________。
山东省滨州市2015-2016学年八年级下期中数学试卷含答案解析(初中数学试卷)
2015-2016学年山东省滨州市八年级(下)期中数学试卷
一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所
对应的字母代号写在答题纸中各题对应的方格里).
1.若有意义,则x的取值范围()
A.x>2 B.x≤C.x≠D.x≤2
2.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()
A.25 B.7 C.5和7 D.25或7
3.下列各组数中不能作为直角三角形的三边长的是()
A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15
4.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()
A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC
5.已知二次根式中最简二次根式共有()
A.1个B.2个C.3个D.4个
6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()
A.2cm B.3cm C.4cm D.5cm
7.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是()
A.10 B.16 C.20 D.22
8.如图字母B所代表的正方形的面积是()
A.12 B.13 C.144 D.194
9.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()
A.x≤10 B.x≥10 C.x<10 D.x>10
10.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()。
山东省2016-2017学年八年级下学期第三次月考数学试题
第16题图 D E BC F A 第17题图学 校:泾川县王村中学 班 级:__________姓 名:__________考 号:__________密 封 线 内 不 要 答 题山东省2016-2017学年度第二学期第三次月考试题(卷)八年级 数学题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1. 如果1x -有意义,那么x 的取值范围是( )A .1x >B .1x ≥C .1x ≤D .1x < 2. 下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③3.下列函数(1)y=3πx (2)y=8x -6 (3)y=1x (4)y=12 -8x (5)y=5x 2-4x+1中,是一次函数的有( )A.4个B.3个C.2个D.1个 4. 已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C .7D .5或75. 下列命题中正确的是( )A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形 6.下列根式中属最简二次根式的是( ) A .21a + B .12C .8D . 10 7. 如图,□ABCD 中,AB =10,BC =6,E 、F 分别是AD 、DC 的中点,若EF =7,则四边形EACF 的周长是( )A .20B .22C .29D .318. 直角三角形中,两直角边长分别为12和5,则斜边中线长是( )A .26B .13C .8.5D .6.59. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边长为a ,较长直角边为b ,那么(a+b)2的值为( )A 13B 19C 25D 16910.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( ) A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0二、细心填一填:(每小题3分,共24分)11.已知2=a ,则代数式12-a 的值是 .12.在平行四边形ABCD 中,∠C =100°,则∠A =___,∠D =___.13.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 14.若点A (m ,3)在函数y=5x -7的图象上,则m 的值为 .15. 在平行四边形ABCD 中,已知对角线AC 和BD 相交于O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =16. 如图,矩形ABCD 的对角线AC,BD 相交于点O,CE ∥BD,DE ∥AC.若AC=4,则四边形CODE 的周长是 .17.如图所示,将矩形ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 处,若△AFD 的周长为9,△ECF 的周长为3,则矩形ABCD 的周长为___________.18.一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值范围是 .三、耐心做一做(共46分)19.计算(每小题4分,8分) (3)(236236; (4)(248327620.(6分)已知一次函数的图象经过点(6,0)和点(10,8),写出函数解析式.ABDCE F第7题图y x 第10题图21. (8分)如图,在平形四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:DE=BF.22.(8分)已知:△ABC中,CD平分∠ACB交AB于D,DE∥AC交BC于E,DF∥BC交AC于F.求证:四边形DECF是菱形.23. (8分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF•与AD交于点F,求证:AE=BF.24、(8分)小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图像.请你根据图像中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当8x 分钟时,求小文与家的距离。
2016年山东滨州中考数学试卷-答案
山东省滨州市2016年初中学生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】211-=-,故选B .【提示】根据乘方的意义,相反数的意义,可得答案.【考点】实数的运算2.【答案】D【解析】解:A 、AB CD Q ∥,EMB EN ∴∠=∠(两直线平行,同位角相等);B 、AB CD Q ∥,BMN MNC ∴∠=∠(两直线平行,内错角相等);C 、AB CD Q ∥,CNH MPN ∴∠=∠(两直线平行,同位角相等),MPN BPG ∠=∠Q (对顶角),CNH BPG ∴∠=∠(等量代换);D 、DNG ∠与AME ∠没有关系,无法判定其相等,故选D .【提示】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论.【考点】平行线的性质3.【答案】B【解析】()()22x 1x 3x x x 31x 13x 3x x 3x 2x 3+-=-+-⨯=-+-=--Q g gg 22x ax b x 2x 3∴++=--,a 2∴=-.故选:B .【提示】运用多项式乘以多项式的法则求出(x 1)(x 3)+-的值,对比系数可以得到a ,b 的值.【考点】因式分解的应用4.【答案】A【解析】A 、原式为最简分式,符合题意;B 、原式x 11,(x 1)(x 1)x 1+==+--不合题意;C 、原式2(x y)x y ,x(x y)x--==-不合题意;D 、原式(x 6)(x 6)x 6,2(x 6)2+--==+不合题意,故选A . 【提示】利用最简分式的定义判断即可.【考点】分式的化简5.【答案】D【解析】根据图中信息可知这些队员年龄的平均数为:13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++(岁), 该足球队共有队员26832122+++++=(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D .【提示】根据年龄分布图和平均数、中位数的概念求解.【考点】平均数,中位数6.【答案】D【解析】解:AC CD BD BE,A 50,===∠=︒Q A CDA 50,B DCB,BDE BED,∴∠=∠=︒∠=∠∠=∠ B DCB CDA 50,∠+∠=∠=︒Q B 25,∴∠=︒B EDB DEB 180,∠+∠+∠=︒Q1BDE BED (18025)77.5,2∴∠=∠=︒-︒=︒CDE 180CDA EDB 1805077.552.5,∴∠=︒-∠-∠=︒-︒-︒=︒故选D .【提示】根据等腰三角形的性质推出 ACDA 50,B DCB,BDE BED,∠=∠=︒∠=∠∠=∠根据三角形的外角性质求出B 25,∠=︒由三角形的内角和定理求出根据平角BDE,∠的定义即可求出选项.【考点】等腰三角形的性质,对顶角、邻补角,三角形内角和定理,三角形的外角性质7.【答案】C【解析】解:点A 坐标为(0,a),点A 在该平面直角坐标系的y 轴上,点C D 、的坐标为(b,m),(c,m), ∴点C D 、关于y 轴对称,∵正五边形ABCDE 是轴对称图形,∴该平面直角坐标系经过点A 的y 轴是正五边形ABCDE 的一条对称轴,∴点B E 、也关于y 轴对称,∴点B 的坐标为(3,2),-∴点E 的坐标为(3,2),故选:C .【提示】由题目中A 点坐标特征推导得出平面直角坐标系y 轴的位置,再通过C 、D 点坐标特征结合正五边形的轴对称性质就可以得出E 点坐标了.【考点】坐标与图形性质8.【答案】B 【解析】解:13x 17x ,225x 23(x 1)⎧-≤-⎪⎨⎪+>-⎩解①得x 4,≤解②得x 2.5,>-所以不等式组的解集为 2.5x 4,-<≤所以不等式组的整数解为2,1,0,1,2,3,4.--故选B .【提示】分别解两个不等式得到x 4≤和x 2.5,>-利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【考点】一元一次不等式组的整数解,解一元一次不等式组9.【答案】C【解析】解:根据图形可得主视图为:故选:C .【提示】根据几何体的三视图,即可解答.【考点】几何体的三视图10.【答案】C【解析】解:抛物线2y 2x 2x 1,-=+令x 0,=得到即抛物线y 1,=与y 轴交点为(0,1);令y 0,=得到22x 22x 10,-+=即2(2x 1)0,-=解得:122x x ,2==即抛物线与x 轴交点为2(,0),2则抛物线与坐标轴的交点个数是2,故选C .【提示】对于抛物线解析式,分别令x 0=与y 0=求出对应y 与x 的值,即可确定出抛物线与坐标轴的交点个数.【考点】二次函数的图象11.【答案】A【解析】Q 抛物线的解析式为:2y x 5x 6,=++∴绕原点选择180°变为2y x 5x 6,=-+-即25y (x )21,4=--+∴向下平移3个单位长度的解析式为22515y (x )3(x )211,442=--+-=---故选A . 【提示】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【考点】二次函数的图象的平移12.【答案】D【解析】①AB Q 是O e 的直径,ADB 90∴∠=︒,AD BD ∴⊥,②AOC ∠Q 是O e 的圆心角,AEC ∠是O e 的圆内部的角,AOC AEC ∴∠≠∠③OC BD Q ∥,OCB DBC ∴∠=∠,OC OB =Q ,OCB OBC ∴∠=∠,OBC DBC ∴∠=∠,CB ∴平分ABD ∠,④AB Q 是O e 的直径,ADB 90∴∠=︒,AD BD ∴⊥,OC BD Q ∥,AFO 90∴∠=︒,Q 点O 为圆心,AF DF ∴=,⑤由④有,AF DF =,Q 点O 为AB 中点,OF ∴是ABD △的中位线,BD 2OF ∴=,⑥CEF Q △和BED △中,没有相等的边,CEF Q △与BED △不全等,故选D .【考点】圆的性质的综合应用第Ⅱ卷二、填空题13.【答案】25【解析】解:所有的数有5个,无理数有π共2个,∴抽到写有无理数的卡片的概率是225.5÷=故答案为:25. 【提示】让是无理数的数的个数除以数的总数即为所求的概率.【考点】概率公式,无理数14.【答案】9【解析】解:设甲每小时做x 个零件,乙每小时做y 个零件,依题意得:x y 3,3020x y =+⎧⎪⎨=⎪⎩解得:x 9.y 6=⎧⎨=⎩故答案为:9.【提示】设甲每小时做x 个零件,乙每小时做y 个零件,根据题意列出关于x y 、的二元一次方程组,解方程组即可得出结论.【考点】二元一次方程组的应用15.【答案】13【解析】解:Q 四边形ABCD 是矩形,BAD 90,∴∠=︒又AB ==BD 3,∴= BE 1.8,=Q DE 3 1.8 1.2,∴=-=AB CD,Q ∥DF DE ,AB BE ∴=即 1.2,1.8=解得,DF =则CF CD DF 3=-=CF 1,CD 3∴=故答案为:1.3 【提示】根据勾股定理求出BD ,得到DE 的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF ,计算即可.【考点】勾股定理,三角形相似的判定与性质16.【答案】2π-【解析】解:Q 正ABC △的边长为2,ABC ∴△的面积为122⨯= 扇形ABC 的面积为26022,3603π⨯=πg则图中阴影部分的面积23(3)233,3=⨯π-=π- 故答案为:23 3.π- 【提示】根据等边三角形的面积公式求出正ABC △的面积,根据扇形的面积公式2n R S 360π=求出扇形的面积,求差得到答案.【考点】扇形面积的公式,三角形17.【答案】3【解析】设点A B 、的纵坐标为1y ,点C D 、的纵坐标为2y ,则点11a A(,y y ),点11b B(,y ),y 点22a C(,y ),y 点22b D(,y ).y 33AB ,CD ,42==Q 12a b a b 2,y y --∴⨯= 12y 2y .∴=12y y 6,+=Q12y 4,y 2.∴==-连接OA OB,、延长AB 交y 轴于点E,如图所示.OAB OAE OBE 11133S S S (a b)AB OE 4,22242==-==⨯⨯-=g △△△ OAB a b 2S 3.∴-==△故答案为:3.【考点】反比例函数的图象和性质18.【答案】2016201620162(32)31(31)+=--⨯【解析】解:观察发现,第n 个等式可以表示为:n n n 2(32)311,(3)--⨯+=当n 2016=时,2016201620162(32)31(1,3)--⨯+= 故答案为:2016201620162(32)31(1.3)--⨯+=【提示】观察等式两边的数的特点,用n 表示其规律,代入n 2016=即可求解.【考点】规律型:数字的变化类三、解答题19.【答案】解:原式2222a 4a 4a a []a a(a 2)a(a 2)---=÷--- 2a 4a 4a a(a 2)--=÷- 2a 4a(a 2)•a a 4--=- ()2a 2,=-a =Q∴原式22)6==- 【提示】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可.【考点】分式的化简求值20.【答案】解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得:102x 3y 60,x y 22++=⎧⎨+=⎩解得:x 16.y 6=⎧⎨=⎩ 答:本场比赛中该运动员投中2分球16个,3分球6个.【提示】设本场比赛中该运动员投中2分球x 个,3分球y 个,根据投中22次,结合罚球得分总分可列出关于x y 、的二元一次方程组,解方程组即可得出结论.【考点】二元一次方程组的应用21.【答案】解:(1)连接OE,O Q e 与AD 相切于点E,OE AD,∴⊥Q 四边形ABCD 为正方形,CD AD,∴⊥OE CD,∴∥EFD OEF,∴∠=∠OE OF,=QOEF OFE,∴∠=∠OFE EFD,∴∠=∠EF ∴平分BFD;∠(2)在Rt FBC △中,3tan FBC ,4∠=Q 即FC 3,BC 4=35FC BC,BF BC,44∴==又BC CD,=31FC CD,DF CD,44∴==CD 4DF 45,BF 5 5.∴===连接BE,BF Q 是O e 的直径,BEF 90,∴∠=︒BEF D,∴∠=∠又EFD BFE,∠=∠EFD BFE,∴V :VEFDF,BF EF ∴=2EF BF DF 55525,∴===g【考点】切线的性质,正方形的性质.22.【答案】解:(1)由题意,得1y 20x(0x 2)=≤≤2y 40(x 1)(1x 2=-≤≤);(2)由题意得;(3)由图象得他们同时到达老家.【提示】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【考点】一次函数的图象和性质23.【答案】解:(1)四边形EBGD 是菱形.理由:EG Q 垂直平分BD,EB ED,GB GD,∴==EBD EDB,∴∠=∠EBD DBC,∠=∠QEDF GBF,∴∠=∠在EFD △和GFB △中,EDF GBF EFD GFB,DF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩EFD GFB,∴△≌△BE ED DG GB,∴===∴四边形EBGD 是菱形.(2)作EM BC ⊥于M,DN BC ⊥于N,连接EC 交BD 于点H,此时HG HC +最小,在Rt EBM △中,EMB 90,EBM 30,EB ED 210,∠=︒∠=︒==Q1EM BE 10,2∴== DE BC,EM BC,DN BC,⊥⊥Q ∥EM DN,EM DN 10,MN DE 210,∴====∥在Rt DNC △中,DNC 90,DCN 45,∠=︒∠=︒QNDC NCD 45,∴∠=∠=︒DN NC 10,∴==MC 310,∴=在Rt EMC △中,EMC 90EM 10MC 310,∠=︒==Q ,2222EC EM MC (10)(310)10.∴=+=+=HG HC EH HC EC,+=+=QHG HC 10.∴+的最小值为【提示】(1)结论四边形EBGD 是菱形,只要证明BE ED DG GB ===即可.(2)作EM BC ⊥于M,DN BC ⊥于N,连接EC 交BD 于点H,此时HG HC +最小,在Rt EMC △中,求出EM MC 、即可解决问题.【考点】特殊平行四边形的判定,三角形全等的判定和性质,角平分线、线段的垂直平分线的性质,勾股定理24.【答案】解:(1)令y 0=得2121x x 20,4--+= 2x 2x 80,∴+-=∴点A 坐标(2,0),点B 坐标(4,0),-令x 0,=得y 2,=∴点C 坐标(0,2).(2)①AB 为平行四边形的对角线,平行四边形为菱形,点E 与点F 关于x 轴对称,则点E 与抛物线的顶点重合, 99F(1,),EF ,42∴--= 此时所求四边形面积为11927AB EF 6;2222=⨯⨯=g②AB 为平行四边形的边, AB EF 6,==Q 对称轴x 1,=-∴点E 的横坐标为7-或5,∴点E 坐标27(7,)4--或27(5,),4-此时点27F(1,),4-- ∴以A,B,E,F 为顶点的平行四边形的面积27816.42=⨯= (3)如图所示,①当C 为顶点时,12CM CA,CM CA,==作1M N OC ⊥于N, 在1Rt CM N △中,2211CN CM M N 7=-=∴点1M 坐标(1,27),-+点2M 坐标(1,27).--②当3M 为顶点时,Q 直线AC 解析式为y x 1,=-+线段AC 的垂直平分线为y x,=∴点3M 坐标为(1,1).--③当点A 为顶点的等腰三角形不存在.综上所述点M 坐标为(1,1)--或(1,27)-+或(1,27).--【考点】二次函数的图象与性质,抛物线的顶点坐标,与坐标轴的交点坐标,平行四边形的面积公式,等腰三角形的判定11/ 11。
