三角形的内角(含习题及答案)

合集下载

三角形的内角和习题(有答案)

三角形的内角和习题(有答案)

三角形的内角和习题1.填空。

(1)等边三角形的三个内角都是()度。

(2)在三角形中,已知∠1=67°,∠2=35°,那么,∠3=( )。

(3)等腰三角形的底角是65度,则顶角是()。

2.选择。

(1)等腰三角形的一个底角是30度,这个三角形又叫做()。

①锐角三角形②钝角三角形③直角三角形(2)一个等腰三角形的底角的3倍等于三角形的内角和,则这个三角形是()。

①钝角三角形②直角三角形③等边三角形(3)一个三角形,其中两个内角的和,等于第三个内角的度数,这个三角形是( )。

①锐角三角形②直角三角形③钝角三角形3.判断。

(1)一个直角三角形中的一个锐角为40度,则另一个角为50度。

()(2)一个等腰三角形的顶角为120度,则它的底角为25度。

()(3)内角分别是50度、60度和70度的三角形不存在。

()4.填写表格。

∠1、∠2、∠3是三角形的三个内角。

50°65°30°80°60°20°5、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带( )去。

为什么?6、想一想,下列各组角能组成三角形吗?如果不能,请说明理由;如果能,请说明是什么三角形。

1、80°,95°,5°2、60°,70°,90°3、30°,40°,50°4、50°,50°,80°5、60°,60°,60°7、想一想,算一算。

【参考答案】1③②①(1)60 (2)78°(3)50度2(1)②(2)③(3)②3(1)√(2)×(3)×450°80°65°∠2 30°80°60°100°20°55°5带3去,因为有了3的两个角,顺着边线向上延伸即可。

四年级数学下册《三角形的内角和》练习题及答案解析

四年级数学下册《三角形的内角和》练习题及答案解析

四年级数学下册《三角形的内角和》练习题及答案解析学校:___________姓名:___________班级:_______________一、填空题1.一个等边三角形,每个内角是( )度。

2.一个三角形中一个角是35°,一个角是110°,另一个角是( ),这个三角形按边分是( )三角形,按角分是( )三角形。

3.给它们分分类。

(只填序号)4.∠1、∠2、∠3是一个三角形的3个内角,已知∠1=∠2=60°,那么∠3=( )°,这是一个( )三角形,也是一个( )三角形。

二、选择题5.如果一个三角形三个内角的度数比是3∠1∠5,那么这个三角形是()三角形。

A.锐角B.直角C.钝角6.等腰三角形的一个底角是52°,则它的顶角是()。

A.128°B.104°C.76°三、图形计算7.算出下面各个未知角的度数。

四、解答题8.用一根铁丝能围成一个长是10厘米,宽8厘米的长方形,如果用这根铁丝围成一个底边是16厘米的等腰三角形(铁丝无剩余),腰长是多少厘米?9.求出下面三角形各个角的度数。

参考答案与解析:1.60【分析】等边三角形的三个内角都相等,三角形的内角和为180°,因此用180°除以3即可,依此计算并填空。

【详解】180°÷3=60°【点睛】此题考查的是等边三角形的特点,以及三角形的内角和,应熟练掌握。

2.35°等腰钝角【分析】利用三角形内角和定理,用180°减去已知的两个角的度数,就是第三个角的度数;然后根据三角形按边、按角分类的特点,写出三角形的分类即可。

【详解】180°﹣35°﹣110°=35°,因为三角形中有两个角相等,所以有两条边也相等,所以这个三角形是等腰三角形;因为一个角是110°,是钝角,所以这个三角形是钝角三角形。

三角形的内角练习题及答案

三角形的内角练习题及答案

7.2 与三角形有关的角7.2.1 三角形的内角基础过关作业1.△ABC 中,NA=50°,NB=60°,则NC=.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.4ABC 中,NA=NB+NC,则NA=度.4.根据下列条件,能确定三角形形状的是()(1)最小内角是20°;(2)最大内角是100°;(3)最大内角是89°;(4)三个内角都是60°;(5)有两个内角都是80°.A.(1)、(2)、(3)、(4)B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5)D.(1)、(2)、(4)、(5)5.如图 1,N1+N2+N3+N4=度.(1)(2)(3)6.三角形中最大的内角不能小于_____ 度,最小的内角不能大于_____ 度.7.4ABC中,NA是最小的角,NB是最大的角,且NB=4NA,求NB的取值范围.8.如图 2,在^ABC 中,NBAC=4NABC=4NC, BDLAC 于 D,求NABD 的度数.综合创新作业9.(综合题)如图3,在4ABC中,NB=66°,NC=54°, AD是NBAC的平分线,DE平分N ADC 交 AC 于 E,则 NBDE=.10.(应用题)如图7-2-1-4是一个大型模板,设计要求BA与CD相交成30°角,DA与CB 相交成20°角,怎样通过测量NA,NB,NC,ND的度数,来检验模板是否合格?11.(创新题)如图,^ABC 中,AD 是 BC 上的高,AE 平分NBAC,NB=75°, ZC=45°,求NDAE与NAEC的度数.12.(2005年,福建厦门)如图,已知,在直角AABC中,NC=90°, BD平分NABC且交AC于D.(1)若NBAC=30°,求证:AD=BD;(2)若AP平分NBAC且交BD于P,求NBPA的度数.13.(易错题)在^ABC中,已知/A=3 ZB= 5 NC,求NA、NB、NC的度数.培优作业14.(探究题)(1)如图,在4ABC中,NA=42°,NABC和NACB的平分线相交于点D,求ZBDC的度数.(2)在(1)中去掉NA=42°这个条件,请探究/BDC和NA之间的数量关系.15.(开放题)如图,在直角三角形ABC中,NBAC=90°,作BC边上的高AD,图中出现多少个直角三角形?又作4ABD中AB边上的高DD1,这时,图中共出现多少个直角三角形?按照同样的方法作下去,作出D1D2, D2D3,…,当作出D n-1D n时,图中共出现多少个直角三角形?数学世界推门与加水爱迪生成名以后,去拜访他的人很多,但客人们都感到爱迪生家的大门很重,推门很吃力.后来,一位朋友对他说:“你有没有办法让你家的大门开关起来省力一些?”爱迪生边笑边回答:“我家的大门做得非常合理,我让那个门与一个打水装置相连接,来访的客人, 每次推开门都可以往水槽加20升水.”不仅如此,爱迪生还在想,如果每次推门能向水槽加入25升水的话,那么比原来少推12次门,水槽就可以装满了.你能算出爱迪生家水槽的容积吗?答案:2.B点拨:设这个三角形的三个内角分别为x°、2x。

