人教版八年级第2讲与三角形有关的角

合集下载

【初二数学上学期课件】第二讲:三角形的性质

【初二数学上学期课件】第二讲:三角形的性质
1、若有三条线段,其中的两条线段长度之和
大于第三条,这三条线段能否构成三角形。
2、若等腰三角形的两条边分别为5,10,则该 2′、若三角形的两条边分别为a,b,(a>b), 三角形的周长为多少? 则求该三角形的周长L的取值范围。 3、三角形的内角中最多有几个直角?几个钝 角?几个锐角?外角中呢?
思考与辩论
a+b>c a+c>b b+c>a
边与边的关系
3、判定:对于三条线段a,b,c
若三条线段满足:a+b>c,|a-b|<c,则这三
条线段能构成三角形.
a+b>c |a-b|<c
a+b>c |a-b|<c
a+b>c a<b+c b<a+c
a+b>c a-b<c b-a<c a+b>c b+c>a a+c>b
4′、要使三条线段4a-1,4a+1,12-a能构成三 4、要使三条线段3a-1,4a+1,12-a能构成三角
角形,求a的取值范围。 形,求a的取值范围。
5、若三角形的三条边都是正整数,a=5,b≤a≤c,
符号条件的三角形有多少个?试写出它们的边长。
6、求∠A ,∠B, ∠C ,∠D,∠E,∠F 的度数和。
D A
360°
B M E N F
C
1 6 5
2 3
8
1
7 4
2
540°
3
7
4
1 2
6 5
360°
6 5 7
3
8 4

11.2.1三角形的内角(第二课时)说课稿 2022—2023学年人教版数学八年级上册

11.2.1三角形的内角(第二课时)说课稿 2022—2023学年人教版数学八年级上册

11.2.1 三角形的内角(第二课时)说课稿一、课程背景《数学》是中学阶段的一门重要学科,对学生的思维能力、逻辑思维能力以及解决问题的能力有着重要的培养作用。

而在《数学》的课程中,三角形是一个非常重要的几何图形,对于学生来说,掌握三角形的性质和应用是十分关键的。

本节课的内容是三角形的内角,是数学八年级上册的重点和难点之一。

二、教学目标1.理解三角形内角的概念和性质;2.掌握如何计算三角形内角的方法;3.能够运用所学知识解决与三角形内角相关的问题。

三、教学重点1.三角形内角的概念和性质;2.计算三角形内角的方法。

四、教学难点1.掌握三角形内角的计算方法;2.运用所学知识解决问题。

五、教学过程1. 导入新知•引入三角形的概念和性质,回顾上节课所学内容,帮助学生复习巩固知识。

2. 学习新知•向学生介绍三角形的内角的概念,与学生共同探讨三角形内角的性质并进行总结。

三角形的内角性质: - 三角形的三个内角之和等于180度。

- 任意一个内角都小于180度。

•老师给出示例三角形,让学生通过测量证明三角形的三个内角之和为180度。

3. 计算三角形的内角•老师向学生讲解如何计算三角形中的内角大小,并通过示例进行解释和演示。

如何计算三角形的内角: - 如果已知三角形的两个内角的大小,则可以通过内角和为180度的性质计算出第三个内角的大小。

- 如果已知三角形的一个内角和两个边的长度,则可以利用三角形的角平分线性质计算出其他内角的大小。

•老师通过几个典型的计算例子,引导学生掌握计算三角形内角的方法。

4. 解决问题应用•老师给出一些与三角形内角相关的问题,让学生灵活运用所学知识解决问题。

问题示例: 1. 已知一个三角形的两个内角分别为50度和70度,求第三个内角的大小; 2. 一个三角形的一个内角为60度,如果另外两边的长度分别为5cm和8cm,求另外两个内角的大小。

5. 归纳总结•老师和学生一起对所学内容进行总结归纳,提醒学生掌握三角形内角的性质和计算方法。

与三角形有关的角-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版

与三角形有关的角-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版
C.钝角三角形D.等腰三角形
【变2】(2020·中山市石岐中学八年级期中)若一( )
A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形
考点二:三角形的内角和与三角板
【例3】(2021·广东平洲二中九年级月考)如图,将一副直角三角板如图所示放置,使含 角的三角板的一条直角边和含 角的三角板的一条直角边重合,则 的度数为( )
∠ACD > ∠A ∠ACD >∠B
思考与交流:画出任意一个三角形,用量角器测量每个外角的度数,并将所测得的角度相加,你画的三角形三个外角的角度加起来等于多少?
六、三角形的外角和
三角形的外角和等于360°。即∠ACD +∠CBE +∠BAF = 360°
注意
七、三角形外角和的证明
三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°。
【变9】(2021·广东九年级专题练习)如图,AB和CD相交于点O,则下列结论正确的是( )
A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5
【例10】(2020·广东)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则 的度数是( )
A. B. C. D.
【变10-1】(2021·广东八年级专题练习)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.
【变12-1】(2020·珠海市紫荆中学)如图,在 中, 于 点, 平分 交 于点 .若 ,则 的度数为__________.
【变12-2】(2021·广东东莞市·八年级期末)如图, 中, 平分 , 为 延长线上一点, 于 ,已知 , ,求 的度数.
【变12-3】(2020·广东虎门成才实验学校八年级月考)如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.

人教版数学八年级上册《11.2.2三角形外角》优秀教学案例

人教版数学八年级上册《11.2.2三角形外角》优秀教学案例
(二)问Байду номын сангаас导向
在学生对三角形外角有了初步认识后,我提出了一系列问题,引导学生深入思考。例如:“三角形的外角与相邻的内角有什么关系?”,“如何证明三角形的外角等于不相邻的两个内角之和?”,“在解决几何问题时,如何运用三角形的外角性质?”等问题。通过问题导向,让学生在思考中逐渐发现三角形外角的性质,提高学生的问题解决能力。
人教版数学八年级上册《11.2.2三角形外角》优秀教学案例
一、案例背景
本节内容为人教版数学八年级上册《11.2.2三角形外角》。在学习了三角形的内角和定理后,学生已经掌握了三角形内角的基本概念和性质。而三角形外角的概念和性质是三角形内角的自然延伸,是学生进一步认识三角形的重要环节。
本节课的主要内容包括:三角形外角的定义、性质和应用。学生需要通过观察、思考、探究,理解并掌握三角形外角与相邻内角的关系,以及三角形外角在几何证明和问题解决中的作用。
(二)讲授新知
我通过讲解和示例,向学生介绍三角形外角的定义和性质。我解释道:“三角形的外角是指从三角形的一个顶点出发,到达三角形的外部的一个角。它等于不相邻的两个内角之和,而且外角大于不相邻的内角。”我通过展示一些几何图形,让学生观察和理解外角的性质。
(三)学生小组讨论
我让学生分成小组,讨论如何运用三角形外角的性质解决问题。我给出一些实际问题,如:“在一个三角形中,如果知道两个内角的大小,如何求出第三个内角的大小?”学生通过小组讨论,运用外角性质进行解答。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力,提高学生的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,感受数学的趣味性和魅力,激发学生学习数学的内在动力。
2.通过对三角形外角的探究,培养学生勇于探究、积极思考的科学精神,提高学生的自主学习能力。

人教版八年级数学上册教学设计11.2 与三角形有关的角

人教版八年级数学上册教学设计11.2  与三角形有关的角

人教版八年级数学上册教学设计11.2 与三角形有关的角一. 教材分析人教版八年级数学上册“与三角形有关的角”这一节主要让学生了解三角形内角和定理,学会使用三角形的内角和定理解决实际问题。

