广东省广州市白云区2018届九年级上学期期末教学质量检测数学试题
广东省广州市白云区2018届九年级数学下学期综合测试(一模)试题
(A)3+ = (B) — =
(C)— + =0 (D) - =
4.矩形ABCD的对角线AC、BD交于点O,以下结论不一定成立的是(*)
(A)∠BCD=90° (B)AC=BD (C)OA=OB (D)OC=CD
5。不等式组 的整数解有(*)
(A)4个 (B)3个 (C)2个 (D)1个
答:现在从A地到B地可比原来少走5.9km路程.………………………………8分
23.(本小题满分12分,分别为3、3、6分)
解:(1)由tan∠AOB= ,得 = ,……………………………………1分
∴OH=2BH,又B( , ),即 =2× = ,………………………2分
∴H点的坐标为H(0, );……………………………………………………3分
=2( +2)( -2)………………………………………………9分
18.(本小题满分9分)
证明:∵C是BD的中点,∴BC=CD(线段中点的 定义);……………2分
∵AB∥EC,∴∠B=∠ECD(两直线平行,同位角相等)。…………4分
在△ABC和△ECD中,……………………………………………………5分
∵ ,∴△ABC≌△ECD(AAS),……………………8分
14。从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是*.
15。若分式 的值为0,则 =*。
16。如图3,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为*(结果用根号表示).
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)
∴该区九年级学生大约有36000人视力不良;…………………………4分
广东省广州市白云区2017-2018学年九年级(上)期末数学试卷(解析版)
2017-2018学年广东省广州市白云区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0B.x2﹣2x﹣3=0C.2x+3=0D.x2+2y﹣10=02.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1B.2C.4D.﹣14.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于08.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1B.2C.3D.410.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为cm.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0(2)x2﹣6x﹣9=018.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′,B′;(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为;(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.2017-2018学年广东省广州市白云区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0B.x2﹣2x﹣3=0C.2x+3=0D.x2+2y﹣10=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x﹣2y+1=0,是二元一次方程,故此选项错误;B、x2﹣2x﹣3=0,是一元二次方程,故此选项正确;C、2x+3=0,是一元一次方程,故此选项错误;D、x2+2y﹣10=0,是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.2.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点A(3,﹣1)关于原点对称的点的坐标为:(﹣3,1).故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1B.2C.4D.﹣1【分析】两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,故选:A.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=140°;故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对【分析】根据二次函数的性质即可求出答案.【解答】解:由题意可知:抛物线的开口向下,所以对称轴的左侧y随着x增大而增大,故选:A.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切【分析】直接根据直线与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l 的距离为d,当d>r时,直线l和⊙O相离是解答此题的关键.7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于0【分析】不可能事件是一定条件下一定不会发生的事件.依据定义即可解得.【解答】解:A、任何数的绝对值都大于或等于0,故为不可能事件,符合题意;B、0的相反数等于它本身,为随机事件,不符合题意;C、两个负数的和小于0,为随机事件,不符合题意;D、正确,为必然事件,不符合题意;故选:A.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.8.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形【分析】根据正多边形的判定定理、中心对称图形、轴对称图形的概念判断即可.【解答】解:各边相等、各角相等的多边形是正多边形,A是假命题;正七边形是轴对称图形,不是中心对称图形,B是假命题;各边相等、各角相等的多边形是正多边形,C是假命题正八边形既是轴对称图形,又是中心对称图形,D是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1B.2C.3D.4【分析】根据图象,当x=2时,函数值在1和2之间,代入解析式即可求解.【解答】解:如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=3.故选:C.【点评】解答本题关键是要结合函数的图象,掌握反比例函数的性质.10.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.【分析】由题意可得BC的长度,∠CBC'的度数,由弧长公式可求点C经过的路线的长度.【解答】解:∵∠C=90°,∠ABC=30°,AB=6cm∴AC=3,BC=AC=3∵将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上∴∠CBC'=150°∴则点C经过的路线的长度为=故选:C.【点评】本题考查了点的轨迹,旋转的性质,利用弧长公式求轨迹是本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为2.【分析】根据一元二次方程的解的定义,将x=1代入原方程,列出关于m的方程,然后解方程即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0的一个根为1,∴x=1满足一元二次方程x2﹣3x+m=0,∴1﹣3+m=0,解得,m=2.故答案是:2.【点评】此题主要考查了方程解的定义,此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE= 102°.【分析】连接OB,OD,利用圆周角定理得到∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,再由周角定义及等式的性质得到∠A与∠BCD互补,利用邻补角性质及同角的补角相等即可求出所求角的度数.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°【点评】此题考查了圆内接四边形的性质,以及圆周角定理,熟练掌握圆周角定理是解本题的关键.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为9﹣4m.【分析】根据一元二次方程根的判别式△=b2﹣4ac,求出该一元二次方程根的判别式即可.【解答】解:x2﹣3x+m=0,a=1,b=﹣3,c=m,把a=1,b=﹣3,c=m代入△=b2﹣4ac得:△=(﹣3)2﹣4×1×m,即△=9﹣4m,故答案为:9﹣4m.【点评】本题考查根的判别式,正确掌握判别式的计算方法是解题的关键.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为2cm.【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【解答】解:作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点评】能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.【分析】设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据等边三角形的性质结合三角形的面积公式即可得出y关于x的二次函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据题意得:y=x2+(10﹣x)2=x2﹣5x+25=(x﹣5)2+.∵>0,∴当x=5时,y取最小值,最小值为.故答案为:.【点评】本题考查了二次函数的应用以及等边三角形的性质,解题的关键是得出y关于x的二次函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积找出y关于x的函数关系式是关键.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0(2)x2﹣6x﹣9=0【分析】(1)方程变形后,利用因式分解法求出解即可;(2)方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:解:(1)x2﹣3x=0分解因式得:x(x﹣3)=0,解得:x1=0,x2=3;(2)x2﹣6x﹣9=0,x2﹣6x=9x2﹣6x+9=18,x2﹣6x+9=18,(x﹣3)2=18,x﹣3=±3,x1=3+3,x2=3﹣3.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.18.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是m<.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.【分析】(1)直接利用反比函数图象的分布得出2m﹣3<0,进而得出答案;(2)利用反比例函数的增减性得出答案.【解答】解:(1)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,解得:m<;故答案为:m<;(2)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,∴每个象限内y随x的增大而增大,∵A(﹣2,a),B(﹣3,b)是该函数图象上的两点,﹣2>﹣3,∴a>b.【点评】此题主要考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题关键.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【解答】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为直线x=2;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.【分析】(1)把二次函数解析式配成顶点式得到y=(x﹣2)2﹣3,从而得到抛物线的对称轴;(2)利用(1)配方的结果得到抛物线的顶点坐标;(3)把把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),然后利用顶点式写出平移后所得函数的解析式.【解答】解:(1)∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线的对称轴为直线x=2;故答案为直线x=2;(2)抛物线的顶点坐标为(2,﹣3);(3)把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),所以平移后所得函数的解析式为y=(x﹣1)2+3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.【分析】(1)延长AO到A′,使OA′=OA,延长BO到B′,使OB′=OB,则△OA′B′满足条件;(2)根据旋转的性质得∠AOC=80°,∠C=∠A=110°,再利用三角形内角和计算出∠COD,然后计算∠AOC﹣∠COD即可.【解答】解:(1)如图,△OA′B′为所作.(2)∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠AOC=80°,∠C=∠A=110°,∴∠COD=180°﹣110°﹣40°=30°,∴∠AOD=∠AOC﹣∠COD=80°﹣30°=50°.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.【分析】(1)根据三角形内角和定理求出∠BHD=90°,根据垂径定理得出即可;(2)根据垂径定理求出DH,根据勾股定理求出BH,根据勾股定理得出关于R的方程,求出R即可.【解答】(1)证明:∵∠B+∠D=90°,∴∠BHD=180°﹣90°=90°,即AB⊥CD,∵AB过O,∴CH=DH,即H是CD的中点;(2)解:连接OD,∵H为CD的中点,CD=2,AB过O,∴DH=CH=CD=,AB⊥CD,∴∠BHD=90°,由勾股定理得:BH===1,设⊙O的半径为R,则AB=2R,OB=OD=R,在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,即(R﹣1)2+()2=R2,解得:R=,∴AB=2×=3.【点评】本题考查了圆周角定理、垂径定理和勾股定理,能灵活运用垂径定理进行推理是解此题的关键.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′(﹣3,3),B′(﹣6,0);(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.【分析】(1)根据中心对称定义可得;(2)由题意可得点A平移后的坐标为(3﹣m,﹣3),代入解析式可求m的值;(3)①由题意可得旋转后B1(3,3),代入解析式可求k的值;②当α=60°,可求出点A1,点B2的坐标,代入解析式可判断点是否在反比例函数图象上.【解答】解:(1)∵△OA′B′与△OAB关于原点O成中心对称,且A(3,﹣3)、B(6,0),∴A'(﹣3,3),B'(﹣6,0)故答案为(﹣3,3),(﹣6,0)(2)∵将△OAB沿x轴向左平移m个单位,∴点A平移后的坐标为(3﹣m,﹣3)∴﹣3=m=5(3)①设点B逆时针旋转30°后对应点为B1.如图:过点B1作B1C⊥OB∵旋转∴OB1=6,∠COB1=30°∴B1C=3,OC=OB1=3∴B1(3,3)∴3=∴k=9∴解析式为y=②α=60°如图2,过点A作AD⊥OB,∵A(3,﹣3)∴OD=3,DA=3∵tan∠BOA==∴∠AOB=30°设点A逆时针旋转60°后对应点为A1.∴∠A1OB=30°,且OA=OB=6=OA1.∴A1(3,3)设点B逆时针旋转60°后对应点为B2.∴∠B2OB=60°,且OB2=OB=6∴B2(3,3)当x=3时,y==3,当x=3时,y==3∴点A1,点B2在反比例y=的图象上∴将△OAB绕点O按逆时针方向旋转60°时,点A、B能同时落在反比例函数的图象上.【点评】本题考查了反比例函数的综合题,待定系数法求函数解析式,旋转的性质,灵活运用这些性质解决问题是本题的关键.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为(0,5);(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.【分析】(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)由题意可得抛物线解析式,当y=0时,可求抛物线与x轴的交点坐标.(3)分抛物线的顶点在线段AB上,抛物线与x轴的其中一个交点在线段AB上两种情况讨论,列不等式组可求a的取值范围.【解答】解:(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)当a=﹣1时,抛物线解析式为y=x2﹣6x+5.当y=0时,0=x2﹣6x+5解得:x1=1,x2=5∴抛物线与x轴的交点坐标为(1,0),(5,0)(3)①∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴△=(a﹣5)2﹣20=0∴a=±2+5∵2≤﹣≤3∴﹣1≤a≤1∴a=﹣2+5②∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴或解得:≤a<或无解综上所述:≤a<或a=﹣2+5,【点评】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,利用分类讨论思想解决问题是本题的关键.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为:2;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.【分析】(1)根据圆和正方形的对称性可知:GH=DG=GF ,在直角三角形FGH 中,利用勾股定理可得HF=,从而用含a 的代数式表示半圆的半径为a ,正方形边长为2a ,所以可求得半圆的半径与正方形边长的比;(2)切点分别为I ,J ,连接EB 、AE ,OH 、OI ,可得OHCI 是正方形,且边长是4,可设BD=x ,AD=y ,则BD=BH=x ,AD=AI=y ,分别利用直角三角形ABC 和直角三角形AEB 中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21. (3)根据(2)中得出方程解答即可.【解答】解:(1)如图,根据圆和正方形的对称性可知:GH=DG=GF ,H 为半圆的圆心,不妨设GH=a ,则GF=2a ,在直角三角形FGH 中,由勾股定理可得HF=.由此可得,半圆的半径为a ,正方形边长为2a ,所以半圆的半径与正方形边长的比是a :2a=:2;故答案为::2; (2)因为正方形DEFG 的面积为100,所以正方形DEFG 边长为10.切点分别为I ,J ,连接EB 、AE ,OI 、OJ ,∵AC 、BC 是⊙O 的切线,∴CJ=CI ,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ 是正方形,且边长是4,设BD=x ,AD=y ,则BD=BI=x ,AD=AJ=y ,在直角三角形ABC 中,由勾股定理得(x +4)2+(y +4)2=(x +y )2①;在直角三角形AEB 中,∵∠AEB=90°,ED ⊥AB ,∴△ADE ∽△BDE ∽△ABE ,于是得到ED 2=AD•BD ,即102=x•y ②.解①式和②式,得x +y=21,即半圆的直径AB=21;(3)由(2)可得:r=.【点评】本题综合考查了圆、三角形、方程等知识,是一道综合性很强的题目,难度偏上,需要正确理解相关知识点及懂得运用方能很好的解答本题.。
