高三数学-2018年高考数学试题知识分类汇编集合与简易逻辑 精品
2018年高考集合汇总完整版.doc
集合专题复习(知识点+2018年高考题)1、集合(1)把研究的对象统称为 ,把一些元素组成的总体叫做 。
集合中元素的特性: 、 、 。
(2)只要构成两个集合的元素是一样的,就称这两个集合 。
(3)元素与集合的关系集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 ,相反,a 不属于集合A 记作 。
①列举法:把集合中的 一一列举出来,然后用一个大括号括上。
②描述法:在花括号内先写上表示这个集合元素的 及 再画一条竖线,在竖线后写出这个集合中元素所具有的 。
(6)集合间的基本关系① 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的____________,记作____________.②如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的____________.记作:_____________.③把不含任何元素的集合叫做____________.记作:∅.并规定:________是任何集合的子集.④如果集合A 中含有n 个元素,则集合A 有 子集, 个真子集, 个非空真子集。
(7)集合间的基本运算①一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的____________,记作:B A Y .②一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的____________ ,记作:B A I .③全集、补集: =A C U ______________________.(8)交集、并集和补集的性质①交集性质:=A A I ,=φI A ,=B A I ;A I (A C U )= , ②并集性质:=A A Y ,=φY A ,=B A Y ;A Y (A C U )= 。
③ 德摩根律: (课本P11练习4题)(A C U )I (B C U )= ,(A C U )Y (B C U )= 。
高考数学分类汇编专题一集合与简易逻辑
高考数学分类汇编专题一集合与简易逻辑Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】《2018年高考数学分类汇编》第一篇:集合与简易逻辑一、选择题1.【2018全国一卷2】已知集合{}220A x x x =-->,则=A C RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥2.【2018全国二卷2】已知集合,则中元素的个数为 A .9B .8C .5D .43.【2018全国三卷1】已知集合,,则 A .B .C .D . 4.【2018北京卷1】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =(A ){0,1} (B ){–1,0,1}(C ){–2,0,1,2} (D ){–1,0,1,2}5.【2018北京卷6】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件6.【2018北京卷8】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(){}223A x y xy x y =+∈∈Z Z ,≤,,A {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉7.【2018天津卷1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则=)(B C A R (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<8.【2018天津卷4】设x ∈R ,则“11||22x -<”是“31x <”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 9.【2018浙江卷1】已知全集U ={1,2,3,4,5},A ={1,3},则=A C UA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}10.【2018浙江卷6】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.【2018上海卷14】已知a R ∈,则“1a ﹥”是“1a1﹤”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 二、填空题1.【2018北京卷13】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.2.【2018江苏卷1】已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = .3.【2018江苏卷14】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 . 三、解答题1.【2018北京卷20】设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.参考答案一、选择题二、填空题1.x(=答案不唯一)xf sin2.{1,8}3. 27三、解答题1.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=1[(1+1|11|)+(1+1|11|)+(0+0|00|)]=2,2M(α,β)=1[(1+0–|10|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.2(Ⅱ)设α=(x1,x2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k={( x1,x2,…,x n)|( x1,x2,…,x n)∈A,x k=1,x=x2=…=x k–1=0)}(k=1,2,…,n),1S={( x1,x2,…,x n)| x1=x2=…=x n=0},n+1则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。
【高三数学试题精选】2018届高考数学集合、简易逻辑考点突破测试题(含答案)
③是假命题.如S={0}符合定义,但是S为有限集.
④是假命题.如S=Z,T为整数和虚数构成集合,满足S T c,但T不是封闭集,
如3+2i,3-2i都在T中,但(3+2i)+(3-2i)=23 T
答案①②
三、解答题
10.对于集合、N,定义-N={x|x∈且x N},⊕N=(-N)∪(N-).设A={|
解析当x=1时,(x-1)2=0,故B命题是假命题.
答案B
3.(2018天津)设集合A={x||x-a| 1,x∈R},B={x||x-b| 2,x∈R}.若A B,则实
数a、b必满足( )
A.|a+b|≤3 B.|a+b|≥3c.|a-b|≤3 D.|a-b|≥3
解析A={x||x-a| 1,x∈R}={c|a-1 x 1+a},B={x||x-b| 2,x∈R}={x|x 2+b
解析0 xπ2,∴0 sin x 1,
若x sin x 1,∴xsin2x 1成立,必要性成立
若xsin2x 1,则xsin2xsin x 1sin x
∴x sin x 1sin x,而1sin x 1
故充分性不成立.