通过这一节的学习,让学生进一步理解三角形的性质,为后续学习三角形的其他性质和判定打下基础。

二. 学情分析学生在七年级时已经学习了角的性质,对角的概念有了初步的了解。

但他们对三角形的内角和定理的理解还不够深入,需要通过实例来进一步理解和掌握。

此外,学生的空间想象力还不够丰富,需要通过实物演示和动手操作来帮助他们理解和掌握三角形的内角和定理。

三. 教学目标1.知识与技能:使学生了解三角形内角和定理,能运用三角形的内角和定理解决实际问题。

2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:三角形内角和定理的理解和运用。

2.难点:对三角形内角和定理的证明和灵活运用。

五. 教学方法采用问题驱动法、实物演示法、合作交流法等,引导学生观察、操作、推理,从而理解和掌握三角形的内角和定理。

六. 教学准备1.准备三角形模型、直尺、量角器等教具。

2.制作课件,展示三角形内角和定理的证明过程。

七. 教学过程导入(5分钟)教师通过提问:“我们以前学过角的性质,那么你们知道三角形的角有什么特点吗?”引导学生回顾角的知识,为新课的学习做好铺垫。

呈现(10分钟)教师展示三角形模型,让学生观察并提问:“请大家观察这个三角形,你们能发现什么规律吗?”引导学生发现三角形的内角和等于180度。

操练(10分钟)教师给出几个三角形,让学生用量角器测量其内角和,验证三角形的内角和定理。

同时,教师巡回指导,帮助学生解决问题。

巩固(10分钟)教师通过出示一些实际问题,让学生运用三角形的内角和定理解决问题,巩固所学知识。

拓展(10分钟)教师提问:“你们还能找到其他形状的图形的内角和定理吗?”引导学生思考四边形、五边形等图形的内角和定理,培养学生的空间想象力。

八年级数学人教版(上册)第2课时等腰三角形的判定

八年级数学人教版(上册)第2课时等腰三角形的判定

讲授新课
方法总结:“等角对等边”是判定等腰三角形 的重要依据,是先有角相等再有边相等,只限 于在同一个三角形中,若在两个不同的三角形 中,此结论不一定成立.
侵权必究
讲授新课
如图,在△ABC中,AB=AC,∠ABC和∠ACB
的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
探究EF、BE、FC之间的关系.
∴ AC=AB. ( 等角对等边 ) B
C
即△ABC为等腰三角形. 侵权必究
讲授新课
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边).
C D
1
A2
B
∵∠1=∠2, ∴ DC=BC (等角对等边).
错,因为都不是在同一个三角形中.
侵权必究
讲授新课
求证:如果三角形一个外角的平分线平行于 三角形的一边,那:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB
于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
C
M A DB
N
侵权必究
讲授新课
如图,在△ABC中,∠ACB=90°,CD是AB 边上的高,AE是∠BAC的平分线,AE与CD交于点F, 求证:△CEF是等腰三角形.
第十三章 轴对称
13.3 等腰三角形
第2课时 等腰三角形的判定
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
学习目标
探索等腰三角形的判定定理及其应用

与三角形有关的角

与三角形有关的角

第2讲与三角形有关得角一、知识重点1.三角形内角与定理(1)定理:三角形三个内角得与等于180°。

(2)证明方法:(3)理解与延伸:因为三角形内角与为180°,所以延伸出三角形中很多得角得特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都就是60°等.(4)作用:已知两角求第三角或已知三角关系求角得度数、谈重点三角形内角与定理得理解三角形内角与定理就是最重要得定理之一,就是求角得度数问题中最基础得定理,应用非常广泛.【例1】填空:(1)在△ABC中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC得三个内角得度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=__________°,∠C=__________°。

2、直角三角形得性质与判定(1)直角三角形得性质:直角三角形得两个锐角互余、如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°、【例2—1】将一个直角三角板与一把直尺如图放置,如果∠α=43°,则∠β得度数就是().A.43°ﻩB.47°ﻩﻩC。

30°ﻩD、60°。

答案:B(2)直角三角形得判定:有两个角互余得三角形就是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC就是直角三角形.【例2-2】如图所示,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF得平分线与∠DFE得平分线相交于点P,求证:△EPF就是直角三角形、。

3.三角形得外角(1)定义:三角形得一边与另一边得延长线组成得角,叫做三角形得外角.如图,∠ACD就就是△ABC其中得一个外角.(2)特点:①三角形得一个外角与与它同顶点得内角互为邻补角,这就是内、外角联系得纽带、②一个三角形有6个外角,其中两两互为对顶角,如图所示.破疑点三角形外角得理解外角就是相对于内角而言得,也就是三角形中重要得角,一个角对一个三角形来说就是外角,而对于另一个三角形来说可能就是内角;三角形得角就是指得三角形得内角,这点要注意.【例3】在△ABC中,∠A等于与它相邻得外角得四分之一,这个外角等于∠B得两倍,那么∠A=__________,∠B=__________,∠C=__________、4、三角形外角性质(1)性质:三角形得外角等于与它不相邻得两个内角得与.如图所示:∠1=∠B+∠C(或∠B=∠1-∠C,∠C=∠1—∠B)、注意:三角形得外角与不就是所有外角得与,就是每个顶点处取一个外角,就是一半数目外角得与。

第2讲与三角形有关的角(教案)

第2讲与三角形有关的角(教案)
五、教学反思
在今天的教学中,我发现学生们对于三角形内角和定理的理解和应用还存在一些困难。在导入新课的时候,我尝试通过日常生活中的例子来引起学生的兴趣,但感觉效果并不如预期。我意识到,可能需要更具体、更贴近学生生活实际的例子来激发他们的好奇心。
在理论介绍环节,我尽量用简洁明了的语言解释三角形内角和的概念,并通过案例分析让学生看到这个知识点的实际应用。然而,从学生的反应来看,我可能需要更多的互动和直观演示,比如利用动态几何软件或者实物模型来直观展示内角和定理的证明过程。
实践活动中的分组讨论和实验操作,学生们表现得相当积极。他们通过合作探究,不仅加深了对三角形知识的理解,还提高了团队协作能力。但我也注意到,有些学生在操作过程中遇到了困难,我应该在之后的课程中更加关注这些学生的需求,提供更多的个别指导。
小组讨论环节,我鼓励学生们提出自己的观点,并尝试解决问题。这个过程中,我发现学生们对于三角形在实际生活中的应用有着很丰富的想象力,但有时候他们的思考方向会偏离主题。我需要在引导学生思考的同时,更好地把握讨论的方向,确保讨论内容与课程目标紧密相关。
3.培养学生的数据分析能力:通过多边形内角和公式的推导与应用,培养学生对数据进行整理、分析和解决问题的能力。
4.培养学生的数学应用意识:将三角形相关知识应用于解决实际问题,提高学生运用数学知识解决实际问题的能力,增强数学应用意识。
5.培养学生的合作交流能力:在小组讨论和合作探究中,培养学生与他人沟通、协作的能力,提高团队协作精神。
总的来说,今天的课程让我认识到,作为教师,我需要不断地调整教学方法,以适应不同学生的学习风格和需求。在接下来的课程中,我会尝试更多的教学策略,比如增加互动环节,使用更多的教学工具,以及提供更具挑战性的问题来激发学生的思考。同时,我也会关注学生的反馈,及时调整教学进度和内容,确保每位学生都能跟上课程的节奏,真正理解和掌握与三角形有关的角的知识。

初二-第02讲-直角三角形(培优)-教案

初二-第02讲-直角三角形(培优)-教案

学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握直角三角形的性质与判定方法;②进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。

定理:有两个角互余的三角形是直角三角形。

2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。

3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

4、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个体系搭建命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。

5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。

简述为“斜边、直角边定理”或“HL”定理。

考点一:直角三角形全等的判定例1、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【解析】选D.例2、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解析】∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.例3、如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解析】(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等【解析】选:D.2、如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BDC.AC=AD且BC=BD D.以上都不正确【解析】从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.跟据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B.3、如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【解析】∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.4、如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6C.7 D.8【解析】∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.5、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解析】∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.6、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形.【解析】若∠APO是直角,则∠A=90°﹣∠AON=90°﹣30°=60°,若∠APO是锐角,∵∠AON=30°是锐角,∴∠A=90°,综上所述,∠A=60°或90°.故答案为:60°或90°.7、如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.8、底角为30°,腰长为a的等腰三角形的面积是a2.【解析】如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.9、如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解析】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.10、已知:如图,在△ABC中,AB=AC=2,∠B=15°.过点C作CD⊥BA,交BA的延长线于点D,求△ACD的周长.【解析】如图,在△ABC中,AB=AC=2,∠B=15°,∴∠B=∠ACB=15°,∴∠DAC=2∠B=30°.又∵CD⊥BA,∴CD=AC=1,∴根据勾股定理得到AD==,∴△ACD的周长=AD+CD+AC=+1+2=+3.答:△ACD的周长是+3.➢课后反击1、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个【解析】故选B2、如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AASC.SSS D.ASA【解析】∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,又∵OE=OF,AO为公共边,∴△AEO≌△AFO.故选A.3、直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【解析】如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选B.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解析】如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.5、如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE 的长为()A.10 B.6C.8 D.5【解析】∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.6、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【解析】AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.7、如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.8、如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为6.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.9、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【解析】AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).10、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.【解析】∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.S(Summary-Embedded)——归纳总结重点回顾1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。