20172018学年白云区九年级上学期期末教学质量检测数学试题WORD版
2017-2018学年白云区初三上数学期末试卷一、选择题(每小题3分,共30分)1.下列是一元二次方程的为()A. B. C. D.2.点(3,-1)关于原点对称的点的坐标为()A.(3,1)B.(-3,-1)C.(-3,1)D.(1,-3)3.将方程配成的形式,方程两边需加上()A.1B.2C.4 14.如图,是的内接三角形,若,则的度数等于()A. B.C. D.5.在抛物线的对称轴的左侧()A.随的增大而增大B.随的增大而减小C.随的减小而增大D.以上都不对6.已知的直径为,圆心到直线的距离为,则直线与的位置关系是()A.相交B.相切C.相离D.相交或相切7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于08.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形9.反比例函数在第一象限的图象如图2所示,则的值可能是()A.1B.2C.3D.410.如图3,已知中,,将绕着点顺时针旋转至的位置,且A、B、三点在同一条直线上,则点C经过的最短路线的长度是()A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.若是一元二次方程的一个根,则.12.如图4,均在上,为延长线上的一点,若,则= .13.在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同。
若从中随机摸出一个球,它是白球的概率是,则= .14.关于的一元二次方程,其根的判别式为 .15.如图5,是的外接圆,,,则的半径为.16.把一根长的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是.三、解答题。
17.(本小题满分13分,分别为6、7分)解下列方程:(1)(2)18.(本小题满分9分,分别为2、7分)反比例函数的图象如图6所示。
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
(汇总3份试卷)2018年广州市九年级上学期数学期末学业水平测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设1a =,则代数式2212a a +-的值为( )A .-6B .-5C .6D .5 【答案】A【分析】把a 2+2a-12变形为a 2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【详解】∵1a =, ∴2212a a +-= a 2+2a+1-13=(a+1)2-13=-1+1)2-13=7-13=-6.故选A.【点睛】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大. 2.下列事件中是必然事件的是( )A .﹣a 是负数B .两个相似图形是位似图形C .随机抛掷一枚质地均匀的硬币,落地后正面朝上D .平移后的图形与原来的图形对应线段相等 【答案】D【解析】分析: 根据必然事件指在一定条件下,一定发生的事件,可得答案.详解: A. −a 是非正数,是随机事件,故A 错误;B. 两个相似图形是位似图形是随机事件,故B 错误;C. 随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C 错误;D. 平移后的图形与原来对应线段相等是必然事件,故D 正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念. 3.如下图:⊙O 的直径为10,弦AB 的长为8,点P 是弦AB 上的一个动点,使线段OP 的长度为整数的点P 有( )A .3 个B .4个C .5个D .6个【答案】A 【分析】当P 为AB 的中点时OP 最短,利用垂径定理得到OP 垂直于AB ,在直角三角形AOP 中,由OA 与AP 的长,利用勾股定理求出OP 的长;当P 与A 或B 重合时,OP 最长,求出OP 的范围,由OP 为整数,即可得到OP 所有可能的长.【详解】当P 为AB 的中点时,由垂径定理得OP ⊥AB ,此时OP 最短,∵AB=8,∴AP=BP=4,在直角三角形AOP 中,OA=5,AP=4,根据勾股定理得OP=3,即OP 的最小值为3;当P 与A 或B 重合时,OP 最长,此时OP=5,∴35OP ≤≤,则使线段OP 的长度为整数的点P 有3,4,5,共3个.故选A考点:1.垂径定理;2.勾股定理4.如图,在平面直角坐标系中,点A 的坐标为()4,3,那么sin α的值是()A .34B .43 C .45 D .35【答案】D【分析】过A 作AB ⊥x 轴于点B ,在Rt △AOB 中,利用勾股定理求出OA ,再根据正弦的定义即可求解.【详解】如图,过A 作AB ⊥x 轴于点B ,∵A 的坐标为(4,3)∴OB=4,AB=3,在Rt △AOB 中,2222OA=OB AB =43=5++∴AB 3sin ==OA 5α 故选:D .【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5.若方程()23220190m x x ---=是关于x 的一元二次方程,则m 应满足的条件是( ) A . 3 m >B .3m <C .3m ≠D .3m =【答案】C 【分析】根据一元二次方程的定义得出30m -≠,求出即可.【详解】解:()23220190m x x ---=是关于x 的一元二次方程,30m ∴-≠, ∴3m ≠.故选:C .【点睛】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是20ax bx c ++=(a 、b 、c 都是常数,且0)a ≠.6.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A 为60°角与直尺交点,点B 为光盘与直尺唯一交点,若 =3AB ,则光盘的直径是( ).A .63B .33C .6D .3【答案】A 【分析】设三角板与圆的切点为C ,连接OA OB 、,由切线长定理得出3AB AC ==、60OAB ∠︒=,根据OB tan OAB AB∠=可得答案. 【详解】解:设三角板与圆的切点为C ,连接OA 、OB ,如下图所示:由切线长定理知3AB AC OA BAC ∠==,平分 ,∴60OAB ∠︒= ,在Rt ABO 中,OB tan OAB AB∠= ∴ 3333OB ABtan OAB ∠===∴光盘的直径为3 ,故选A .【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键.7.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是14.如果袋中共有32个小球,那么袋中的红球有( )A .4个B .6个C .8个D .10个 【答案】C【解析】根据概率公式列方程求解即可.【详解】解:设袋中的红球有x 个,根据题意得:1324x =, 解得:x =8,故选C .【点睛】此题考查了概率公式的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 8.若函数y =(m 2-3m +2)x |m|-3是反比例函数,则m 的值是( )A.1 B.-2 C.±2 D.2 【答案】B【解析】根据反比例函数的定义,列出方程求解即可.【详解】解:由题意得,|m|-3=-1,解得m=±1,当m=1时,m1-3m+1=11-3×1+1=2,当m=-1时,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,∴m的值是-1.故选:B.【点睛】本题考查了反比例函数的定义,熟记一般式y=kx(k≠2)是解题的关键,要注意比例系数不等于2.9.如图,在⊙O中,分别将AB、CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD的面积是()A.8 B.163C.32 D.323【答案】B【分析】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=12OA,进而推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【详解】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD.∵AB∥CD,∴EF⊥CD.∵分别将AB、CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=12OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形.∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=3AD=43,∴四边形ABCD的面积是163.故选B.【点睛】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解答本题的关键.10.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.23cm B.3cm C.23cm D.1cm【答案】B【分析】连接AC,过E作EF⊥AC于F,根据正六边形的特点求出∠AEC的度数,再由等腰三角形的性质求出∠EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长.【详解】如图,连接AC,过E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多边形为正六边形,∴∠AEC=18046=120°,∴∠AEF=1202=60°, ∴∠EAF=30°,∴AF=AE ×cos30°=1×3=3, ∴AC=3,故选:B .【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键.11.如图,一张矩形纸片ABCD 的长AB =xcm ,宽BC =ycm ,把这张纸片沿一组对边AB 和D 的中点连线EF 对折,对折后所得矩形AEFD 与原矩形ADCB 相似,则x :y 的值为( )A .2B 2C .255+D .2-12【答案】B 【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD 是矩形,宽BC =ycm ,∴AD=BC=ycm ,由折叠的性质得:AE=12AB=12x , ∵矩形AEFD 与原矩形ADCB 相似,∴AE AD AD AB =,即12x y y x=, ∴x 2=2y 2,∴2y ,∴2x y=. 故选:B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.12.如图,已知四边形ABCD 是平行四边形,下列结论不正确的是( )A .当AC BD =时,它是矩形B .当AC BD ⊥时,它是菱形 C .当AD DC =时,它是菱形D .当90ABC ∠=︒时,它是正方形【答案】D 【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A. 正确,对角线相等的平行四边形是矩形;B. 正确,对角线垂直的平行四边形是菱形;C. 正确,有一组邻边相等的平行四边形叫做菱形;D. 不正确,有一个角是直角的平行四边形叫做矩形。
〖汇总3套试卷〗广州市2018年九年级上学期数学期末教学质量检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,五边形ABCDE 内接于O ,若35CAD ∠=︒,则B E ∠+∠的度数是( )A .210︒B .215︒C .235︒D .250【答案】B 【分析】利用圆内接四边形对角互补得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形内角和求出∠ADC +∠ACD=180°-∠CAD ,从而使问题得解.【详解】解:由题意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵35CAD ∠=︒∴∠ADC +∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=215︒故选:B【点睛】本题考查圆内接四边形对角互补和三角形内角和定理,掌握性质正确推理计算是本题的解题关键. 2.二次函数y =x 2﹣6x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )A .(﹣1,0)B .(4,0)C .(5,0)D .(﹣6,0)【答案】C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数26y x x m =-+得到对称轴是直线3x =,则抛物线与x 轴的两个交点坐标关于直线3x =对称,∵其中一个交点的坐标为()1,0,则另一个交点的坐标为()5,0,故选C .【点睛】考查抛物线与x 轴的交点坐标,解题关键是掌握抛物线的对称性质.3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A.2 B.2.5 C.3 D.4【答案】B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.34;B.43;C.45;D.54;【答案】A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得∠BCD=∠Atan∠BCD=tan∠A=34 BCAC=,故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.5.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.C.D.【答案】D【分析】根据把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A34B.5 C.8 D.4【答案】A【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】把ADE 顺时针旋转ABF 的位置,∴四边形AECF 的面积等于正方形ABCD 的面积等于25,AD DC 5∴==,DE 3=,Rt ADE ∴中,2222AE AD DE 5334=+=+=.故选A .【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 7.如图,点A 、B 、C 是⊙O 上的点,∠AOB=70°,则∠ACB 的度数是( )A .30°B .35°C .45°D .70°【答案】B 【解析】∵∠AOB=70°,∴∠ACB=12∠AOB=35°, 故选B . 8.下列判断错误的是( )A .有两组邻边相等的四边形是菱形B .有一角为直角的平行四边形是矩形C .对角线互相垂直且相等的平行四边形是正方形D .矩形的对角线互相平分且相等【答案】A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误;B. 有一角为直角的平行四边形是矩形,故该选项正确;C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D. 矩形的对角线互相平分且相等,故该选项正确;故选:A .【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键. 9.用配方法解一元二次方程241x x -=,变形正确的是( )A .2(2)0x -=B .2(2)5x -=C .2(1)1x -=D .2(1)5x -=【答案】B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:24414x x -+=+2(2)5x -=故选:B .【点睛】本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.10.如图,在正方形ABCD 中,ADE ∆绕点A 顺时针旋转90︒后与ABF ∆重合,6CF =,4CE =,则AC 的长度为( )A .4B .42C .5D .52【答案】D 【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可. 【详解】ADE ∆绕点A 顺时针旋转90︒后与ABF ∆重合∴ADE ABF ≅∴DE BF =四边形ABCD 为正方形∴CD BC AD ==46CD DE CD DE -=⎧∴⎨+=⎩51CD DE =⎧∴⎨=⎩在Rt ADC 中,22225552AC AD CD =++=故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.11.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是( )A .B .C .D .【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形;B 、不是轴对称图形,是中心对称图形;C 、是轴对称图形,也是中心对称图形;D 、不是轴对称图形,也不是中心对称图形.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.12.抛物线y=(x+1)2+2的顶点( )A .(﹣1,2)B .(2,1)C .(1,2)D .(﹣1,﹣2)【答案】A【解析】由抛物线顶点坐标公式[]y=a (x ﹣h )2+k 中顶点坐标为(h ,k )]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A .【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x ﹣h )2+k 中,顶点坐标为(h ,k ),对称轴为直线x=h .二、填空题(本题包括8个小题)13.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h-<-的解集是______.【答案】23x -<<【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.14.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【详解】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.15.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.【答案】61 1【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.【答案】1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12 AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=12×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.17.