答案必要不充分
7.(2018重庆)设U={0,1,2,3},A={x∈U|x2+x=0},若UA={1,2},则实数=________
且Δ0,求得-1,∴p∈(-∞,-1).qΔ=4(-2)2-4(-3+10) 0-2 3
由p或q为真,p且q为假知,p、q一真一假.
①当p真q假时,-1,≤-2或≥3,即≤-2;
②当p假q真时,≥-1,-2 3即-1≤3
∴的取值范围是≤-2或-1≤3
答案(-∞,-2]∪[-1,3)
9.(2018四川)设S为复数集c的非空子集.若对任意x,∈S,都有x+,x-,x∈S,
2018年高考数学试题分类汇编1——集合与常用逻辑用语
一、集合与常用逻辑用语一、选择题一.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理一)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,一) B .(0,一]C .[0,一)D .[0,一]【答案】C7.(山东理一)设集合 M ={x|260x x +-<},N ={x|一≤x ≤3},则M ∩N =A .[一,2)B .[一,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要 【答案】B9.(全国新课标理一0)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p【答案】A一0.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M (A )M (B )N(C )I(D )∅【答案】A一一.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C一2.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A一3.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C一4.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A一5.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x=,则A B ⋂的元素个数为 A .0 B .一 C .2 D .3【答案】C一6.(福建理一)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈ D .2S i ∈【答案】B 一7.(福建理2)若a ∈R ,则a=2是(a-一)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件 【答案】A 一8.(北京理一)已知集合P={x ︱x 2≤一},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -一] B .[一, +∞) C .[-一,一] D .(-∞,-一] ∪[一,+∞) 【答案】C 一9.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题2一.(陕西理一2)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠的集合S 为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
2018年高考真题理科数学分类汇编专题1集合与简易逻辑复数流程图
专题1集合与简易逻辑复数流程图(2018全国1卷)2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.(2018全国2卷)2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.(2018全国3卷)1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。
(2018全国1卷)1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.(2018全国2卷)1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.(2018全国3卷)2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。
详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。
(2018北京卷)2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分. (2018北京卷)1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2018北京卷)6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.(2018北京卷)8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.(2018浙江卷)4复数(i为虚数单位)的共轭复数是( )A. 1+iB. 1−iC. −1+iD. −1−i4.答案:B解答:22(1)11(1)(1)iz ii i i+===+--+,∴1z i=-.(2018天津卷)1. 设全集为R,集合,,则A. B. C. D.【答案】B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.(2018浙江卷)1.已知全集U={1,2,3,4,5},A={1,3},则C U A=( )A. ∅B. {1,3}C. {2,4,5}D. {1,2,3,4,5}1.答案:C解答:由题意知UC A={2,4,5}.(2018浙江卷)6.