新人教版数学八年级上册教案:11.2 与三角形有关的角

新人教版数学八年级上册教案:11.2 与三角形有关的角

§11.2.1三角形的内角[教学目标]〔知识与技能〕掌握三角形内角和定理.〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形内角和定理是重点;三角形内角和定理的证明是难点.[教学过程]一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB=1800.[投影1]图1想一想,还可以怎样拼?①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800.图2②把B∠剪下按图(3)拼在一起,可得到∠A+∠B+∠∠和CACB=1800.如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知△ABC,求证:∠A+∠B+∠C=1800.证明一过点C作C M∥AB,则∠A=∠ACM,∠B=∠DCM,又∠ACB+∠ACM+∠DCM=1800∴∠A+∠B+∠ACB=1800.即:三角形的内角和等于1800.由图2、图3你又能想到什么证明方法?请说说证明过程.三、例题例如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?分析:怎样能求出∠ACB的度数?根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可.∠CAB等于多少度?怎样求∠CBA的度数?解:∠CBA=∠BAD-∠CAD=800-500=300∵AD∥BE ∴∠BAD+∠ABE=1800∴∠ABE=1800-∠BAD=1800-800=1000∴∠ABC=∠ABE-∠EBC=1000-400=600∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900答:从C岛看AB两岛的视角∠ACB=1800是900.四、课堂练习课本13頁1、2题.五作业:16页:1、3、4;六、教学反思:教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程.本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松.整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力.§11.2.2三角形的外角[教学目标]〔知识与技能〕理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题.〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点.[教学过程]一、导入新课〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?是∠A、∠B、∠C,它们的和是1800.若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?二、三角形外角的概念∠ACD叫做△ABC的外角.也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角.想一想,三角形的外角共有几个?共有六个.注意:每个顶点处有两个外角,它们是对顶角.研究与三角形外角有关的问题时,通常每个顶点处取一个外角.三、三角形外角的性质容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、∠B的关系吗?∵C E∥AB,∴∠A=∠1,∠B=∠2又∠ACD=∠1+∠2∴∠ACD=∠A+∠B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和.由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角.即AACD∠∠.>A C D∠>∠,B四、例题〔投影3〕例如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400又∠BAC+∠ABC+∠ACB=1800∴∠1+∠2+∠3==3600.你能用语言叙述本例的结论吗?三角形外角的和等于3600.五、课堂练习课本15頁练习;六、课堂小结1、什么是三角形外角?2、三角形的外角有哪些性质?七、作业:课本17页5、6;八、教学反思:把复杂的数学知识直观形象的让学生自己探索得出,这种讲课思路值得我们借鉴,新课程倡导教师用教材而不是简单的教教材,教师要创造性地使用教材,要融入自己的科学精神和智慧,要对教材知识进行重新组和,选取更好的事例对教材深加工,设计出活生生的、丰富多彩的课来,充分有效的将教材的知识激活,形成有教师教学个性的教材知识,所以我们可结合学生实际适当改变例题,充分发掘教材中的情感因素,化生为熟化难为易化理为趣增强数学的魅力,激起学生学习的信心和兴趣,形成课堂教与学的合力,我们要让学生感悟数学,真正成为学习的主人,教师要做好学生学习道路上的引路人.。

人教版 八年级数学讲义 全等三角形的判定和性质 (含解析)

人教版 八年级数学讲义  全等三角形的判定和性质 (含解析)

第2讲全等三角形的判定和性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习三角形的判定和性质,这是一节非常重要的内容,是中考大题考查的重点,所占分值也是非常高的,因此通过本节课的学习我们要掌握全等三角形的几种判定方法和性质,学会处理这一类的几何题目。

知识梳理讲解用时:20分钟全等三角形1、全等形:在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形,或者可以表述为直线对称的两个图形是全等形2、全等三角形:能够完全重合的两个三角形称为全等三角形形状大小两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

A DB C E F3、对应顶点:A与D B与E C与F对应边:AB对应DE BC对应EF AC对应DF对应角:∠A对应∠D ∠B对应∠E ∠C对应∠F4、符号:△ABC≌△DEF “≌”读作“全等于”(注意:对应的顶点的字母写在对应的位置上)三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)(1) AB=DE (2)∠A=∠D∠B=∠E AB=DEBC=EF ∠B=∠E 则△ABC≌△DEF(SAS)则△ABC≌△DEF(ASA)(3) AB=DE (4)∠A=∠DBC=EF ∠B=∠EAC=DF BC=EF则△ABC≌△DEF(SSS)则△ABC≌△DEF(AAS)A DB C E F(5)AC=DFAB=DE则Rt△ABC≌Rt△DEF(HL)注意:AAA和SSA都不成立全等三角形的性质全等三角形的性质:全等三角形的对应角相等、对应边相等因为△ABC≌△DEF所以∠A=∠D ∠B=∠E ∠C=∠FAB=DE BC=EF AC=DF课堂精讲精练【例题1】选择题下列条件,不能使两个三角形全等的是()A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等 D.三边对应相等【答案】A【解析】全等三角形的判定定理有“边角边”,“角边角”,“边边边”“角角边”,“HL”,根据此可判断正误找出答案.解:A、“边边角”不能证明两个三角形全等,故本选项错误.B、两角一边对应相等能证明三角形全等.故本选项正确.C、直角边和一个锐角对应相等能证明三角形全等.故本选项正确.D、三边对应相等能证明三角形全等.故本选项正确.故选:A.讲解用时:3分钟解题思路:本题考查全等三角形的判定定理,关键是熟记这些“边角边”,“角边角”,“边边边”“角角边”,“HL”,判定定理.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【答案】A【解析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC【答案】C【解析】欲证DE=AB,需根据题中所给角之间的关系证明出∠ACB=∠DCE和∠BAC=∠CAE,又AC=CE,即可证明出△ABC≌△EDC,由全等三角形的性质可得出DE=AB.解:∵∠2=∠3,∴∠DCE=∠3+∠ACD=∠2+∠ACD=∠ACB,即:∠ACB=∠DCE,又∵AC=CE,∴∠E=∠CAE,∠1+∠BAC=∠DAC=∠3+∠CEA,∵∠1=∠3,∴∠BAC=∠CEA在△ABC和△EDC中,∠ACB=∠DCE,AC=CE,∠BAC=∠E,∴△ABC≌△EDC,∴DE=AB.故选:C.讲解用时:3分钟解题思路:本题主要考查了全等三角形的判定以及全等三角形的性质;巧妙地利用∠1是解决本题的关键.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习2.1】如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A.5.5 B.4 C.4.5 D.3【答案】B【解析】先证明△ABC≌△EFD,得出AC=ED=7,再求出AD=AE﹣ED=3,即可得出CD=AC﹣AD=4解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.讲解用时:3分钟解题思路:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.教学建议:学会判定全等三角形,再利用全等三角形的性质证明边相等.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,AC⊥BC,AD⊥DB,下列条件中,能使△ABC≌△BAD的有(把所有正确结论的序号都填在横线上)①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD.【答案】①②③【解析】先得到∠C=∠D=90°,若添加∠ABD=∠BAC,则可根据“AAS”判断△ABC≌△BAD;若添加∠DAB=∠CBA,则可先利用“AAS”证明△ABC≌△BAD;若添加AD=BC,则可利用“HL”判断ABC≌△BAD;若添加∠DAC=∠CBD,则不能判断ABC≌△BAD.解:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,①在△ABC和△BAD中,∴△ABC≌△BAD(AAS),所以①正确;②在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),所以②正确;③在Rt△ABC和Rt△BAD中,∴△ABC≌△BAD(HL),所以③正确;④∠C=∠D和∠DAC=∠CBD两个条件不能判定△ABC≌△DCB,所以④错误.所以正确结论的序号为①②③,故答案为①②③.讲解用时:4分钟解题思路:本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.【答案】55°【解析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.讲解用时:3分钟解题思路:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.教学建议:掌握全等三角形的判定和性质,综合利用做题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE≌△ACD.【答案】△ABE≌△ACD【解析】由条件AB=AC,∠ABE=∠ACD,再加上公共角∠A=∠A,直接利用ASA 定理判定△ABE≌△ACD即可.证明:在△ABE与△ACD中,,∴△ABE≌△ACD(ASA).讲解用时:3分钟解题思路:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:通过等腰三角形判定角相等,利用“ASA”判定方法来证明.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.【答案】△ABC≌△DEF【解析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【答案】△ABC≌△DEC【解析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.证明:∵∠BAE=∠BCE=∠ACD=90°,∴∠DCE+∠ECA=∠ECA+∠ACB,∴∠DCE=∠ACB,且∠B+∠CEA=180°,又∠DEC+∠CEA=180°,∴∠B=∠DEC,在△ABC和△DEC中∴△ABC≌△DEC(ASA).讲解用时:4分钟解题思路:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.教学建议:本题关键是通过∠BAE=∠BCE=90°,判断∠B=∠DEC,从而判定两个三角形全等.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【答案】AE=FB【解析】根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△FDB,∴AE=FB.讲解用时:3分钟解题思路:此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】AB=DE【解析】欲证明AB=DE,只要证明Rt△ABC≌Rt△DEF(HL)即可;证明:∵BF=EC∴BC=EF∵AB⊥BE,DE⊥BE∴∠B=∠E=90°在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)∴AB=DE讲解用时:3分钟解题思路:本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【答案】(1)全等;(2)是【解析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.讲解用时:3分钟解题思路:考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.【答案】AF⊥AQ【解析】首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.证明:∵BD、CE分别是AC、AB边上的高,∴∠ADB=90°,∠AEC=90°,∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,∴∠ABD=∠ACE,在△ABQ和△ACF中,∴△ABQ≌△ACF(SAS),∴∠F=∠BAQ,∵∠F+∠FAE=90°,∴∠BAQ+∠FAE═90°,∴AF⊥AQ.讲解用时:4分钟解题思路:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.4 B.5 C.1 D.2【答案】C【解析】由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC﹣EH,即AE﹣EH即可求出HC的长.解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故选:C.讲解用时:3分钟解题思路:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)【答案】(1)90°;(2)α+β=180°;α=β【解析】(1)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,即可解题;(2)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠B+∠ACB=180°﹣α即可解题;(3)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°即可解题;【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为 90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.讲解用时:8分钟解题思路:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD≌△CAE是解题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AE=BD.【答案】AE=BD【解析】要证AE=BD,经过观察分析我们可以将这两条线段放在三角形ACE和三角形BCD中,证其全等即可.首先我们根据△ACB和△ECD都是等腰直角三角形,得出两对对应边的相等,然后又根据∠ACB=∠ECD,都减去中间的公共角ACD 再得一对对应角的相等,根据SAS证三角形ACE和三角形BCD的全等,最后根据全等三角形的对应边相等即可得证.证明:∵△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,∴EC=CD,AC=CB,∠ACB﹣∠ACD=∠ECD﹣∠ACD.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD.讲解用时:3分钟解题思路:解此题时要充分利用等腰直角三角形的性质,熟练掌握三角形全等的证明以及对全等三角形的性质的理解掌握.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,AB=DE,∠B=∠E,使得△ABC≌△DEC,请你添加一个适当的条件(填一个即可).【答案】BC=EC【解析】解:添加条件是:BC=EC,在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:BC=EC.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG ≌△NMH.【答案】△EFG≌△NMH【解析】根据等式的性质得出EG=NH,再利用全等三角形的判定证明即可.证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,已知在△ABC和△ABD中,AD=BC,∠DAB=∠CBA,求证:∠C=∠D.【答案】∠C=∠D【解析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明∠C=∠D.证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴∠C=∠D讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【答案】AC=ED【解析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】已知:如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,求证:BC=EF.【答案】EF=BC【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出EF=BC.证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,,∴△ABC≌△DEF.∴EF=BC讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。