四年级下数学同步练习-三角形的内角和(带解析)(附答案)

四年级下数学同步练习-三角形的内角和(带解析)(附答案)

人教版小学数学四年级下册三角形的内角和练习卷(带解析)1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。

A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。

A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。

四年级数学下册《三角形内角和》练习题(含答案)

四年级数学下册《三角形内角和》练习题(含答案)

四年级数学下册《三角形内角和》练习题(含答案)练习一建议用时:30分钟 满分100分1. 填空题。

(每空2分,共18分)(1)三角形三个内角的和是( ),长方形的四个内角的和是( )。

(2)等边三角形的每个内角都是( )°。

(3)在直角三角形中,一个锐角是75°,另一个锐角是( )°。

(4)一个三角形中,其中两个角的度数分别是45°和27°,第三个角的度数是( )°。

(5)等腰三角形的一个底角是80°,那么它的顶角是( )°。

(6)任意一个四边形都可以分成( )个三角形,每个三角形的内角和都是( )°,所以任意四边形的内角和是( )°。

2.判断题。

(对的画“√”,错的画“×”)(每小题2分,共10分)(1)大三角形的内角和比小三角形的内角和的度数大。

( ) (2)一个三角形的两个锐角度数的和大于90°,那么这个三角形一定是一个锐角三角形。

( )(3)等边三角形沿着高对折,得到的两个小三角形的内角和都是90°。

( )(4)四边形的四个内角中最多可能有2个钝角,最多可能有2个直角。

( ) (5)一个五边形可以分成3个三角形,所以五边形的内角和是540°。

( ) 3.求出下面三角形中未知角的度数。

(每小题5分,共20分) (1) (2)? 80° 45° 110°(3) 82° (4)130° 50° ?39°?50°4.一个等腰三角形的一个底角是52°,它的另外两个角分别是多少度?(6分)5.一个等腰三角形的一个角是70°,它的另外两个角分别是多少度?(10分)6.画一画,算一算,你发现了什么?(填空每空2分,第3、4小题每题6分,共36分)图 形三角形四边形五边形六边形七边形……边 数 3 4 …… 分成三角形的个数 12…… 内角和180°180°×2……(1)我发现:每增加一条边,内角和增加( );每个多边形分成的三角形的个数总比边数( )。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________ ,∠XBC+∠XCB=_________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y 个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠AD C,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)-CAL-FENGHAL-(YICAI)-Company One 1三角形内角和、外角和定理选择题(共10小题)(2013?泉州〉在AABC 中,Z A=20\ Z B=60\ 则△ ABC 的形状是(等边三角形 B・锐角三角形 C.直角三角形(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片.点D、E分别是边AB. AC上,将△ ABC沿着DE折叠压平,小£重合,若Z A=75\则Z 1+Z 2=()4. (2012?云南〉如图,在AABC 中,Z 6=67% Z C=33%C.105°D 75°A 40°45°B・C.50°D 55°A ABC中,Z C=70%若沿图中虚线截去ZC,则Z 1+Z 2=(5. (2012?南通)如图,250°B・C. 180" D 140°6. (2012?桶州)如图,AE是^ ABC的角平分线,AD丄BC于点D.若Z BAC=128\ Z C=36\则Z DAE的度数是1.A 钝角三角形2.A(2012?滨州〉一个三角形三个内角的度数之比为2:3:等腰三角形 B・直角三角形 C.锐角三角形7,D这个三角形一定是(钝角三角形3-AD是AABC的角平分线,则ZCAD的度数为(A 10°B・12°C・15°D 18°已知宜线 AB II CD, Z8125°,Z A=45\那么Z E的大小为(7. (2011?日照〉如图,80°C.90°D 100°& (2011?台湾〉列何者正确(如图中有四条互相不平行的直线Li、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下A Z 2=Z 4+Z 7 B・ Z 3=Z 1+Z 6 C・ Z 1+Z 4+Z 6=1 D Z 2+Z 3+Z 5=380° • 60°9.A (2011?台湾)若A ABC中,2(Z A+ZC) =3Z B,则ZB的外角度数为何(36 B・ 72 C. 108 D 14410. A (2011?台湾)若钝角三角形ABC中,Z A=27\则下列何考不可能是Z B的度数(37 B・ 57 C. 77 D 97填空题(共4小题)(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位這摆放-如果Z 3=32。