2016年山东滨州中考数学试卷(含详细答案)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山东省滨州市2016年初中学生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21-等于( ) A .1B .1-C .2D .2-2.如图,AB CD ∥,直线EF 与,AB CD 分别交于点,M N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A .EMB END ∠=∠ B .BMN MNC ∠=∠ C .CNH BPG ∠=∠D .DNG AME ∠=∠3.把多项式2x ax b ++分解因式,得(1)(3)x x +-,则,a b 的值分别是( ) A .23a b ==,B .23a b =-=-, C .23a b =-=,D . 23a b ==-, 4. 下列分式中,最简分式是( )A .2211x x -+B .211x x +- C .2222x xy yx xy-+- D .236212x x -+5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数、中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,156.如图,ABC △中,D 为AB 上一点,E 为BC 上一点,且AC CD BD BE ===,50A ∠=,则CDE ∠的度数为( )A .50B .51C .51.5D .52.57.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点,,,A B C D 的坐标分别是(0,)(32)(,)(,)a b m c m -,,,,,则点E 的坐标是( )A .(2,3)-B .(2,3)C .(3,2)D .(3,2)-8.对于不等式组1317,22523(x x x x ⎧--⎪⎨⎪+-⎩≤>1),下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是321---,,D .此不等式组的解集是522x -<≤9.如图是由4个大小相同的正方体组合而成的几何体,其主视图是( )10.抛物线2221y x x -=+与坐标轴的交点个数是( ) A .0B .1C .2D .311.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)得到抛物线256y x x =++,则原抛物线的解析式是( )A .252114y x =---() B .252114y x =-+-()C .25214y x =---()D .25214y x =-++()12.如图,AB 是O 的直径,,C D 是O 上的点,且OC BD ∥,AD 分别与,BC OC 相交于点,E F ,则下列结论:①AD BD ⊥;②AOC AEC ∠=∠; ③CB 平分ABD ∠; ④AF DF =; ⑤2BD OF =; ⑥CEF BED △≌△. 其中一定成立的是( )1 A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)13.有5张看上去无差别的卡片,上面分别写着10,π,1.3339,.随机抽取1张,则取出的数是无理数的概率是 .14.甲、乙二人做某种机械零件.已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等.那么甲每小时做 个零件.15.如图,矩形ABCD 中,AB =BC =点E 在对角线BD 上,且 1.8BE =,连接AE 并延长交DC 于点F ,则CFCD= .16.如图,ABC △是等边三角形,2AB =,分别以,,A B C 为圆心,以2为半径长作弧,则图中阴影部分的面积是 .17.如图,已知点,A C 在反比例函数a y x =的图象上,点,B D 在反比例函数by x=的图象上,0a b >>,AB CD x ∥∥轴,,AB CD 在x 轴的两侧,34AB =,32CD =,AB 与CD 间的距离为6,则a b -的值是 .18.观察下列式子:21312⨯+=;27918⨯+=; 22527126⨯+=; 27981180⨯+=;…可猜想第2016个式子为 .三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分) 先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a =20.(本小题满分9分)根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)21.(本小题满分9分)如图,过正方形ABCD 顶点,B C 的O 与AD 相切于点E ,与CD 相交于点F ,连接EF .(1)求证:EF 平分BFD ∠; (2)若3tan 4FBC ∠=,DF =求EF 的长.22.(本小题满分10分)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶.爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为(h)x .(1)请分别写出爸爸的骑行路程1(km)y 、李玉刚同学和妈妈的乘车路程2(km)y 与(h)x 之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象; (3)请回答谁先到达老家.23.(本小题满分10分)如图,BD 是ABC △的角平分线,它的垂直平分线分别交,,AB BD BC 于点,,E F G ,连接,ED DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若30ABC ∠=,45C ∠=,ED =,点H 是BD 上的一个动点,求HG HC +的最小值.24.(本小题满分14分) 如图,已知抛物线211242y x x =--+与x 轴交于,A B 两点,与y 轴交于点C . (1)求点,,A B C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以,,,A B E F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得ACM △是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)山东省滨州市2016年初中学生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】211-=-,故选B .【提示】根据乘方的意义,相反数的意义,可得答案. 【考点】实数的运算 2.【答案】D【解析】解:A 、AB CD ∥,EMB EN ∴∠=∠(两直线平行,同位角相等);B 、AB CD ∥,BMN MNC ∴∠=∠(两直线平行,内错角相等);C 、AB CD ∥,CNH MPN ∴∠=∠(两直线平行,同位角相等),MPN BPG ∠=∠(对顶角),CNH BPG ∴∠=∠(等量代换);D 、DNG ∠与AME ∠没有关系,无法判定其相等,故选D .【提示】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论. 【考点】平行线的性质 3.【答案】B 【解析】()()22x 1x 3x x x 31x 13x 3x x 3x 2x 3+-=-+-⨯=-+-=--22x ax b x 2x 3∴++=--,a 2∴=-.故选:B .【提示】运用多项式乘以多项式的法则求出(x 1)(x 3)+-的值,对比系数可以得到a ,b 的值. 【考点】因式分解的应用 4.【答案】A【解析】A 、原式为最简分式,符合题意;B 、原式x 11,(x 1)(x 1)x 1+==+--不合题意;C 、原式2(x y)x y,x(x y)x--==-不合题意;D 、原式(x 6)(x 6)x 6,2(x 6)2+--==+不合题意,故选A .【提示】利用最简分式的定义判断即可. 【考点】分式的化简 5.【答案】D5 / 14【解析】根据图中信息可知这些队员年龄的平均数为:13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++(岁), 该足球队共有队员26832122+++++=(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D .【提示】根据年龄分布图和平均数、中位数的概念求解. 【考点】平均数,中位数 6.【答案】D【解析】解:AC CD BD BE,A 50,===∠=︒A CDA 50,B DCB,BDE BED,∴∠=∠=︒∠=∠∠=∠B DCB CDA 50,∠+∠=∠=︒B 25,∴∠=︒ B EDB DEB 180,∠+∠+∠=︒1BDE BED (18025)77.5,2∴∠=∠=︒-︒=︒CDE 180CDA EDB 1805077.552.5,∴∠=︒-∠-∠=︒-︒-︒=︒故选D .【提示】根据等腰三角形的性质推出 A CDA 50,B DCB,BDE BED,∠=∠=︒∠=∠∠=∠根据三角形的外角性质求出B 25,∠=︒由三角形的内角和定理求出根据平角BDE,∠的定义即可求出选项. 【考点】等腰三角形的性质,对顶角、邻补角,三角形内角和定理,三角形的外角性质 7.【答案】C【解析】解:点A 坐标为(0,a),点A 在该平面直角坐标系的y 轴上,点C D 、的坐标为(b,m),(c,m), ∴点C D 、关于y 轴对称,∵正五边形ABCDE 是轴对称图形,∴该平面直角坐标系经过点A 的y 轴是正五边形ABCDE 的一条对称轴, ∴点B E 、也关于y 轴对称, ∴点B 的坐标为(3,2),- ∴点E 的坐标为(3,2), 故选:C .【提示】由题目中A 点坐标特征推导得出平面直角坐标系y 轴的位置,再通过C 、D 点坐标特征结合正五边形的轴对称性质就可以得出E 点坐标了. 【考点】坐标与图形性质 8.【答案】B【解析】解:13x 17x,225x 23(x 1)⎧-≤-⎪⎨⎪+>-⎩解①得x 4,≤解②得x 2.5,>-所以不等式组的解集为 2.5x 4,-<≤所以不等式组的整数解为2,1,0,1,2,3,4.--故选B .数学试卷 第11页(共28页)数学试卷 第12页(共28页)【提示】分别解两个不等式得到x 4≤和x 2.5,>-利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断. 【考点】一元一次不等式组的整数解,解一元一次不等式组 9.【答案】C【解析】解:根据图形可得主视图为:故选:C .【提示】根据几何体的三视图,即可解答. 【考点】几何体的三视图 10.【答案】C【解析】解:抛物线2y 2x 2x 1,-=+令x 0,=得到即抛物线y 1,=与y 轴交点为(0,1);令y 0,=得到22x 10,-+=即21)0,-=解得:12x x ==即抛物线与x轴交点为则抛物线与坐标轴的交点个数是2,故选C .【提示】对于抛物线解析式,分别令x 0=与y 0=求出对应y 与x 的值,即可确定出抛物线与坐标轴的交点个数.【考点】二次函数的图象 11.【答案】A【解析】抛物线的解析式为:2y x 5x 6,=++∴绕原点选择180°变为2y x 5x 6,=-+-即25y (x )21,4=--+∴向下平移3个单位长度的解析式为22515y (x )3(x )211,442=--+-=---故选A .【提示】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可. 【考点】二次函数的图象的平移 12.【答案】D【解析】①AB 是O 的直径,ADB 90∴∠=︒,A D B D ∴⊥,②AOC ∠是O 的圆心角,AEC ∠是O 的圆内部的角,AOC AEC ∴∠≠∠③OC BD ∥,OCB DBC ∴∠=∠,OC OB =,OCB OBC ∴∠=∠,OBC DBC ∴∠=∠,CB ∴平分ABD ∠,④AB 是O 的直径,ADB 90∴∠=︒,A D B D ∴⊥,OC BD ∥,AFO 90∴∠=︒,点O 为圆心,A F DF ∴=,⑤由④有,A F DF =,点O 为AB 中点,OF ∴是ABD △的中位线,BD 2OF ∴=,⑥CEF △和BED △中,没有相等的边,CEF △与BED △不全等,故选D . 【考点】圆的性质的综合应用7 / 14第Ⅱ卷二、填空题 13.【答案】25【解析】解:所有的数有5个,无理数有π共2个,∴抽到写有无理数的卡片的概率是225.5÷=故答案为:25. 【提示】让是无理数的数的个数除以数的总数即为所求的概率. 【考点】概率公式,无理数 14.【答案】9【解析】解:设甲每小时做x 个零件,乙每小时做y 个零件,依题意得:x y 3,3020x y =+⎧⎪⎨=⎪⎩解得:x 9.y 6=⎧⎨=⎩故答案为:9.【提示】设甲每小时做x 个零件,乙每小时做y 个零件,根据题意列出关于x y 、的二元一次方程组,解方程组即可得出结论.【考点】二元一次方程组的应用 15.【答案】13【解析】解:四边形ABCD 是矩形,BAD 90,∴∠=︒又ABBD 3,∴= BE 1.8,=DE 3 1.8 1.2,∴=-=AB CD,∥DF DE,AB BE ∴=即1.2,1.8=解得,DF =则CF CD DF =-=CF 1,CD 3∴==故答案为:1.3【提示】根据勾股定理求出BD ,得到DE 的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF ,计算即可.【考点】勾股定理,三角形相似的判定与性质 16.【答案】2π-【解析】解:正ABC △的边长为2,ABC ∴△的面积为122⨯数学试卷 第15页(共28页)数学试卷 第16页(共28页)扇形ABC 的面积为26022,3603π⨯=π则图中阴影部分的面积23(23=⨯π=π-故答案为:2π-【提示】根据等边三角形的面积公式求出正ABC △的面积,根据扇形的面积公式2n R S 360π=求出扇形的面积,求差得到答案.【考点】扇形面积的公式,三角形 17.【答案】3【解析】设点A B 、的纵坐标为1y ,点C D 、的纵坐标为2y , 则点11a A(,y y ),点11b B(,y ),y 点22a C(,y ),y 点22bD(,y ).y 33AB ,CD ,42==12a b a b2,y y --∴⨯= 12y 2y .∴= 12y y 6,+= 12y 4,y 2.∴==-连接OA OB,、延长AB 交y 轴于点E,如图所示.OAB OAE OBE 11133S S S (a b)AB OE 4,22242==-==⨯⨯-=△△△OAB a b 2S 3.∴-==△故答案为:3.9 / 14【考点】反比例函数的图象和性质 18.【答案】2016201620162(32)31(31)+=--⨯【解析】解:观察发现,第n 个等式可以表示为:n n n 2(32)311,(3)--⨯+= 当n 2016=时,2016201620162(32)31(1,3)--⨯+= 故答案为:2016201620162(32)31(1.3)--⨯+=【提示】观察等式两边的数的特点,用n 表示其规律,代入n 2016=即可求解. 【考点】规律型:数字的变化类 三、解答题19.【答案】解:原式2222a 4a 4a a[]a a(a 2)a(a 2)---=÷--- 2a 4a 4a a(a 2)--=÷- 2a 4a(a 2)•a a 4--=- ()2a 2,=- a 2,=∴原式22)6==-【提示】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可. 【考点】分式的化简求值20.【答案】解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得:102x 3y 60,x y 22++=⎧⎨+=⎩ 解得:x 16.y 6=⎧⎨=⎩ 答:本场比赛中该运动员投中2分球16个,3分球6个.【提示】设本场比赛中该运动员投中2分球x 个,3分球y 个,根据投中22次,结合罚球得分总分可列出关于x y 、的二元一次方程组,解方程组即可得出结论. 【考点】二元一次方程组的应用数学试卷 第19页(共28页)数学试卷 第20页(共28页)21.【答案】解:(1)连接OE,O 与AD 相切于点E, OE AD,∴⊥四边形ABCD 为正方形,CD AD,∴⊥ OE CD,∴∥ EFD OEF,∴∠=∠ OE OF,= OEF OFE,∴∠=∠ OFE EFD,∴∠=∠EF ∴平分BFD;∠(2)在Rt FBC △中,3tan FBC ,4∠=即FC 3,BC 4=35FC BC,BF BC,44∴==又BC CD,=31FC CD,DF CD,44∴==CD 4DF ∴===连接BE,BF 是O 的直径,BEF 90,∴∠=︒ BEF D,∴∠=∠ 又EFD BFE,∠=∠EFDBFE,∴EF DF ,BF EF∴=2EF BF DF 5525,∴==EF 5.∴=【考点】切线的性质,正方形的性质.22.【答案】解:(1)由题意,得1y 20x(0x 2)=≤≤2y 40(x 1)(1x 2=-≤≤);(2)由题意得;(3)由图象得他们同时到达老家.【提示】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【考点】一次函数的图象和性质 23.【答案】解:(1)四边形EBGD 是菱形.理由:EG 垂直平分BD,EB ED,GB GD,∴==EBD EDB,∴∠=∠EBD DBC,∠=∠EDF GBF,∴∠=∠在EFD △和GFB △中,EDF GBF EFD GFB,DF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩EFD GFB,∴△≌△ED BG,∴=BE ED DG GB,∴===∴四边形EBGD 是菱形.(2)作EM BC ⊥于M,DN BC ⊥于N,连接EC 交BD 于点H,此时HG HC +最小,在Rt EBM △中,EMB 90,EBM 30,EB ED ∠=︒∠=︒==1EM BE 2∴= DE BC,EM BC,DN BC,⊥⊥∥EM DN,EM DN DE ∴===∥在Rt DNC △中,DNC 90,DCN 45,∠=︒∠=︒NDC NCD 45,∴∠=∠=︒DN NC ∴=MC ∴=在Rt EMC △中,EMC 90EM MC ∠=︒=EC 10.∴=HG HC EH HC EC,+=+= HG HC 10.∴+的最小值为【提示】(1)结论四边形EBGD 是菱形,只要证明BE ED DG GB ===即可.(2)作EM BC ⊥于M,DN BC ⊥于N,连接EC 交BD 于点H,此时HG HC +最小,在Rt EMC △中,求出EM MC 、即可解决问题.【考点】特殊平行四边形的判定,三角形全等的判定和性质,角平分线、线段的垂直平分线的性质,勾股定理24.【答案】解:(1)令y 0=得2121x x 20,4--+= 2x 2x 80,∴+-=x 4=-或2,∴点A 坐标(2,0),点B 坐标(4,0),-令x 0,=得y 2,=∴点C 坐标(0,2).(2)①AB 为平行四边形的对角线,平行四边形为菱形,点E 与点F 关于x 轴对称,则点E 与抛物线的顶点重合,99F(1,),EF ,42∴--= 此时所求四边形面积为11927AB EF 6;2222=⨯⨯= ②AB 为平行四边形的边, AB EF 6,==对称轴x 1,=-∴点E 的横坐标为7-或5,∴点E 坐标27(7,)4--或27(5,),4-此时点27F(1,),4-- ∴以A,B,E,F 为顶点的平行四边形的面积27816.42=⨯= (3)如图所示,①当C 为顶点时,12CM CA,CM CA,==作1M N OC ⊥于N,在1Rt CM N △中,CN =∴点1M 坐标(1,2-点2M 坐标(1,2-②当3M 为顶点时,直线AC 解析式为y x 1,=-+线段AC 的垂直平分线为y x,=∴点3M 坐标为(1,1).--③当点A 为顶点的等腰三角形不存在.综上所述点M 坐标为(1,1)--或(1,2-或(1,2-【考点】二次函数的图象与性质,抛物线的顶点坐标,与坐标轴的交点坐标,平行四边形的面积公式,等腰三角形的判定。