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为x米,则所列出的方程是_______(只列方程,不求解)【答案】()()50391800x x --=(答案不唯一)【分析】可设道路的宽为xm ,将4块剩余矩形平移为一个长方形,长为(50-x )m ,宽为(39-x )m .根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm ,依题意有(50-x )(39-x )=1.故答案为:()()50391800x x --= .【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.18.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.【答案】1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n 个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n 个图有(n 2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题(本题包括8个小题)19.已知反比例函数的图像经过点(2,-3).(1)求这个函数的表达式.(2)点(-1,6),(3,2)是否在这个函数的图像上?(3)这个函数的图像位于哪些象限?函数值y随自变量x的增大如何变化?【答案】(1)y=-6x;(2)(-1,6)在函数图像上,(3,2)不在函数图像上;(3)二、四象限,在每个象限内,y随x的增大而增大.【分析】(1)根据待定系数法求得即可;(2)根据图象上点的坐标特征,把点(﹣1,6),(3,2)代入解析式即可判断;(3)根据反比例函数的性质即可得到结论.【详解】(1)设反比例函数的解析式为ykx=(k≠0).∵反比例函数的图象经过点(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的表达式y6x =-;(2)把x=﹣1代入y6x=-得:y=6,把x=3代入y6x=-得:y=﹣2≠2,∴点(﹣1,6)在函数图象上,点(3,2)不在函数图象上.(3)∵k=﹣6<0,∴双曲线在二、四象限,在每个象限内y随x的增大而增大.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握待定系数法以及反比例函数的性质是解答本题的关键.20.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示):(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:2 1.41,3 1.73,6 2.45≈≈≈)【答案】(1)902海里;(2)1.4小时.【分析】(1)过点M作MD⊥AB于点D,根据AM=180海里以及△AMD的三角函数求出MD的长度;(2)根据三角函数求出MB的长度,然后计算.【详解】解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴2(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是2海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵2海里,∴6海里,∴6÷20≈1.4(小时),答:渔船从B到达小岛M的航行时间约为1.4小时.考点:三角函数的实际应用21.在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).【答案】(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+3m或12m﹣36m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC 于H.分别求解即可解决问题.【详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=12BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=12 AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=33m,∵BE=ED,∴CE =12BD =3m , ∴EM =CM+CE =m+3m . 如图3﹣2中,当点N 在线段AC 上时,作OH ⊥AC 于H .∵∠AON =15°,∠CAB =30°, ∴∠ONH =15°+30°=45°,∴OH =HN =12m , ∵AH =32m , ∴CM =AN =32m ﹣12m , ∵EC 3, ∴EM =EC ﹣CM 3﹣3﹣12m)=12m ﹣36m , 综上所述,满足条件的EM 的值为3或12m 3. 【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.22.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为()4,1-,点B 的坐标为()1,1-.(1)先将Rt ABC 向右平移5个单位,再向下平移1个单位后得到111Rt A B C △.试在图中画出图形111Rt A B C △,并写出1A 的坐标;(2)将111Rt A B C △绕点1A 顺时针旋转90︒后得到222Rt A B C △,试在图中画出图形222Rt A B C △.并计算在该旋转过程中111Rt A B C △扫过部分的面积.【答案】(1)见解析,1A 的坐标为()1,0; (2)见解析,1334π+ 【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标即可;(2)根据网格结构找出点A 1、B 1、C 1绕点A 1顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再根据勾股定理求出A 1C 1的长度,然后根据弧长公式列式计算即可得解.【详解】解:(1)如图所示,111A B C △即为所求作的三角形,∴点1A 的坐标为()1,0;(2)如图所示,222A B C △即为所求作的三角形,根据勾股定理,22112313AC =+=, ∴111Rt A B C △扫过的面积:290(13)11323324ππ⨯⨯+⨯⨯=+;【点睛】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.23.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过点(4,0),(1,0)A B -,交y 轴于点C . (1)求抛物线的解析式.(2)点D 是线段AC 上一动点,过点D 作DE 垂直于x 轴于点E ,交抛物线于点F ,求线段DF 的长度最大值.【答案】(1)234y x x =-++;(2)4.【分析】(1)根据A 、B 坐标可得抛物线两点式解析式,化为一般形式即可;(2)根据抛物线解析式可得C 点坐标,利用待定系数法可得直线AC 的解析式为y=-x+4,设D 点坐标为(,4)m m -+,则()2,34F m m m -++,用m 表示出DF 的长,配方为二次函数顶点式的形式,根据二次函数的性质求出DF 的最大值即可.【详解】(1)∵拋物线24y x bx =-++经过点(4,0),(1,0)A B -,∴(4)(1)y x x =--+∴拋物线的解析式为234y x x =-++.(2)∵拋物线的解析式为234y x x =-++,∴(0,4)C ,设直线AC 的解析式为y=kx+b ,∴404k b b +=⎧⎨=⎩, ∴1k =-,b=4,∴直线AC 的解析式为4y x =-+设D 点坐标为(,4)m m -+,则()2,34F m m m -++∴()2234(4)4DF m m m m m =-++--+=-+=-(m-2)2+4,∴当m=2时,DF 的最大值为4.【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练掌握二次函数解析式的三种形式及二次函数的性质是解题关键.24.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1) ①直接写出抛物线的对称轴是________;②用含a 的代数式表示b ;(2)横、纵坐标都是整数的点叫整点.点A 恰好为整点,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【答案】(1)①直线x =1;②b =-1a ;(1)-1≤a <-1或1<a≤1.【分析】(1) ①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式2b x a =-进一步求解即可; (1)分两种情况:①0a >,②0a <,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c ,∴点A 坐标为(0,c ),∵点A 向右平移1个单位长度,得到点B ,∴点B (1,c ),∵点B 在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴12b a-=,即2b a =-; (1)①如图,若0a >,因为点A (0,c ),B (1,c )都是整点,且指定区域内恰有一个整点,因此这个整点D 的坐标必为(1,c -1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C (1,c -a )做位置与数量关系上的比较,必须考虑到紧邻点D 的另一个整点E (1,c -1)不在指定区域内,所以可列出不等式组:12c c a c c a ->-⎧⎨-≤-⎩,解得:12a <≤; ②如图,若0a <,同理可得:12c c ac c a+<-⎧⎨+≥-⎩,解得:21a-≤<-;综上所述,符合题意的a的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.25.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【答案】(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.26.不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.【答案】(1)14;(2)23.【解析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率=416=14;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率=812=23.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.27.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】 (1)y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6≤x≤10时,由题意设y =kx +b(k =0),利用待定系数法求得k 、b 的值即可;当10<x≤12时,由图象可知y =200,由此即可得答案;(2))设利润为w 元,当6≦x≤10时,w =-2002172x -()+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w =200x -1200,由一次函数的性质结合x 的取值范围可求得w 的最大值为1200,两者比较即可得答案.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200), ∴1000620010k b k b=+⎧⎨=+⎩ , 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∵-200<0,6≦x≤10,当x=172时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的几何体的主视图为( )A .B .C .D .【答案】B 【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.2.关于x 的一元二次方程230x x m -+=中有一根是1,另一根为n ,则m 与n 的值分别是( ) A .m=2,n=3B .m=2,n=-3C .m=2,n=2D .m=2,n=-2 【答案】C【分析】将根是1代入一元二次方程,即可求出m 的值,再解一元二次方程,可求出两个根,即可求出n 的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴2320x x -+=∴解得x 1=1,x 2=2∴n=2故选C .【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键. 3.反比例函数2y x =的图象分布的象限是( ) A .第一、三象限B .第二、四象限C .第一象限D .第二象限 【答案】A【解析】先根据反比例函数的解析式判断出k 的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=2x中,k=2>0,∴反比例函数y=2x的图象分布在一、三象限. 故选:A .【点睛】 本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键. 4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4【答案】B 【解析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.5.如图,点(),Q m n (1m )是反比例函数1y x=上的动点,过Q 分别作x 轴,y 轴的垂线,垂足分别为A ,B .随着m 的增大,四边形OAQB 的面积( )A .增大B .减小C .不确定D .不变【答案】D 【分析】由长方形的面积公式可得出四边形OAQB 的面积为mn ,再根据点Q 在反比例函数图象上,可知1mn = ,从而可判断面积的变化情况.【详解】∵点(),Q m n,OA m AQ n ∴==∴四边形OAQB 的面积为·OA AQ mn =, ∵点(),Q m n (1m )是反比例函数1y x=上的动点 1mn ∴=∴四边形OAQB 的面积为定值,不会发生改变故选:D .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键. 6.下列图案中,是中心对称图形的是( )A .B .C .D .【答案】C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.7.若32x y =,则下列等式一定成立的是( ) A .32x y = B .6xy = C .23xy = D .23yx =【答案】D【分析】根据比例的性质a cb d =,则ad=bc ,逐个判断可得答案.【详解】解:由32x y =可得:2x=3yA. 32x y =,此选项不符合题意B. 6xy =,此选项不符合题意C. 23xy =,则3x=2y ,此选项不符合题意D. 23yx =,则2x=3y ,正确故选:D【点睛】本题考查比例的性质,解题关键在于掌握acb d =,则ad=bc.8.在同一坐标系中,反比例函数y =kx 与二次函数y =kx 2+k(k ≠0)的图象可能为() A . B .C .D .【答案】D【解析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符. 分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【点睛】本题主要考查二次函数、反比例函数的图象特点.9.如图,l 1∥l 2∥l 3,若32AB BC =,DF=6,则DE 等于( )A .3B .3.2C .3.6D .4【答案】C 【解析】试题解析:根据平行线分线段成比例定理,可得:3,2AB DE BC EF == 设3,2,DE x EF x ==5 6.DF x ∴==解得: 1.2.x =3 3.6.DE x ∴==故选C.10.如图,点O 为正五边形ABCDE 外接圆的圆心,五边形ABCDE 的对角线分别相交于点P ,Q ,R ,M ,N .若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有( )个黄金三角形.A .5B .10C .15D .20【答案】D【分析】根据正五边形的性质和黄金三角形的定义进行分析.【详解】根据题意,得图中的黄金三角形有△EMR、△ARQ、△BQP、△CNP、△DMN、△DER、△EAQ、△ABP、△BCN、△CDM、△DAB、△EBC、△ECA、△ACD、△BDE,△ABR,△BQC,△CDP,△DEN,△EAQ,共20个.故选D.【点睛】此题考查了正五边形的性质和黄金三角形的定义.注意:此图中所有顶角是锐角的等腰三角形都是黄金三角形.11.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为( )A.3B3C.2 D.4【答案】A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH3.【详解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH3OH3∴AB=2AH=3故选:A.【点睛】本题考查了垂径定理以及解直角三角形,难度不大,掌握相关性质定理是解题关键.12.正八边形的中心角为()A.45°B.60°C.80°D.90°【答案】A【分析】根据中心角是正多边形的外接圆相邻的两个半径的夹角,即可求解.【详解】∵360°÷8=45°,∴正八边形的中心角为45°,故选:A.【点睛】本题主要考查正八边形的中心角的定义,理解正八边形的外接圆相邻的两个半径的夹角是中心角,是解题。