三角形的内角和(初中数学八年级上)练习及答案

三角形的内角和(初中数学八年级上)练习及答案

11.2.1三角形的内角和基础知识 一、选择题1、下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 答案:C2、 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A ∠=75,则∠1+∠2=( )(A )150 (B )210 (C )105 (D )75答案:A3、 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4、 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD∠的度数为( ).(A )40° (B )45° (C )50° (D )55°答案:A5、 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )(A )45o (B )60o (C )75o (D )90o答案:C6、 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =( ). A .225︒ B .235︒ C .270︒ D .与虚线的位置有关答案:C7、如图,在△ABC 中,已知∠A =80°,∠B =60°,DE ∥BC ,那么∠CED 的大小是 ( )A .40°B .60°C .120°D .140°答案:D8、将一副三角板按如图所示摆放,图中 的度数是( ) (A )75° (B )90° (C )105° (D )120°答案:C9.如图,ABCDE 是封闭折线,则∠A+∠B+∠C+∠D+∠E 为( )度. A .180 B .270 C .360 D .540答案:A10、直角三角形两锐角的平分线所夹的钝角等于( ) A .100° B .120° C .135° D .150° 答案:C11、如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( ) A .40°B .30°C .20°D .10°12答案:D12、具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A-∠B=∠C B .∠A=3∠C ,∠B=2∠C C .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13、如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14、如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图 中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C 二、填空题1、 三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________. 答案:40° 2、在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形. 答案:直角;钝角3、在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 答案:84°4、如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DCBA答案:80°5、当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 . 答案:30º6、 如图,在ABC △中,47B ∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7、 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75°8、如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9、△ABC 中,∠A=∠B+∠C,则∠A= 度.答案:9010、在△ABC 中,已知∠A=21∠B=31∠C,则三角形的形状是 三角形. FEDC BA(第15题)答案:直角三角形11、已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为度.答案:1208、如图,在△ABC中,∠1=∠2,∠3=∠4,∠BOC=120°,则∠A= .答案:60º12、如图,AD、AE分别是△ABC的高和角平分线,∠B=58°,∠C=36°,∠EAD=.答案:11º13、如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=150°, 则∠EDF=________度.AFED CB答案:60°14、如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1、在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.设∠A=x°,则∠B=(x+5)°, ∠C=(x+25)°可列方程X+x+5+x+25=180解得:x=50°所以∠A=50°,∠B=55°, ∠C=75°2、已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD, ∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°, ∴∠P=90°.3、如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°. (1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º, ∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º ∴∠BCE=18º∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A).4、如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°. 又BD 是AC 边上的高, 则∠DBC=90°-∠C=18°.5、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°, ∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°,∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°. 6、如图,△ABC 中,∠ABC、∠ACB 的平分线相交于点O . (1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是 ; (2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BOC=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC 和∠ACB 的平分线BD ,CE 相交于点O , ∴∠DBC=21∠ABC,∠ECB=21∠ACB,又∠ABC=45°,∠ACB=55°, ∴∠DBC=22.5°,∠ECB=27.5°,∴∠BOC=180°-∠DBC -∠ECB=180°-22.5°-27.5°=130°, 故答案为:130°;(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC 和∠ACB 的平分线BD ,CE 相交于点O , ∴∠DBC=21∠ABC,∠ECB=21∠ACB,∴∠DBC+∠ECB=21(∠ABC+∠ACB)=50°, 则∠BOC=180°-(∠DBC+∠ECB)=180°-50°=130°; (3)β=90+21α, 理由如下:∵∠ABC、∠ACB 的平分线相交于点O , ∴∠OBC=21∠ABC、∠0CB=21∠ACB, ∴∠OBC+∠0CB=21∠ABC+21∠ACB=21(180°-α)=90°-21α, ∴β=180°-(∠OBC+∠0CB)=180°-(90°-21α)=90°+21α. 7、 如图,在△ABC 中,∠B=40°,∠C=60°,AD⊥BC 于D ,AE 平分∠BAC 交BC 于E ,DF⊥AE 于F ,求∠ADF 的度数.解:∵∠B=40°,∠C=60°, ∴∠BAC=80°.∵AE 平分∠BAC 交BC 于E , ∴∠BAE=21∠BAC=40°, ∴∠AED=∠B+∠BAE=80°. ∵AD⊥BC,∴∠DAE=90°-80°=10° ∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1、如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。

八年级数学:三角形内角和定理练习(含解析)

八年级数学:三角形内角和定理练习(含解析)