2016-2017年山东省滨州市三校八年级(下)第一次月考数学试卷(解析版)
2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷一、单选题(共12题;共36分)1.(3分)等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1 2.(3分)如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10B.C.5D.2.53.(3分)直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5B.6C.6.5D.124.(3分)下列各式中,不是二次根式的是()A.B.C.D.5.(3分)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.(3分)在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4B.5C.6D.77.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对8.(3分)若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2x D.29.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:510.(3分)下列根式中,最简二次根式是()A.B.C.D.11.(3分)如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣1C.﹣+1D.﹣﹣1 12.(3分)化简(﹣2)2015•(+2)2016的结果为()A.﹣1B.﹣2C.+2D.﹣﹣2二、填空题(共6题;共24分)13.(4分)把a中根号外面的因式移到根号内的结果是.14.(4分)计算的值是.15.(4分)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.16.(4分)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.17.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.(4分)的整数部分是,小数部分是.三、解答题(共7题;共60分)19.(20分)计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.20.(6分)已知y=+2,求+﹣2的值.21.(6分)已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.22.(8分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?23.(10分)如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB =8cm,BC=10cm.求CE的长?24.(10分)观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=;(2)利用(1)中你发现的规律计算:++…+.2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷参考答案与试题解析一、单选题(共12题;共36分)1.(3分)等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1【解答】解:∵,∴,解得:x≥1.故选:A.2.(3分)如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10B.C.5D.2.5【解答】解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.3.(3分)直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5B.6C.6.5D.12【解答】解:∵直角三角形两条直角边长分别是5和12,∴斜边==13,∴第三边上的中线长为×13=6.5.故选:C.4.(3分)下列各式中,不是二次根式的是()A.B.C.D.【解答】解:3﹣π<0,无意义,故选:B.5.(3分)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.6.(3分)在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4B.5C.6D.7【解答】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.7.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.8.(3分)若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2x D.2【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选:D.9.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.10.(3分)下列根式中,最简二次根式是()A.B.C.D.【解答】解:A、被开方数含分母,故A不符合题意,B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数含开得尽的因数或因式,故C不符合题意;D、被开方数不含分母,被开方数不含开得尽的因数或因式,故D符合题意;故选:D.11.(3分)如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣1C.﹣+1D.﹣﹣1【解答】解:由勾股定理得:=,∴数轴上点A所表示的数是﹣1,∴a=﹣1;故选:B.12.(3分)化简(﹣2)2015•(+2)2016的结果为()A.﹣1B.﹣2C.+2D.﹣﹣2【解答】解:原式=[(﹣2)•(+2)]2015•(+2)=(3﹣4)2015•(+2)=﹣﹣2.故选:D.二、填空题(共6题;共24分)13.(4分)把a中根号外面的因式移到根号内的结果是﹣.【解答】解:原式=﹣=﹣,故答案为:﹣14.(4分)计算的值是4﹣1.【解答】解:原式=﹣1+3=4﹣1.故答案为4﹣1.15.(4分)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是12cm.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,∵S△ACB=AC×BC=AB×CD,∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.16.(4分)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为126或66cm2.【解答】解:当∠B为锐角时(如图1),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=21,∴S△ABC==×21×12=126cm2;当∠B为钝角时(如图2),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11cm,∴S△ABC==×11×12=66cm2,故答案为:126或66.17.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.18.(4分)的整数部分是4,小数部分是﹣4.【解答】解:∵4<<5,∴的整数部分是4,小数部分是﹣4.故答案为:4,﹣4.三、解答题(共7题;共60分)19.(20分)计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.【解答】解:(1)原式=3﹣2+=2;(2)原式=2+2﹣3+=3﹣;(3)原式=12﹣6=6;(4)原式=+1+3﹣1=4.20.(6分)已知y=+2,求+﹣2的值.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.21.(6分)已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.【解答】解:(1)∵x=+3,y=﹣3,∴x﹣y=6,∴x2﹣2xy+y2=(x﹣y)2=62=36;(2)∵x=+3,y=﹣3,∴x+y=2,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=2×6=12.22.(8分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)在Rt△AOB中,AB=25米,OB=7米,OA===24(米).答:梯子的顶端距地面24米;(2)在Rt△AOB中,A′O=24﹣4=20米,OB′===15(米),BB′=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.23.(10分)如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB =8cm,BC=10cm.求CE的长?【解答】解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC﹣BF=4,设CE=x,EF=DE=8﹣x,则在Rt△ECF中,EF2=EC2+CF2,即x2+16=(8﹣x)2,解可得x=3,故CE=3cm.24.(10分)观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=﹣;(2)利用(1)中你发现的规律计算:++…+.【解答】解:(1)==﹣;故答案为:﹣;(2)原式=﹣1+﹣+…+﹣=﹣1.。
山东省滨州三校2016-2017学年八年级第二学期第一次月考数学试卷
2016--2017学年下学期第一次月考八年级数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共120分. 考试用时90分钟. 祝各位考生考试顺利!第Ⅰ卷一、单选题(共12题;共36分)1、等式成立的条件是( ).A、 B、C、 D、2、如图∠AOP=∠BOP=15o,PC∥OA,PD⊥OA,若PC=10,则PD等于( ).A、5B、C、10D、2.53、直角三角形两条直角边长分别是5和12,则第三边上的中线长为( )A、5B、6.5C、12D、134、下列各式中,不是二次根式的是()A、 B、 C、 D、5、如果,则A、aB、aC、a>D、a6、在直线l上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为()A、6B、5C、4D、37、已知直角三角形两边的长为3和4,则此三角形的周长为()A、12B、7+C、12或7+D、以上都不对8、若1<x<2,则的值为().A、2x-4B、-2C、4-2xD、29、满足下列条件的三角形中,不是直角三角形的是()A、三内角之比为1:2:3B、三边长的平方之比为1:2:3C、三边长之比为3:4:5D、三内角之比为3:4:510、下列根式中,最简二次根式是( )A、 B、 C、 D、11、如图所示:数轴上点A所表示的数为a,则a的值是()A、+1B、﹣1C、﹣+1D、﹣﹣112、化简(﹣2)2015•(+2)2016的结果为()A、﹣1B、﹣2C、+2D、﹣﹣2。
山东省滨州市2016年中考数学试卷(带答案)
2016年山东省滨州市中考数学试卷一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1.﹣12等于()A.1 B.﹣1 C.2 D.﹣22.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DN G=∠AME3.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣34.下列分式中,最简分式是()A.B.C.D.5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,156.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5° D.52.5°7.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3) B.(2,3) C.(3,2) D.(3,﹣2)8.对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤29.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.10.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.311.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+12.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤二、填空题:本大题共6个小题,每小题4分满分24分13.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是.14.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则= .16.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.17.如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是.18.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为.三、解答题:(本大题共6个小题,满分60分,解答时请写出必要的演推过程)19.先化简,再求值:÷(﹣),其中a=.20.某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据46 66 22 10 11 8 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.21.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.22.星期天,李玉刚同学随爸爸妈妈会老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km/h.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.23.(10分)(2016?滨州)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.24.(14分)(2016?滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2016年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1.﹣12等于()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方的意义,相反数的意义,可得答案.【解答】解:﹣12=﹣1,故选:B.【点评】本题考查了有理数的乘方,1的平方的相反数.2.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DN G=∠AME【考点】平行线的性质.【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论.【解答】解:A、∵AB∥CD,∴∠EMB=∠END(两直线平行,同位角相等);B、∵AB∥CD,∴∠BMN=∠MNC(两直线平行,内错角相等);C、∵AB∥CD,∴∠CNH=∠MPN(两直线平行,同位角相等),∵∠MPN=∠BPG(对顶角),∴∠CNH=∠BPG(等量代换);D、∠DNG与∠AME没有关系,无法判定其相等.故选D.【点评】本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.3.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【考点】因式分解的应用.【分析】运用多项式乘以多项式的法则求出(x+1)(x﹣3)的值,对比系数可以得到a,b的值.【解答】解:∵(x+1)(x﹣3)=x?x﹣x?3+1?x﹣1×3=x2﹣3x+x﹣3=x2﹣2x ﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.故选:B.【点评】本题考查了多项式的乘法,解题的关键是熟练运用运算法则.4.下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15【考点】条形统计图;算术平均数;中位数.【分析】根据年龄分布图和平均数、中位数的概念求解.【解答】解:根据图中信息可知这些队员年龄的平均数为:=15(岁),该足球队共有队员2+6+8+3+2+1=22(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D.【点评】本题考查了确定一组数据的平均数,中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5° D.52.5°【考点】等腰三角形的性质;对顶角、邻补角;三角形内角和定理;三角形的外角性质.【专题】计算题.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【解答】解:∵AC=CD=B D=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,。
滨州市2015—2016学年八年级下期末学业水平数学试题含答案
(1) 3
12
2 2 7
24 、、、、 3 2 2 4 3
(2)(3
O3)(1
1 3 ).
AC BD
O
EF 2A0C.(满分 8 A分D) BC
EF
如图,已A知FCAEC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部
分的面积.
第 20 题图
21.(满分 10分)为了从甲、乙两名运动员中选拔一人参加市射击比赛,在选拔赛上每人打 10 发,其中甲的射击环数分别是 10,8,7,9,8,10,10,9,10,9.
3.第Ⅰ卷每小题选出答案后,用 2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用 橡皮擦干净后,再选涂其他答案标号。答案不能答在试题卷上。
4.第Ⅱ卷必须用 0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位 置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。
G F
B
C
第 24题图 1
Q G
B P
第 24题图 2
N C
F
八年级数学试题参考答案
一、选择题(本大题共 12个小题,每小题 3 分,满分 36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B B A D D A A D B B D
二、填空题(本大题共 6 个小题,每小题 4 分,满分 24分)
5. 下列四个等式:① (4) 2 4 ;②(- 4 ) 2
D.第四象限 2=4;④ (4)2 4 .