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件. (2018天津卷)4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件. 本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.(2018全国2卷)7. 为计算,设计了下面的程序框图,则在空白框中应填入A. B. C. D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.(2018北京卷)3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.(2018天津卷)3. 阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.(2018天津卷)9. i是虚数单位,复数___________.【答案】4–i【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.(2018江苏卷)2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.(2018江苏卷)4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.(2018北京卷)13. 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案】y=sin x(答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)>f(0)且(0,2]上是减函数. 详解:令,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sin x,则f(0)=0,f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.通常举分段函数.(2018江苏卷)1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.(2018北京卷)20. 设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(Ⅰ)当n=3时,若,,求M()和M()的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.【答案】(1) M(α,β)=1(2) 最大值为4(3)答案见解析【解析】分析:(1)根据定义对应代入可得M()和M()的值;(2)先根据定义得M(α,α)= x1+x2+x3+x4.再根据x1,x2,x3,x4∈{0,1},且x1+x2+x3+x4为奇数,确定x1,x2,x3,x4中1的个数为1或3.可得B元素最多为8个,再根据当不同时,M()是偶数代入验证,这8个不能同时取得,最多四个,最后取一个四元集合满足条件,即得B中元素个数的最大值;(3)因为M()=0,所以不能同时取1,所以取共n+1个元素,再利用A的一个拆分说明B中元素最多n+1个元素,即得结果.详解:解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M(α,β)=[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x2,…,x n)|( x1,x2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.点睛:解决新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.(2)合理利用有关性质是破解新定义型问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用性质的一些因素,并合理利用.。
2018年全国2卷省份高考模拟理科数学分类汇编--集合与简易逻辑
2018年全国2卷省份高考模拟理科数学分类汇编——集合与简易逻辑1.(海南省模拟)已知集合,,则()DA. B.C. D.【解析】由题意得:,∴故选:D2.(大庆市模拟)设集合,,则的值为()AA. B. C. D.【解析】由得,结合可得,故选A. 3.(大庆市模拟)已知命题直线与平行;命题直线与圆相交所得的弦长为,则命题是()AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既充分也不必要条件【解析】命题两条直线与互相平行,∴,解得或,当时,两直线重合,故舍去,故;命题由于直线被圆截得的弦长为可得:圆心到直线的距离,即,解得,综上可得命题是充分不必要条件,故选A.4.(辽宁省实验中学模拟)设集合,则()CA. B. C. D.【解析】集合或,所以,故选C.5.辽宁省实验中学模拟)某班有三个小组,甲、乙、丙三人分属不同的小组.某次数学考试成绩公布情况如下:甲和三人中的第3小组那位不一样,丙比三人中第1小组的那位的成绩低,三人中第3小组的那位比乙分数高。
若甲、乙、丙三人按数学成绩由高到低排列,正确的是()BA. 甲、乙、丙B. 甲、丙、乙C. 乙、甲、丙D. 丙、甲、乙【解析】甲和三人中的第小组那位不一样,说明甲不在第小组;三人中第小组那位比乙分数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选B.6. (哈师大附中模拟)已知集合,则=( )DA. B . C . D .7. (黑龙江模拟)设集合2{|30}A x x x =->,{|2}B x x =<,则A B =( )A .(2,0)-B .(2,3)-C .(0,2)D .(2,3)8. (吉林实验中学模拟)设集合{1},{(3)0},A x x B x x x A B =<=-<⋃=则 D(A ) (B ) (C) (D ) 9.(吉林实验中学模拟)下列说法正确的是 C(A )命题“若,则”的否命题是“若,则”(B )命题“若,则”的逆否命题是“若,则”(C) 命题“”的否定是“” (D )命题“”的否定是“”10. (沈阳模拟)设集合{|1}A x x =>,{|21}x B x =>,则( )BA .