人教版八年级上册教案11.2.1 三角形的内角

人教版八年级上册教案11.2.1 三角形的内角

11.2 与三角形有关的角11.2.1 三角形的内角【知识与技能】1.掌握三角形的内角和定理.2.能写出已知、求证,并能用作辅助线的方法证明三角形内角和定理.3.能运用三角形内角和定理进行简单的证明或计算.【过程与方法】先通过实验得出三角形内角之和等于180°的直观结论,再由此得到启发,用过三角形的一个顶点作平行线的方法证明三角形的内角和定理.最后运用三角形的内角和定理进行简单的证明或计算.【情感态度】本节课使学生经历了“实验——猜想——证明”的过程,使同学们初步体验了自然科学的一般研究方法,提高了学生研究和学习的兴趣.【教学重点】本节的重点是三角形的内角和定理.【教学难点】证明三角形的内角和定理.一、情境导入,初步认识问题1 在纸上画一个三角形,并将它的内角剪两个下来,与第三个角拼在一起,观察三个角的和是多少?问题2 怎样证明三角形内角的和等于180°?【教学说明】全班学生分组实验,约8分钟交流成果,得出“三角形的内角和等于180°”这个直观结论.由实验过程中的拼合过程得到启发,引导同学们运用所学的知识证明“三角形内角和等于180°”.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.对一个命题进行证明的一般格式是怎样的?2.除教材以外还有其它方法证明这个结论吗?3.对一个真命题为什么还要证明呢?【归纳结论】1.对一个命题的证明的一般格式是:(1)画出图形,根据图形写出已知和求证.(2)写出证明过程.2.除教材以外,还可以用如下作辅助线的方法证明三角形的内角和定理.(延长BC至D,过C作CE∥AB)3.三角形内角和定理:三角形三个内角的和等于180°.4.一个命题是否正确,需要经过理由充足,使人信服的推理才能得出结论,这样的推论过程叫做“证明”.观察、试验等是发现规律的重要途径,而证明则是确认规律的必要步骤.5.辅助线在几何证明中发挥巨大的作用,今后我们会经常遇到这个“朋友”.三、运用新知,深化理解1.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°2.在△ABC中,∠A∶∠B∶∠C=1∶3∶5,求∠A,∠B,∠C的度数.3.如图,已知△ABC中,∠ABC和∠ACB的平分线BD,CE相交于O,∠A=50°,求∠BOC的度数.4.如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE 与∠AEC 的度数.5.如图,AD 、CE 是△ABC 的角平分线,AD 、CE 交于点O.求证:∠AOC=90°+12∠B.【教学说明】本环节由学生独立思考、自主完成,再进行交流讨论,最后教师给予指导和总结.初学证明,让学生体会证明的逻辑性和严谨性.【答案】1.D2.解:∠A ∶∠B ∶∠C=1∶3∶5,设∠A=x,∠B=3x,∠C=5x,由三角形内角和定理得∠A+∠B+∠C=x+3x+5x=180°解得x=20°,则3x=60°,5x=100°,即∠A=20°,∠B=60°,∠C=100°.3.解:由三角形内角和定理有∠B+∠C=180°-∠A=130°,∠BOC=180°-(∠DBC+∠ECB )=180°-21(∠B+∠C )=115°. 4.解:∠A=180°-∠B-∠C=60°,∠BAE=∠CAE=21∠A=30°. ∠BAD=180°-∠B-∠ADB=15°,则∠DAE=∠BAE-∠BAD=15°.∠AEC=180°-∠C-∠CAE=105°.5.证明:由三角形内角和定理得∠B+∠A+∠C=180°即∠A+∠C=180°-∠B ,∠AOC+∠DAC+∠ECA=180°即∠DAC+∠ECA=180°-∠AOC ,又∠DAC=21∠A ,∠ECA=21∠C ∴180°-∠AOC=21(180°-∠B ) 即∠AOC=90°+21∠B四、师生互动,课堂小结1.三角形内角和定理:三角形内角和等于180°.2.证明三角形的内角和定理必须作辅助线,也就说要作出平行线,利用平角来证明,一般来说,共有如下四种方法(如图):(1)构造平角①如图(1),过点A作直线MN∥BC,有∠1=∠B,∠2=∠C.而∠1+∠BAC+∠2=∠MAN=180°,所以∠BAC+∠B+∠C=180°.②如图(2),过BC上一点D作DF∥AB交AC于F,作DE∥AC交AB于E,则∠1=∠C,∠2=∠B,∠3=∠4=∠A.所以∠A+∠B+∠C=∠3+∠2+∠1=180°.(2)构造邻补角如图(3),延长BC到D,作CE∥AB,则∠1=∠A,∠2=∠B.所以∠A+∠B+∠ACB=∠1+∠2+∠ACB=180°.(3)构造同旁内角如图(4),过C点作射线CD∥AB,则∠1=∠A,∠B+∠BCA+∠1=180°,所以∠B+∠BCA+∠A=180°.3.作辅助线是几何证明或计算中经常用到的手段,辅助线在解题中具有举足轻重的作用,今后会经常遇到,望同学们仔细体会,辅助线必须画成虚线.1.布置作业:从教材“习题11.2”中选取.2.完成练习册中本课时的练习.本课时教学思路按实验、猜想、证明的学习过程,遵循学生的认知规律,充分体现了数学学习的必然性,教学时要始终围绕问题展开,并给学生留下充分的思考时间与空间,形成解决问题的意识与能力.。

与三角形有关的角

与三角形有关的角

第2讲与三角形有关的角一、知识重点1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:(3)理解与延伸:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.(4)作用:已知两角求第三角或已知三角关系求角的度数.谈重点三角形内角和定理的理解三角形内角和定理是最重要的定理之一,是求角的度数问题中最基础的定理,应用非常广泛.【例1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=__________°,∠C=__________°.2.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°。

【例2-1】将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是().A.43°B.47°C.30°D.60°。

答案:B(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC是直角三角形.【例2-2】如图所示,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,求证:△EPF是直角三角形..3.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD 就是△ABC其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.破疑点三角形外角的理解外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.【例3】在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A=__________,∠B=__________,∠C=__________.4。

人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)

人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)
三角形的外角和是360°
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B