{3套试卷汇总}2018年广东省名校九年级上学期期末学业质量检查模拟数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若反比例函数y=kx的图象经过点(3,1),则它的图象也一定经过的点是()A.(﹣3,1)B.(3,﹣1)C.(1,﹣3)D.(﹣1,﹣3)【答案】D【分析】由反比例函数y=kx的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.【详解】∵反比例函数y=kx的图象经过点(3,1),∴y=3x,把点一一代入,发现只有(﹣1,﹣3)符合.故选D.【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.2.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.0【答案】D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.3.已知下列命题:①等弧所对的圆心角相等;②90°的圆周角所对的弦是直径;③关于x的一元二次方程20(a0)++=≠ax bx c有两个不相等的实数根,则ac< 0;④若二次函数y= 223ax ax-+的图象上有两点(-1,y1)、(2,y2),则1y>2y;其中真命题的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】利用圆周角定理、一元二次方程根的判别式及二次函数的增减性分别判断正误后即可得到正确的选项.【详解】解:①等弧所对的圆心角也相等,正确,是真命题;②90°的圆周角所对的弦是直径,正确,是真命题;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-ac >0,但不能够说明ac< 0,所以原命题错误,是假命题;④若二次函数223ax ax -+的图象上有两点(-1,y 1)(2,y 2),则y 1>y 2,不确定,因为a 的正负性不确定,所以原命题错误,是假命题;其中真命题的个数是2,故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解圆周角定理、一元二次方程根的判别式及二次函数的增减性,难度不大.4.若点()12,y -,()21,y -,()33,y 在双曲线上1y x =-,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 【答案】C【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可.【详解】解:∵若点()12,y -,()21,y -,()33,y 在双曲线上1y x =-, ∴12311,1,23y y y ===- ∴312y y y <<故选:C .【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题.5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对【答案】C 【解析】∵∠ACB=90°,CD ⊥AB ,∴△ABC ∽△ACD ,△ACD ∽CBD ,△ABC ∽CBD ,所以有三对相似三角形.故选C.6.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣3,1)D.(3,﹣1)【答案】D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=12OB=1,OH=32OB3∴B31),∴点B关于原点O31).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.7.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A.12B.13C.14D.15【答案】B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为21 63 =,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.8.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A.BDCBB.CDCBC.ACABD.ADAC【答案】A【解析】根据垂直定义证出∠A=∠DCB,然后根据余弦定义可得答案.【详解】解:∵CD是斜边AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB,∴cosA=AC CD AD AB CB AC==故选A.【点睛】考查了锐角函数定义,关键是掌握余弦=邻边:斜边.9.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【答案】B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=.故选B .10.如图所示的图案是由下列哪个图形旋转得到的( )A .B .C .D .【答案】D【解析】由一个基本图案可以通过旋转等方法变换出一些复合图案. 【详解】由图可得,如图所示的图案是由绕着一端旋转3次,每次旋转90°得到的, 故选:D .【点睛】此题考查旋转变换,解题关键是利用旋转中的三个要素(①旋转中心; ②旋转方向; ③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案. 11.函数2y ax a =+与()0a y a x=≠,在同一坐标系中的图象可能是( ) A .B .C .D .【答案】D【解析】由二次函数y=ax 2+a 中一次项系数为0,我们易得函数y=ax 2+a 的图象关于y 轴对称,然后分当a >0时和a <0时两种情况,讨论函数y=ax 2+a 的图象与函数y=a x (a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax 2+a 中一次项系数为0,我们易得函数y=ax 2+a 的图象关于y 轴对称,可排除A ;当a >0时,函数y=ax 2+a 的图象开口方向朝上,顶点(0,a )点在x 轴上方,可排除C ;当a <0时,函数y=ax 2+a 的图象开口方向朝下,顶点(0,a )点在x 轴下方,函数y=a x(a≠0)的图象位于第二、四象限,可排除B ; 故选:D .【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1﹣x )2=100B .100(1﹣x )2=144C .144(1+x )2=100D .100(1+x )2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.二、填空题(本题包括8个小题)13.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.【答案】6【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵13BE DF BC==,∴12EG BEAG AF==,∴211,24BEG BEGABG AFGS SEG BES AG S AF∆∆∆∆⎛⎫====⎪⎝⎭,∵1BEGS∆=,∴2ABGS∆=,4AFGS∆=,∴6ABF ABG AFGS S S∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.14.如图,A、B、C为⊙O上三点,且∠ACB=35°,则∠OAB的度数是______度.【答案】1【分析】根据题意易得∠AOB=70°,然后由等腰三角形的性质及三角形内角和可求解.【详解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴18070552OAB︒-︒∠==︒;故答案为1.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.15.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.【答案】59. 【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【详解】∵大圆半径为3,小圆半径为2,∴S 大圆239ππ==(m 2),S 小圆224ππ==(m 2),S 圆环=9π﹣4π=5π(m 2),∴掷中阴影部分的概率是5599ππ=. 故答案为:59. 【点睛】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.16.如图,直线y =ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b =0的解是_____.【答案】x =﹣1【分析】所求方程ax+b =0的解,即为函数y =ax+b 图像与x 轴交点横坐标,根据已知条件中点B 即可确定.【详解】解:方程ax+b =0的解,即为函数y =ax+b 图象与x 轴交点的横坐标,∵直线y =ax+b 过B (﹣1,0),∴方程ax+b =0的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.17.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.610【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°, ∴22223110AC AD CD =+=+∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴310AB = ∴6105AB = 故答案为:105. 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.18.若锐角A 满足1cos 2A =,则A ∠=__________︒. 【答案】60︒【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A 为锐角,且1cos 2A =, ∠A=60°,故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.三、解答题(本题包括8个小题)19.(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【答案】(1)10%;(2)1.【解析】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.2.∴m≥1.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品1件.考点:一元二次方程的应用;一元一次不等式的应用.20.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.【答案】(1)见解析;(2)图中阴影部分的面积为4233π-.【分析】(1)连接OC交DE于F,根据矩形的判定定理证出四边形CEOD是矩形,根据矩形的性质和等边对等角证出∠FCD=∠CDF,然后根据切线的性质可得∠OCG=90°,然后根据同角的余角相等即可证出结论;(2)根据题意,求出∠COD=30°,然后利用锐角三角函数求出CD和OD,然后根据扇形的面积公式和三角形的面积公式即可求出结论.【详解】证明:(1)连接OC交DE于F,∵CD⊥OA,CE⊥OB,∴∠CEO=∠AOB=∠CDO=90°,∴四边形CEOD是矩形,∴CF=DF=EF=OF,∠ECD=90°,∴∠FCD=∠CDF,∠ECF+∠FCD=90°,∵CG是⊙O的切线,∴∠OCG=90°,∴∠OCD+∠GCD=90°,∴∠ECF=∠GCD,∵∠DCG+∠CGD=90°,∴∠FCD=∠CGD,∴∠CGO=∠CDE;(2)由(1)知,∠CGD=∠CDE=60°,∴∠DCO=60°,∴∠COD=30°,∵OC=OA=4,∴CD=2,OD=3,∴图中阴影部分的面积=2304360π⋅⨯﹣12⨯2×3=43π﹣3.【点睛】此题考查的是矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积,掌握矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积是解决此题的关键.21.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.【答案】x 1=2,x 2=8.【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩ ∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.22.观察下列各式:﹣1×12=﹣1+12,﹣1123⨯=﹣1123+,﹣1134⨯=﹣1134+ (1)猜想:﹣1100×1101= (写成和的形式) (2)你发现的规律是:﹣1n ×11n += ;(n 为正整数) (3)用规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣12017×12018)+(﹣12018×12019). 【答案】(1)﹣11+100101;(2)﹣11+1n n +;(3)﹣20182019. 【分析】(1)根据所给式子进行求解即可;(2)根据已知式子可得到111n n -++; (3)分别算出括号里的式子然后相加即可;【详解】解:(1)由所给的已知发现乘积的等于和, ∴1111100101100101-⨯=-+, 故答案为11100101-+; (2)111111n n n n -⨯=-+++,故答案为111n n -++; (3)1111111111223342017201820182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111111112233420182019=-+-+-+--+, 112019=-+, 20182019=-. 【点睛】本题主要考查了找规律数字运算,准确计算是解题的关键.23.某校组织了一次七年级科技小制作比赛,有A 、B 、C 、D 四个班共提供了100件参赛作品,C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【答案】(1)B 班参赛作品有25件;(2)补图见解析;(3)C 班的获奖率高.【分析】(1)直接利用扇形统计图中百分数,求出B 班所占的百分比,进而求出B 班参赛作品数; (2)利用C 班提供的参赛作品的获奖率为50%,结合C 班参赛数量得出获奖数量,从而补全统计图; (3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B 班参赛作品有()()100135%20%20%25⨯---=件;(2)C 班参赛作品获奖数量为()10020%50%)10⨯⨯=件,补图如下: ;(3)A 班的获奖率为14100%40%10035%⨯=⨯ , B 班的获奖率为11100%44%25⨯=, C 班的获奖率为50%,D 班的获奖率为8100%40%10020%⨯=⨯, 故C 班的获奖率高.24.永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方 法如下:如图所示,间接测得该塔底部点B 到地面上一点E 的距离为48m ,塔的顶端 为点A ,且 AB EB ⊥,在点E 处竖直放一根标杆,其顶端为 D DE EB ⊥,,在 BE 的延长 线上找一点 C ,使 C D A ,,三点在同一直线上,测得 2 CE m =. (1)方法 1,已知标杆 2.2 DE m =,求该塔的高度;(2)方法 2,测得47.5ACB ∠=︒,已知47.5 1.09tan ︒≈,求该塔的高度.【答案】(1)55m ;(2)54.5m【分析】(1)直接利用相似三角形的判定与性质得出AB BC DE CE =,进而得出答案;(2)根据锐角三角函数的定义列出AB tan ACB BC∠=,,然后代入求值即可. 【详解】解:1AB EB DE EB ⊥⊥(),90DEC ABC ∴∠=∠=︒ABC DEC ∴∽则AB BC DE CE= 即 4.822.22AB += 解得:55AB =答:该塔的高度为 55 m.()2在Rt ABC 中AB tan ACB BC∠=, 48247.554.5AB tan ∴=+⨯︒≈()答:该塔的高度为54.5 m【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.25.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【答案】(1)40,补图详见解析;(2)108°;(3)16.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【详解】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×1240=108°; (3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是212=16. 【点睛】此题主要考查统计图的运用及概率的求解,解题的关键是根据题意列出树状图,再利用概率告诉求解. 26.将矩形AOCB 如图放置在平面直角坐标系中,E 为边OC 上的一个动点,过点E 作ED AE ⊥交BC 边于点D ,且OA ,OC 的长是方程220960x x -+=的两个实数根,且OC OA >.(1)设OE x =,CD y =,求y 与x 的函数关系(不求x 的取值范围);(2)当D 为BC 的中点时,求直线AE 的解析式;(3)在(2)的条件下,平面内是否存在点F ,使得以A ,D ,B ,F 为顶点的四边形为平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.【答案】(1)21382y x x =-+;(2)28y x =-+或8y x =-+;(3)存在.()10,12F ,()224,4F ,()30,4F . 【分析】(1)利用因式分解法解出一元二次方程,得到OA 、OB 的长,证明△AOE ∽△ECD ,根据相似三角形的性质列出比例式,整理得到y 与x 的函数关系;(2)列方程求出OE ,利用待定系数法求出直线AE 的解析式;(3)根据平行四边形的性质、坐标与图形性质解答.【详解】(1)220960x x -+=,()()1280x x --=,∴解得112x =,28x =.∵OC OA >,∴8OA =,12OC =.∵ED AE ⊥,∴∠AEO +∠DEC =90︒,又∵∠AEO +∠OAE =90︒,∴∠OAE =∠CED ,又∠AOE =∠ECD =90︒,∴AOEECD ∆∆, ∴AO OE EC CD =, ∴812x x y=-, ∴21382y x x =-+. (2)当D 为BC 的中点时,4y =. ∵213+82y x x =-, ∴213+482x x -=. 解得14x =,28x =.当4x =时,设直线AE 的解析式为y kx b =+,把A (0,8),E (4,0)代入得40,8.k b b +=⎧⎨=⎩解得2,8.k b =-⎧⎨=⎩, ∴28y x =-+;当8x =时,设直线AE 的解析式为11y k x b =+,把A (0,8),E (8,0)代入得11180,8.k b b +=⎧⎨=⎩解得111,8.k b =-⎧⎨=⎩, ∴直线AE 的解析式为28y x =-+或8y x =-+.(3)当点F 在线段OA 上时,FA =BD =4,∴OF =4,即点F 的坐标为(0,4),当点F 在线段OA 的延长线上时,FA =BD =4,∴OF =12,即点F 的坐标为(0,12),当点F 在线段BC 右侧、AB ∥DF 时,DF =AB =12,∴点F 的坐标为(24,4),综上所述,以A ,D ,B ,F 为顶点的四边形为平行四边形时,点F 的坐标为(0,4)或(0,12)或(24,4).【点睛】本题考查的是一次函数的性质、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.27.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)【答案】(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8; 在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是:15[(7-8)2+3(8-8)2+(9-8)2]=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是:15[2(6-8)2+2(9-8)2+(10-8)2]=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.2.如图,⊙O 的圆周角∠A =40°,则∠OBC 的度数为( )A .80°B .50°C .40°D .30°【分析】然后根据圆周角定理即可得到∠OBC 的度数,由OB=OC ,得到∠OBC=∠OCB ,根据三角形内角和定理计算出∠OBC .【详解】∵∠A=40°.∴∠BOC=80°,∵OB=OC ,∴∠OBC=∠OCB=50°,故选:B .【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.3.