{|0}AB x x => B .A B R =C .{|0}A B x x =>D .A B =∅11.(沈阳模拟)命题“若0xy =,则0x =”的逆否命题是( )DA .若0xy =,则0x ≠B .若0xy ≠,则0x ≠C .若0xy ≠,则0y ≠D .若0x ≠,则0xy ≠12. (呼和浩特模拟)已知集合{}1,0,1A =-,2|340B x x x =+-<,则A B =( )BA .{}1,0,1-B .[]1,0-C .{}0,1D .{}013. (银川一中模拟)已知,m n R ∈,集合{}72,log A m =,集合{},B m n =,若}0{=⋂B A ,则m n -=AA .1B .2C .4D .814.(银川一中模拟)已知命题p :x R ∀∈,sin 1x ≤,则p ⌝: C A .x R ∃∈,sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .x R ∃∈,sin 1x >D .x R ∀∈,sin 1x >15. (西宁市第4、5、14中学模拟)已知全集R U =,集合(){}{}13,01lg ≤=≤+=xx B x x A ,则()B AC U ⋂{}1=0,0.1.2.31x A x B x ⎧+⎫≤=⎨⎬-⎩⎭A B {}-10.1,{}01,{}-10,{}0()10,-()01,()13,()13,-a b >22a b >a b <22a b <a b >22a b >a b ≤22a b ≤,cos 1x R x ∀∈<00,cos 1x R x ∃∈≥,cos 1x R x ∀∈<00,cos 1x R x ∃∈>等于( )CA. ()()+∞⋃∞-,00,B. ()+∞,0C. (]()+∞⋃-∞-,01,D.()+∞-,1解: 全集U R =,集合(){}{}{}|lg 10|10,|31{|0}xA x x x xB x x x =+≤=-<≤=≤=≤,{}|10A B x x ⋂=-<≤.(){}01>-≤=⋂x x x B A C U 或16.(西宁市第4、5、14中学模拟)《左传•僖公十四年》有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_____________条件(将正确的序号填入空格处). ①充分条件 ②必要条件 ③充要条件 ④既不充分也不必要条件 ①:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.17. (乌鲁木齐模拟)已知集合2{|20}A x x x =--<,{|2}x B y y ==,则A B =( )DA .(1,2)-B .(2,1)-C .(0,1)D .(0,2)18.(乌鲁木齐模拟)学校艺术节对同一类的,,,A B C D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”;丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”.若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )B A .A B .B C.C D .D19. (重庆市模拟)设集合{}()|,,2A x x a B =≤=-∞,若A B ⊆,则实数a 的取值范围是( )DA .2a ≥B .2a >C .2a ≤D .2a <20.(重庆市模拟)设命题:,2ln 2xp x Q x ∃∈-<,则p ⌝为( )C A .,2ln 2x x Q x ∃∈-≥ B .,2ln 2xx Q x ∀∈-< C .,2ln 2x x Q x ∀∈-≥ D .,2ln 2x x Q x ∀∈-=21. (重庆市7校联盟模拟)已知集合,,则为( )DA .[]2,2-B .()+∞,0C .[]2,0D .(]2,022. (重庆市7校联盟模拟)在△中,“”是“”的( )BA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件()(){|220}M x x x =-+≤{}x y x N lg ==MN ABC B A 2sin 2sin =B A =。
高中数学知识点总结(新高考地区)精选全文完整版
一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
2016-2018年高考数学分类汇编:专题1集合与简易逻辑 教师版
集合与简易逻辑目录全国1 (2)全国2 (4)全国3 (5)北京 (7)天津 (12)上海 (15)浙江 (16)江苏 (18)1/ 192 / 19 集合与简易逻辑考纲解读真题链接全国1【2018全国1卷理2】已知集合}02{2>--=x x x A ,则=A C R A .}21{<<-x x B .}21{≤≤-x xC .}2{}1{>-<x x x xD .}2{}1{≥-≤x x x x 【答案】B【解析】220,2x x x -->>或1-<x ,所以{}12R C A x x =-≤≤,故选B3 / 19 【2018全国1卷文1】 已知集合}2,0{=A ,}2,1,0,1,2{--=B ,则=B A A .}2,0{ B .}2,1{ C . }0{ D .}2,1,0,1,2{-- 【答案】A【解析】由题意可知,}2,0{=B A ,故答案为A .【2017全国1卷理1】已知集合{}1A x x =<,{}31x B x =<,则A. {}0A B x x =< B .A B R = C .{}1A B x x =>D .A B =∅【答案】A【解析】由不等式性质,013<⇔<x x ,所以}0{<=x x B ,所以答案为A .【2017全国1卷文1】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由不等式性质,23023<⇒>-x x ,所以}23{<=x x B ,所以答案为A .