人教版(部编)八年级数学上册-直角三角形的性质和判定

人教版(部编)八年级数学上册-直角三角形的性质和判定

总结归纳
思考:通过前面的例题,你能画出这些题型的基本 图形吗?
基本图形
AB o
A
B
o D
C
D
∠A=∠D
C
∠A=∠C
二 有两个角互余的三角形是直角三角形
问题:有两个角互余的三角形是直角三角形吗? 如图,在△ABC中, ∠A +∠B=90° , 那么△ABC 是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是 △ABC是直角三角形.
C.∠BCD和∠A
D.∠BCD
7.如图,在直角三角形ABC中,∠ACB=90°,D是 AB上一点,且∠ACD=∠B.求证:△ACD是直角 三角形.
证明:∵∠ACB=90°, ∴∠A+∠B=90°, ∵∠ACD=∠B, ∴∠A+∠ACD=90°, ∴△ACD是直角三角形.
课堂小结
直角三角 形的性质 与判定
八年级数学上(RJ) 教学课件
第十一章 三角形
11.2 与三角形有关的角
11.2.1 三角形的内角
第2课时 直角三角形的性质和判定
导入新课
情境引入
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟 非常团结.可是有一天,老二突然不高兴,发起脾气来,它 指着老大说:“你凭什么度数最大,我也要和你一样 大!”“不行啊!”老大说:“这是不可能的,否则,我们 这个家就再也围不起来了……”“为什么?” 老二很纳闷. 你知道其中的道理吗?
B.50°
C.60°
D.70° 5.具备下列条件的△ABC中,不是直角三角形的是
( D) A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C