其中正确的是(
)
=16;③( 4 )
A.①②
B.③④
C.②④
6. 顺次连接矩形 ABCD各边的中点,所得四边形必定是(
山东省滨州市八年级下学期数学3月月考试试卷
山东省滨州市八年级下学期数学3月月考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2019·慈溪模拟) 下列电视台图标中,属于中心对称图形的是()A .B .C .D .2. (2分) (2020八上·浦北期末) 下列各式:,其中分式的个数为()A . 个B . 个C . 个D . 个3. (2分) (2019八上·港南期中) 把分式中的x和y都扩大2倍,则分式的值()A . 扩大4倍B . 扩大2倍C . 缩小2倍D . 不变4. (2分)(2012·阜新) 每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数01234人数31316171则这50名学生读数册数的众数、中位数是()A . 3,3B . 3,2C . 2,3D . 2,25. (2分)若分式中的a,b都同时扩大2倍,则该分式的值()A . 不变B . 扩大2倍C . 缩小2倍D . 扩大4倍6. (2分) (2018九上·渠县期中) 如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE= AC,连接CE、OE,连接AE交OD于点F,若AB=2,∠ABC=60° ,则AE的长为()A .B .C .D .二、填空题 (共10题;共11分)7. (1分) (2017八下·宜兴期中) 当x= ________时,分式的值为0;当 ________时,二次根式有意义.8. (1分)(2016·滨州) 有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是________.9. (1分)若关于x的分式方程﹣1= 无解,则m的值________10. (1分) (2018九上·和平期末) 如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD 交BC边于点E,则CE的长等于________厘米.11. (1分)如图,在菱形ABCD中,DE⊥AB ,垂足是E , DE=6,sinA= ,则菱形ABCD的周长是________12. (1分)(2018·铜仁模拟) 如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是________.13. (2分) (2019七下·灌云月考) 如图,AD平分∠EAC,若∠C=55°,∠EAC=110°,AD与BC平行吗?为什么?请根据解答过程填空(理由或数学式)解:AD∥BC.理由:∵AD平分∠EAC(已知)∴∠DAC= ∠EAC(________)∵∠EAC=110°(已知)∴∠DAC= ∠EAC=________°∵∠C=55°(已知)∴∠C=∠________∴AD∥BC(________)14. (1分)(2017·五华模拟) 如图,正方形ABCD的面积为4,其面积标记为S1 ,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 ,…,按照此规律继续下去,则S10的值为________.15. (1分) (2018八上·沁阳期末) 若关于x的分式方程无解,则实数m=________.16. (1分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE丄AC于点E,PF丄BD于点F,则PE+PF的值为________三、解答题 (共9题;共72分)17. (10分)解方程18. (5分)已知x+y=4,xy=﹣12,求的值.19. (5分) (2018九上·宜昌期中) 如图,在平面直角坐标系中,的三个顶点分别是,,.(1)①将以点为旋转中心旋转,画出旋转后对应的;平移,若点的对应点的坐标为,画出平移后对应的;②若将绕某一点旋转可以得到;请直接写出旋转中心的坐标;③在轴上有一点,使得的值最小,请直接写出点的坐标.20. (2分)(2017·荆州) 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数多少人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.21. (10分)(2018·资阳) 某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是________株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.22. (10分) (2017八上·高邑期末) 已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.23. (5分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?24. (10分)(2017·长春模拟) 如图,将矩形ABCD折叠,使点C与A点重合,折痕为EF.(1)判断四边形AFCE的形状,并说明理由.(2)若AB=4,BC=8,求折痕EF的长.25. (15分)已知y= ,x取哪些值时:(1)y的值是正数;(2)y的值是负数;参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共72分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、第11 页共11 页。
滨州市八年级下学期数学第一次月考试卷
滨州市八年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列各点不在反比例函数y=的图象上的应是()A . (6,-2)B . (6,2)C . (3,4)D . (-3,-4)2. (2分) (2015八下·新昌期中) 如图,O为▱ABCD两对角线的交点,图中全等的三角形有()A . 1对B . 2对C . 3对D . 4对3. (2分)已知点A(2,7), AB∥x轴,AB=3,则B点的坐标为()A . (5,7)B . (2,10)C . (2,10)或(2,4)D . (5,7)或(-1,7)4. (2分)(2019·慈溪模拟) 在一次中国诗词大会中,百人团选手得分情况如表:人数30402010分数80859095那么这百人团选手所得分数的中位数和众数分别是()A . 85和82.5B . 85.5和85C . 85和85D . 85.5和805. (2分)(2018·高邮模拟) 如图,将矩形纸带ABCD,沿EF折叠后,C,D两点分别落在C′,D ′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A . 65°B . 55°C . 50°D . 25°6. (2分)如图,将直线l1沿着AB的方向平移得到直线l2 ,若∠1=50°,则∠2的度数是()A . 40°B . 50°C . 90°D . 130°7. (2分) (2018九上·紫金期中) 若正方形的对角线为2cm,则这个正方形的面积为()A . 2cm²B . 4cm²C . cm²D . 2 cm²8. (2分) (2016八下·固始期末) 如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A . 20B . 15C . 10D . 5二、填空题 (共7题;共11分)9. (1分) (2017八上·衡阳期末) 已知函数关系式:y= ,则自变量x的取值范围是________.10. (1分) (2017七下·南京期末) 肥皂泡的泡壁厚度大约是,用科学记数法表示为________m.11. (1分) (2016八下·洪洞期末) 在y=5x+a-2中,若y是x的正比例函数,则常数a= ________ .12. (1分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是________.13. (2分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为________ .14. (2分)如图所示,已知函数y=x+b和y=ax﹣1的图象交点为M,则不等式x+b<ax﹣1的解集为________15. (3分)(2018·黔西南模拟) 已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题 (共9题;共44分)16. (2分) (2017八下·昆山期末) 解方程:17. (5分)(2016·呼和浩特) 某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?18. (10分)(2017·新乡模拟) 如图,一次函数y=﹣x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.19. (2分) (2019八下·鹿邑期中) 如图,在中,点、分别在、上,,、分别是、的中点.四边形是平行四边形吗?证明你的结论.20. (2分)(2018·阳信模拟) 如图,在Rt△ABC中,∠ACB=90°,AB=6,过点C的直线MN∥AB,D为AB 上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;(2)在(1)的条件下,当∠A等于多少度时,四边形BECD是正方形?21. (10分)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)22. (5分)如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.23. (2分) (2017九上·宁城期末) 已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.24. (6分)(2017·河北模拟) 某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共44分)16-1、17-1、18-1、18-2、19-1、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、。
山东省滨州市2015-2016学年八年级下期中数学试卷含答案解析
A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC
5.已知二次根式
中最简二次根式共有( )
A.1 个 B.2 个 C.3 个 D.4 个 6.如图,长为 8cm的橡皮筋放置在 x 轴上,固定两端 A 和 B,然后把中点 C 向上拉升 3cm至 D 点,则橡皮筋被拉长了( )
A.2cm B.3cm C.4cm D. 5cm 7.如图,平行四边形 ABCD的对角线交于点 O,且 AB=6,△OCD的周长为 16,则 AC与 BD的和是
()
A.10 B.16 C.20 D.22
ห้องสมุดไป่ตู้
第 1 页(共 23 页)
2015-2016 学年山东省滨州市八年级(下)期中数学试卷 参考答案与试题解析
解得:x≤ .
故选:B. 【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.
2.已知一个直角三角形的两边长分别为 3 和 4,则第三边长的平方是( ) A.25 B.7 C.5 和 7 D.25或 7 【考点】勾股定理. 【专题】分类讨论. 【分析】分两种情况:①当 3 和 4 为直角边长时;②4 为斜边长时;由勾股定理求出第三边长的平 方即可. 【解答】解:分两种情况: ①当 3 和 4 为直角边长时, 由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;
②4 为斜边长时, 由勾股定理得:第三边长的平方=42﹣32=7; 综上所述:第三边长的平方是 25或 7; 故选:D. 【点评】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分
第 5 页(共 23 页)
2015-2016 学年山东省滨州市八年级(下)期中数学试卷
【月考试卷】山东省滨州市三校2016-2017学年八年级下第一次月考数学试卷含答案解析
2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷一、单选题(共12题;共36分)1.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣12.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5 D.2.53.直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5 B.6 C.6.5 D.124.下列各式中,不是二次根式的是()A.B.C. D.5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.77.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对8.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.29.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:510.下列根式中,最简二次根式是()A.B.C.D.11.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1 B.﹣1 C.﹣+1 D.﹣﹣112.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C. +2 D.﹣﹣2二、填空题(共6题;共24分)13.把a中根号外面的因式移到根号内的结果是.14.计算的值是.15.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.16.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.的整数部分是,小数部分是.三、解答题(共7题;共60分)19.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.20.已知y=+2,求+﹣2的值.21.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.22.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?24.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=;(2)利用(1)中你发现的规律计算: ++…+.2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷参考答案与试题解析一、单选题(共12题;共36分)1.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣1【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则适用的条件列出不等式组解答即可.【解答】解:∵,∴,解得:x≥1.故选A.2.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B. C.5 D.2.5【考点】含30度角的直角三角形;平行线的性质;三角形的外角性质.【分析】根据平行线的性质可得∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,可得PE=PC=10,在Rt△PED中,求出∠PEA的度数,根据勾股定理解答.【解答】解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.3.直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5 B.6 C.6.5 D.12【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理列式求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵直角三角形两条直角边长分别是5和12,∴斜边==13,∴第三边上的中线长为×13=6.5.故选C.4.下列各式中,不是二次根式的是()A.B.C. D.【考点】二次根式的定义.【分析】根据被开方数是非负数,可得答案.【解答】解:3﹣π<0,无意义,故选:B.5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【考点】二次根式的性质与化简.【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.6.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.7【考点】正方形的性质;勾股定理.【分析】观察图形根据勾股定理的几何意义,边的平方的几何意义就是以该边为边的正方形的面积.【解答】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.7.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对【考点】勾股定理.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选C.8.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.9.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:5【考点】勾股定理的逆定理.【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选D.10.下列根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A不符合题意,B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数含开得尽的因数或因式,故C不符合题意;D、被开方数不含分母,被开方数不含开得尽的因数或因式,故D符合题意;故选:D.11.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1 B.﹣1 C.﹣+1 D.﹣﹣1【考点】勾股定理;实数与数轴.【分析】由勾股定理得出=,得出数轴上点A所表示的数是﹣1,即可得出结果.【解答】解:由勾股定理得:=,∴数轴上点A所表示的数是﹣1,∴a=﹣1;故选:B.12.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C. +2 D.﹣﹣2【考点】二次根式的混合运算.【分析】先利用积的乘方得到原式=[(﹣2)•(+2)]2015•(+2),然后根据平方差公式计算.【解答】解:原式=[(﹣2)•(+2)]2015•(+2)=(3﹣4)2015•(+2)=﹣﹣2.故选D.二、填空题(共6题;共24分)13.把a中根号外面的因式移到根号内的结果是﹣.【考点】二次根式的性质与化简.【分析】判断得到a为负数,利用二次根式性质化简即可.【解答】解:原式=﹣=﹣,故答案为:﹣14.计算的值是4﹣1.【考点】二次根式的混合运算.【分析】先根据二次根式的性质化简,然后合并即可.【解答】解:原式=﹣1+3=4﹣1.故答案为4﹣1.15.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是12cm.【考点】勾股定理的逆定理.【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,=AC×BC=AB×CD,∵S△ACB∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.16.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为126或66cm2.【考点】勾股定理.【分析】此题分两种情况:∠B为锐角或∠B为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.【解答】解:当∠B为锐角时(如图1),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=21,==×21×12=126cm2;∴S△ABC当∠B为钝角时(如图2),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11cm,==×11×12=66cm2,∴S△ABC故答案为:126或66.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.18.的整数部分是4,小数部分是﹣4.【考点】估算无理数的大小.【分析】根据已知得出的取值范围,进而得出答案.【解答】解:∵4<<5,∴的整数部分是4,小数部分是﹣4.故答案为:4,﹣4.三、解答题(共7题;共60分)19.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.【考点】二次根式的混合运算;零指数幂.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式计算;(4)先利用零指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可.【解答】解:(1)原式=3﹣2+=2;(2)原式=2+2﹣3+=3﹣;(3)原式=12﹣6=6;(4)原式=+1+3﹣1=4.20.已知y=+2,求+﹣2的值.【考点】二次根式有意义的条件.【分析】由二次根式有意义的条件可知1﹣8x=0,从而可求得x、y的值,然后将x、y的值代入计算即可.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.21.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)先计算出x﹣y=6,再利用完全平方公式得到x2﹣2xy+y2=(x﹣y)2,然后利用整体代入的方法计算;(2)先计算出x+y=2,x﹣y=6,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=+3,y=﹣3,∴x﹣y=6,∴x2﹣2xy+y2=(x﹣y)2=62=36;(2)∵x=+3,y=﹣3,∴x+y=2,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=2×6=12.22.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【考点】勾股定理的应用.【分析】(1)利用勾股定理可得OA==,再计算即可;(2)在直角三角形A′OB′中计算出OB′的长度,再计算BB′即可.【解答】解:(1)在Rt△AOB中,AB=25米,OB=7米,OA===24(米).答:梯子的顶端距地面24米;(2)在Rt△AOB中,A′O=24﹣4=20米,OB′===15(米),BB′=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】根据翻折的性质,先在RT△ABF中求出BF,进而得出FC的长,然后设CE=x,EF=8﹣x,从而在RT△CFE中应用勾股定理可解出x的值,即能得出CE的长度.【解答】解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC﹣BF=4,设CE=x,EF=DE=8﹣x,则在Rt△ECF中,EF2=EC2+CF2,即x2+16=(8﹣x)2,解可得x=3,故CE=3cm.24.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=﹣;(2)利用(1)中你发现的规律计算: ++…+.【考点】分母有理化.【分析】(1)根据题意确定出所求即可;(2)原式各项化简后,合并即可得到结果.【解答】解:(1)==﹣;故答案为:﹣;(2)原式=﹣1+﹣+…+﹣=﹣1.2017年4月2日。