若()1A 4,y -,21B ,y 4⎛⎫-⎪⎝⎭,()3C 3,y 为二次函数2y (x 2)9=+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【答案】B【解析】试题分析:根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣2,根据x >﹣2时,y 随x 的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,A (﹣4,y 1)关于直线x=﹣2的对称点是(0,y 1),∵﹣<0<3,∴y 2<y 1<y 3,故选B .点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.4.如图,在正方形ABCD 中,点E 是CD 的中点,点F 是BC 上的一点,且BF =3CF ,连接AE 、AF 、EF ,下列结论:①∠DAE =30°,②△ADE ∽△ECF ,③AE ⊥EF ,④AE 2=AD•AF ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个【分析】根据题意可得tan ∠DAE 的值,进而可判断①;设正方形的边长为4a ,根据题意用a 表示出FC ,BF ,CE ,DE ,然后根据相似三角形的判定方法即可对②进行判断;在②的基础上利用相似三角形的性质即得∠DAE =∠FEC ,进一步利用正方形的性质即可得到∠DEA+∠FEC =90°,进而可判断③;利用相似三角形的性质即可判断④.【详解】解:∵四边形ABCD 是正方形,E 为CD 中点,∴CE =ED =12DC =12AD , ∴tan ∠DAE =12DE AD =,∴∠DAE ≠30°,故①错误; 设正方形的边长为4a ,则FC =a ,BF =3a ,CE =DE =2a ,∴2,2DE AD FC EC ==,∴DE AD FC EC=,又∠D =∠C=90°, ∴△ADE ∽△ECF ,故②正确;∵△ADE ∽△ECF ,∴∠DAE =∠FEC ,∵∠DAE+∠DEA =90°∴∠DEA+∠FEC =90°,∴AE ⊥EF .故③正确;∵△ADE ∽△ECF ,∴AD AE AE AF=,∴AE 2=AD•AF ,故④正确. 综上,正确的个数有3个,故选:C.【点睛】本题考查了正方形的性质、锐角三角函数、相似三角形的判定和性质等知识,属于常考题型,熟练掌握正方形的性质和相似三角形的判定和性质是解题的关键.5.Rt ABC ∆中,90C ∠=︒,15b =,4c =,则cos B 的值是( )A 15B .13C 15D .14【答案】D【分析】根据勾股定理求出BC 的长度,再根据cos 函数的定义求解,即可得出答案.【详解】∵AC=15,AB=4,∠C=90°∴221BC AC AB =-= ∴14BC cosB AB == 故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin 函数、cos 函数和tan 函数分别代表的意思.6.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子( )A .122B .120C .118D .116【答案】A 【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.找到其规律即可解答.【详解】第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;进一步发现规律:第n 个“上”字中的棋子个数是(4n+2).所以第30个“上”字需要4×30+2=122枚棋子.故选:A .【点睛】此题考查规律型:图形的变化,解题关键是通过归纳与总结,得到其中的规律.7.如图,两个反比例函数14y x=和1y x =在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC x ⊥轴于点C ,交C 2于点A ,PD y ⊥轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .2B .3C .4D .5【答案】B 【解析】试题分析:∵PC ⊥x 轴,PD ⊥y 轴,∴S矩形PCOD=4,S△AOC=S△BOD=12×1=12,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=4-12-12=1.故选B.考点:反比例函数系数k的几何意义.8.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3 C.D.1:2【答案】A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.∴坡度i=;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.9.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y 轴的交点坐标为(3,0).A.1 B.2 C.3 D.4【答案】B【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.10.若反比例函数2k yx (k 为常数)的图象在第二、四象限,则k 的取值范围是( ) A .2k <-B .2k >-且0k ≠C .2k >D .2k <且0k ≠ 【答案】C【分析】根据反比例函数的性质得1-k <0,然后解不等式即可.【详解】根据题意得1-k <0,解得k >1.故选:C .【点睛】此题考查反比例函数的性质,解题关键在于掌握反比例函数y=k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.11.已知sinαcosα=18,且0°<α<45°,则sinα-cosα的值为( )A .2B .-2C .34D .±2【答案】B【分析】由题意把已知条件两边都乘以2,再根据sin 2α+cos 2α=1,进行配方,然后根据锐角三角函数值求出cosα与sinα的取值范围,从而得到sinα-cosα<0,最后开方即可得解.【详解】解:∵sinαcosα=18, ∴2sinα•cosα=14, ∴sin2α+cos2α-2sinα•cosα=1-14, 即(sinα-cosα)2=34, ∵0°<α<45°,<cosα<1,0<sinα, ∴sinα-cosα<0,∴sinα-cosα= -2.。
∥3套精选试卷∥2018年广州市某达标名校九年级上学期期末教学质量检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形【答案】C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A、经过任意两点画一条直线,是必然事件,故此选项错误;B、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误;C、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误;故选:C.【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.2.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=()A.80°B.70°C.60°D.50°【答案】D【分析】根据圆周角的性质可得∠ABC=∠D,再根据直径所对圆周角是直角,即可得出∠ACO的度数.【详解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=12(180°﹣∠AOC)=50°,故选:D.【点睛】本题考查圆周角的性质,关键在于熟练掌握圆周角的性质,特别是直径所对的圆周角是直角.3.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=kx(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.32【答案】D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD2222345OM DM+=+=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入k yx =得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.4.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为( )A .1B .1-C .2D .2-【答案】A【分析】根据方程有两个相等的实数根列方程求解即可.【详解】由题意得∆=0,∴4-4k=0,解得k=1,故选:A .【点睛】此题考查了一元二次方程的根的情况求未知数的值,正确掌握一元二次方程的根的三种情况:方程有两个不相等的实数根时∆>0,方程有两个相等的实数根时∆=0,方程没有实数根时∆<0.5.如图,二次函数y =ax 1+bx+c (a≠0)图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(﹣1,0).则下面的四个结论:①1a+b =0;②4a ﹣1b+c <0;③b 1﹣4ac >0;④当y <0时,x <﹣1或x >1.其中正确的有( )A .4个B .3个C .1个D .1个【答案】B 【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】∵二次函数y =ax 1+bx+c (a≠0)的对称轴为x =1, ∴﹣2b a=1,得1a+b =0,故①正确; 当x =﹣1时,y =4a ﹣1b+c <0,故②正确;该函数图象与x 轴有两个交点,则b 1﹣4ac >0,故③正确;∵二次函数y =ax 1+bx+c (a≠0)的对称轴为x =1,点B 坐标为(﹣1,0),∴点A (3,0),∴当y <0时,x <﹣1或x >3,故④错误;故选B .【点睛】本题考查二次函数图象与系数的关系、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6.如图,在平面直角坐标系中,已知点A 的坐标是(0,2),点P 是曲线(0)k y x x =>上的一个动点,作PB x ⊥轴于点B ,当点P 的橫坐标逐渐减小时,四边形OAPB 的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先减小后增大【答案】C 【分析】设点P 的坐标,表示出四边形OAPB 的面积,由反比例函数k 是定值,当点P 的横坐标逐渐减小时,四边形OAPB 的面积逐渐减小.【详解】点A(0,2),则OA=2,设点k P x x ⎛⎫ ⎪⎝⎭,,则k OB x PB x ==,, ()AOBP 1112222k S OA PB OB x k x x ⎛⎫=+=+=+ ⎪⎝⎭四边形, ∵k 为定值,∴随着点P 的横坐标x 的逐渐减小时,四边形AONP 的面积逐渐减小故选:C .【点睛】考查反比例函数k 的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.7.如图所示,抛物线y=ax 2-x+c (a >0)的对称轴是直线x=1,且图像经过点 (3,0),则a+c 的值为( )A .0B .-1C .1D .2【答案】B 【解析】∵抛物线2(0)y ax x c a =-+>的对称轴是直线1x =,且图像经过点P (3,0),∴930112a c a-+=⎧⎪-⎨-=⎪⎩ ,解得:1232a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴13()122a c +=+-=-. 故选B.8.如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB=5,CD=3,则EF 的长是( )A .4B .3C .2D .1【答案】D 【详解】连接DE 并延长交AB 于H ,∵CD ∥AB ,∴∠C=∠A ,∠CDE=∠AHE .∵E 是AC 中点,∴DE=EH .∴△DCE ≌△HAE (AAS ).∴DE=HE ,DC=AH .∵F 是BD 中点,∴EF 是△DHB 的中位线.∴EF=12BH . ∴BH=AB ﹣AH=AB ﹣DC=2.∴EF=2.故选D .9.如图,在△ABC 中,点D 在AB 上、点E 在AC 上,若∠A =60°,∠B =68°,AD ·AB =AE ·AC ,则∠ADE 等于A .52°B .62°C .68°D .72°【答案】A 【分析】先证明△ADE ∽△ACB ,根据对应角相等即可求解.【详解】∵AD·AB=AE·AC , ∴AD AC AE AB =,又∠A=∠A , ∴△ADE ∽△ACB ,∴∠ADE=∠C=180°-∠A-∠B=52°,故选A.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定定理.10.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是( ) A .15B .13C .7D .1- 【答案】A【详解】试题分析:由错误的结果求出x 的值,代入原式计算即可得到正确结果.解:根据题意得:16+13x=17, 解得:x=3,则原式=16﹣13x=16﹣1=15, 故选A考点:解一元一次方程.11.二次函数2y ax bx =+的图象如图所示,若关于x 的一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .-7B .7C .-10D .10【答案】B 【分析】把一元二次方程根的个数问题,转化为二次函数2y ax bx =+的图象与直线y=-m 的图象的交点问题,然后结合图形即可解答.【详解】解:将20ax bx m ++=变形可得:2ax bx m +=-∵关于x 的一元二次方程20ax bx m ++=有实数根,∴二次函数2y ax bx =+的图象与直线y=-m 的图象有交点如下图所示,易得当-m ≥-7,二次函数2y ax bx =+的图象与直线y=-m 的图象有交点解得:m ≤7故m 的最大值为7故选B .【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键.12.已知点P (1,-3)在反比例函数k y (k 0)x =≠的图象上,则k 的值是 A .3B .-3C .D . 【答案】B【解析】根据点在曲线上,点的坐标满足方程的关系,将P (1,-1)代入k y x =,得k 31-=,解得k=-1.故选B .二、填空题(本题包括8个小题)13.如图,河的两岸a 、b 互相平行,点A 、B 、C 是河岸b 上的三点,点P 是河岸a 上一个建筑物,在A 处测得30PAB ∠=︒,在B 处测得75PBC ∠=︒,若80AB =米,则河两岸之间的距离约为______米(3 1.73≈,结果精确到0.1米)(必要可用参考数据:tan 7523︒=+)【答案】54.6【分析】过P 点作PD 垂直直线b 于点D ,构造出两个直角三角形,设河两岸之间的距离约为x 米,根据所设分别求出BD 和AD 的值,再利用AD=AB+BD 得出含x 的方程,解方程即可得出答案.【详解】过P 点作PD 垂直直线b 于点D设河两岸之间的距离约为x 米,即PD=x ,则BD 75x tan =︒,AD 30x tan =︒ 可得:803075x x tan tan =+︒︒解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD 垂直直线b 于点D ,构造出直角三角形.14.一种微粒的半径是1.11114米,这个数据用科学记数法表示为____.【答案】5410-⨯【解析】试题分析:科学计数法是指a×10n ,且1≤a <11,小数点向右移动几位,则n 的相反数就是几.考点:科学计数法15.在平面直角坐标系中,反比例函数k y x =的图象经过点(),4A m ,(6,6B -,则m 的值是__________. 【答案】32- 【分析】将点B 的坐标代入反比例函数求出k ,再将点A 的坐标代入计算即可;【详解】(1)将(6,6B -代入k y x =得,k =66=-6, 所以,反比例函数解析式为6y x=-, 将点(),4A m 的坐标代入得64m=- 所以m =32-, 故填:32-. 【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.16.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.【答案】1【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB 2268+=10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为1,故答案为1.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.17.如图,为了测量塔CD 的高度,小明在A 处仰望塔顶,测得仰角为30,再往塔的方向前进60m 至B 处,测得仰角为60︒,那么塔的高度是____________m .(小明的身高忽略不计,结果保留根号)【答案】303 【分析】由题意易得:∠A=30°,∠DBC=60°,DC ⊥AC ,即可证得△ABD 是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC ⊥AC ,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m ,∴CD=BD •sin60°=60×3=303(m ). 故答案为:303.【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD 是等腰三角形,利用特殊角的三角函数值求解是关键.18.如图,面积为6的矩形OABC 的顶点B 在反比例函数()0k y x x=<的图像上,则k =__________.【答案】-1【分析】根据反比例函数系数k 的几何意义可得|k|=1,再根据函数所在的象限确定k 的值. 【详解】解:∵反比例函数()0k y x x =<的图象经过面积为1的矩形OABC 的顶点B , ∴|k|=1,k=±1,∵反比例函数()0k y x x =<的图象经过第二象限, ∴k=-1.故答案为:-1.【点睛】主要考查了反比例函数()0k y x x =<中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|.三、解答题(本题包括8个小题)19.解方程:4x 2﹣2x ﹣1=1.【答案】115x +=,21-5x = 【分析】根据一元二次方程的解法,配方法或者公式法解答即可.【详解】解:由题意可知:a =4,b =﹣2,c =﹣1,∴△=4+16=21,∴x=2201584±±=; 【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.20.已知:△ABC 中∠ACB =90°,E 在AB 上,以AE 为直径的⊙O 与BC 相切于D ,与AC 相交于F ,连接AD .(1)求证:AD 平分∠BAC ;(2)若DF ∥AB ,则BD 与CD 有怎样的数量关系?并证明你的结论.【答案】 (1)见解析;(2) BD =2CD 证明见解析【分析】(1)连接OD .根据圆的半径都相等的性质及等边对等角的性质知:∠OAD =∠ODA ;再由切线的性质及平行线的判定与性质证明∠OAD =∠CAD ;(2)连接OF ,根据等腰三角形的性质以及圆周角定理证得∠BAC =60°,根据平行线的性质得出BD :CD=AF:CF,∠DFC=∠BAC=60°,根据解直角三角形即可求得结论.