八年级数学:三角形内角和定理练习(含解析)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°2.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°﹣∠B;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.①②B.③④C.①③④D.①②③3.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°4.有一个外角等于120°,且有两个内角相等的三角形是()A.不等边三角形B.等腰三角形 C.等边三角形 D.不能确定5.三角形三个内角的度数分别是(x+y)°,(x﹣y)°,x°,且x>y>0,则该三角形有一个内角为()A.30°B.45°C.90°D.60°6.在△ABC中,∠A=25°,∠B=63°,则△ABC的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A:∠B:∠C=1:2:3,能确定△ABC 为直角三角形的条件有()A.1个B.2个C.3个D.0个9.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC上的点A′处,如果∠A′EC=70°,则∠A′DE的度数为()A.50°B.60°C.75°D.65°10.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形 B.钝角三角形C.直角三角形 D.钝角或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°12.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C 的度数为()A.75°B.65°C.55°D.45°二.填空题(共8小题)13.在△ABC中,若∠A=78°,∠B=57°,则∠C= .14.已知三角形的三个内角的度数比为2:3:4,则这个三角形三个内角的度数为.15.一个三角形的三个内角中最多有个钝角(或直角).16.在△ABC中,∠C=60°,∠A=2∠B,则∠A= .17.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= (度).18.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2= .19.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E= .(用度数表示)20.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC= .三.解答题(共4小题)21.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.22.如图,在△ABC中,∠A=50°,过点C作CD∥AB,若CB平分∠ACD,求∠B的度数.23.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数;(3)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.24.如图,△ABC中AD是BC边上的高,AE是∠BAC的平分线,∠B=50°,∠C=70°.(1)∠BAC= °;(2)求∠DAE的度数.参考答案与试题解析一.选择题(共12小题)1.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.2.解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:D.3.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.4.解:当∠BAC的外角是120°时,则∠BAC=60°,∠B=∠C=(180°﹣∠BAC)=60°,即∠BAC=∠B=∠C,所以△ABC是等边三角形;当∠ABC的外角是120°时,∠ABC=60°,即∠C=∠ABC=60°,∵∠BAC+∠ABC+∠C=180°,∴∠BAC=60°,∴∠BAC=∠B=∠C,∴△ABC是等边三角形;同样当∠ACB的外角是120°,也能推出△ABC是等边三角形;故选:C.5.解:∵三个内角的度数分别是(x+y)°,(x﹣y)°,x°,三角形内角和为180°, ∴x+y+x﹣y+x=180,∴3x=180,x=60,故选:D.6.解:∵△ABC中,∠A=25°,∠B=63°,∴∠C=180°﹣25°﹣63°=92°,∴△ABC是钝角三角形.故选:C.7.解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.8.解:∵∠A+∠B+∠C=180°,∴若①∠A+∠B=∠C,则∠C=90°.三角形为直角三角形;②∠A=∠B=2∠C,则∠A=∠B=72°,∠C=36°.三角形不是直角三角形;③∠A﹕∠B﹕∠C=1﹕2﹕3,则∠A=30°,∠B=60°,∠C=90°.三角形为直角三角形;故选B.9.解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故选:D.10.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.11.解:∵AB=BD,∠B=30°,∴∠ADB=75°,∵∠C=40°,∴∠DAC=∠ADB﹣∠C=75°﹣40°=35°.故选:B.12.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣(∠A+∠B)=180°﹣(45°+60°)=75°,故选:A.二.填空题(共8小题)13.解:由题可得,∠C=180﹣∠A﹣∠B=180°﹣78°﹣57°=45°,故答案为:45°.14.解:根据三角形的内角和定理,得三个内角分别是180°×=40°,180°×=60°,180°×=80°.15.解:假设三角形中,出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,因而假设不成立,所以一个三角形中最多有一个钝角.故答案为:1.16.解:设∠A=2x,则∠B=x,由三角形内角和等于180°,得:2x+x+60°=180°,解得x=40°.∴∠A=2x=2×40°=80°.故答案为:80°.17.解:由题意可得∠DAE=∠BAC﹣(90°﹣∠C),又∠BAC=2∠B,∠B=2∠DAE,∴90°﹣2∠B=∠B,则∠B=36°,∴∠BAC=2∠B=72°,∴∠ACB=180°﹣36°﹣72°=72°.故答案为7218.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.19.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.20.解:∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故答案为:130°.三.解答题(共4小题)21.解:∵DF⊥AB于点F,∴∠AFE=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°.∴∠ACB=∠D+∠C ED=30°+45°=75°.22.解:∵∠A+∠B+∠ACB=180°,∠A=50°,∴∠B+∠ACB=130°.∵CD∥AB,∴∠DCB=∠B.∵CB平分∠ACD,∴∠DCB=∠ACB,∴∠ACB=∠B,∴2∠B=130°,∴∠B=65°.23.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=×100°=50°.(2)∵∠B=30°,AD⊥BC,∴∠BAD=90°﹣30°=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣50°=10°.(3)∠DAE=(β﹣α),理由如下:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=90°﹣(α+β).∵∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α).24.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°故答案为:60°(2)∵AE是∠BAC的平分线,∠BAC=60°∴∠BAE=30°∴∠AEB=180°﹣∠B﹣∠BAE=100°∵AD是BC边上的高,∴∠ADE=90°∴∠DAE=∠AEB﹣∠ADE=100°﹣90°=10°答:∠DAE的度数是10°.。

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)

三角形内角和、外角和定理一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.14410.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________度.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________度.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于_________.(2)请证明以上命题.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形内角和外角练习题及作业

三角形内角和外角练习题及作业

三⾓形内⾓和外⾓练习题及作业11.2 与三⾓形有关的⾓习题课⼀、知识要点1、三⾓形内⾓和定理:三⾓形三个内⾓的和等于______,即:在△ABC中,∠A+∠B+∠C=_____理解与延伸:①⼀个三⾓形中最多只有⼀个钝⾓或直⾓②⼀个三⾓形中最少有⼀个⾓不⼩于60°③等边三⾓形每个⾓都是60°2、直⾓三⾓形的性质与判定性质:直⾓三⾓形的两个锐⾓__________;判定:有两个⾓互余的三⾓形是_______________3、三⾓形的外⾓:三⾓形的⼀边与另⼀边的______________组成的⾓特点:①三⾓形的⼀个外⾓和与它同顶点的内⾓互为_______________②三⾓形有____个外⾓,每个顶点处有____个外⾓,但算三⾓形外⾓和时,每个顶点处只算____个外⾓,外⾓和是指三个外⾓的和,三⾓形的外⾓和为________ 性质:三⾓形的外⾓等于与它______________的两个内⾓的和⼆、知识应⽤1、三⾓形内⾓和定理应⽤(1)已知两⾓求第三⾓ (2)已知三⾓的⽐例关系求各⾓ (3)已知三⾓之间相互关系求未知⾓2、三⾓形外⾓性质的应⽤(1)已知外⾓和它不相邻两个内⾓中的⼀个可求“另⼀个”(2)可证⼀个⾓等于另两个⾓的_______(3)经常利⽤它作为中间关系式证明两个⾓相等.三、例题分析1、如图,⼀种滑翔伞的形状是左右对称的四边形ABCD,其中∠A = 150°,∠B = ∠D = 40°则∠C=_______2、如图,⼀个直⾓三⾓形纸⽚,剪去直⾓后,得到⼀个四边形,则∠1+∠2=_______3、△ABC中,∠B = ∠A + 10°,∠C = ∠B + 10°.求△ABC的各内⾓的度数4. 将⼀个直⾓三⾓板和⼀把直尺如图放置,如果∠α=43°,求∠β的度数5、如图,求∠A+∠B+∠C+∠D+∠E的度数变式:(1)如图①,五⾓形的顶点分别为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E=_____(2)如图②,∠A+∠DBE+∠C+∠D+∠E=_____(3)如图③,∠A+∠B+∠C+∠D+∠E=_____6、(1)如图1,BO、CO分别是△ABC中∠ABC和∠ACB的平分线,则∠BOC与∠A的关系是____________________________(2)如图2,BO、CO分别是△ABC两个外⾓∠CBD和∠BCE的平分线,则∠BOC与∠A的关系是____________________________(3)如图3,BO、CO分别是△ABC⼀个内⾓和⼀个外⾓的平分线,则∠BOC与∠A的关系是____________________________(4)请就图2及图2中的结论进⾏证明四、课外作业:A 组题1、如图,已知点B 、C 、D 、E 在同⼀直线上,△ABC 是等边三⾓形,且CG=CD ,DF=DE ,则∠E=______2、如图,∠1+∠2+∠3+∠4+∠5+∠6=______3、把⼀副三⾓板按如图⽅式放置,则两条斜边所形成的钝⾓α=_______度.4、如图,∠1、∠2、∠3的⼤⼩关系为()A .∠2>∠1>∠3B .∠1>∠3>∠2C .∠3>∠2>∠1D .∠1>∠2>∠35、如果三⾓形的⼀个外⾓和与它不相邻的两个内⾓的和为180°,那么与这个外⾓相邻的内⾓的度数为( )A 、30°B 、60°C 、90°D 、120°6、如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()A 、360°B 、540°C 、240°D 、280°7、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A=46°,∠1=52°,求∠2的度数.8、⼀个零件的形状如图,按规定∠A= 90°,∠B 和∠C ,应分别是32°,和21°,检验⼯⼈量得∠BDC = 148°,就断定这两个零件不合格,运⽤三⾓形的有关知识说明零件不合格的理由。