滨州市三校2016-2017学年八年级下第一次月考数学试卷含解析AKMMMU
2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷一、单选题(共12题;共36分)1.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣12.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5 D.2.53.直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5 B.6 C.6.5 D.124.下列各式中,不是二次根式的是()A.B.C. D.5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.77.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对8.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.29.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:510.下列根式中,最简二次根式是()A.B.C.D.11.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1 B.﹣1 C.﹣+1 D.﹣﹣112.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C. +2 D.﹣﹣2二、填空题(共6题;共24分)13.把a中根号外面的因式移到根号内的结果是.14.计算的值是.15.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.16.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.的整数部分是,小数部分是.三、解答题(共7题;共60分)19.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.20.已知y=+2,求+﹣2的值.21.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.22.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?24.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=;(2)利用(1)中你发现的规律计算: ++…+.2016-2017学年山东省滨州市三校八年级(下)第一次月考数学试卷参考答案与试题解析一、单选题(共12题;共36分)1.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣1【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则适用的条件列出不等式组解答即可.【解答】解:∵,∴,解得:x≥1.故选A.2.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5 D.2.5【考点】含30度角的直角三角形;平行线的性质;三角形的外角性质.【分析】根据平行线的性质可得∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,可得PE=PC=10,在Rt△PED中,求出∠PEA的度数,根据勾股定理解答.【解答】解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.3.直角三角形两条直角边长分别是5和12,则第三边上的中线长为()A.5 B.6 C.6.5 D.12【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理列式求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵直角三角形两条直角边长分别是5和12,∴斜边==13,∴第三边上的中线长为×13=6.5.故选C.4.下列各式中,不是二次根式的是()A.B.C. D.【考点】二次根式的定义.【分析】根据被开方数是非负数,可得答案.【解答】解:3﹣π<0,无意义,故选:B.5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【考点】二次根式的性质与化简.【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.6.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.7【考点】正方形的性质;勾股定理.【分析】观察图形根据勾股定理的几何意义,边的平方的几何意义就是以该边为边的正方形的面积.【解答】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.7.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对【考点】勾股定理.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选C.8.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.9.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:5【考点】勾股定理的逆定理.【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选D.10.下列根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A不符合题意,B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数含开得尽的因数或因式,故C不符合题意;D、被开方数不含分母,被开方数不含开得尽的因数或因式,故D符合题意;故选:D.11.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1 B.﹣1 C.﹣+1 D.﹣﹣1【考点】勾股定理;实数与数轴.【分析】由勾股定理得出=,得出数轴上点A所表示的数是﹣1,即可得出结果.【解答】解:由勾股定理得:=,∴数轴上点A所表示的数是﹣1,∴a=﹣1;故选:B.12.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C. +2 D.﹣﹣2【考点】二次根式的混合运算.【分析】先利用积的乘方得到原式=[(﹣2)•(+2)]2015•(+2),然后根据平方差公式计算.【解答】解:原式=[(﹣2)•(+2)]2015•(+2)=(3﹣4)2015•(+2)=﹣﹣2.故选D.二、填空题(共6题;共24分)13.把a中根号外面的因式移到根号内的结果是﹣.【考点】二次根式的性质与化简.【分析】判断得到a为负数,利用二次根式性质化简即可.【解答】解:原式=﹣=﹣,故答案为:﹣14.计算的值是4﹣1.【考点】二次根式的混合运算.【分析】先根据二次根式的性质化简,然后合并即可.【解答】解:原式=﹣1+3=4﹣1.故答案为4﹣1.15.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是 12 cm .【考点】勾股定理的逆定理.【分析】过C 作CD ⊥AB 于D ,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C 作CD ⊥AB 于D ,∵AC 2+BC 2=152+202=625,AB 2=252=625,∴AC 2+BC 2=AB 2,∴∠C=90°,∵S △ACB =AC ×BC=AB ×CD ,∴AC ×BC=AB ×CD15×20=25CD ,∴CD=12(cm );故答案为:12.16.在△ABC 中,AB=13cm ,AC=20cm ,BC 边上的高为12cm ,则△ABC 的面积为 126或66 cm 2.【考点】勾股定理.【分析】此题分两种情况:∠B 为锐角或∠B 为钝角已知AB 、AC 的值,利用勾股定理即可求出BC 的长,利用三角形的面积公式得结果.【解答】解:当∠B 为锐角时(如图1),在Rt △ABD 中,BD===5cm ,在Rt △ADC 中,CD===16cm ,∴BC=21,==×21×12=126cm2;∴S△ABC当∠B为钝角时(如图2),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11cm,==×11×12=66cm2,∴S△ABC故答案为:126或66.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.18.的整数部分是4,小数部分是﹣4.【考点】估算无理数的大小.【分析】根据已知得出的取值范围,进而得出答案.【解答】解:∵4<<5,∴的整数部分是4,小数部分是﹣4.故答案为:4,﹣4.三、解答题(共7题;共60分)19.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.【考点】二次根式的混合运算;零指数幂.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式计算;(4)先利用零指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可.【解答】解:(1)原式=3﹣2+=2;(2)原式=2+2﹣3+=3﹣;(3)原式=12﹣6=6;(4)原式=+1+3﹣1=4.20.已知y=+2,求+﹣2的值.【考点】二次根式有意义的条件.【分析】由二次根式有意义的条件可知1﹣8x=0,从而可求得x、y的值,然后将x、y的值代入计算即可.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.21.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)先计算出x﹣y=6,再利用完全平方公式得到x2﹣2xy+y2=(x﹣y)2,然后利用整体代入的方法计算;(2)先计算出x+y=2,x﹣y=6,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=+3,y=﹣3,∴x﹣y=6,∴x2﹣2xy+y2=(x﹣y)2=62=36;(2)∵x=+3,y=﹣3,∴x+y=2,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=2×6=12.22.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【考点】勾股定理的应用.【分析】(1)利用勾股定理可得OA==,再计算即可;(2)在直角三角形A′OB′中计算出OB′的长度,再计算BB′即可.【解答】解:(1)在Rt△AOB中,AB=25米,OB=7米,OA===24(米).答:梯子的顶端距地面24米;(2)在Rt△AOB中,A′O=24﹣4=20米,OB′===15(米),BB′=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】根据翻折的性质,先在RT△ABF中求出BF,进而得出FC的长,然后设CE=x,EF=8﹣x,从而在RT△CFE中应用勾股定理可解出x的值,即能得出CE的长度.【解答】解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC﹣BF=4,设CE=x,EF=DE=8﹣x,则在Rt△ECF中,EF2=EC2+CF2,即x2+16=(8﹣x)2,解可得x=3,故CE=3cm.24.观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得=﹣;(2)利用(1)中你发现的规律计算: ++…+.【考点】分母有理化.【分析】(1)根据题意确定出所求即可;(2)原式各项化简后,合并即可得到结果.【解答】解:(1)==﹣;故答案为:﹣;(2)原式=﹣1+﹣+…+﹣=﹣1.2017年4月2日。
初中数学山东省滨州市八年级下第一次月考数学考试题含答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A. AB∥CD,AB=CDB. AB∥CD,BC∥ADC. AB∥CD,BC=ADD. AB=CD,BC=AD试题2:平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是()A. 45°B. 60°C. 90°D. 120°试题3:如图所示,▱ABCD的对角线AC,BD相交于点O,AE=EB,OE=3,AB=5,▱ABCD的周长()A. 11B. 13C.16 D. 22试题4:顺次连接矩形ABCD各边的中点,所得四边形必定是( )A. 邻边不等的平行四边形B. 矩形C. 正方形D. 菱形试题5:评卷人得分如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=()A. 90°B. 45°C. 30°D. 22.5°试题6:矩形具有而菱形不具有的性质是( )A. 对角线互相平分B. 对角线相等C. 对角线垂直D. 每一条对角线平分一组对角试题7:平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )A. 6<AC<10B. 6<AC<16C. 10<AC<16D. 4<AC<16试题8:如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C. 5 D. 4试题9:已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A. 962B. 48cm2C.24cm2 D. 12cm2试题10:如图,P是边长为1的正方形ABCD的对角线BD上的一点,点E是AB的中点,则PA+PE的最小值是()A. B. C. D.试题11:如图,在矩形ABCD中,AB=6,AD=8,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A. 5B. 4.8C. 4.4D. 4试题12:如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A. 5B. 4C.D.试题13:1. 如图,▱ABCD中,∠ABC的平分线交边AD于E,DC=4,DE=2,▱ABCD的周长______ .试题14:一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ cm2.试题15:如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= ______ .试题16:如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=6,则矩形的面积为______ .试题17:如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC= ______ .试题18:如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是______ .试题19:如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.试题20:已知:如图,在▱BEDF中,点A、C在对角线EF所在的直线上,且AE=CF.求证:四边形ABCD是平行四边形.试题21:如图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,求菱形ABCD DH和AB的长.的高如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.ACDE是平行四边形;(1)证明:四边形试题23:如图,在长方形ABCD中,AB=6,BC=8(1)求对角线AC的长;(2)点E是线段CD上的一点,把△ADE沿着直线AE折叠.点D恰好落在线段AC上,点F重合,求线段DE的长.试题24:我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)试题1答案:C试题2答案:B试题3答案:D试题4答案:D试题5答案:D试题6答案:BD试题8答案: A试题9答案: A试题10答案: A试题11答案: B试题12答案: D试题13答案:20试题14答案: 120试题15答案: 45°试题16答案: 36试题17答案: 115°试题18答案: 6证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°-∠BAC=180°-∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.试题20答案:证明:如图,连接BD,交AC于点O.∵四边形BEDF是平行四边形,∴OD=OB,OE=OF.又∵AE=CF,∴AE+OE=CF+OF,即OA=OC,∴四边形ABCD是平行四边形.试题21答案:解:∵菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,∴AO=CO=8cm,DO=BO=6cm,∠AOB=90°,∴在Rt△AOB中AB==10(cm),菱形面积为:AC×BD=DH×AB,则×16×12=10×DH,解得:DH=(cm),答:菱形ABCD的高DH为cm,AB的长为10cm.试题22答案:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.试题23答案:解:(1)在直角△ABC中,AC===10;(2)根据题意得AF=AD=BC=8,DE=EF,FC=AC-AF=10-8=2.设DE=x,则EC=CD-DE=6-x,EF=DE=x.在直角△CEF中,EF2+FC2=EC2,则x2+4=(6-x)2,解得x=.试题24答案:(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.。
山东省滨州市2015-2016学年八年级下期中数学试卷含答案解析(初中数学试卷)
2015-2016学年山东省滨州市八年级(下)期中数学试卷一、选择题(本题共12个小题•在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1 .若有意义,则x的取值范围()A. x> 2 B . x w C. x 工D. x w 22 .已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 7C. 5 和7D. 25 或73. 下列各组数中不能作为直角三角形的三边长的是()A. 1.5 , 2, 3B. 7, 24, 25C. 6, 8, 10D. 9, 12, 154. 四边形ABCD中,对角线AGBD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB// DC AD// BCB. AB=DC AD=BC C AO=CO BO=DO D AB// DC AD=BC5. 已知二次根式中最简二次根式共有()A. 1个B. 2个C. 3个D. 4个6 .如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm7.如图,平行四边形ABCD的对角线交于点O,且AB=6, △ OCD的周长为16,则AC与BD的和是()A. 10B. 16C. 20D. 22&如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949 .如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A. x w 10B. x> 10C. x v 10D. x> 1010.如图所示,在菱形ABCD中, AC BD相交于点O, E为AB中点,若OE=3,则菱形ABCD勺周长是A. 12B. 18C. 24D. 3011 •矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A. 16cmB. 22cm或26cmC. 26cmD.以上都不对12 •实数a在数轴上的位置如图所示,则化简后为()A. 7B.- 7C. 2a- 15D.无法确定二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上).13. ___________________________________________ 已知平行四边形ABCD中, Z B=70°,则/ A= ,/ D= __________________________________________ .14. 若直角三角形的两直角边的长分别为a、b,且满足+(b - 4)2=0,则该直角三角形的斜边长为 _15. 若a=++2,则a= , b= .16. _____________________________________________________________________________ 小玲要求△ ABC最长边上的高,测得AB=8cm AC=6cm BC=10cm则最长边上的高为_______________________ cm.17 .如图,将一个边长分别为4cm 8cm的矩形纸片ABCD折叠,使C点与A点重合,则EB的长是 _18. 对于任意不相等的两个数a, b,定义一种运算※如下:3探匕=,如3探2=.那么代※4=三、解答题(请在答题纸中各题对应的空间写出必要的过程).19. 计算:(••上丁| +仁'(2)(3)先化简,再求值:,其中x=.20. 如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?NN#21. 已知a、b、c满足(a- 3)++|c - 5|=0 .求:(1)a、b、c 的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.22. 如图所示,在? ABCD中,点E, F在对角线AC上,且AE=CF请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_____ ;(2)猜想:_ = _______ ;(3)证明.23. 已知:如图,? ABCC中,E、F分别是边AB CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2 / A=60,求四边形EBFD的周长.24•阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1VV 2,所以的整数部分为1,将减去其整数部分1,差就是小数部分-1,根据以上的内容,解答下面的问题:(1) _________________ 的整数部分是_____ ,小数部分是;(2) ____________________ 1 +的整数部分是 _ ,小数部分是;(3)若设2+整数部分是x,小数部分是y,求x- y的值.25.