【详解】(1)证明:连接OD,∴OD=OA,∴∠OAD=∠ODA,∵BC为⊙O的切线,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)连接OF,∵DF∥AB,∴∠OAD=∠ADF,∵AD平分∠BAC,∴∠ADF=12∠OAF,∵∠ADF=12∠AOF,∴∠AOF=∠OAF,∵OA=OF,∴∠OAF=∠OFA,∴△AOF是等边三角形,∴∠BAC=60°,∵∠ADF=∠DAF,∴DF=AF,∵DF∥AB,∴BD:CD=AF:CF,∠DFC=∠BAC=60°,∴BD DFDC CF=2,∴BD=2CD.【点睛】本题考查了切线的性质,涉及知识点有:平行线的判定与性质、等边三角形的性质、等腰三角形的性质以及圆周角定理,数形结合做出辅助线是解本题的关键21.如图,抛物线2y x bx c =-++经过A (﹣1,0),B (3,0)两点,交y 轴于点C ,点D 为抛物线的顶点,连接BD ,点H 为BD 的中点.请解答下列问题:(1)求抛物线的解析式及顶点D 的坐标;(2)在y 轴上找一点P ,使PD+PH 的值最小,则PD+PH 的最小值为【答案】(1) 2y x 2x 3=-++,D (1,4);(2) PD+PH 13【分析】(1)根据题意把已知两点的坐标代入,求出b 、c 的值,就可以确定抛物线的解析式,配方或用公式求出顶点坐标;(2)由题意根据B 、D 两点的坐标确定中点H 的坐标,作出H 点关于y 轴的对称点点H ′,连接H ′D 与y 轴交点即为P ,求出H ′D 即可.【详解】解:(1)∵抛物线2y x bx c =-++过点A (-1,0),B (3,0),∴10930b c b c ⎩--+-++⎧⎨==,解得23b c ⎧⎨⎩==, ∴所求函数的解析式为:2y x 2x 3=-++,化为顶点式为:2y x 2x 3=-++=-(x-1)2+4,∴顶点D (1,4);(2)∵B (3,0),D (1,4),∴中点H 的坐标为(2,2)其关于y 轴的对称点H ′坐标为(-2,2),连接H ′D 与y 轴交于点P ,则PD+PH 最小且最小值为:22(12)(42)13++-=.【点睛】本题考查用待定系数法确定二次函数的解析式和最短路径的问题,熟练掌握待定系数法是关键. 22.已知,如图,AD 是直角三角形ABC 斜边上的中线,,AE AD AE ⊥交CB 的延长线于点E .()1求证: BAE ACE ; ()2若AF BD ⊥,垂足为点F ,且9BE CE ⋅=,求EF DE ⋅的值.【答案】(1)证明见解析;(2)9.【分析】(1)首先根据直角三角形斜边中线的性质,得出12AD BD CD BC ===,进而得出DAC C ∠=∠,然后由垂直的性质得出EAB DAC C ∠=∠=∠,最后由E E ∠=∠,即可得出BAE ACE ; (2)首先由相似三角形的性质得出2AE BE CE =⋅,然后由cos E ∠得出2AE EF ED =⋅,进而即可得出EF DE ⋅的值.【详解】()1AD 是直角三角形ABC 斜边上的中线12AD BD CD BC ∴===. DAC C ∴∠=∠AE AD ⊥90EAD ∴∠=︒90EAB BAD ∴∠+∠=,而90DAC BAD ∠+∠=︒EAB DAC ∴∠=∠EAB C ∴∠=∠又E E ∠=∠;BAE ACE ∴()2由(1)知;BAE ACE BE AE AE CE∴=即2AE BE CE =⋅. EF AE cos E AE ED∴∠== 2AE EF ED ∴=⋅BE CE EF ED ∴⋅=⋅.9BE CE ⋅=9EF DE ∴⋅=【点睛】此题主要考查直角三角形斜边中线性质以及相似三角形的判定与性质,熟练掌握,即可解题. 23.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A 、B 、C 、D 中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A 通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.【答案】 (1)14;(2) 34. 【解析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A 通道通过的概率是14, 故答案为14. (2)列表如下:由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为1216=34.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.24.已知关于x的一元二次方程x2+(2m+1)x+m2+m=1.求证:无论m为何值,方程总有两个不相等的实数根.【答案】见解析【分析】根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根.【详解】解:证明:在方程x2+(2m+1)x+m2+m=1中,△=b2-4ac=(2m+1)2-4×1×(m2+m)=1>1,∴无论实数m取什么值,方程总有两个不相等的实数根.【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>1时,方程有两个不相等的实数根”.25.如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.【答案】(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC ,交对称轴于点P ,连接AP 、AC .求得C 点的坐标后然后确定直线BC 的解析式,最后求得其与x=2与直线BC 的交点坐标即为点P 的坐标;(3)①设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,求得L 的最大值后与当点D 与Q 重合时L=9+2=11<454相比较即可得到答案; ②假设四边形DCEB 为平行四边形,则可得到EF=DF ,CF=BF .然后根据DE ∥y 轴求得DF ,得到DF >EF ,这与EF=DF 相矛盾,从而否定是平行四边形.【详解】解:(1)将A (-1,0)、B (1,0)分别代入y=-x2+bx+c 中,得102550b c b c --+=⎧⎨-++=⎩,解得45b c =⎧⎨=⎩∴y=-x 2+4x+1.∵y=-x 2+4x+1=-(x-2)2+9,∴Q (2,9).(2)如图1,连接BC ,交对称轴于点P ,连接AP 、AC .∵AC 长为定值,∴要使△PAC 的周长最小,只需PA+PC 最小.∵点A 关于对称轴x=2的对称点是点B (1,0),抛物线y=-x2+4x+1与y 轴交点C 的坐标为(0,1). ∴由几何知识可知,PA+PC=PB+PC 为最小.设直线BC 的解析式为y=kx+1,将B (1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P 的坐标为(2,3).(3)①这个同学的说法不正确.∵设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,则L=−t 2+4t+1+t=−t 2+1t+1=−(t−52)2+454, ∵a <0,∴当t=52时,L 最大值=454. 而当点D 与Q 重合时,L=9+2=11<454,∴该该同学的说法不正确.②四边形DCEB 不能为平行四边形.如图2,若四边形DCEB 为平行四边形,则EF=DF ,CF=BF .∵DE ∥y 轴, ∴1OE CF EB BF==,即OE=BE=2.1. 当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF >EF ,这与EF=DF 相矛盾,∴四边形DCEB 不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.26.解一元二次方程()()()21121x x -=-()222520x x --=【答案】(1)x 1=1,x 2=3,(2)12x x ==【分析】(1)根据因式分解法解一元二次方程即可;(2)利用公式法求一元二次方程即可.【详解】(1)2(1)2(1)0x x ---= (12)(1)0x x ---=即(3)(1)0x x --=∴30x -=或10x -=∴123,1x x ==(2)2,5,2a b c ==-=-224(5)42(2)41b ac -=--⨯⨯-=55224x ∴==⨯1255,44x x +∴== 【点睛】本题主要考查解一元二次方程,掌握一元二次方程的解法并灵活应用是解题的关键.27.如图,在某广场上空飘着一只气球P ,A 、B 是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P 的高度(精确到0.1米).【答案】气球P 的高度约是32.9米.【分析】过点P 作PC ⊥AB 于C 点,由PC 及∠A 、∠B 的正切值表示出AB ,即AB=tan tan PC PC A B +∠∠,求得PC 即可.【详解】过点P 作PC ⊥AB 于C ,设PC = x 米,在Rt △PAC 中,∠PAB=45°,∴ AC =" PC" = x 米,在Rt △PBC 中,∠PBA=30°,∵ tan ∠PBA =PC BC, ∴333BC x ==(米) 又∵ AB = 90米,∴ AB = AC + CB =390x x +=米 ∴31x =+≈32.9(米), 答:气球P 的高度约是32.9米.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果53x yx+=,那么yx=()A.85B.38C.32D.23【答案】D【分析】直接利用已知进行变形进而得出结果.【详解】解:∵53x yx+=,∴3x+3y=5x,则3y=2x,那么yx=23.故选:D.【点睛】本题考查了比例的性质,正确将已知变形是解题的关键.2.抛物线y=﹣2(x+1)2﹣3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣3【答案】B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【详解】解:∵抛物线y=﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x=﹣1,故选:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).3.下列命题中,真命题是()A.所有的平行四边形都相似B.所有的矩形都相似 C.所有的菱形都相似D.所有的正方形都相似【答案】D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】所有正方形都相似,故D符合题意;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.方程20x x +=的解是( ).A .x 1=x 2=0B .x 1=x 2=1C .x 1=0, x 2=1D .x 1=0, x 2=-1【答案】D【分析】利用提公因式法解方程,即可得到答案.【详解】解:∵20x x +=,∴(1)0x x +=,∴0x =或1x =-;故选择:D.【点睛】本题考查了解一元二次方程,熟练掌握提公因式法解方程是解题的关键.5.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.【答案】D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1); A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 6有意义的条件是( ) A .2x ≠-B .2x >-C .2x ≥-D .0x ≠【答案】B【分析】根据二次根式和分式成立的条件得到关于x 的不等式,求解即可. 【详解】解:由题意得20,20x x +≥+≠, 解得2x ->.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.7.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥,垂足为D ,若5AC =,2BC =,则cos ACD ∠的值为( )A 25B 5C 5D .23【答案】D【分析】在Rt △ABC 中,根据勾股定理可得3AB =,而∠B=∠ACD ,即可把求cos ACD ∠转化为求cos B ∠.【详解】在Rt △ABC 中,根据勾股定理可得:2222(5)23AB AC BC =+=+=∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD ,∴cos ACD ∠=2cos =3BC B AB ∠=. 故选D .【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.8.抛物线 y =(x ﹣1)2﹣2 的顶点是( )A .(1,﹣2)B .(﹣1,2)C .(1,2)D .(﹣1,﹣2) 【答案】A【分析】根据顶点式的坐标特点直接写出顶点坐标即可解决.【详解】解:∵y =(x ﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A .本题考查了顶点式,解决本题的关键是正确理解二次函数顶点式中顶点坐标的表示方法.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.22C.24D.223【答案】C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.10.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为()A.40°B.60°C.70°D.80°【答案】D【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠O=2∠A,进而可得答案.【详解】解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°−70°×2=40°,∵点O是△ABC的外心,∴∠BOC=40°×2=80°,故选:D.此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.11.下列事件属于随机事件的是()A.旭日东升B.刻舟求剑C.拔苗助长D.守株待兔【答案】D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.二、填空题(本题包括8个小题)13.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O 逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.【答案】4【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°, ∴OC=12OB=1 则边BC扫过区域的面积为:22112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭- 故答案为4π. 【点睛】考核知识点:扇形面积计算.熟记公式是关键.14.Rt △ABC 中,∠C =90°,AB =10,3cos 5B =,则BC 的长为____________. 【答案】1【分析】由cosB=BC AB =35可设BC=3x ,则AB=5x ,根据AB=10,求得x 的值,进而得出BC 的值即可. 【详解】解:如图,∵Rt △ABC 中,cosB=BC AB =35, ∴设BC=3x ,则AB=5x=10,∴x=2,BC=1,故答案为:1.【点睛】本题考查了解直角三角形,熟练掌握三角函数的定义及勾股定理是解题的关键.15.在二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x-2 -1 0 1 2 3 4 y 7 2 -1 -2 m 2 7则m 的值为_____.【答案】-1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【详解】解:根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,-1)是对称点,∴m=-1.【点睛】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键.16.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.【答案】1【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m.故答案为:1.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.17.已知△ABC中,AB=5,sinB=35,AC=4,则BC=_____.【答案】7或47【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【详解】有两种情况:如图1:过A 作AD ⊥BC 于D ,∵AB =5,sinB =35=AD AB , ∴AD =3, 由勾股定理得:BD =4,CD =227AC AD -=,∴BC =BD+CD =4+7;如图2:同理可得BD =4,CD =227AC AD -=, ∴BC =BD ﹣CD =4﹣7.综上所述,BC 的长是7或47.故答案为:747.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.18.数据3000,2998,3002,2999,3001的方差为__________.【答案】2【分析】先根据平均数的计算公式求出平均数,再根据方差公式计算即可.【详解】数据3000,2998,3002,2999,3001的平均数是:02211300030005x -+-+=+= , 方差是: ()()()()()22222130003000299830003002300029993000300130005⎡⎤-+-+-+-+-⎣⎦ ()1044115=++++ 2=,故答案为:2【点睛】本题考查了方差的定义,熟记方差的计算顺序:先差、再方、再平均.三、解答题(本题包括8个小题)19.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=17:3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=53,求DF和DN的长.【答案】(1)CE=AF,见解析;(2)∠AED=135°;(3)5DF53 DN=.【解析】(1)由正方形和等腰直角三角形的性质判断出△ADF≌△CDE即可;(2)设DE=k,表示出AE,CE,EF,判断出△AEF为直角三角形,即可求出∠AED;(3)由AB∥CD,得出12OM OA AMOD OC DC===,求出DM,DO,再判断出△DFN∽△DCO,得到DF DNDC DO=,求出DN、DF即可.【详解】解:(1)CE=AF,在正方形ABCD和等腰直角三角形CEF中,FD=DE,CD=AD,∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∴△ADF≌△CDE(SAS),∴CE=AF;(2)设DE=k,∵DE:AE:CE=17 3∴AE7,CE=AF=3k,∴EF2,∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,即AE2+EF2=AF2∴△AEF为直角三角形,。