初中数学三角形的内角同步练习题5套(含答案)

初中数学三角形的内角同步练习题5套(含答案)

1三角形的内角同步练习题5套(含答案)(一)三角形的内角1.如图,已知点D ,E 在△ABC 的边上,DE ∥BC ,∠B =60°,∠AED =40°,则∠A 的度数为(的度数为() A .100° B .90° C .80°D .70° 2.具备下列条件的△ABC 中,不是直角三角形的是(中,不是直角三角形的是( ) A .∠A+∠B =∠C B .∠A -∠B =∠C C .∠A :∠B :∠C =1:2:3D .∠A =∠B =3∠C 3.如图,已知∠1=20°,∠2=25°,∠A =35。

,则∠BDC 的度数为________.4.如图,已知∠A =32°,∠ADC =110°,BE 上AC 于点E ,则∠B 的度数为________. 5.如图,求∠A ,∠B ,∠C ,∠D ,∠E 的和.的和.6.如图,在△ABC 中,已知AD 是角平分线,∠B =66°,∠C =54°.°. (1)求∠ADB 和∠ADC 的度数;的度数;(2)若DE ⊥AC 于点E ,求∠ADE 的度数.的度数.7.有一工件如图所示,按规定AB 的延长线与DC 的延长线相交成30°角,DA 的延长线与CB 的延长线相交成20°角,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数来检查工件是否合格?的度数来检查工件是否合格?8.(1)如图(1),有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B ,C .在△ABC 中,∠A =30°,则∠ABC+∠ACB =________,∠XBC+∠XCB =________.(2)如图(2),改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY ,XZ 仍然分别经过点B ,C ,那么∠ABX+∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX 的大小.的大小.(一)三角形的内角参考答案(一)三角形的内角参考答案 1.C 解析解析先由DE BC ,得60ADE B Ð=Ð=°(两直线平行,同位角相等),再根据三角形内角和定理,可得180180604080A ADE AED Ð=°-Ð-Ð=°-°-°=°,故选C .2.D 解析解析 A 中则A B C Ð+Ð=Ð,则2180C Ð=°,90C Ð=°,为直角三角形.,为直角三角形. 对于B ,由A B C Ð-Ð=Ð得A B C Ð=Ð+Ð,同理,90A Ð=°,为直角三角形.,为直角三角形. 对于C ,易得90C Ð=°,为直角三角形.,为直角三角形.D 选项中3A B C Ð=Ð=Ð,则7180C Ð=°,可知三个内角都不是90°角,故不是直角三角形.故选D . 3.80° 解析解析 本题可利用整体思想求解.本题可利用整体思想求解. 在△BDC 中,()180BDC DBC DCB Ð=°-Ð+Ð. ∵1DBC ABC Ð=Ð-Ð,2DCB ACB Ð=Ð-Ð, ∴()12DBC DCB ABC ACB Ð+Ð=Ð+Ð-Ð-Ð.在△ABC 中,180********ABC ACB A Ð+Ð=°-Ð=°-°=°, ∴1452025100DBC DCB Ð+Ð=°-°-°=°, ∴()18080BDC DBC DCB Ð=°-Ð+Ð=°.4.52° 解析解析 在△ACD 中,∵180C A ADC Ð+Ð+Ð=°, ∴1801803211038C A ADC Ð=°-Ð-Ð=°-°-°=°. ∵△BCE 是直角三角形(90BEC Ð=°), ∴90903852B C Ð=°-Ð=°-°=°.5.思路建立.思路建立若要分别求出这五个角可能有一定的难度,若将这五个角转换到一个三角形中,再利用三角形的内角和可求得.用三角形的内角和可求得.解:如图,连接BC ,则D E BCD CBE Ð+Ð=Ð+Ð.而180A ABC ACB Ð+Ð+Ð=°,所以∠A ,∠ABE ,∠ACD ,∠D ,∠E 的和是180°.6.解:(1)∵66B Ð=°,54C Ð=°, ∴18060BAC B C Ð=°-Ð-Ð=°. 又∵AD 平分∠BAC ,∴1302BAD CAD BAC Ð=Ð=Ð=°.∴180180663084ADB B BAD Ð=°-Ð-Ð=°-°-°=°,180180305496ADC CAD C Ð=°-Ð-Ð=°-°-°=°.(2)∵DE AC ^,∴90AED Ð=°. ∴90903060ADE DAE Ð=°-Ð=°-°=°°.7.解:如图所示,延长DA ,CB 相交于点E ,延长AB ,DC 相交于点F .因为按规定20E Ð=°,30F Ð=°,所以在△DEC 中,只需满足160D ECD Ð+Ð=°; 在△ADF 中,只需满足150DAF D Ð+Ð=°,所以通过测量,若160D BCD Ð+Ð=°, 且150DAB D Ð+Ð=°,则工件合格,否则不合格.,则工件合格,否则不合格. 8.解:(1)150°,90°.(2)ABX ACX Ð+Ð的大小不变化.的大小不变化.()()ABX ACX ABC XBC ACB XCB Ð+Ð=Ð-Ð+Ð-Ð ()()ABC ACB XBC XCB =Ð+Ð-Ð+Ð ()()1803018090=°-°-°-°15090=°-° 60=°.(二)1.如图,直线a∥b,∠1=55°,∠2=65°,则∠3的大小是(的大小是( ) A.50° B.55°C.60° D.65°2.一个三角形的三个内角的度数之比为2:3:7,这个三角形一定是( )A.直角三角形.等腰三角形.直角三角形 B.等腰三角形C.锐角三角形.钝角三角形.锐角三角形 D.钝角三角形3.在△ABC中,∠A=105°,∠B-∠C=15°,则∠C的度数为(的度数为( )A.35° B.60° C.45° D.30°4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块°.三角形木板缺少的角是________.°.5.一个等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为________.6.如图所示,点B,C,E,F在一条直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________。