如图,在? ABCD中, E、F分别为边AB CD的中点,BD是对角线,过点A作AG// DB交CB的延长线于点G.(1)求证:DE/ BF;(2)若/ G=90,求证:四边形DEBF是菱形.2015-2016学年山东省滨州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题•在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1 .若有意义,则x的取值范围()A. x> 2 B . x w C. x 工D. x w 2【考点】二次根式有意义的条件.【分析】根据二次根式的性质(被开方数大于等于0)列出关于x的不等式,然后解不等式即可.【解答】解:根据二次根式有意义得: 1 - 2x > 0,解得:x w.故选:B.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.2 .已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 7C. 5 和7D. 25 或7【考点】勾股定理.【专题】分类讨论.【分析】分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42- 32=7;综上所述:第三边长的平方是25或7;故选:D.【点评】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.3 •下列各组数中不能作为直角三角形的三边长的是()A、1.5 , 2, 3 B. 7, 24, 25 C. 6, 8, 10 D • 9, 12, 15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.5 2+22工32,不符合勾股定理的逆定理,故正确;B、72 +242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D 92 + 122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4 .四边形ABCD中,对角线ACBD相交于点0,下列条件不能判定这个四边形是平行四边形的是()A、AB// DC AD// BC B. AB=DC AD=BC C A0=C0 B0=D0 D AB// DC AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB// DC, AD// BC'可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“ AB=DC AD=BC可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“ A0=C0B0=D”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D由“ AB// DC AD=BC可知,四边形ABCD勺一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1 )两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)—组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5 •已知二次根式中最简二次根式共有( )A. 1个B. 2个C. 3个D. 4个【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:==2,可化简;==,可化简;==a,可化简;所以,本题的最简二次根式有两个:,;故选B.【点评】根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.6 .如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm【考点】勾股定理的应用.【分析】根据勾股定理,可求出AD BD的长,则AD+BD- AB即为橡皮筋拉长的距离.【解答】解:Rt △ ACD中, AC=AB=4cm CD=3cm根据勾股定理,得:AD==5cm••• AD+BD- AB=2AD- AB=10- 8=2cm;故橡皮筋被拉长了2 cm故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.7.如图,平行四边形ABCD的对角线交于点0,且AB=6, △ 0CD的周长为16,则AC与BD的和是()A. 10B. 16C. 20D. 22【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件易求D0+0C勺值,再由AC=20C BD=2D0即可求出AC与BD的和.【解答】解:•••四边形ABCD是平行四边形,••• AB=CD=6•/△ 0CD的周长为16,• 0D+0C=16 6=10,•/ BD=2D0 AC=20C•平行四边形ABCD的两条对角线的和=BD+AC=2( D0+0C =20,故选C.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.&如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169, —直角边的平方=25,根据勾股定理知,另一直角边平方=169 6 25=144,即字母B所代表的正方形的面积是144 .故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.9 •如果最简根式与是同类二次根式,那么使有意义的x的取值范围是( )A. x W 10B. x> 10C. x v 10D. x> 10【考点】同类二次根式.【分析】先根据二次根式的定义,列方程求出a的值,代入,再根据二次根式的定义列出不等式,求出x的取值范围即可.【解答】解:•••最简根式与是同类二次根式3a - 8=17 - 2a••• a=5使有意义/• 4a—2x > 0••• 20 —2x > 0/• x< 10故选A.【点评】本题考查了同类二次根式的概念及二次根式的性质:概念:化成最简二次根式后,被开方数相同的根式叫同类二次根式;性质:被开方数为非负数.10.如图所示,在菱形ABCD中, AC BD相交于点O, E为AB中点,若0E=3则菱形ABCD勺周长是( )A. 12B. 18C. 24D. 30【考点】菱形的性质.【分析】因为菱形的对角线互相平分且四边相等,0是AC的中点,E是AB的中点,所以〔。
2016年3月山东省滨州市八年级下段考数学试卷含答案解析
2015-2016学年山东省滨州市八年级(下)段考数学试卷(3月份)一、选择题(本大题共12小题,共36分)1.的化简结果为()A.3 B.﹣3 C.±3 D.92.已知是整数,则正整数n的最小值为()A.1 B.2 C.4 D.83.下列二次根式中属于最简二次根式的是()A.B.C.D.4.下列各式中,不属于二次根式的是()A.(x≤0)B.C.D.5.下列等式中:①=②=±4 ③=0.001④=﹣⑤=﹣⑥﹣(﹣)2=25中正确的有个.(2015毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,47.如果,那么x取值范围是()A.x≤2B.x<2 C.x≥2D.x>28.已知a,b,c为△ABC的三条边,化简﹣|b﹣a﹣c|=()A.b+c B.0 C.b﹣c D.2b﹣2c9.如图,在Rt△ABC中,AB⊥AC,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是()A.1个B.2个C.3个D.4个10.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2.A.28 B.49 C.98 D.14711.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6 B.8 C.10 D.1212.一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是()A.120 B.144 C.196 D.60二、填空题(本大题共6小题,共24分)13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.这种不爱惜花草的行为仅仅使他们少走了米.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm ,则CD= .15.如图,已知AB是线段CD的垂直平分线,E是AB上一点,如果EC=10,EF=8,那么DF = .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .17.若a=++2,则a= ,b= .18.使有意义的x的取值范围是.三、解答题(本大题共7小题,19题15分,20题6分,21题8分,22题7分,23题6分,24题10分,25题8分,共60分)19.计算:(1)+3﹣+.(2)5+﹣7(3)(+)2(5﹣2).20.先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.21.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC 为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?22.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.24.如图,AD⊥BC,垂足为D.CD=1,AD=2,BD=4.(1)求∠BAC的度数?并说明理由;(2)P是边BC上一点,连结AP,当△ACP为等腰三角形时,求CP的长.25.如图,在兴趣活动课中,小明将一块Rt△ABC的纸片沿着直线AD折叠,恰好使直角边AC落在斜边AB上,已知∠ACB=90°.(1)若AC=3,BC=4时,求CD的长.(2)若AC=3,∠B=30°时,求△ABD的面积.2015-2016学年山东省滨州市八年级(下)段考数学试卷(3月份)参考答案与试题解析一、选择题(本大题共12小题,共36分)1.的化简结果为()A.3 B.﹣3 C.±3 D.9【考点】二次根式的性质与化简.【专题】计算题.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选A.【点评】本题考查了二次根式的计算与化简:=|a|.2.已知是整数,则正整数n的最小值为()A.1 B.2 C.4 D.8【考点】二次根式的性质与化简.【分析】因为=2,根据题意,是整数,所以正整数n的最小值必须使能开的尽方.【解答】解:∵=2,∴当n=2时,=2=4,是整数,故正整数n的最小值为2.故选B.【点评】注意运用二次根式的性质:=|a|对二次根式先化简,再求正整数n的最小值.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.下列各式中,不属于二次根式的是()A.(x≤0)B.C.D.【考点】二次根式的定义.【分析】根据二次根式的定义(当a≥0时,式子叫二次根式)进行判断即可.【解答】解:∵当a≥0时,叫二次根式,∴A、属于二次根式,故本选项错误;B、属于二次根式,故本选项错误;C、属于二次根式,故本选项错误;D、﹣1﹣x2<0,不属于二次根式,故本选项正确;故选D.【点评】考查了二次根式的定义,当a≥0时,叫二次根式.5.下列等式中:①=②=±4 ③=0.001④=﹣⑤=﹣⑥﹣(﹣)2=25中正确的有个.()A.2 B.3 C.4 D.5【考点】实数的运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可作出判断.【解答】解:①原式=,错误;②原式=|﹣4|=4,错误;③原式=10﹣3=0.001,正确;④原式=﹣,正确;⑤原式=﹣2,正确;⑥原式=﹣5,错误,则正确的有3个,故选B【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.(3分)(2015毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.如果,那么x取值范围是()A.x≤2B.x<2 C.x≥2D.x>2【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的被开方数是一个≥0的数,可得不等式,解即可.【解答】解:∵=2﹣x,∴x﹣2≤0,解得x≤2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.8.已知a,b,c为△ABC的三条边,化简﹣|b﹣a﹣c|=()A.b+c B.0 C.b﹣c D.2b﹣2c【考点】二次根式的性质与化简;三角形三边关系.【分析】首先利用三角形三边关系得出a+b﹣c>0,b﹣a﹣c<0,进而利用二次根式以及绝对值的性质化简求出答案.【解答】解:∵a,b,c为△ABC的三条边,∴a+b﹣c>0,b﹣a﹣c<0,∴﹣|b﹣a﹣c|=a+b﹣c+(b﹣a﹣c)=2b﹣2c.故选:D.【点评】此题主要考查了二次根式的性质以及三角形三边关系,正确应用二次根式的性质化简是解题关键.9.如图,在Rt△ABC中,AB⊥AC,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是()A.1个B.2个C.3个D.4个【考点】余角和补角.【专题】计算题.【分析】利用垂直得到∠CDE=∠AFD=90°,然后利用等角的余角相等找出与∠C(∠C除外)相等的角.【解答】解:∵DE⊥AC,∴∠CDE=90°,∴∠C+∠CDE=90°,∠CDE+∠ADE=90°,∴∠ADE=∠C,∵DE∥AB,∴∠ADE=∠BAD,∴∠C=∠BAD,∵FD⊥AB,∴DF∥AC,∴∠BDF=∠C.故选C.【点评】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.10.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2.A.28 B.49 C.98 D.147【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2).故选:D.【点评】本题主要了勾股定理,根据数形结合得出正方形之间面积关系是解题关键.11.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6 B.8 C.10 D.12【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.故选:C.【点评】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.12.一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是()A.120 B.144 C.196 D.60【考点】勾股定理的逆定理.【分析】根据已知可求得三边的长,再根据三角形的面积公式即可求解.【解答】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故选A.【点评】此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用,难度适中.二、填空题(本大题共6小题,共24分)13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.这种不爱惜花草的行为仅仅使他们少走了 2 米.【考点】勾股定理的应用.【分析】首先由勾股定理求得“路”的长,继而求得答案.【解答】解:如图,AC=4m,BC=3m,∠C=90°,∴AB==5m,∴AC+BC﹣AB=2m.故答案为:2.【点评】此题考查了勾股定理的应用.注意如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm ,则CD= 6cm .【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.【解答】解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,已知AB是线段CD的垂直平分线,E是AB上一点,如果EC=10,EF=8,那么DF = 6 .【考点】线段垂直平分线的性质.【分析】根据勾股定理求出CF,根据线段垂直平分线的性质得到DF=CF,得到答案.【解答】解:∵CD⊥AB,EC=10,EF=8,∴CF==6,∵AB是线段CD的垂直平分线,∴DF=CF=6,故答案为:6.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.17.若a=++2,则a= 2 ,b= 1 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,求出b的值,代入代数式求出a即可.【解答】解:由题意得,1﹣b≥0,b﹣1≥0,解得,b=1,则a=2,故答案为:2;1.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.18.使有意义的x的取值范围是x>1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0解得:x>1.故填:x>1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.三、解答题(本大题共7小题,19题15分,20题6分,21题8分,22题7分,23题6分,24题10分,25题8分,共60分)19.计算:(1)+3﹣+.(2)5+﹣7(3)(+)2(5﹣2).【考点】二次根式的混合运算.【分析】(1)化简二次根式,然后合并二次根式;(2)化简二次根式,然后合并二次根式;(3)根据乘法公式进行计算.【解答】解:(1)+3﹣+=2+﹣+=+;(2)5+﹣7=5+2﹣21=﹣14;(3)(+)2(5﹣2)=(5+2)(5﹣2)=25﹣24=1.【点评】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.20.先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.【考点】整式的混合运算—化简求值.【分析】按平方差公式和单项式乘以多项式法则化简,然后把给定的值代入求值.【解答】解:原式=2(a2﹣3)﹣a2+6a+6,=2a2﹣6﹣a2+6a+6,(2分)=a2+6a,(3分)当时,原式=,=,(5分)=.(6分)【点评】此题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.21.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC 为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?【考点】勾股定理的应用.【分析】(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出AC的长,利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即AC2+72=252,所以AC=24(m),即这架云梯的顶端A距地面有24m高;(2)梯子的底端在水平方向也滑动了8m.理由:∵云梯的顶端A下滑了4m至点A,∴AC=AC﹣A′A=24﹣4=20(m),在Rt△ACB′中,由勾股定理得AC2+BC′2=AB′2,即202+B′C2=252所以B′C=15(m)BB′=CB′﹣BB=15﹣7=8(m),即梯子的底端在水平方向也滑动了8m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.22.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.【考点】勾股定理的应用;三角形的面积.【专题】应用题.【分析】连接AC,由∠B=90°,AB=3cm,BC=4cm可知AC=5cm;由AC、AD、CD的长可判断出△ACD是直角三角形,根据两三角形的面积可求出草坪的面积.【解答】解:在Rt△ABC中,AB=3m,BC=4m,∠B=90°由勾股定理得AB2+BC2=AC2∴AC=5m(2分)在△ADC中,AC=5m,DC=12m,AD=13m∴AC2+DC2=169,AD2=169∴AC2+DC2=AD2(4分)∠ACD=90°(5分)四边形的面积=S Rt△ABC+S Rt△ADC===36(m2)答:这块草坪的面积是36m2.(8分)【点评】本题是勾股定理在实际中的应用,比较简单.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.【考点】分母有理化.【专题】阅读型.【分析】首先观察已知条件中的三个式子,不难发现规律:用平方差公式找到有理化因式,完成分母有理化.(1)的有理化因式是﹣;(2)的有理化因式是﹣.【解答】解:(1)==﹣;(2)==﹣.【点评】本题考查了学生的阅读能力,知识的迁移能力及分母有理化的知识,要将±中的根号去掉,需用平方差公式(+)(﹣)=a﹣b.24.如图,AD⊥BC,垂足为D.CD=1,AD=2,BD=4.(1)求∠BAC的度数?并说明理由;(2)P是边BC上一点,连结AP,当△ACP为等腰三角形时,求CP的长.【考点】勾股定理;等腰三角形的性质;勾股定理的逆定理.【分析】首先由勾股定理求出AC和AB,再由勾股定理逆定理证出△ABC为直角三角形得出∠BAC=90°;当△ACP为等腰三角形时,CP有三个解.【解答】解:(1)∠BAC=90°;理由:∵AD⊥BC,∴∠ADC=∠ADB=90°;由勾股定理可得 AC2=AD2+CD2=12+22=5,AB2=AD2+BD2=22+42=20;∴AC2+AB2=25;∵BC2=(BD+CD)2=52=25;∴AC2+AB2=BC2;∴△ABC是直角三角形;∴∠BAC=90°;(2)当△ACP为等腰三角形时,有三种情况:①当AC=AP时,CP=2CD=2;②当AC=CP时,∵AC=,∴CP=;③当CP=AP时,CP==2.5;因此,当△ACP为等腰三角形时,CP的长为2或或2.5.【点评】本题考查的知识点是勾股定理和逆定理以及等腰三角形的定义;由勾股定理求出AC和AB,再根据勾股定理的逆定理证出△ABC是直角三角形得出∠BAC=90°;最后由等腰三角形的定义得出CP的长,注意有3个解.25.如图,在兴趣活动课中,小明将一块Rt△ABC的纸片沿着直线AD折叠,恰好使直角边AC落在斜边AB上,已知∠ACB=90°.(1)若AC=3,BC=4时,求CD的长.(2)若AC=3,∠B=30°时,求△ABD的面积.【考点】翻折变换(折叠问题).【分析】(1)由勾股定理可求得AB=5,然后由翻折的性质可知AE=AC=3,CD=DE,然后在△BDE中由勾股定理可求得DE的长,从而得到CD的长;(2)由题意可知∠CAB=60°,由翻折的性质可知∠CAD=30°,利用特殊锐角三角函数值可求得CD和AB的长,从而得到DE的长,最后利用三角形的面积公式可求得△ABD的面积.【解答】解:(1)在Rt△ACB中,勾股定理得AB==5.设CD=x则DB=4﹣x.∵由翻折可得DE=CD=x,AE=AC=3,∴BE=5﹣3=2.在Rt△DEB中,由勾股定理得DB2=DE2+EB2,即( 4﹣x )2=22+x2.解得:x=1.5∴CD=1.5.(2)∵∠ACB=90°,∠B=30°∴AB=2AC=6,∠CAB=60°.由翻折的性质可知∠CAD=∠CAB=30°.∴,即.解得:CD=.∴DE=CD=.∴S△ABD=ABDE==3.【点评】本题主要考查的是翻折的性质、勾股定理的应用、特殊锐角三角函数值,理由勾股定理列出关于x的方程是解题的关键.。