[初二数学 第2讲 与三角形有关的角]讲义教师版

[初二数学 第2讲 与三角形有关的角]讲义教师版

与三角形有关的角1.掌握三角形的内角及内角和、外角及外角和的性质,并能够进行相关的计算;2.掌握直角三角形的各个角的特点,并能够进行相关的角度计算;3.掌握折叠的规律,并能够在几何计算中熟练应用;4.会根据角的特点判断三角形的形状.1.三角形中,角的度数的综合计算问题;2.三角形形状的判断;3.几何找规律问题的理解.三角形的内角及其内角和1、三角形内角的概念三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2、三角形内角和定理:三角形内角和是180°.3、三角形内角和定理的证明证明方法不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中一般需要借助平行线.4、三角形内角和定理的应用:主要用在求三角形中角的度数.(1)直接根据两已知角求第三个角;(2)依据三角形中角的关系,用代数方法求三个角.例1.如图,△ABC中,△A=60°,△B=40°,则△C等于()A.100°B.80°C.60°D.40°【答案】B【解析】解:由三角形内角和定理得,△C=180°﹣△A﹣△B=80°,故选:B.练习1.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=____,∠C=____.【答案】90°;50°【解析】解:由∠B-∠C=40°得∠B=40°+∠C.根据三角形内角和是180°,列出等式∠A+∠B+∠C=∠A+40°+∠C+∠C=180°,把∠A=40°代入,求得∠C=50°,进而求得∠B=90°.练习2.在△ABC中,△A+△B=134°,△B+△C=136°,则△ABC的形状是()【答案】B【解析】解:△在△ABC中,△A+△B=134°,△B+△C=136°,△△A+△B+△B+△C=134°+136°=270°△,△△A+△B+△C=180° △,△﹣△得,△B=90°,△△ABC的形状是直角三角形,故选:B.已知一个三角形其中某两个角或者某一个角及其另外两个角的关系即可利用三角形内角和等于180°求解各个角的具体度数,其核心思想是三角形内角和等于180°为求解角度提供了一个等量关系.例2.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,△这个三角形一定是直角三角形,故选:B.练习1.在△ABC中,△A,△B,△C的度数之比为2:3:4,则△B的度数为()A.120°B.80°C.60°D.40°【答案】C【解析】解:△△A:△B:△C=2:3:4,△设△A=2x,△B=3x,△C=4x,△△A+△B+△C=180°,△2x+3x+4x=180°,解得:x=20°,△△B的度数为:60°.故选C.练习2.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【答案】A【解析】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.已知三角形三个内角之间的比例关系,即可设出三个内角的度数(用未知数表示),体现了“见比设参”的思想,再利用三角形内角和等于180°,即可解出相应的未知数,从而求出各个内角的具体度数.例3.下列说法正确的是()A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【答案】C【解析】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.练习1.任何一个三角形的三个内角中至少有()A.一个角大于60°B.两个锐角C.一个钝角D.一个直角【答案】B【解析】解:根据三角形的内角和是180°,知:三个内角可以都是60°,排除A;三个内角可以都是锐角,排除C和D;三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角.故选B.考查三角形各个内角的特点及限定,需要根据三角形内角和对三个内角之间的影响进行分析推理,重点考查分析推理能力.三角形的外角及其外角和1、三角形外角的定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.在计算三角形外角和时,只计算其中的三个,即每个顶点取一个.2、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.3、若研究的角比较多,要设法利用三角形的外角性质(2)将它们转化到一个三角形中去.4、探究角度之间的不等关系,多用外角的性质(3),先从最大角开始,观察它是哪个三角形的外角.例1.如图所示,在△ABC中,下列说法正确的是()A.△ADB>△ADE B.△ADB>△1+△2+△3C.△ADB>△1+△2D.以上都对【答案】C【解析】解:A错误,△ADB+△ADE=180°,无法判断其大小关系;B错误,△ADB=△1+△2+△3;C正确,△△ADB=△1+△2+△3,△ADB>△1+△2;D错误.故选C.练习1.下列图形中一定能说明△1>△2的是()A.B.C.D.【答案】C【解析】解:A中△1=△2,故错误;B中△1和△2的关系不能确定,故错误;C中△1>△2,故正确;D中△1和△2的关系不能确定,故错误;故选:C.练习2.已知△2是△ABC的一个外角,那么△2与△B+△1的大小关系是()A.△2>△B+△1B.△2=△B+△1C.△2<△B+△1D.无法确定【答案】A【解析】解:△△2>△ADC,△ADC=△B+△1,△△2>△B+△1,故选A.在判断角的不等关系时,常会用到“三角形的外角大于任意一个与它不相邻的内角”这一性质.例2.知,如图,△ABC中,△B=△DAC,则△BAC和△ADC的关系是()A.△BAC<△ADC B.△BAC=△ADC C.△BAC>△ADC D.不能确定【答案】B【解析】解:由三角形的外角性质,△ADC=△B+△BAD,△△BAC=△BAD+△DAC,△B=△DAC,△△BAC=△ADC.故选B.练习1.如图,在△ABC中△A=80°.点D是BC延长线上一点,△ACD=150°,则△B=()A.60°B.50°C.70°D.165°【答案】C【解析】解:由三角形的外角的性质可知,△B=△ACD﹣△A=70°,故选:C.练习2.如图,在△ABC中,AB=AC,△A=140°,延长BC至点D,则△ACD等于()A.130°B.140°C.150°D.160°【答案】D【解析】解:△AB=AC,△A=140°,△△B=△ACB=(180°﹣140°)=20°,△△ACD=180°﹣△ACB=180°﹣20°=160°.故选D.在三角形中“三角形的外角等于与它不相邻的两个内角之和”这一性质是计算角的度数中比较常用的一个典型知识,只要三角形中有外角出现,都有可能会用到这一性质.例3.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【解析】解:△三角形三个外角度数之比是3:4:5,设三个外角分别是α,β,γ,则α=360°×=90°,△此三角形一定是直角三角形.故选:B.练习1.如果一个三角形的三个外角的度数之比是2:3:4,那么与之对应的三个内角的度数之比是()A.1:3:5B.2:3:4 C.4:3:2D.5:3:1【答案】D【解析】解:设三个外角的度数分别是2x°,3x°,4x°,由题意得:2x+3x+4x=360,解得:x=40,则2x=80,3x=120,4x=160,故三个内角分别为:100°,60°,20°,而100°:60°:20°=5:3:1,故选:D.练习2.如图所示:△1=110°,△2=125°,那么△3=()A.55°B.65°C.75°D.85°【答案】A【解析】解:根据三角形的外角和可得,∠3的邻补角等于125°,所以∠3=55°,故选A.在三角形的角度计算中,如果涉及到的外角比较多时,常会考虑用“三角形的外角和等于360°”这一性质.直角三角形的性质1、有一个角为90°的三角形,叫做直角三角形.2、在直角三角形中,两个锐角互余.注:在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.反之,我们也常用“两锐角互余”的性质来判定一个三角形是否是直角三角形.3、目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.例1.在Rt△ABC中,△C=90°,△A﹣△B=70°,则△A的度数为()A.80°B.70°C.60°D.50°【答案】A【解析】解:△△C=90°,△△A+△B=90°,又△A﹣△B=70°,△△A=(90°+70°)=80°.故选A.练习1.AD、BE为△ABC的高,AD、BE相交于H点,△C=50°,求△BHD.【答案】解:△AD是△ABC的高,△△BHD+△HBD=90°,△BE是△ABC的高,△△HBD+△C=90°,△△BHD=△C,△△C=50°,△△BHD=50°.练习2.如图,在△ABC中,△BAC=90°,AC≠AB,AD是斜边BC上的高,DE△AC,DF△AB,垂足分别为E、F,则图中与△C(△C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【答案】A【解析】解:△AD是斜边BC上的高,DE△AC,DF△AB,△△C+△B=90°,△BDF+△B=90°,△BAD+△B=90°,△△C=△BDF=△BAD,△△DAC+△C=90°,△DAC+△ADE=90°,△△C=△ADE,△图中与△C(除之C外)相等的角的个数是3,故选:A.在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.例2.在下列条件中,△△A+△B=△C;△△A:△B:△C=1:2:3;△△A=△B=△C;△△A=△B=2△C;△△A=2△B=3△C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【答案】B【解析】解:△、△△A+△B=△C=90°,△△ABC是直角三角形,故小题正确;△、△△A:△B:△C=1:2:3,△△A=30°,△B=60°,△C=90°,△ABC是直角三角形,故本小题正确;△、设△A=x,△B=2x,△C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;△△设△C=x,则△A=△B=2x,△2x+2x+x=180°,解得x=36°,△2x=72°,故本小题错误;△△A=2△B=3△C,△△A+△B+△C=△A+△A+A=180°,△△A=°,故本小题错误.综上所述,是直角三角形的是△△△共3个.故选B.练习1.给定下列条件,不能判定△ABC是直角三角形的是()A.△A=△B=2△C B.△A+△B=△CC.△A:△B:△C=1:4:5D.△A=37°,△B=53°【答案】A【解析】解:A、△△A=△B=2△C,△A+△B+△C=180°,△△A=△B=72°,△C=36°,△此时△ABC为锐角三角形;B、△△A+△B=△C,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形;C、△△A:△B:△C=1:4:5,△A+△B+△C=180°,△△A=18°,△B=72°,△C=90°,△此时△ABC为直角三角形;D、△△A=37°,△B=53°,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形.故选A.判断一个三角形是不是直角三角形的方法很多,就现学的知识而言,主要有:(1)两个内角之和为90°;(2)其中两个内角的和等于第三个内角;(3)其中某一个角等于90°;(4)三个内角的比例关系中,两个内角比例之和等于第三个内角所占的比例等.例3.将一副三角尺按如图所示的方式叠放(两条直角边重合),则△α的度数是.【答案】75°【解析】解:△△DAC+△ACB=180°,△AD△BC,△△B=△DAE=30°,△△DEB=△D+△DAE=45°+30°=75°,即△α的度数是75°.故答案为:75°.练习1.一副三角板有两个直角三角形,如图叠放在一起,则△α的度数是()A.165°B.120°C.150°D.135°【答案】A【解析】解:给图中标上△1、△2,如图所示.△△1+45°+90°=180°,△△1=45°,△△1=△2+30°,△△2=15°.又△△2+△α=180°,△△α=165°.故选A.练习2.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则△1的度数为()A.60°B.75°C.65°D.70°【答案】B【解析】解:△△2=90°﹣45°=45°(直角三角形两锐角互余),△△3=△2=45°,△△1=△3+30°=45°+30°=75°.故选B.目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.三角形倒角计算综合在三角形中计算角的度数是非常重要的一种题型,其中涉及到的知识点主要包括:角平分线的性质、两直线平行的性质、对顶角的性质、邻补角的性质、三角形的外角及其外角和、三角形的内角和等一系列倒角相关的知识,在分析此类几何题时,要首先从这些知识入手.通过倒角,可以计算角的度数,从而判断三角形的形状.折叠问题,也是倒角中常会考到的一个典型知识,其本质特征是:折叠前后的边和角的大小是完全相同的.例1.已知△ABC中,△A=20°,△B=△C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【答案】A【解析】解:△△A=20°,△△B=△C=(180°﹣20°)=80°,△三角形△ABC是锐角三角形.故选A.练习1.若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】C【解析】解:依题意,设三角形的三个内角分别为:2x,7x,4x,△2x+7x+4x=180°,△7x≈97°,x=13.85°,7x=97°,△这个三角形是钝角三角形.故选:C.练习2.三角形的外角大于和它相邻的这个内角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【答案】D【解析】解:△三角形的一个内角和相邻的外角互补,三角形的外角大于和它相邻的这个内角,△这个三角形是锐角三角形,但是无法确定其他内角大小,故此三角形形状无法确定.故选:D.按照角度的大小来分类,三角形分为:锐角三角形、直角三角形和钝角三角形三种类型.要判断三角形的具体形状,只需要找到三角形中最大的角是哪种类型的角(锐角、直角、钝角)即可.例2.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则△A与△1+△2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.△A=△1+△2B.2△A=△1+△2C.3△A=2△1+△2D.3△A=2(△1+△2)【答案】B【解析】解:2△A=△1+△2,理由:△在四边形ADA′E中,△A+△A′+△ADA′+△AEA′=360°,则2△A+180°﹣△2+180°﹣△1=360°,△可得2△A=△1+△2.故选:B.练习1.如图,在△ACB中,△ACB=100°,△A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则△ADB′等于()A.25°B.30°C.35°D.40°【答案】D【解析】解:△△ACB=100°,△A=20°,△△B=60°,由折叠的性质可知,△ACD=△BCD=50°,△△B′DC=△BDC=70°,△△ADB′=180°﹣70°﹣70°=40°,故选:D.练习2.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分△ABC,A'C平分△ACB,若△BA'C=110°,则△1+△2的度数为()A.80°B.90°C.100°D.110°【答案】A【解析】解:连接AA′.△A'B平分△ABC,A'C平分△ACB,△BA'C=110°,△△A′BC+△A′CB=70°,△△ABC+△ACB=140°,△△BAC=180°﹣140°=40°,△△1=△DAA′+△DA′A,△2=△EAA′+△EA′A,△△DAA′=△DA′A,△EAA′=△EA′A,△△1+△2=2(△DAA′+△EAA′)=2△BAC=80°,故选A.折叠问题是初中几何中最典型的一种几何变换类型,折叠问题的典型特点是折叠前后的边和角的大小是完全相同的,而本节中只涉及到“折叠前后角的大小相同”这一性质的应用.例3.如图,在△ABC中,△BAC=56°,△ABC=74°,BP、CP分别平分△ABC和△ACB,则△BPC=()A.102°B.112°C.115°D.118°【答案】D【解析】解:△在△ABC中,△BAC=56°,△ABC=74°,△△ACB=180°﹣△BAC﹣△ABC=50°,△BP、CP分别平分△ABC和△ACB,△△PBC=37°,△PCB=25°,△△BCP中,△P=180°﹣△PBC﹣△PCB=118°,故选:D.练习1.在△ABC中,△B,△C的平分线相交于点P,设△A=x°,用x的代数式表示△BPC的度数,正确的是()A.B.C.90+2x D.90+x【答案】A【解析】解:△△A=x°,△△ABC+△ACB=180°﹣x°,△△B,△C的平分线相交于点P,△△PBC+△PCB=(180°﹣x°),△△BPC=180°﹣(180°﹣x°)=90°+x°,故选A.练习2.如图,在△ABC中,△A=40°,△B=60°,CD△AB于点D,CE平分△ACD,DF△CE 于点F,则△CDF的度数为()A.70°B.80°C.85°D.78°【答案】B【解析】解:△△A=40°,△B=60°,△△ACB=180°﹣△A﹣△B=80°,△CE平分△ACB,△△ACE=△ACB=40°,△CD△AB于D,△△CDA=90°,△ACD=180°﹣△A﹣△CDA=50°,△△ECD=△ACD﹣△ACE=10°,△DF△CE,△△CFD=90°,△△CDF=180°﹣△CFD﹣△DCE=80°.故选B.练习3.如图,△ABC=△ACB,AD、BD、CD分别平分△ABC的外角△EAC、内角△ABC、外角△ACF.以下结论:△AD△BC;△△ACB=2△ADB;△△ADC=90°﹣△ABD;△△BDC=△BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:△△AD平分△ABC的外角△EAC,△△EAD=△DAC,△△EAC=△ACB+△ABC,且△ABC=△ACB,△△EAD=△ABC,△AD△BC,故△正确.△由(1)可知AD△BC,△△ADB=△DBC,△BD平分△ABC,△△ABD=△DBC,△△ABC=2△ADB,△△ABC=△ACB,△△ACB=2△ADB,故△正确.△在△ADC中,△ADC+△CAD+△ACD=180°,△CD平分△ABC的外角△ACF,△△ACD=△DCF,△AD△BC,△△ADC=△DCF,△ADB=△DBC,△CAD=△ACB,△△ACD=△ADC,△CAD=△ACB=△ABC=2△ABD,△△ADC+△CAD+△ACD=△ADC+2△ABD+△ADC=2△ADC+2△ABD=180°,△△ADC+△ABD=90°,△△ADC=90°﹣△ABD,故△正确;△△△BAC+△ABC=△ACF,△△BAC+△ABC=△ACF,△△BDC+△DBC=△ACF,△△BAC+△ABC=△BDC+△DBC,△△DBC=△ABC,△△BAC=△BDC,即△BDC=△BAC.故△错误.故选C.三角形中角的度数的计算是本节中的一个重要题型,其中涉及到角的大小的计算问题常会用到的知识有:角平分线的性质、两直线平行的性质、三角形内角和、三角形的外角的性质、三角形的外角和、互余与互补、对顶角的性质等与角的大小相关的性质及定理.较难的题型会涉及到多个知识的结合考查,需要在平时的练习中逐步建立几何分析能力.例4.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1;△A1BC 和△A1CD的平分线交于点A2,得△A2;…△A2016BC和△A20l6CD的平分线交于点A2017,则△A2017=°.【答案】【解析】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2017=△A=()°,故答案为:.练习1.(1)如图1,在△ABC中,点O是△ABC和△ACB平分线的交点,若△A=α,则△BOC=90°+;如图2,△CBO=△ABC,△BCO=△ACB,△A=α,则△BOC=(用α表示)(2)如图3,△CBO=△DBC,△BCO=△ECB,△A=α,请猜想△BOC=(用α表示).【答案】120°+α 120°﹣α【解析】解:(1)如图2,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△ABC+△ACB)=180°﹣(180°﹣△A)=120°+△A=120°+α;(2)如图△,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△DBC+△ECB)=180°﹣(△A+△ACB+△A+ABC)=180°﹣(△A+180°)=120°﹣α;故答案为:120°+α;120°﹣α.练习2.如图,在△ABC中,△A=64°,△ABC与△ACD的平分线交于点A1,则△A1=;△A1BC与△A1CD的平分线相交于点A2,得△A2;…;△A n﹣1BC与△A n﹣1CD的平分线相交于点A n,要使△A n的度数为整数,则n的值最大为.【答案】32°6【解析】解:由三角形的外角性质得,△ACD=△A+△ABC,△A1CD=△A1+△A1BC,△△ABC的平分线与△ACD的平分线交于点A1,△△A1BC=△ABC,△A1CD=△ACD,△△A1+△A1BC=(△A+△ABC)=△A+△A1BC,△△A1=△A=64°=32°;△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△A,△△A=2△A1,△△A1=△A,同理可得△A1=2△A2,△△A2=△A,△△A=2n△A n,△△A n=()n△A=,△△A n的度数为整数,△n=6.故答案为:32°,6.几何找规律问题,除了要从代数的角度理解数列的变化规律、找到通项公式,还需要能够从几何的角度发现几何图形的变化特点,找到几何变化规律,所以几何规律问题是初中找规律问题的重点,也是难点问题.本节主要的考查重点是与三角形相关的角度计算,其中倒角的常用方法是重中之重,倒角的技巧贯穿在整个初中的几何证明及计算中,是非常重要的几何知识.。