【2016全国1卷理1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则=B A ( ) A )23,3(-- B .)23,3(- C .)23,1( D .)3,23(【答案】D【解析】由不等式性质解得,)3,1(=A ,),23(+∞=B ,所以交集为)3,23(,答案为D .【2016全国1卷文1】设集合7}53{1,,,=A ,}52{≤≤=x x B ,则B A =A .{1,3}B .{3,5}C .{5,7}D .{1,7}4 / 19 【答案】B【解析】根据交集的定义,直接得出答案为B .全国21、【2018全国2卷理1】已知集合,则中元素的个数为A . 9B . 8C . 5D . 4 【答案】A【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1;所以共有9个,选A .2、 【2018全国2卷文2】已知集合A ={1,3,5,7} ,B ={2,3,4,5},则A ∩B = A . {3} B . {5} C . {3,5} D . {1,2,3,4,5,7} 【答案】C【解析】交集就是公共部分3、【2017全国2卷理2】设集合A ={1,2,4},B ={x |x 2-4x +m =0}。
高考试卷分类汇编01----集合与简易逻辑
高考试卷分类汇编集合与简易逻辑一、选择题•(安徽理)集合A -R|y=lgx,x 1, B =「-2, -1,1,2?则下列结论正确的是()•AnB-「-2,—1? •G R A)U B=(」:,0)•A[JB =(0, =)•(e R A)n B・._2,-1解:A m y R y0 ?, 6 A) = { y | y 岂0},又B—-2,-1,1,2}••• (e R A)PlB J—2,-1 ?,选。
.(安徽理文)a :0是方程ax2 2x ^0至少有一个负数根的()•必要不充分条件•充分不必要条件•充分必要条件•既不充分也不必要条件2 1解:当,=2…4a_0,得a_1时方程有根。
<时,X1X2 0,方程有负根,又时,方程根为ax = -1,所以选•(安徽文)若A为位全体正实数的集合,B_-2,-1,1,2?则下列结论正确的是()APl B = :-2,-1 f •G R A) U B =(-〜0)•AUB =(0,二)•(e R A)n^f.-2^1 /解:e R A是全体非正数的集合即负数和,所以(€R A)p]B =「-2,-1•(北京理)已知全集U = R,集合A,x| -2 < x< 3 , B=「x|x :::-1或x - 4,那么集合A「| $B 等于()•'x| -2 < x 4• x | x < 3或x > 4』•「x| -2 < x :-1 • 1x|—1W x < 3?解: U [, ], AR e u B = 'x| -1 < x < 3?•(北京理)“函数f(x)(x・R)存在反函数”是“函数f(x)在R上为增函数”的()•充分而不必要条件•必要而不充分条件•充分必要条件•既不充分也不必要条件解:函数f(x)(x・R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必有条件显然成立。
2018年高考数学试题分类汇编——复数、集合与简易逻辑
2018年高考数学试题分类汇编——复数、集合与简易逻辑安徽理(1) 设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2 (D) 12A. 【命题意图】本题考查复数的基本运算,属简单题. 【解析】设()aibi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. (7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数是偶数 (D )存在一个能被2整除的数不是偶数(7)D 【命题意图】本题考查全称命题的否定.属容易题. 【解析】把全称量词改为存在量词,并把结果否定.(8)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且SB φ≠的集合S 为(A )57 (B )56 (C )49 (D )8(8)B 【命题意图】本题考查集合间的基本关系,考查集合的基本运算,考查子集问题,考查组合知识.属中等难度题.【解析】集合A 的所有子集共有6264=个,其中不含4,5,6,7的子集有328=个,所以集合S 共有56个.故选B.安徽文(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U SC T I等于(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 (2)B 【命题意图】本题考查集合的补集与交集运算.属简答题. 【解析】{}1,5,6U T =ð,所以(){}1,6U S T =ð.故选B. 北京理1.已知集合2{|1}P x x =≤,{}M a =,若PM P =,则a 的取值范围是A. (,1]-∞-B. [1,)+∞C. [1,1]-D. (,1]-∞-[1,)+∞【解析】:2{|1}{|11}P x x x x =≤=-≤≤,[1,1]P M P a =⇒∈-,选C 。
高中数学集合与简易逻辑知识要点