山东省滨州市 2016年中考数学真题试卷附解析
2016年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1.(2016·山东滨州)﹣12等于()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方的意义,相反数的意义,可得答案.【解答】解:﹣12=﹣1,故选:B.【点评】本题考查了有理数的乘方,1的平方的相反数.2.(2016·山东滨州)如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB 交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME【考点】平行线的性质.【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论.【解答】解:A、∵AB∥CD,∴∠EMB=∠END(两直线平行,同位角相等);B、∵AB∥CD,∴∠BMN=∠MNC(两直线平行,内错角相等);C、∵AB∥CD,∴∠CNH=∠MPN(两直线平行,同位角相等),∵∠MPN=∠BPG(对顶角),∴∠CNH=∠BPG(等量代换);D、∠DNG与∠AME没有关系,无法判定其相等.故选D.【点评】本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.3.(2016·山东滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【考点】因式分解的应用.【分析】运用多项式乘以多项式的法则求出(x+1)(x﹣3)的值,对比系数可以得到a,b的值.【解答】解:∵(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.故选:B.【点评】本题考查了多项式的乘法,解题的关键是熟练运用运算法则.4.(2016·山东滨州)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.5.(2016·山东滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15【考点】条形统计图;算术平均数;中位数.【分析】根据年龄分布图和平均数、中位数的概念求解.【解答】解:根据图中信息可知这些队员年龄的平均数为:=15(岁),该足球队共有队员2+6+8+3+2+1=22(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D.【点评】本题考查了确定一组数据的平均数,中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.(2016·山东滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【考点】等腰三角形的性质;对顶角、邻补角;三角形内角和定理;三角形的外角性质.【专题】计算题.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【点评】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.7.(2016·山东滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【考点】坐标与图形性质.【专题】常规题型.【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴.8.(2016·山东滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤4,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.9.(2016·山东滨州)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:根据图形可得主视图为:故选:C.【点评】本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.10.(2016·山东滨州)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3【考点】抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.【解答】解:抛物线y=2x2﹣2x+1,令x=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2x2﹣2x+1=0,即(x﹣1)2=0,解得:x1=x2=,即抛物线与x轴交点为(,0),则抛物线与坐标轴的交点个数是2,故选C【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.11.(2016·山东滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+﹣3=﹣(x﹣)2﹣.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.12.(2016·山东滨州)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC 相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.二、填空题:本大题共6个小题,每小题4分满分24分13.(2016·山东滨州)有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是.【考点】概率公式;无理数.【分析】让是无理数的数的个数除以数的总数即为所求的概率.【解答】解:所有的数有5个,无理数有π,共2个,∴抽到写有无理数的卡片的概率是2÷5=.故答案为:.【点评】考查概率公式的应用;判断出无理数的个数是解决本题的易错点.14.(2016·山东滨州)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9个零件.【考点】二元一次方程组的应用.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.【点评】本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.15.(2016·山东滨州)如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则=.【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF,计算即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=,BC=,∴BD==3,∵BE=1.8,∴DE=3﹣1.8=1.2,∵AB∥CD,∴=,即=,解得,DF=,则CF=CD﹣DF=,∴==,故答案为:.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.16.(2016·山东滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是2π﹣3.【考点】扇形面积的计算;等边三角形的性质.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为2,∴△ABC的面积为×2×=,扇形ABC的面积为=π,则图中阴影部分的面积=3×(π﹣)=2π﹣3,故答案为:2π﹣3.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.17.(2016·山东滨州)如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a ﹣b的值是3.【考点】反比例函数的性质.【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,连接OA、OB,延长AB交y轴于点E,通过计算三角形的面积结合反比例函数系数k的几何意义即可得出结论.【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A(,y1),点B(,y1),点C(,y2),点D(,y2).∵AB=,CD=,∴2×||=||,∴|y1|=2|y2|.∵|y1|+|y2|=6,∴y1=4,y2=﹣2.连接OA、OB,延长AB交y轴于点E,如图所示.S△OAB=S△OAE﹣S△OBE=(a﹣b)=AB•OE=××4=,∴a﹣b=2S△OAB=3.故答案为:3.【点评】本题考查了反比例函数系数k的结合意义以及反比例函数的性质,解题的关键是找出a﹣b=2S△OAB.本题属于中档题,难度不大,解决该题型题目时,利用反比例函数系数k的几何意义结合三角形的面积求出反比例函数系数k是关键.18.(2016·山东滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为(32016﹣2)×32016+1=(32016﹣1)2.【考点】规律型:数字的变化类.【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【解答】解:观察发现,第n个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2,当n=2016时,(32016﹣2)×32016+1=(32016﹣1)2,故答案为:(32016﹣2)×32016+1=(32016﹣1)2.【点评】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键.三、解答题:(本大题共6个小题,满分60分,解答时请写出必要的演推过程)19.(2016·山东滨州)先化简,再求值:÷(﹣),其中a=.【考点】分式的化简求值.【分析】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可.【解答】解:原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∴原式=(﹣2)2=6﹣4 【点评】本题考查分式的混合运算化简求值,熟练掌握分式的混合运算法则是解题的关键,通分时学会确定最简公分母,能先约分的先约分化简,属于中考常考题型.20.(2016·山东滨州)某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【考点】二元一次方程组的应用.【分析】设本场比赛中该运动员投中2分球x 个,3分球y 个,根据投中22次,结合罚球得分总分可列出关于x 、y 的二元一次方程组,解方程组即可得出结论.【解答】解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得:,解得:. 答:本场比赛中该运动员投中2分球16个,3分球6个.【点评】本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.(2016·山东滨州)如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【考点】切线的性质;正方形的性质.【分析】(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DF•CD,于是得到结论.【解答】解:(1)连接OP,BF,PF,∵⊙O与AD相切于点P,∴OP⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OP∥CD,∴∠PFD=∠OPF,∵OP=OF,∴∠OPF=∠OFP,∴∠OFP=∠PFD,∴PF平分∠BFD;(2)连接EF,∵∠C=90°,∴BF是⊙O的直径,∴∠BEF=90°,∴四边形BCFE是矩形,∴EF=BC,∵AB∥OP∥CD,BO=FO,∴OP=AD=CD,∵PD2=DF•CD,即()2=•CD,∴CD=4,∴EF=BC=4.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.22.(2016·山东滨州)星期天,李玉刚同学随爸爸妈妈会老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km/h.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【考点】一次函数的应用.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y1=20x (0≤x≤2)y2=40(x﹣1)(1≤x≤2);(2)由题意得;(3)由图象得到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.23.(2016·山东滨州)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【考点】平行四边形的判定与性质;角平分线的性质.【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.【解答】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.24.(2016·山东滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.。
【月考试卷】山东省滨州市无棣县2016-2017学年八年级下第一次月考数学试卷含答案解析
2016-2017学年山东省滨州市无棣县八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,122.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米3.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cmC.6 cm D.10 cm4.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m5.如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为()A.4 B.8 C.10 D.56.下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC7.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°8.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.1310.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n 分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()A.cm2B.cm2C.cm2D.cm2二、填空题(每小题3分,共27分)11.在▱ABCD中,∠A=50°,则∠B=度,∠C=度,∠D=度.12.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AB=cm,BC=cm,CD=cm.13.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.14.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行米.15.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3=.16.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.17.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是.18.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.19.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于.三、解答题:(每小题9分,共63分)20.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.21.如图,在▱ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.22.小宇手里有一张直角三角形纸片ABC,他无意中将直角边AC折叠了一下,恰好使AC落在斜边AB上,且C点与E点重合,小宇经过测量得知两直角边AC=6cm,BC=8cm,他想用所学知识求出CD的长,你能帮他吗?23.如图,D是等腰三角形ABC的底边BC上的一点,E、F分别在AC、AB上,且DE∥AB,DF∥AC.试问DE、DF与AB之间有什么关系吗?请说明理由.24.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,求▱ABCD的面积.25.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.26.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.2016-2017学年山东省滨州市无棣县八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:由勾股定理的逆定理分析得,只有C中有62+82=102,故选C.2.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米【考点】勾股定理的应用;方向角.【分析】两人的方向分别是东南方向和西南方向,因而两人的家所在点与学校的连线正好互相垂直,根据勾股定理即可求解.【解答】解:根据题意得:如图:OA=3×200=600m.OB=4×200=800m.在直角△OAB中,AB==1000米.故选C.3.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cmC.6 cm D.10 cm【考点】翻折变换(折叠问题).【分析】先根据勾股定理求出AB的长,再由图形折叠的性质可知AE=BE,故可得出结论.【解答】解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.4.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【考点】勾股定理.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选C.5.如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为()A.4 B.8 C.10 D.5【考点】平面展开﹣最短路径问题.【分析】要求A、B两点间的最短距离,必须展开到一个平面内.只需展开圆柱的半个侧面,然后利用两点之间线段最短解答.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半是6,矩形的宽是圆柱的高是8.再根据勾股定理求得矩形的对角线是10.即A、B两点间的最短距离是10.故选C.6.下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC【考点】平行四边形的判定.【分析】根据平行四边形的判定(①有两组对角分别相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有一组对边相等且平行的四边形是平行四边形,④对角线互相平分的四边形是平行四边形,⑤有两组对边分别平行的四边形是平行四边形)判断即可.【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,正确,故本选项错误;C、根据AB=CD,AD∥BC可能得出四边形是等腰梯形,不一定推出四边形ABCD 是平行四边形,错误,故本选项正确;D、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,正确,故本选项错误;故选C.7.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°【考点】平行四边形的性质.【分析】首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.【解答】解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选B.8.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选C.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=15,故选B.10.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n 分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()A.cm2B.cm2C.cm2D.cm2【考点】正方形的性质;全等三角形的判定与性质.【分析】连接正方形的中心和其余两个顶点可证得含45°的两个三角形全等,进而求得阴影部分面积,再根据规律即可求得n个这样的正方形重叠部分(阴影部分)的面积和.【解答】解:连接正方形的中心和其余两个顶点可证得含45°的两个三角形全等,进而求得阴影部分面积等于正方形面积的,即是.5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故选C.二、填空题(每小题3分,共27分)11.在▱ABCD中,∠A=50°,则∠B=130度,∠C=50度,∠D=130度.【考点】平行四边形的性质.【分析】由在▱ABCD中,∠A=50°,根据平行四边形的对角相等,邻角互补即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=50°,∴∠B=∠D=180°﹣50°=130°.故答案为:130,50,130.12.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AB=4cm,BC=10 cm,CD=4cm.【考点】平行四边形的性质.【分析】由▱ABCD的周长为28cm,根据平行四边形的性质,即可求得AB+BC=14cm,又由AB:BC=2:5,即可求得答案.【解答】解:∵▱ABCD的周长为28cm,∴AB+BC=14cm,∵AB:BC=2:5,∴CD=AB=×14=4(cm),BC=×14=10(cm).故答案为:4,10,4.13.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是8米.【考点】勾股定理的应用.【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边.【解答】解:∵AC=4米,BC=3米,∠ACB=90°,∴折断的部分长为=5,∴折断前高度为5+3=8(米).14.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行10米.【考点】勾股定理的应用.【分析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8﹣2=6米.根据勾股定理得BD=10米.15.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3=144.