第2讲-一定是直角三角形吗(教案)

第2讲-一定是直角三角形吗(教案)
其次,在实践活动环节,学生们的参与度很高,但讨论过程中我发现,他们在将理论知识应用到实际问题中时,还是显得有些吃力。这说明我们在今后的教学中,需要进一步加强学生的问题解决能力和知识迁移能力的培养。
此外,小组讨论环节,学生们表现得积极主动,但我注意到有些学生在讨论中过于依赖同伴,缺乏独立思考。为了培养学生的独立思考能力,我计划在接下来的课程中,适当增加一些个人任务,鼓励学生独立分析问题、解决问题。
举例:
(1)针对理解勾股定理的逆定理的难点,可以设计多个具有代表性的例子,如:5²+12²=13²、8²+15²=17²等,让学生观察、分析、总结规律。
(2)对于判断直角三角形的难点,可以提供一些非直角三角形和直角三角形的例子,让学生通过对比、分析,掌握判断直角三角形的技巧。
(3)在解决实际问题时,可以设置一些生活中的场景,如建筑物的斜边长度测量、道路设计等,引导学生运用勾股定理及其逆定理解决问题,从而突破应用难点。
2.判定直角三角形的条件:让学生掌握勾股定理的逆定理,并能运用它来判断一个三角形是否为直角三角形。
3.应用勾股定理及其逆定理解决实际问题:通过典型例题和练习,让学生掌握在实际问题中如何运用勾股定理及其逆定理。
二、核心素养目标
《数学》八年级下册第2讲-一定是直角三角形吗,核心素养目标如下:
1.培养学生的逻辑推理能力:通过引导学生探索勾股定理的逆定理,使其学会运用逻辑推理方法,从特殊到一般,归纳总结出数学规律。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理的逆定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教版八年级数学:与三角形有关的角(提高) 知识讲解

人教版八年级数学:与三角形有关的角(提高) 知识讲解

与三角形有关的角(提高)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.在△ABC中,若∠A=12∠B=13∠C,试判断该三角形的形状.【思路点拨】由∠A=12∠B=13∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和∠C的度数,从而判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=2x,∠C=3x.由于∠A+∠B+∠C=180°,即有x+2x+3x=180°.解得x=30°.故∠A=30°.∠B=60°,∠C=90°.故△ABC是直角三角形.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.举一反三:【变式1】三角形中至少有一个角不小于________度.【答案】60.【变式2】(2015春•新沂市校级月考)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .【答案】40°.解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级第2讲与三角形有关的角学校:___________姓名:___________班级:___________考号:___________1.已知,如图①,一根木棒BC 斜靠在墙上,木棒与它在墙壁即地板上的影子AB ,AC 构成一个直角三角形ABC ,若CBA ∠与BCA ∠的角平分线交于点P ,求P ∠的度数.若木棒向上或向下滑动,其他条件不变,P ∠的度数有什么变化?请说明理由.2.在ABC ∆中,(1)若60C ∠=°,3A B ∠=∠,则A ∠=______,B ∠=______. (2)若1123A B C ∠=∠=∠,则A ∠=______,B ∠=______,C ∠=______. (3)若A B C ∠-∠=∠,则A ∠=______;若75A ∠=︒,15B C ∠-∠=︒,则C ∠=______.3.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°4.ABC ∆的三角形内角A ∠,B ,C ∠满足关系3A B ∠>∠,2B C ∠>∠,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形但不等边D .等边三角形5.(1)若三角形的三个外角的比为2:3:4,则它的三个内角的比为(______)A .4:3:2B .1:3:5C .5:3:1D .3:2:1(2)在ABC ∆中,点D ,E 分别是BC ,AC 边上的点,AD ,BE 相交于点F ,则123C ∠+∠+∠+∠=______.6.如图,点E ,F 分别是ABC ∆的边AB ,BC 上任意一点,将BEF ∆沿EF 折叠至DEF ∆,已知CFD β∠=.(1)若已知BMF α∠=,探究D ∠,α,β之间的关系.(2)若已知AMF α∠=,探究D ∠,α,β之间的关系(直接写出结论,不需要证明).(3)若已知DEM α∠=,探究D ∠,α,β之间的关系(直接写出结论,不需要证明).7.如图,AB ∥CD ,∠ABE=60°,∠D=50°,则∠E 的度数为A .30°B .20°C .10°D .40°8.将一副直角三角板如图摆放,点C 在EF 上,AC 经过点D .已知∠A=∠EDF=90°,AB=AC .∠E=30°,∠BCE=40°,则∠CDF= .9.(1)如图,求证:A B C D ∠+∠=∠+∠.∠+∠+∠=∠.(2)如图,求证:A B C BDC∠+∠+∠+∠+∠=______.(3)如图,则A B C D E∠+∠+∠+∠+∠+∠=______. (4)如图,则A B C D E F∠+∠+∠+∠+∠=______. (5)如图⑤,则A B C D E∠+∠+∠+∠+∠+∠=______. (6)如图⑥,则A B C D E F10.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .2B .C .3D .11.如图,在ABC ∆中,AB AC =,AD AE =,60BAD ∠=︒,则EDC ∠=______.12.如图,点O 是△ABC 的两条角平分线的交点,若∠BOC =118°,则∠A 的大小是 。