§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为 A ;= A;②空集是任何集合的子集,记为 A ;③空集是任何非空集合的真子集;如果A-B,同时B-A,那么A = B.如果A^B,B^C,那么A := C .[注]:①Z= {整数}(V) Z ={全体整数}(X)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(X)(例:S=N ;A= N ,则CA= {0})③空集的补集是全集④若集合A=集合B,则C A = .一,C A B = C S (C B) = D (注:C B = ._ ).3. ①{ ( x, y)|xy =0,x€ R, y€ R}坐标轴上的点集.②殳(x, y) |xy v0, x€R, y€R 匸、四象限的点集.③殳(x, y) |xy>0, x€R, y€R} 一、三象限的点集.[注]:①对方程组解的集合应是点集•f例:』x+y=3 解的集合{(2 , 1)}.gx —3y =12②点集与数集的交集是'■.(例:A ={( x, y)| y = x+1} B={ y|y =x +1} 则AQB = •_ )4. ①n个元素的子集有2n个.②n个元素的真子集有2n- 1个•③n个元素的非空真子集有2n- 2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真.否命题:=逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若a 7=5,则a =2或b =3应是真命题.解:逆否:a = 2且b = 3,贝V a+b = 5,成立,所以此命题为真.② x =1 且y = 2、=. x y =3.解:逆否:x + y =3 =1或y = 2..x胡且丫屮2 =' x亠y =3,故x ■ y沁是x泪且y厂2的既不是充分,又不是必要条件⑵小范围推出大范围;大范围推不出小范围3. 例:若x '5, : x '5或x 2 .4. 集合运算:交、并、补.交:A CIB U {x|x A,且x B}并:AU B= {x|x A或x B}补:C U A 二{x U ,且x ' A}5. 主要性质和运算律(1)包含关系:A- A,H A,A-U ,G A-U,A B,B 0 = A C;AP]B A,Af]B B; A U B 二A, AU B 二B.(2)等价关系:A Bu Af]B 二A= AUB 二Bu C J AUB二U(3)集合的运算律:交换律:A B=B A; A B = B A.结合律:(A B) C 二A (B C);(A B) C 二A (B C)分配律:.A (B C)=(A B) (A C); A (B C)=(A B) (A C)0-1 律:;」"A -:」,;」IjA =A,U Pl A = A,U U A=U等幂律:A A 二A, A A 二A.求补律:A n C U A=0A U C U A=U C J U= 0」C U0=U反演律:C U(A n B)= (C U A)U (C UB) C U(A U B)=(C U A) n(QB)6. 有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定card( 0) =0.基本公式:(1) card (A IjB) =card (A) card (B) -card (Ap] B)(2) card (AU B UC)二card (A) card (B) card (C)-card (A Cl B) - card (B Pl C) - card (C 门A) card(AClBnc)(3) card ( 'U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法根轴法(零点分段法)①将不等式化为a o(x-x i)(x-x 2)…(x-x m)>0(<0)形式,并将各因式x的系数化“ +”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);0 =④ 若不等式(x 的系数化“ +”后)是“ >0 ”,则找“线”在x 轴上方的区间;若 不等式是“ <0 ”,则找“线”在x 轴下方的区间.则不等式a 0x n a 1x nJ - a 2x n ^■ a n .0(:::。
【高三数学试题精选】2018年高考数学理科试题分类汇编:集合与简易逻辑
2018年高考数学理科试题分类汇编:集合与简易逻辑
5 c 3≤0}, 则A∩(cRB)=
A (1,4)
B (3,4) c(1,3) D (1,2)∪(3,4)
【答案】B
【解析】B ={x| -2x-3≤0}= ,A∩(cRB)={x|1<x<4} = 。
故选B
2【1,0,1},N={x|x2≤x},则∩N=
A{0} B{0,1} c{-1,1} D{-1,0,0}
【答案】B
【解析】 ={-1,0,1} ∩N={0,1}
【点评】本题考查了集合的基本运算,较简单,易得分先求出 ,再利用交集定义得出∩N
10【3)>0} 则A∩B=
A (- ,-1)
B (-1,- ) c (- ,3)D (3,+ )
【答案】D
【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为,利用二次不等式可得或画出数轴易得.故选D.
15【2018高考安徽理6】设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“ ”是“ ”的()充分不必要条必要不充分条
充要条即不充分不必要条
【答案】A
【命题立意】本题借助线面位置关系考查条的判断
【解析】① ,②如果,则与条相同.
16【2018高考全国卷理2】已知集合A={13 },B={1,} ,A B =A, 则=
A 0或
B 0或3 c 1或 D 1或3。
高三数学复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第1章 集合与常用逻辑
2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第1章集合与常用逻辑主语试题文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第1章集合与常用逻辑主语试题文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第1章集合与常用逻辑主语试题文的全部内容。
第一章集合与常用逻辑用语考点1 集合1.(2016·新课标全国Ⅰ,1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=() A。