〖汇总3套试卷〗广州市2018年九年级上学期数学期末质量跟踪监视试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列方程是一元二次方程的是( )A .20ax bx c ++=B .2221x x x +=-C .()()130x x --=D .212x x【答案】C【解析】试题解析:A 、20ax bx c ++=,没有给出a 的取值,所以A 选项错误;B 、2221x x x +=-不含有二次项,所以B 选项错误;C 、(1)(3)0x x --=是一元二次方程,所以C 选项正确;D 、212x x -=不是整式方程,所以D 选项错误.故选C .考点:一元二次方程的定义.2.下列计算错误的是( )A 2=-B 2C .2(2= D【答案】A【分析】根据算术平方根依次化简各选项即可判断.【详解】A : 2,故A 错误,符合题意;B 2=正确,故B 不符合题意;C :2(2=正确,故C 不符合题意;D 正确,故D 不符合题意.故选:A.【点睛】此题考查算术平方根,依据 (0)(0)a a a a a ≥⎧==⎨-<⎩,2a =(进行判断.3.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣2【答案】D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y =x 2−4x +2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x =2时,有最小值−2,当x=−1时,有最大值为y=9−2=1.故选D.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.4.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于360︒C.从装满白球的袋子里摸出红球D.大年初一会下雨【答案】C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚硬币10次,有5次正面朝上是随机事件;B、任意一个五边形的外角和是360°是确定事件;C、从装满白球的袋子里摸出红球是不可能事件;D、大年初一会下雨是随机事件,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图所示,图中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转180︒后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.6.下列结论正确的是()A.三角形的外心是三条角平分线的交点B.平分弦的直线垂直于弦C.弦的垂直平分线必平分弦所对的两条弧D.直径是圆的对称轴【答案】C【分析】根据三角形的外心定义可以对A判断;根据垂径定理的推论即可对B判断;根据垂径定理即可对C判断;根据对称轴是直线即可对D判断.【详解】A.三角形的外心是三边垂直平分线的交点,所以A选项错误;B.平分弦(不是直径)的直径垂直于弦,所以B选项错误;C.弦的垂直平分线必平分弦所对的两条弧,所以C选项正确;D.直径所在的直线是圆的对称轴,所以D选项错误.故选:C.【点睛】本题考查了三角形的外接圆与外心、垂径定理、圆的有关概念,解决本题的关键是掌握圆的知识.7.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54°B.27°C.36°D.46°【答案】C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可. 【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=12∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.8.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【答案】A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度, 所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.9.已知一元二次方程x 2+kx ﹣5=0有一个根为1,k 的值为( )A .﹣2B .2C .﹣4D .4 【答案】D【分析】根据一元二次方程的解的定义,把x =1代入方程得到关于k 的一次方程1﹣5+k =0,然后解一次方程即可.【详解】解:把x =1代入方程得1+k ﹣5=0,解得k =1.故选:D .【点睛】本题考查一元二次方程的解. 熟记一元二次方程解得定义是解决此题的关键.10.已知32 )0,(0a b a b =≠≠,下列变形错误的是( )A .23a b =B .23b a =C .32b a =D .23a b = 【答案】B【解析】根据比例式的性质,即可得到答案. 【详解】∵23a b =⇔32a b =,23b a =⇔23a b =,32b a =⇔32a b =,23a b =⇔32a b =, ∴变形错误的是选项B .故选B .【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.11.如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM =DM ;②∠ABN =30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )A .1个B .2个C .3个D .4个【答案】C 【解析】∵△BMN 是由△BMC 翻折得到的,∴BN=BC ,又点F 为BC 的中点,在Rt △BNF 中,sin ∠BNF=BF 1BN 2=, ∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt △BCM 中,∠CBM=12∠FBN=30°, ∴tan ∠CBM=tan30°=CM 3BC =, ∴BC=3CM ,AB 2=3CM 2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN 是等边三角形,故④正确;由题给条件,证不出CM=DM ,故①错误.故正确的有②③④,共3个.故选C .12.如图,正方形ABCD 的边长是3,BP CQ =,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F 、E ,连接AE ,下列结论:①AQ DP ⊥;②2OA OD OP =⋅;③AOD OECF S S ∆=四边形;④当1BP =时,1316OE OA =.正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】D【分析】由四边形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可证明△DAP≌△ABQ,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,故②正确;根据△CQF≌△BPE,得到S△CQF=S△BPE,根据△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE的长,进而求得QE的长,证明△QOE∽△POA,根据相似三角形对应边成比例即可判断④正确,即可得到结论.【详解】∵四边形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,∵AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP.故②正确;在△CQF与△BPE中,∵FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴43 PB PAEB DA==,∴BE34=,∴QE134=,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴1434OA AOPE QE==,∴1316OEOA=,故④正确.故选:D.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解答本题的关键.二、填空题(本题包括8个小题)13.已知函数(0)ky kx=≠的图象如图所示,若矩形ABOC的面积为6,则k=__________.【答案】-6【分析】根据题意设AC=a,AB=b 解析式为y=kxA点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=- AB*AC=-6【详解】解:由题意得设AC=a,AB=b 解析式为y=kx∴AB*AC=ab=6A(-a,b)b=ka-∴ k=-ab=-6【点睛】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.14.已知一元二次方程22(1)7340a x ax a a-+++-=有一个根为0,则a的值为_______.【解析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-1=0,可得a2+3a-1=0,解得a=-1或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-1,故答案为-1.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.15.计算12733-的结果是__________.【答案】23【分析】先算开方,再算乘法,最后算减法即可.【详解】1 2733-3333=-333=-23=故答案为:23.【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则是解题的关键.16.如图,已知∠BAD=∠CAE,∠ABC=∠ADE,AD=3,AE=2,CE=4,则BD为_____.【解析】根据相似三角形的判定和性质定理即可得到结论.【详解】解:∵∠BAD =∠CAE ,∴∠BAC =∠DAE ,∵∠ABC =∠ADE ,∴△ABC ∽△ADE , ∴AB AD =AC AE , ∴AB AD AC AE =, ∴△ABD ∽△ACE ,∴BD AD CE AE=, ∴342BD =, ∴BD =1,故答案为:1.【点睛】本题考查了相似三角形的判定和性质定理,找对应角或对应边的比值是解题的关键.17.如图,在矩形ABCD 中,2,7AB BC ==,点E 在边BC 上,25tan DAE ∠=,则BE=__________;若EF AE ⊥交AD 于点F ,则FD 的长度为________.【答案】5 65【分析】根据矩形的性质得出∠DAE=∠AEB ,再由AB 和∠DAE 的正切值可求出BE ,利用勾股定理计算出AE 的长,再证明△ABE ∽△FEA ,根据相似三角形的性质可得=BE AE AE AF ,代入相应线段的长可得EF 的长,再在在Rt △AEF 中里利用勾股定理即可算出AF 的长,进而得到DF 的长.【详解】解:∵点E 在矩形ABCD 的边BC 上,∴225tan AEB tan FAE BE∠=∠==, ∴5BE =.在ABE △中,222AE AB BE =+,∴2,5AB BE ==,∴22222529AE AB BE =+=+=.∵,.EAF BEA B AEF ∠=∠∠=∠∴△ABE ∽△FEA ,∴=BE AE AE AF ,即29=29,解得295AF =. ∵7AD BC ==.∴296755FD =-=. 【点睛】此题主要考查了相似三角形的判定与性质,以及勾股定理的应用,关键是掌握相似三角形的判定方法和性质定理.相似三角形对应边的比相等,两个角对应相等的三角形相似.18.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.【答案】()2561x -=31.1【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.1故答案为:()2561x -=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.三、解答题(本题包括8个小题)19.在下列1115⨯的网格中,横、纵坐标均为整数的点叫做格点,例如正方形ABCD 的顶点(2,3)A -,(1,0)C 都是格点.要求在下列问题中仅用无刻度的直尺作图.(1)画出格点M ,连AM (或延长AM )交边BC 于E ,使BE EC =,写出点M 的坐标.(2)画出格点N ,连AN (或延长AN )交边DC 于F ,使14DF DC =,则满足条件的格点N 有 个. 【答案】(1)(1,1)M -或(0,1)-或(1,3)-;(2)3个【分析】(1)根据题意可得E 为BC 中点,找到D 关于直线BC 的对称点M 3,再连接AM 3,即可得到3个格点;(2)根据题意,延长BC ,由14DF DC =,得CF=3DF,故使CN 3=3AD ,连接AN 3,即可得到格点. 【详解】(1)如图,(1,1)M -或(0,1)-或(1,3)-(2)如图,N 的个数为3个,故答案为:3.【点睛】此题主要考查图形与坐标,解题的关键是熟知对称性与相似三角形的应用.20.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 的开口向上,与x 轴相交于A 、B 两点(点A 在点B 的右侧),点A 的坐标为(m ,0),且AB =1.(1)填空:点B 的坐标为 (用含m 的代数式表示);(2)把射线AB 绕点A 按顺时针方向旋转135°与抛物线交于点P ,△ABP 的面积为8:①求抛物线的解析式(用含m 的代数式表示);②当0≤x ≤1,抛物线上的点到x 轴距离的最大值为12时,求m 的值. 【答案】(1)(m ﹣1,0);(3)①y =18(x ﹣m )(x ﹣m +1);②m 的值为:3+2或3﹣2或3≤m ≤3.【分析】(1)A 的坐标为(m ,0),AB=1,则点B 坐标为(m-1,0);(3)①S△ABP=12•AB•y P=3y P=8,即:y P=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=12AB•y P=3y P=8,∴y P=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=18,则抛物线表达式为:y=18(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:18(0﹣m)(0﹣m+1)=12±,解得:m=3或3±32,∵m≥3,故:m=3+32;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣18(m﹣3﹣m)(m﹣3﹣m+1)=12,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:18(1﹣m)(1﹣m+1)=12±,解得:m=3或2,∵m≤3,故:m =3﹣32; 综上所述,m 的值为:3+32或3﹣32或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.21.如图,在同一平面直角坐标系中,正比例函数y =2x 的图象与反比例函数y =k x的图象交于A ,B 两点,过点A 作AC ⊥x 轴,垂足为点C ,AC =2,求k 的值.【答案】k =1【分析】根据题意A 的纵坐标为1,把y =1代入y =1x ,求得A 的坐标,然后根据待定系数法即可求得k 的值.【详解】解:∵AC ⊥x 轴,AC =1,∴A 的纵坐标为1,∵正比例函数y =1x 的图象经过点A ,∴1x =1,解得x =1,∴A (1,1),∵反比例函数y =k x 的图象经过点A , ∴k =1×1=1.【点睛】本题考查的知识点是正比例函数以及反比例函数图象上点的坐标,直接待如即可求出答案,比较基础. 22.已知y 是x 的反比例函数,且当2x =-时,8y =.(1)求y 关于x 的函数解析式;(2)当4x =时,求y 的值.【答案】(1)y=16x-;(2)-1 【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用x=1代入求出答案.【详解】解:(1)∵y 是x 的反比例函数,∴设y=()0k k x≠, 当x=-2时,y=8,∴k=(-2)×8=-16,∴y=16x-; (2)当x=1时,代入,y=-16÷1=-1.【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.23.如图,在Rt ABC ∆中,90ACB ∠=,60BAC ∠=,2AC =.将Rt ABC ∆绕点A 逆时针方向旋转60°得到AB C ''∆,连接B C ',求线段B C '的长.【答案】27【分析】连BB',根据旋转的性质及已知条件可知△ABB'是等边三角形,进而得出∠CBB'=90°,再由勾股定理计算B C '的长度即可.【详解】解:连BB'.∵∠ACB=90°,∠BAC=60°∴∠ABC=30°,AB=2AC=4,BC=23由旋转可知:AB=AB',∠BAB'=60°∴△ABB'是等边三角形∴BB'=AB=4,∠ABB'=60°∴∠CBB'=90°∴B'C=2227B B BC '+=【点睛】本题考查了旋转的性质、直角三角形的性质、等边三角形的性质,灵活运用旋转的性质是解题的关键.24.实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与⊙O的位置关系是_____ .(直接写出答案)(2)若AC=5,BC=12,求⊙O 的半径.【答案】(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为10 3.【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【详解】(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,22512=13,∴DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=103.答:⊙O的半径为103.【点睛】本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.25.如图,平行四边形ABCD ,DE 交BC 于F ,交AB 的延长线于E ,且∠EDB =∠C .(1)求证:△ADE ∽△DBE ;(2)若DC =7cm ,BE =9cm ,求DE 的长.【答案】(1)证明见解析;(2)DE =12cm .【分析】(1)由平行四边形的对角相等,可得A C ∠=∠,即可求得A EDB ∠=∠,又因公共角E E ∠=∠,从而可证得ADE DBE ∆∆;(2)根据相似三角形的对应边成比例求解即可.【详解】(1)平行四边形ABCD 中,A C ∠=∠EDB C ∠=∠A EDB ∴∠=∠又E E ∠=∠ADE DBE ∴∆~∆;(2)平行四边形ABCD 中,DC AB =7,9DC cm BE cm ==7,16AB cm AE AB BE cm ∴==+=由题(1)得ADE DBE ∆∆AE BE DE DE ∴=,即169DE DE= 解得:12DE cm =.【点睛】本题考查了平行四边形的性质、相似三角形的判定定理与性质,熟记各性质与定理是解题关键. 26.如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直与x 轴,垂足为点B ,反比例函数k y x =(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =1.(1)求反比例函数k y x=的解析式; (2)求cos ∠OAB 的值;(1)求经过C 、D 两点的一次函数解析式.【答案】(1)4y x =;(2)22;(1)132y x =-+. 