13.如图,已知ABC ∠,ACB ∠的外角平分线交于点O ,40A ∠=︒,那么O ∠=______.14.在ABC ∆中,高BD 和高CE 所在的直线相交于点O ,若ABC ∆不是直角三角形,且60A ∠=︒,求BOC ∠的度数.15.如图,A 在x 轴负半轴上,点B 的坐标为()0,4-,点()6,4E -在射线BA 上.(1)求证:点A 为BE 的中点.(2)在y 轴正半轴上有一点F ,使45FEA ∠=︒,求点F 的坐标.(3)如图,点M ,N 分别在x 轴正半轴、y 轴正半轴上,MN NB MA ==,点I 为MON ∆的内角平分线的交点,AI ,BI 分别交y 轴正半轴、x 轴正半轴于P ,Q 两点,IH ON ⊥于点H ,记POQ ∆的周长为POQ C ∆.求证:2POQ C HI ∆=.参考答案1.详见解析【解析】【分析】利用三角形内角和定理可知90CBA BCA ∠+∠=︒,又因角平分线性质可知()1452CBP BCP CBA BCA ∠+∠=∠+∠=︒,最后还是三角形内角和定理得到∠P=180°-45°=135°,上下滑动不影响CBA BCA ∠+∠,则不影响CBP BCP ∠+∠,所以∠P 不变【详解】在ABC ∆中,90A ∠=︒,而180CBA BCA A ∠+∠+∠=︒;∴90CBA BCA ∠+∠=︒.又∵BP ,CP 分别平分CBA ∠与BCA ∠, ∴12CBP CBA ∠=∠,12BCP BCA ∠=∠, 从而()11145222CBP BCP CBA BCA CBA BCA ∠+∠=∠+∠=∠+∠=︒, ∴在PBC ∆中,()180P CBP BCP ∠=︒-∠+∠18045135=︒-︒=︒.当木棒向上或向下滑动时,P ∠的度数不变,仍为135︒.事实上,木棒向上或向下滑动,不影响A ∠的大小,所以CBA BCA ∠+∠仍为90︒,CBP BCP ∠+∠还是45︒,因而()180********P CBP BCP ∠=︒∠+∠=︒-︒=︒.【点睛】本题主要考查角平分线性质与三角形内角和定理,难度适中,熟练掌握基础知识是本题关键 2.1)90︒,30.(2)30,60︒,90︒.(3)90︒,45︒.【解析】【分析】利用三角形内角和是180°和题中所给的等量关系进行解题即可【详解】(1)在ABC ∆中,∠A+∠B+∠C=180°,又3A B ∠=∠,60C ∠=°所以有4∠B+60°=180°,得到∠B=30°,∠A=90°(2)在ABC ∆中,∠A+∠B+∠C=180°, 由1123A B C ∠=∠=∠,得到∠B=2∠A ,∠C=3∠A 所以有∠A+2∠A+3∠A=180°,得到∠A=30°,∠B=60°,∠C=90°(3)在ABC ∆中,∠A+∠B+∠C=180°,又A B C ∠-∠=∠,得到∠A=∠B+∠C 所以∠A+∠A=180°,得到∠A=90°;在ABC ∆中,∠A+∠B+∠C=180°,若75A ∠=︒,得到∠B+∠C=105°又15B C ∠-∠=︒,两式联立,解出∠B=60°,∠C=45°故填(1)90︒,30.(2)30,60︒,90︒.(3)90︒,45︒.【点睛】本题重点考察三角形内角和定理,基础知识扎实是本题关键3.B【解析】分析:根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC ,计算即可.详解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°, ∵∠B=60°,∠C=25°, ∴∠BAC=95°, ∴∠BAD=∠BAC-∠DAC=70°, 故选B .点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.A【解析】【分析】180°=∠A+∠B+∠C<∠A+∠B+2∠B=∠A+3∠B<∠A+∠A=2∠A ,即得∠A >90°【详解】∵3A B ∠>∠,2B C ∠>∠∴∠A+∠B+∠C<∠A+∠B+2∠B=∠A+3∠B<∠A+∠A=2∠A.又∵∠A+∠B+∠C=180°,∴2∠A>180°.∴∠A>90°.故三角形为钝角三角形.选A【点睛】本题主要考查三角形的内角和定理,熟知三角形内角和定理是解题关键5.(1)C ;(2)180︒.【解析】【分析】(1)三角形的外角和为360°,利用比求出三个外角,进而求出三个内角,作比即可 (2)利用三角形外角性质与内角和定理直接解题即可【详解】(1)三角形的外角和为360°,三个外角的比为2:3:4得到三个外角分别为80°,120°,160°对应的三个内角分别为100°,60°,20°故三个内角的比为5:3:1,故选C(2)∵∠AEB 为△BCE 的外角∴∠AEB=∠1+∠C∵∠3+∠AEB+∠AFE=180°,∠AFE=∠2∴∠1+∠2+∠3+∠C=180°【点睛】本题主要考查三角形内角和定理与外角性质,熟练掌握基础知识是解题关键6.(1)D βα=+∠;(2)180D βα=︒-+∠;(3)2D βα=+∠【解析】【分析】(1)由折叠得B D ∠=∠,又三角形外角性质,CFD BMF B BMF D ∠=∠+∠=∠+∠,所以得到D βα=+∠ (2)由∠BMF+∠AMF=180°,将(1)结论代入即可得到关系;(3)由∠DEM+∠D+∠AMF=180°,结合前两问结论即可得关系【详解】(1)∵BEF ∆沿EF 折叠得到DEF ∆,∴B D ∠=∠.∵CFD BMF B BMF D ∠=∠+∠=∠+∠,∴D βα=+∠.(2)180D βα=︒-+∠.(3)2D βα=+∠.【点睛】本题主要考查折叠性质、三角形内角和定义与外角性质的简单应用,解题关键在于第一问的关系找出之后后续两问要结合前面结论7.C【解析】试题分析:∵AB ∥CD ,∴∠CFE=∠ABE=60°.∵∠D=50°,∴∠E=∠CFE ﹣∠D=10°.故选C .8.25°【解析】试题分析:∵AB=AC ,∠A=90°,∴∠ACB=∠B=45°.∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°.∵∠ACE=∠CDF+∠F ,∠BCE=40°,∴∠CDF=∠ACE ﹣∠F=∠BCE+∠ACB ﹣∠F=45°+40°﹣60°=25°.9.(1)详见解析;(2)详见解析;(3)180︒;(4)360︒;(5)180︒;(6)360︒.【解析】【分析】(1)利用三角形内角和定理与对顶角相等即可得证(2)连接BC ,连接AD 并延长交BC 于点E ,三角形外角性质得BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,又BDE CDE BDC ∠+∠=∠,所以就有BDC B C BAD CAD B C A ∠=∠+∠+∠+∠=∠+∠+∠(3)由三角形外角性质∠1=∠D+∠C,∠2=∠B+∠E,,再由三角形内角和定理可知∠1+∠2+∠A=180°,代入即可得到结果(4)利用三角形内角和定理进行计算即可得到结果(5)连接EC ,由三角形内角和定理和对顶角相等即可得到结果(6)利用四边形角度关系和三角形内角和定理解决即可【详解】(1)∵180A B AOB ∠+∠+∠=︒,180D C DOC ∠+∠+∠=︒,又∵AOB DOC ∠=∠,∴A B C D ∠+∠=∠+∠.(2)连接BC ,连接AD 并延长交BC 于点E .∵BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,又∵BDE CDE BDC ∠+∠=∠,∴BDC B C BAD CAD B C A ∠=∠+∠+∠+∠=∠+∠+∠.(3)由三角形外角性质∠1=∠D+∠C,∠2=∠B+∠E,又因为∠1+∠2+∠A=180°,所以∠D+∠C+∠B+∠E+∠A=180°(4)由三角形内角和定理得∠1=180°-∠E-∠F ;∠2=180°-∠A-∠B ;∠3=180°-∠C-∠D又有∠1+∠2+∠3=180°所以180°-∠E-∠F+180°-∠A-∠B+180°-∠C-∠D=180°得到A B C D E F ∠+∠+∠+∠+∠+∠=360°(5)连接EC,由三角形内角和定理知∠A+∠B=∠1+∠2又在三角形DCE中,∠1+∠2+∠ACD+∠DEB+∠D=180°所以∠A+∠B +∠ACD+∠DEB+∠D=180°(6)由四边形关系可知∠1+∠2=∠E+∠D又由三角形内角和可知,∠1+∠A+∠C=180°,∠2+∠B+∠F=180°∠+∠+∠+∠+∠+∠=360°所以∠1+∠A+∠C+∠2+∠B+∠F=306°,即A B C D E F.【点睛】本题主要考查三角形内角和定理与外角性质,能在复杂图形中找出三角形是解题关键10.B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知45B EAF ∠=∠=︒,所以可求出∠AFB=90°,再直角三角形的性质可知12EF AB =,所以AB AC =,的长可求,再利用勾股定理即可求出BC 的长. 【详解】解:E B A 沿过点的直线折叠,使点与点重合,B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒点为中点,且, 1EF AB 2∴=, 3EF 2=, 3AB 2EF 232∴==⨯=, ΔRtABC 在中,AB =AC ,AB 3,=BC ∴===故选B.【点睛】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.11.25︒【解析】【分析】设B C x ∠=∠=,ADE AED y ∠=∠=,则有EDC x y ∠+=与60EDC y x ∠+=+︒,联立方程解方程组即可【详解】依题意,设B C x ∠=∠=,ADE AED y ∠=∠=,EDC x y ∠+=,①60EDC y x ∠+=+︒,②由+①②得260EDC ∠=︒,∴30EDC ∠=︒.【点睛】本题主要考查三角形外角的性质,在复杂图形中找三角形的外角与不相邻的两内角是解题关键12.56°【解析】试题分析:∵∠BOC =118°,∴∠OBC+∠OCB=62°。

相关文档
最新文档