{1,3} B.{3,5}C。
{5,7} D.{1,7}解析由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5},故选B。
答案B2。
(2016·新课标全国Ⅱ,1)已知集合A={1,2,3},B={x|x2〈9},则A∩B=()A.{-2,-1,0,1,2,3}B。
{-2,-1,0,1,2}C.{1,2,3}D。
{1,2}解析由x2<9解得-3〈x〈3,∴B={x|-3<x<3},又因为A={1,2,3},所以A∩B={1,2},故选D.答案D3。
(2016·新课标全国Ⅲ,1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )A。
{4,8} B.{0,2, 6}C。
{0,2,6,10} D.{0,2,4,6,8,10}解析A={0,2,4,6,8,10},B={4,8},∴∁AB={0,2,6,10}。
2018年高考数学试题分类汇编——集合与逻辑精品
( A) 1,4
( B) 1,5
ቤተ መጻሕፍቲ ባይዱ
( C) 2,4
( D) 2,5
(2018 江西理数) 2. 若集合 A= x | x 1, x R , B= y | y x2, x R ,则 A B =
A. x | 1 x 1 B. x | x 0
C. x | 0 x 1 D.
(2018 安徽文数) (1) 若 A= x | x 1 0 , B= x | x 3 0 ,则 A B =
(D)
既不充分也不必要条件
(2018 山东文数)( 1) 已知全集 U R ,集合 M x x2 4 0 ,则 CU M =
A. x 2 x 2 B. x 2 x 2 C. x x 2或 x 2 D. x x 2或 x 2
(2018 北京文数) ⑴ 集合 P { x Z 0 x 3}, M { x Z x2 9} ,则 P I M =
(A) { x | 1 x 2}
(B) { x | 3 x 1}
(C) { x |1 x 4}
(D) { x | 2 x 1}
( 2018 山东文数) (7) 设 an 是首项大于零的等比数列,则“ a1 a2 ”是“数列 an 是
递增数列”的 ( A)充分而不必要条件
(B)
必要而不充分条件
(C) 充分必要条件
(A) a |0 a 6 (B) a | a 2,或a 4 (C) a | a 0,或 a 6 (D) a | 2 a 4
(2018 天津理数) (9) 设集合 A= x || x a | 1, x R , B x || x b | 2, x R .若 A B,
则实数 a,b 必满足
(A) | a b | 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学试题汇编
集合与简易逻辑
(18全国Ⅰ)
设,a b R ∈,集合{1,,}{0,
,}b
a b a b a
+=,则b a -=( ) A .1 B .1- C .2 D .2-
C.
(18江西)
若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为 A .9 B .6 C .4 D .2
C.
(18江西)
设p :f(x)=e x
+In x +2x 2
+mx +l 在(0,+∞)内单调递增,q :m ≥-5,则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
B.
(18湖北)
设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}
1log 2<=x x P ,
{}
12<-=x x Q 那么Q P -等于
A .{x|0<x<1} B.{x|0<x ≤1} C.{x|1≤x<2} D.{x|2≤x<3}
B.
(18湖北)
已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是()
A.①④⑤
B.①②④
C.②③⑤
D. ②④⑤
B
(18安徽)
若{}
82
22<≤∈=-x
Z x A {}1log R <∈=x x B x ,
则)(C R B A ⋂的元素个数为 A.0
B.1
C.2
D.3
C.
(18北京)
已知集合{}
1≤-=a x x A ,{}
0452
≥+-=x x x B ,若φ=B A ,则实数a 的取值范围是 .
()3,2
(18宁夏)
已知命题p :1sin ,≤∈∀x R x ,则( )
A.1sin ,:≥∈∃⌝x R x p
B. 1sin ,:≥∈∀⌝x R x p
C.1sin ,:>∈∃⌝x R x p
D. 1sin ,:>∈∀⌝x R x p
C.
(18重庆)
命题:“若12
<x ,则11<<-x ”的逆否命题是( )
A.若12
≥x ,则11
-≤≥x x ,或 B.若11<<-x ,则12<x C.若11
-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x D.
(18山东)
命题“对任意的01,2
3
≤+-∈x x R x ”的否定是( ) A.不存在01,2
3
≤+-∈x x R x B.存在01,2
3
≥+-∈x x R x C.存在01,2
3
>+-∈x x R x D. 对任意的01,2
3
>+-∈x x R x
C.
(18山东)
下列各小题中,p 是q 的充分必要条件的是
①3:62:2
+++=>-<m mx x y q m m p ;,或有两个不同的零点 ②()()
()x f y q x f x f p ==-:1:
;是偶函数
③βαβαtan tan :cos cos :==q p ; ④A C B C q A B A p U U ⊆=::;
A.①②
B.②③
C.③④
D. ①④
D.。