初中三角形有关知识点总结及习题大全,带答案

初中三角形有关知识点总结及习题大全,带答案
答案:AB=DC(填AF=DE或BF=CE或BE=CF也对)
11.(2010·兰州中考)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为.
【解析】过点E作EF⊥AF交AD的延长线于点F,过点D作DM⊥BC交BC于点M,因此四边形ABMD是矩形,则BM=AD=2,且∠EFD=∠DMC=90°,根据题意可知DE=DC,∠EDC=90°,因此∠EDF+∠CDF=90°,又因为∠CDM+∠CDF=90°,所以∠EDF=∠CDM,从而△EDF≌△MCD,CM=EF,因为△ADE的面积为3,AD = 2,所以EF=3,所以BC=BM+CM=5.
【解析】 ,由 得 =
答案:
9、(2009·怀化中考)如图,已知 , ,要使 ≌ ,可补充的条件是(写出一个即可).
【解析】如AE=AC或∠B=∠D.
答案:AE=AC(答案不唯一);
10、(2009·龙岩中考)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使
△ABF≌△DCE,需要补充的一个条件是(写出一个即可).
A.20° B. 35° C. 45° D.55°
【解析】选D因为∠A=20°,∠E=35°,所以∠EFB=55º,又因为AB∥CD,所以∠C=∠EFB=55º;
7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是()
A.锐角三角形B.钝角三角形
C.直角三角形D.钝角三角形或锐角三角形
【解析】由EP平分∠AEF,∠PEF=30 得∠AEF=60 ,由A B//CD得∠EFC=120 ,由FP⊥EP得∠P=90 ,

三角形的内角和与外角的性质(含答案)

三角形的内角和与外角的性质(含答案)

1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°2、(2011•义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A、60°B、25°C、35°D、45°3、(2011•XX)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°4、(2011•XX)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、1445、(2011•XX)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、976、(2011•宁波)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A、57°B、60°C、63°D、123°7、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、都不对8、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A、40°B、30°C、20°D、10°9、关于三角形的内角,下列判断不正确的是()A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°10、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A、50°B、40°C、70°D、35°11、如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大小为()A、120°B、180°C、200°D、240°12、在三角形的三个外角中,钝角的个数最多有()A、3个B、2个C、1个D、0个13、如图在△ABC中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A、100°B、110°C、115°D、120°14、以下说法中,正确的个数有()(1)三角形的内角平分线、中线、高都是线段;(2)三角形的三条高一定都在三角形的内部;(3)三角形的一条中线将此三角形分成两个面积相等的小三角形;(4)三角形的3个内角中,至少有2个角是锐角.A、1B、2C、3D、415、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形16、已知:△ABC,现将∠A的度数增加1倍,∠B的度数增加2倍,刚好使∠C是直角,则∠A的度数可能是()A、75°B、60°C、30°D、45°17、如图,BE、CF是△ABC的角平分线,且∠A=70°,那么∠BDC的度数是()A、70°B、115°C、125°D、145°18、如图,∠ABC=31°,又∠BAC的平分线与∠FCB 的平分线CE相交于E点,则∠AEC为()A、14.5°B、15.5°C、16.5°D、20°19、(2010•武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是()A、100°B、80°C、70°D、50°20、(2010•聊城)如图,l∥m,∠1=115°,∠2=95°,则∠3=()A、120°B、130°C、140°D、150°21、(2009•湘西州)如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A、20°B、40°C、50°D、60°22、(2007•临沂)如图,△A BC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为()A、130°B、230°C、180°D、310°23、(2005•XX)如图,在Rt△ADB中,∠D=90°,C 为AD上一点,则x可能是()A、10°B、20°C、30°D、40°24、(2003•XX)如图是A、B两片木板放在地面上的情形.图中∠1、∠2分别为A、B两木板与地面的夹角,∠3是两木板问的夹角.若∠3=110°,则∠2﹣∠1=()A、55°B、70°C、90°D、l10°25、(2002•烟台)如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O,设∠BOC=a,则∠A等于()A、90°﹣2αB、90°﹣C、180°﹣2αD、180°﹣26、如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A、∠A=∠1+∠2B、2∠A=∠1+∠2C、3∠A=2∠1+∠2D、3∠A=2(∠1+∠2)27、如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A、15°B、20°C、25°D、30°28、(2006•XX)如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为_________ 度.29、如图所示,△ABC中,BD,CD分别平分∠ABC 和外角∠ACE,若∠D﹦24°,则∠A﹦_________ 度.30、如图,∠A+∠B+∠C+∠D+∠E的度数为_________ 度.答案与评分标准一、选择题(共27小题)1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°考点:三角形内角和定理。