【考点】勾股定理.【分析】根据勾股定理求出BC2=AB2﹣AC2=144,即可得出结果.【解答】解:根据题意得:AB2=225,AC2=81,∵∠ACB=90°,∴BC2=AB2﹣AC2=225﹣81=144,则S3=BC2=144.故答案为:144.16.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm,面积为cm2.【考点】勾股定理.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm,cm2.17.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是4.【考点】三角形中位线定理;等腰三角形的性质.【分析】根据三角形中位线定理求出三角形的周长,根据周长公式、三角形三边关系解答即可.【解答】解:∵三条中位线的长度总和为8,∴三角形的周长为16,当底边是4时,两腰都是6,当腰为4时,底边为8,不能构成三角形,则底边长为4,故答案为:4.18.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3).【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).19.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于150°.【考点】平行四边形的性质;矩形的性质.【分析】首先过点A作AE⊥BC于点E,由将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,可得AE=AB,即可求得∠ABC的度数,继而求得各内角度数.【解答】解:过点A作AE⊥BC于点E,∵将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,∴AE=AB,∴∠ABC=30°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°﹣∠ABC=150°,∴这个平行四边形的最大内角等于150°.故答案为:150°.三、解答题:(每小题9分,共63分)20.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.【考点】勾股定理.【分析】(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.【解答】解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,∴AD=.21.如图,在▱ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先证BC=AD,∠DAF=∠BCE,∠DFA=∠BEC,根据AAS证出△CBE≌△ADF,从而得出BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,∴∠DAF=∠BCE,在Rt△ADF和Rt△CBE中,,∴△CBE≌△ADF,∴BE=DF.22.小宇手里有一张直角三角形纸片ABC,他无意中将直角边AC折叠了一下,恰好使AC落在斜边AB上,且C点与E点重合,小宇经过测量得知两直角边AC=6cm,BC=8cm,他想用所学知识求出CD的长,你能帮他吗?【考点】勾股定理的应用;全等三角形的性质;翻折变换(折叠问题).【分析】由于是折叠,所以折叠前后图形形状不变,可得△ACD≌△AED,再利用勾股定理列方程即可求出CD的长.【解答】解:如图,∵△ABC是直角三角形,AC=6cm,BC=8cm,∴AB===10cm,设CD=xcm,∵△ADE由△ADC反折而成,∴CD=DE=xcm,∴BD=(8﹣x)cm,BE=AB﹣AE=10﹣6=4cm,在Rt△BDE中,BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3(cm),即CD=3cm.23.如图,D是等腰三角形ABC的底边BC上的一点,E、F分别在AC、AB上,且DE∥AB,DF∥AC.试问DE、DF与AB之间有什么关系吗?请说明理由.【考点】平行四边形的判定与性质;等腰三角形的判定与性质.【分析】由条件可证明四边形AEDF为平行四边形,可得DE=AF,又可证得DF=BF,则可求得答案.【解答】解:DE+DF=AB.理由如下:∵DE∥AB,DF∥AC,∴四边形AEDF为平行四边形,∴AF=DE,∵AB=AC,DF∥AC,∴∠B=∠C=∠FDB,∴BF=DF,∴DE+DF=AF+BF=AB.24.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,求▱ABCD的面积.【考点】平行四边形的性质.【分析】先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.【解答】解:根据平行四边形的性质得AD=BC=8在Rt△ABC中,AB=10,AD=8,AC⊥BC根据勾股定理得AC==6,=BC•AC=48.则S平行四边形ABCD25.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.【考点】平行四边形的判定与性质.【分析】首先利用平行四边形的性质,得出对角线互相平分,进而得出EO=FO,BO=DO,即可得出答案.【解答】证明:∵▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,∴AO=CO,BO=DO,∵AE=CF,∴AF=EC,则FO=EO,∴四边形BFDE是平行四边形.26.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足AC=BD时,四边形EFGH为菱形.当AC、BD满足AC ⊥BD时,四边形EFGH为矩形.当AC、BD满足AC=BD且AC⊥BD时,四边形EFGH为正方形.【考点】三角形中位线定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.【分析】(1)连接BD,根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD且EH=BD,FG∥BD且FG=BD,从而得到EH∥FG且EH=FG,再根据一组对边平行且相等的四边形是平行四边形证明即可;(2)连接AC,同理可得EF∥AC且EF=AC,再根据邻边相等的平行四边形是菱形,邻边垂直的平行四边形是矩形,邻边相等且垂直的平行四边形是正方形解答.【解答】(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.2017年4月22日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山东省滨州市八年级(下)段考数学试卷(3月份)一、选择题(本大题共12小题,共36分)1.的化简结果为()A.3 B.﹣3 C.±3 D.92.已知是整数,则正整数n的最小值为()A.1 B.2 C.4 D.83.下列二次根式中属于最简二次根式的是()A.B.C.D.4.下列各式中,不属于二次根式的是()A.(x≤0)B.C.D.5.下列等式中:①=②=±4 ③=0.001 ④=﹣⑤=﹣⑥﹣(﹣)2=25中正确的有个.(2015毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,47.如果,那么x取值范围是()A.x≤2 B.x<2 C.x≥2 D.x>28.已知a,b,c为△ABC的三条边,化简﹣|b﹣a﹣c|=()A.b+c B.0 C.b﹣c D.2b﹣2c9.如图,在Rt△ABC中,AB⊥AC,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是()A.1个B.2个C.3个D.4个10.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2.A.28 B.49 C.98 D.14711.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6 B.8 C.10 D.1212.一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是()A.120 B.144 C.196 D.60二、填空题(本大题共6小题,共24分)13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.这种不爱惜花草的行为仅仅使他们少走了米.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.如图,已知AB是线段CD的垂直平分线,E是AB上一点,如果EC=10,EF=8,那么DF=.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.17.若a=++2,则a=,b=.18.使有意义的x的取值范围是.三、解答题(本大题共7小题,19题15分,20题6分,21题8分,22题7分,23题6分,24题10分,25题8分,共60分)19.计算:(1)+3﹣+.(2)5+﹣7(3)(+)2(5﹣2).20.先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.21.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?22.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.23.阅读下面问题:;;.试求:(1)的值;(2)(n 为正整数)的值. 24.如图,AD ⊥BC ,垂足为D .CD=1,AD=2,BD=4.(1)求∠BAC 的度数?并说明理由;(2)P 是边BC 上一点,连结AP ,当△ACP 为等腰三角形时,求CP 的长.25.如图,在兴趣活动课中,小明将一块Rt △ABC 的纸片沿着直线AD 折叠,恰好使直角边AC 落在斜边AB 上,已知∠ACB=90°. (1)若AC=3,BC=4时,求CD 的长.(2)若AC=3,∠B=30°时,求△ABD 的面积.2015-2016学年山东省滨州市八年级(下)段考数学试卷(3月份)参考答案与试题解析一、选择题(本大题共12小题,共36分)1.的化简结果为( )A .3B .﹣3C .±3D .9 【考点】二次根式的性质与化简.【专题】计算题.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选A.【点评】本题考查了二次根式的计算与化简:=|a|.2.已知是整数,则正整数n的最小值为()A.1 B.2 C.4 D.8【考点】二次根式的性质与化简.【分析】因为=2,根据题意,是整数,所以正整数n的最小值必须使能开的尽方.【解答】解:∵=2,∴当n=2时,=2=4,是整数,故正整数n的最小值为2.故选B.【点评】注意运用二次根式的性质:=|a|对二次根式先化简,再求正整数n的最小值.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.下列各式中,不属于二次根式的是()A.(x≤0)B.C.D.【考点】二次根式的定义.【分析】根据二次根式的定义(当a≥0时,式子叫二次根式)进行判断即可.【解答】解:∵当a≥0时,叫二次根式,∴A、属于二次根式,故本选项错误;B、属于二次根式,故本选项错误;C、属于二次根式,故本选项错误;D、﹣1﹣x2<0,不属于二次根式,故本选项正确;故选D.【点评】考查了二次根式的定义,当a≥0时,叫二次根式.5.下列等式中:①=②=±4 ③=0.001 ④=﹣⑤=﹣⑥﹣(﹣)2=25中正确的有个.()A.2 B.3 C.4 D.5【考点】实数的运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可作出判断.【解答】解:①原式=,错误;②原式=|﹣4|=4,错误;③原式=10﹣3=0.001,正确;④原式=﹣,正确;⑤原式=﹣2,正确;⑥原式=﹣5,错误,则正确的有3个,故选B【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.(3分)(2015毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.如果,那么x取值范围是()A.x≤2 B.x<2 C.x≥2 D.x>2【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的被开方数是一个≥0的数,可得不等式,解即可.【解答】解:∵=2﹣x,∴x﹣2≤0,解得x≤2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.8.已知a,b,c为△ABC的三条边,化简﹣|b﹣a﹣c|=()A.b+c B.0 C.b﹣c D.2b﹣2c【考点】二次根式的性质与化简;三角形三边关系.【分析】首先利用三角形三边关系得出a+b﹣c>0,b﹣a﹣c<0,进而利用二次根式以及绝对值的性质化简求出答案.【解答】解:∵a,b,c为△ABC的三条边,∴a+b﹣c>0,b﹣a﹣c<0,∴﹣|b﹣a﹣c|=a+b﹣c+(b﹣a﹣c)=2b﹣2c.故选:D.【点评】此题主要考查了二次根式的性质以及三角形三边关系,正确应用二次根式的性质化简是解题关键.9.如图,在Rt△ABC中,AB⊥AC,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是()A.1个B.2个C.3个D.4个【考点】余角和补角.【专题】计算题.【分析】利用垂直得到∠CDE=∠AFD=90°,然后利用等角的余角相等找出与∠C(∠C除外)相等的角.【解答】解:∵DE⊥AC,∴∠CDE=90°,∴∠C+∠CDE=90°,∠CDE+∠ADE=90°,∴∠ADE=∠C,∵DE∥AB,∴∠ADE=∠BAD,∴∠C=∠BAD,∵FD⊥AB,∴DF∥AC,∴∠BDF=∠C.故选C.【点评】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.10.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是()cm2.A.28 B.49 C.98 D.147【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2).故选:D.【点评】本题主要了勾股定理,根据数形结合得出正方形之间面积关系是解题关键.11.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6 B.8 C.10 D.12【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.故选:C.【点评】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.12.一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是()A.120 B.144 C.196 D.60【考点】勾股定理的逆定理.【分析】根据已知可求得三边的长,再根据三角形的面积公式即可求解.【解答】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故选A.【点评】此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用,难度适中.二、填空题(本大题共6小题,共24分)13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.这种不爱惜花草的行为仅仅使他们少走了2米.【考点】勾股定理的应用.【分析】首先由勾股定理求得“路”的长,继而求得答案.【解答】解:如图,AC=4m,BC=3m,∠C=90°,∴AB==5m,∴AC+BC﹣AB=2m.故答案为:2.【点评】此题考查了勾股定理的应用.注意如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.【解答】解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,已知AB是线段CD的垂直平分线,E是AB上一点,如果EC=10,EF=8,那么DF=6.【考点】线段垂直平分线的性质.【分析】根据勾股定理求出CF,根据线段垂直平分线的性质得到DF=CF,得到答案.【解答】解:∵CD⊥AB,EC=10,EF=8,∴CF==6,∵AB是线段CD的垂直平分线,∴DF=CF=6,故答案为:6.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.17.若a=++2,则a=2,b=1.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,求出b的值,代入代数式求出a即可.【解答】解:由题意得,1﹣b≥0,b﹣1≥0,解得,b=1,则a=2,故答案为:2;1.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.18.使有意义的x的取值范围是x>1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0解得:x>1.故填:x>1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.三、解答题(本大题共7小题,19题15分,20题6分,21题8分,22题7分,23题6分,24题10分,25题8分,共60分)19.计算:(1)+3﹣+.(2)5+﹣7(3)(+)2(5﹣2).【考点】二次根式的混合运算.【分析】(1)化简二次根式,然后合并二次根式;(2)化简二次根式,然后合并二次根式;(3)根据乘法公式进行计算.【解答】解:(1)+3﹣+=2+﹣+=+;(2)5+﹣7=5+2﹣21=﹣14;(3)(+)2(5﹣2)=(5+2)(5﹣2)=25﹣24=1.【点评】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.20.先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.【考点】整式的混合运算—化简求值.【分析】按平方差公式和单项式乘以多项式法则化简,然后把给定的值代入求值.【解答】解:原式=2(a2﹣3)﹣a2+6a+6,=2a2﹣6﹣a2+6a+6,(2分)=a2+6a,(3分)当时,原式=,=,(5分)=.(6分)【点评】此题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.21.一架云梯AB长25米,如图那样斜靠在一面墙AC上,这时云梯底端B离墙底C的距离BC为7米.(1)这云梯的顶端距地面AC有多高?(2)如果云梯的顶端A下滑了4米,那么它的底部B在水平方向向右滑动了多少米?【考点】勾股定理的应用.【分析】(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出AC的长,利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即AC2+72=252,所以AC=24(m),即这架云梯的顶端A距地面有24m高;(2)梯子的底端在水平方向也滑动了8m.理由:∵云梯的顶端A下滑了4m至点A,∴AC=AC﹣A′A=24﹣4=20(m),在Rt△ACB′中,由勾股定理得AC2+BC′2=AB′2,即202+B′C2=252所以B′C=15(m)BB′=CB′﹣BB=15﹣7=8(m),即梯子的底端在水平方向也滑动了8m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.22.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.【考点】勾股定理的应用;三角形的面积.【专题】应用题.【分析】连接AC,由∠B=90°,AB=3cm,BC=4cm可知AC=5cm;由AC、AD、CD的长可判断出△ACD是直角三角形,根据两三角形的面积可求出草坪的面积.【解答】解:在Rt△ABC中,AB=3m,BC=4m,∠B=90°由勾股定理得AB2+BC2=AC2∴AC=5m(2分)在△ADC中,AC=5m,DC=12m,AD=13m∴AC2+DC2=169,AD2=169∴AC2+DC2=AD2(4分)∠ACD=90°(5分)四边形的面积=S Rt△ABC+S Rt△ADC===36(m2)答:这块草坪的面积是36m2.(8分)【点评】本题是勾股定理在实际中的应用,比较简单.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.【考点】分母有理化.【专题】阅读型.【分析】首先观察已知条件中的三个式子,不难发现规律:用平方差公式找到有理化因式,完成分母有理化.(1)的有理化因式是﹣;(2)的有理化因式是﹣.【解答】解:(1)==﹣;(2)==﹣.【点评】本题考查了学生的阅读能力,知识的迁移能力及分母有理化的知识,要将±中的根号去掉,需用平方差公式(+)(﹣)=a﹣b.24.如图,AD⊥BC,垂足为D.CD=1,AD=2,BD=4.(1)求∠BAC的度数?并说明理由;(2)P是边BC上一点,连结AP,当△ACP为等腰三角形时,求CP的长.【考点】勾股定理;等腰三角形的性质;勾股定理的逆定理.【分析】首先由勾股定理求出AC和AB,再由勾股定理逆定理证出△ABC为直角三角形得出∠BAC=90°;当△ACP为等腰三角形时,CP有三个解.【解答】解:(1)∠BAC=90°;理由:∵AD⊥BC,∴∠ADC=∠ADB=90°;由勾股定理可得AC2=AD2+CD2=12+22=5,AB2=AD2+BD2=22+42=20;∴AC2+AB2=25;∵BC2=(BD+CD)2=52=25;∴AC2+AB2=BC2;∴△ABC是直角三角形;∴∠BAC=90°;(2)当△ACP为等腰三角形时,有三种情况:①当AC=AP时,CP=2CD=2;②当AC=CP时,∵AC=,∴CP=;③当CP=AP时,CP==2.5;因此,当△ACP为等腰三角形时,CP的长为2或或2.5.【点评】本题考查的知识点是勾股定理和逆定理以及等腰三角形的定义;由勾股定理求出AC和AB,再根据勾股定理的逆定理证出△ABC是直角三角形得出∠BAC=90°;最后由等腰三角形的定义得出CP的长,注意有3个解.25.如图,在兴趣活动课中,小明将一块Rt△ABC的纸片沿着直线AD折叠,恰好使直角边AC落在斜边AB上,已知∠ACB=90°.(1)若AC=3,BC=4时,求CD的长.(2)若AC=3,∠B=30°时,求△ABD的面积.【考点】翻折变换(折叠问题).【分析】(1)由勾股定理可求得AB=5,然后由翻折的性质可知AE=AC=3,CD=DE,然后在△BDE中由勾股定理可求得DE的长,从而得到CD的长;(2)由题意可知∠CAB=60°,由翻折的性质可知∠CAD=30°,利用特殊锐角三角函数值可求得CD和AB的长,从而得到DE的长,最后利用三角形的面积公式可求得△ABD的面积.【解答】解:(1)在Rt△ACB中,勾股定理得AB==5.设CD=x则DB=4﹣x.∵由翻折可得DE=CD=x,AE=AC=3,∴BE=5﹣3=2.在Rt△DEB中,由勾股定理得DB2=DE2+EB2,即(4﹣x )2=22+x2.解得:x=1.5∴CD=1.5.(2)∵∠ACB=90°,∠B=30°∴AB=2AC=6,∠CAB=60°.由翻折的性质可知∠CAD=∠CAB=30°.∴,即.解得:CD=.∴DE=CD=.∴S△ABD=ABDE==3.【点评】本题主要考查的是翻折的性质、勾股定理的应用、特殊锐角三角函数值,理由勾股定理列出关于x的方程是解题的关键.。