三角形内角和习题(答案)

三角形内角和习题(答案)

三角形内角和习题(答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角形内角和习题(答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角形内角和习题(答案)的全部内容。

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠B FE的度数.4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】7.如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC 的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的内角教学目标1.经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理.2.能应用三角形内角和定理解决一些简单的实际问题.重点:三角形内角和定理难点:三角形内角和定理的推理的过程课前准备每个学生准备好二个由硬纸片剪出的三角形教学过程一、做一做1)在所准备的三角形硬纸片上标出三个内角的编码.2)让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB = 180º.3)把∠B和∠C剪下按图(3)拼在一起,用量角器量一量∠MAN的度数,会得到什么结果?图(3)二、想一想如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面的结论的正确性呢?已知△ABC,说明∠A+∠B+∠C = 180º,你有几种方法?说明这个结论成立.三角形内角和定理:三角形三个内角的和等于180º下面介绍两种说明三角形内角和180º的方法:已知:ΔABC,说明:∠A+∠B+∠C = 180º.方法一:如图①,过点A作DE//BC,则有∠B =∠DAB,∠C =∠EAC所以∠A+∠B+∠C =∠A+∠DAB+∠EAC = 180º方法二:如图②,延长BC,过点C作CD//AB,则有∠A =∠ACD,∠B =∠DCE所以∠A+∠B+∠C =∠ACD+∠DCE+∠C = 180º推论:直角三角形的两个锐角互余.三、例题如图,C岛在A岛的北偏东50º方向,B岛在A岛的北偏东80º方向,C岛在B岛的北偏西40º方向,从C岛看A、B两岛的视角∠ACB是多少度?分析:A、B、C三岛的连线构成△ABC,所求的∠ACB是△ABC的一个内角;如果能求出∠CAB、∠ABC,就能求出∠ACB解:∠CAB =∠BAD−∠CAD = 80º−50º = 30º由AD//BE,可得∠BAD+∠ABE = 180º所以∠ABE及= 180º−∠BAD = 180º−80º = 100º,∠ABC =∠ABE−∠EBC = 100º−40º = 60º在△ABC中,∠ACB = 180º−∠ACB−∠CAB = 180º−60º−30º = 90º答:从C岛看A、B两岛的视角∠ACB是90º.补充练习:1.判断题:1)三角形中最大的角是70º,那么这个三角形是锐角三角形()2)一个三角形中最多只有一个钝角或直角()3)一个等腰三角形一定是锐角三角形()4)一个三角形最少有一个角不大于60º()答案:1)正确;2)正确;3)错;4)正确2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是( )(A)带①去(B)带②去(C)带③去(D)带①和②去答案:(C)三角形的外角教学目标1.使学生在操作活动中,探索并了解三角形的外角的两条性质.2.利用学过的定理论证这些性质.3.能利用三角形的外角性质解决实际问题.重点:(1)三角形的外角的性质;(2)三角形外角和定理难点:三角形外角的定义及定理的论证过程一、想一想三角形的内角和定理是什么?三角形的内角和180º.二、做一做把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?它是三角形的外角.定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角.想一想:三角形的外角有几个?每个顶点处有两个外角,但这两个是对顶角.归纳:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个.每个外角与相应的内角是邻补角.三、议一议∠ACD与△ABC的内角有什么关系?(1)∠ACD =∠A+∠B(2)∠ACD>∠A,∠ACD>∠B再画△ABC的外角试一试,还会得到这个性质吗?同学用几何语言叙述这个性质:三角形的一个外角等于它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角.你能用学过的定理说明这些定理的成立吗?已知:∠ACD是△ABC的外角说明:(1)∠ACD =∠A+∠B(2)∠ACD>∠A,∠ACD>∠B结合图形给予说明说明:因为∠ACD是△ABC的外角,根据外角的定义,知∠ACD+∠ACB = 180º又根据三角形内角和定理知∠A+∠B+∠ACB = 180º所以∠ACD =∠A+∠B显然∠ACD =∠A+∠B>∠A,同时∠ACD =∠A+∠B>∠B三角形的外角与内角的关系:1.三角形的一个外角与它相邻的内角互补;2.三角形的一个外角等于与它不相邻的两个内角的和;3.三角形的一个外角大于任何一个与它不相邻的内角.备选题1)如图,∠1,∠2,∠3是△ABC的不同三个外角,则∠1+∠2+∠3 =2)三角形的三个外角中最多有锐角,最多有个钝角,最多有个直角3)△ABC的两个内角的一平分线交于点E,∠A = 52º,则∠BEC =4)已知△ABC的∠B,∠C的外角平分线交于点D,∠A = 40º,那么∠D =5)在△ABC中∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A = ,∠B = ,∠C =答案:1)360º;2)一个、三个、一个;3)116º;4)70º;5)36º、72º、72º典型例题例题:1.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180ºB.240ºC.360ºD.540º答案:C说明:因为三角形内角和为180º,所以∠A+∠C+∠E = 180º,∠B+∠D+∠F = 180º,所以∠A+∠B+∠C+∠D+∠E+∠F的度数为360º.2.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180ºB.360ºC.540ºD.240º答案:B说明:由三角形内角和为180º,知∠A+∠B+∠APB = 180º,∠C+∠D+∠CQD = 180º,∠E+∠F+∠ERF = 180º,∠RPQ+∠PQR+∠QRP = 180º,因为∠APB =∠RPQ,∠CQD =∠PQR,∠ERF =∠QRP,所以∠APB+∠CQD+∠ERF = 180º;而∠A+∠B+∠C+∠D+∠E+∠F = 180º−∠APB+180º−∠CQD+180º−∠ERF = 540º−(∠APB+∠CQD+∠ERF) = 540º−180º = 360º,所以答案为B.3.一个三角形的三个内角之比为2:3:4,那么这个三角形的最大内角的度数为________.答案:80º说明:由已知可设这个三角形的三个内角度数为2x,3x,4x,则有2x+3x+4x = 180º,所以x = 20º,这样这个三角形的三个内角的度数分别是40º,60º和80º,所以这个三角形的最大内角为80º.4.在△ABC中,∠A = 50º,点P是∠B、∠C平分线的交点,则∠BPC的度数是( )A.65ºB.115ºC.130ºD.100º答案:B说明:不难得到∠ABC+∠ACB = 180º−50º = 130º,BP为∠ABC的平分线,CP为∠ACB 的平分线,即∠ABC = 2∠PBC,∠ACB = 2∠PCB,所以∠PBC+∠PCB = (∠ABC+∠ACB)÷2 = 130º÷2 = 65º,因此,在ΔBPC中,可求得∠BPC = 180º−(∠PBC+∠PCB) = 180º−65º = 115º,所以答案为B.5.在△ABC中,若∠A =∠B =∠C,求∠C的度数?答案:∠C = 90º说明:设∠A的度数为x,则根据已知不难得到∠B的度数是2x,∠C的度数是3x;由三角形内角和为180º,有x+2x+3x = 180º,解得x = 30º,这时3x = 90º,即∠C的度数为90º.习题一一、选择题:1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角 B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角 D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60°,90°,75° B.48°,72°,60°C.48°,32°,38° D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100° B.120° C.140° D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中 ( )A.有两个锐角、一个钝角 B.有两个钝角、一个锐角C.至少有两个钝角 D.三个都可能是锐角7.在△ABC中,∠A=∠B=∠C,则此三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形二、填空题:1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20º,则此三角形的最小内角的度数是________.2.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.3.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为_______.4.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132º,则∠A=_______度.5.如图,已知∠1=20º,∠2=25º,∠A=35º,则∠BDC的度数为________.三、基础训练:1.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=(∠C−∠B).2.在△ABC中,已知∠B−∠A=5°,∠C−∠B=20°,求三角形各内角的度数.四、提高训练:如图所示,已知∠1=∠2,∠3=∠4,∠C=32º,∠D=28º,求∠P的度数.五、探索发现:如图,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.六、中考题与竞赛题:(2001·天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=________度.答案:一、1.A 2.C 3.B 4.B 5.C 6.C 7.B二、1.40° 2.直角钝角 3.36°或90° 4.84 5.80°三、1.解:∵AD⊥BC,∴∠BDA=90º,∴∠BAD=90º−∠B,又∵AE 平分∠BAC,∴∠BAE=∠BAC=(180º−∠B−∠C),∴∠EAD=∠BAD−∠BAE=90º−∠B−(180º−∠B−∠C)=90º−∠B−90º+∠B+∠C=∠C−∠B=(∠C−∠B).2.∠A=50º,∠B=55º,∠C=75º.四、∠P=30°五、解:∵∠1=180º−2∠CEF,∠2=180º−2∠CFE,∴∠1+∠2=360º−2(∠CEF+∠CFE)=360º−2(180º−∠C)=360º−360º+2∠C=2∠C.六、68.习题二一、选择题:1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定2.如果三角形的一个外角和与它不相邻的两个内角的和为180º,那么与这个外角相邻的内角的度数为( )A.30° B.60° C.90° D.120°3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120°4.已知等腰三角形的一个外角是120º,则它是( )A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形5.如图(1)所示,若∠A=32º,∠B=45º,∠C=38º,则∠DFE等于( )A.120° B.115° C.110° D.105°(1) (2)(3)6.如图(2)所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A B.∠2=∠5−∠A C.∠5=∠1+∠4 D.∠1=∠ABC+∠4二、填空题:1.三角形的三个外角中,最多有_______个锐角.2.如图(3)所示,∠1=_______.3.如果一个三角形的各内角与一个外角的和是225º,则与这个外角相邻的内角是____度.4.已知等腰三角形的一个外角为150º,则它的底角为_____.5.如图,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60º,则∠BOC=_______,∠D=_____,∠E=________.6.如图,∠A=50º,∠B=40º,∠C=30º,则∠BDC=________.三、基础训练:如图,在△ABC中,∠A=70º,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.四、提高训练:如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63º,求∠DAC 的度数.五、探索发现:如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.六、中考题与竞赛题:(2004·吉林)如图所示,∠CAB的外角等于120º,∠B等于40º,则∠C 的度数是_______.答案:一、1.C 2.C 3.C 4.C 5.B 6.C二、1.1 2.120° 3.95 4.30°或75° 5.120° 30° 60° 6.120°三、∠BOC=125°四、∠DAC=24°五、(1)β = 90º+α;(2)β =α;(3)β = 90º−α (说明略)六、80º.。

相关文档
最新文档