【解析】试题分析:(1)设点D 的坐标为(2,m )(m >0),则点A 的坐标为(2,1+m ),由点A 的坐标表示出点C 的坐标,根据C 、D 点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k 、m 的二元一次方程,解方程即可得出结论;(2)由m 的值,可找出点A 的坐标,由此即可得出线段OB 、AB 的长度,通过解直角三角形即可得出结论;(1)由m 的值,可找出点C 、D 的坐标,设出过点C 、D 的一次函数的解析式为y=ax+b ,由点C 、D 的坐标利用待定系数法即可得出结论.试题解析:(1)设点D 的坐标为(2,m )(m >0),则点A 的坐标为(2,1+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,32m +). ∵点C 、点D 均在反比例函数k y x =的函数图象上,∴4{322k m m k =+=⨯,解得:1{4m k ==,∴反比例函数的解析式为4y x=. (2)∵m=1,∴点A 的坐标为(2,2),∴OB=2,AB=2.在Rt △ABO 中,OB=2,AB=2,∠ABO=90°,∴22OB AB +=42cos ∠OAB=42AB OA ==22. (1))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(2,1). 设经过点C 、D 的一次函数的解析式为y=ax+b ,则有22{14a b a b =+=+,解得:1{23a b =-=,∴经过C 、D 两点的一次函数解析式为132y x =-+. 考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.27.一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.【答案】树状图见详解,2 9【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=29.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x --=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<【答案】B【详解】解:根据题意可得:210a --∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x <0时y >0,当x >0时,y <0,∴2y <3y <1y .2.tan30︒的值等于( )A .12B .3C .22 D .3【答案】B【解析】根据特殊角的三角函数值求解.【详解】3tan 303︒=.故选:B .【点睛】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值. 3.如图,点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BOC =140°,则∠BIC 的度数为( )A .110°B .125°C .130°D .140°【答案】B【解析】解:∵点O 为△ABC 的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I 为△ABC 的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.4.如图,∠AOB=90°,∠B=30°,△A′O B′可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点A′在AB上,则旋转角α的度数是()A.30°B.45°C.60°D.90°【答案】C【分析】根据旋转的性质得出AO=A′O,得出等边三角形AOA′,根据等边三角形的性质推出即可.【详解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB绕点O顺时针旋转α角度得到的,点A′在AB上,∴AO=A′O,∴△AOA′是等边三角形,∴∠AOA′=60°,即旋转角α的度数是60°,故选:C【点睛】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA′是等边三角形,题目比较典型,难度不大.5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1) C.(2,2),(3,1) D.(3,1),(2,2) 【答案】C【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C .【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.6.如图,△ABC 中,∠A=78°,AB=4,AC=1.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】C【解析】试题解析:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C .点睛:相似三角形的判定:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两个三角形相似.三组边对应成比例,两个三角形相似.7.如图,ABC ∆中,50ABC ∠=︒,60ACB ∠=︒,点O 是ABC ∆的外心.则BOC ∠=( )A .110︒B .117.5︒C .140︒D .125︒【答案】C 【分析】根据三角形内角和定理求出∠A=70°,根据圆周角定理解答即可.【详解】解:∵∠ABC= 50°,∠ACB = 60°∴∠A=70°∵点O是△ABC的外心,∴∠BOC= 2∠A= 140°,故选: C【点睛】本题考查的是三角形内角和定理、外心的定义和圆周角定理.8.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A.3cm B.4cm C.5cm D.6cm【答案】D【解析】试题分析:根据题意可知,若使点A在⊙O内,则点A到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系9.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)【答案】A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.10.将一元二次方程2210x x--=配方后所得的方程是( )A .2(2)0x -=B .2(1)2x -=C .2(1)1x -=D .2(2)2x -=【答案】B 【分析】严格按照配方法的一般步骤即可得到结果.【详解】∵2210x x --=, ∴, ∴,故选B.【点睛】解答本题的关键是掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 11.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是【答案】C 【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数12.已知函数k y x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限C .当x<0时,必y<0D .点(-2, -3)不在此函数的图象上 【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C .二、填空题(本题包括8个小题)13.直角三角形的直角边和斜边分别是12和16,则此三角形的外接圆半径长为__________.【答案】1【分析】根据直角三角形外接圆的半径等于斜边的一半解答即可.【详解】解:根据直角三角形的外接圆的半径是斜边的一半,∵其斜边为16∴其外接圆的半径是1;故答案为:1.【点睛】此题要熟记直角三角形外接圆的半径公式:外接圆的半径等于斜边的一半.14.若反比例函数y=1m x -的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____. 【答案】m>1 【解析】∵反比例函数m 1y x-=的图象在其每个象限内,y 随x 的增大而减小, ∴m 1->0,解得:m>1,故答案为m>1.15.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x 步,可列方程为_________.【答案】x (x-12)=864【解析】设矩形田地的长为x 步,那么宽就应该是(x−12)步.根据矩形面积=长×宽,得:x(x−12)=864.故答案为x(x−12)=864.16.在锐角ABC 中,22sin cos 2A B ⎛⎛+- ⎝⎭⎝⎭=0,则∠C 的度数为____. 【答案】75°【分析】由非负数的性质可得:sin cos A B ⎧=⎪⎪⎨⎪=⎪⎩,可求,A B ∠∠,从而利用三角形的内角和可得答案. 【详解】解:由题意,得sinAcosB=2, 解得∠A =60°,∠B =45°,∠C =180°﹣∠A ﹣∠B =75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.17.若点()3,A n -、(),B m n 在二次函数()232y x k =++的图象上,则m 的值为________. 【答案】-1【分析】利用抛物线的对称性得到点A 和点B 为抛物线上的对称点,根据二次函数的性质得到抛物线的对称轴为直线x =−2,从而得到m−(−2)=−2−(−3),然后解方程即可.【详解】∵点A (−3,n )、B (m ,n ),∴点A 和点B 为抛物线上的对称点,∵二次函数()232y x k =++的图象的对称轴为直线x =−2,∴m−(−2)=−2−(−3),∴m =−1.故答案为:−1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.18. “蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)【答案】确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA 级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能。
{3套试卷汇总}2018年广州市九年级上学期数学期末监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=2,AB=3,AE=4,则AC等于()A.5 B.6 C.7 D.8【答案】B【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵DE∥BC,∴AD AE AB AC=,∴243AC =,∴AC=6,故选:B.【点睛】本题考查的是平行线分线段成比例定理,难度系数不高,解题关键是找准对应线段.2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【答案】A【解析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与x轴的位置关系是相离,故选A.【点睛】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.3.反比例函数1yx=-,下列说法不正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【答案】D【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.4.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【答案】D【解析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.5.已知函数y=ax2+bx+c(a≠0)的图象如图,则函数y=ax+b与y=cx的图象大致为()A.B.C .D .【答案】C【分析】直接利用二次函数、一次函数、反比例函数的性质分析得出答案.【详解】∵二次函数开口向下,∴a <0,∵二次函数对称轴在y 轴右侧,∴a ,b 异号,∴b >0,∵抛物线与y 轴交在负半轴,∴c <0,∴y =ax+b 图象经过第一、二、四象限,y =c x的图象分布在第二、四象限, 故选:C .【点睛】本题考查了函数的性质以及图象问题,掌握二次函数、一次函数、反比例函数的性质是解题的关键. 6.如图,以点A 为中心,把△ABC 逆时针旋转m°,得到△AB′C′(点B 、C 的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .1902m -B .3902m -C .30m -D .1302m + 【答案】B【分析】根据旋转的性质可得BAB CAC m ''∠=∠=︒、AB AB '=,利用等腰三角形的性质可求得1902AB B m '∠=︒-︒,再根据平行线的性质得出1902C AB m ''∠=︒-︒,最后由角的和差得出结论. 【详解】解:∵以点A 为中心,把ABC 逆时针旋转m ︒,得到AB C ''△∴BAB CAC m ''∠=∠=︒,AB AB '=∴()()11118018090222AB B BAB m m ''∠=︒-∠=︒-︒=︒-︒ ∵//AC BB ''∴1902C AB AB B m'''∠=∠=︒-︒∴13909022CAB CAC C AB m m m⎛⎫''''∠=∠-∠=︒-︒-︒=︒-︒⎪⎝⎭故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.7.点P(﹣1,2)关于原点对称的点Q的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1.﹣2)D.(﹣1,﹣2)【答案】C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【点睛】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.8.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为( )A.16B.18C.19D.112【答案】C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率. 【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为114122422⨯⨯+⨯⨯=,所以,P落在三角形内的概率是41369=.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.9.如图,四边形ABCD的顶点A,B,C在圆上,且边CD与该圆交于点E,AC,BE交于点F.下列角中,弧AE所对的圆周角是( )A.∠ADE B.∠AFE C.∠ABE D.∠ABC【答案】C【分析】直接运用圆周角的定义进行判断即可.【详解】解:弧AE所对的圆周角是:∠ABE或∠ACE故选:C【点睛】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.10.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为()A.363(1+2x)=300 B.300(1+x2)=363C.300(1+x)2=363 D.300+x2=363【答案】C【分析】这两年小明收到的微信红包的年平均增长率为x,则2017年收到300(1+x),2018年收到300(1+x)2,根据题意列方程解答即可.【详解】由题意可得,300(1+x)2=363.故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.11.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.【答案】D【分析】首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.【详解】在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA.∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC.∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴.,∴.故选D.【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.12.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A.45B.35C.34D.43【答案】A【分析】根据三角函数的定义解决问题即可.【详解】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB2222435AB BC+=+=,∴sinB=ACAB=45故选:A.【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本题包括8个小题)13.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx=,则k值为_____.【答案】1【解析】作DH⊥x轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠DAH,在△ABO和△DAH中AOB DHAABO DAHAB DA∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO≌△DAH,∴AH=OB=3,DH=OA=1,∴D点坐标为(1,1),∵顶点D恰好落在双曲线y=kx上,∴a=1×1=1.故答案是:1.14.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.【答案】62【分析】作辅助线AD ⊥BC 构造直角三角形ABD ,利用锐角∠B 的正弦函数的定义求出三角形ABC 底边BC 上的高AD 的长度,然后根据三角形的面积公式来求△ABC 的面积即可.【详解】过A 作AD 垂直BC 于D ,在Rt △ABD 中,∵sinB =AD AB, ∴AD =AB•sinB =4•sin45°=2=2 ∴S △ABC =12BC•AD =12×6×222 故答案为:62【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC 底边BC 上的高线AD 构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD 的长度的.15.)已知反比例函数y =-2x,下列结论:①图象必经过点(-1,2);②y 随x 的增大而增大;③图象在第二、四象限内;④若x >1,则y >-2.其中正确的有__________.(填序号)【答案】①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y 随x 的增大而增大;③k =﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y 随x 的增大而增大,若x >1,则y >﹣2,故答案为①③④.16.将抛物线22(1)3y x =+-向左平移2个单位,得到新的解析式为________. 【答案】22(3)3y x =+-【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】抛物线22(1)3y x =+-的顶点坐标为(﹣1,﹣3), 向左平移2个单位后的抛物线的顶点坐标为(﹣3,﹣3),所以,平移后的抛物线的解析式为22(3)3y x =+-.故答案为:22(3)3y x =+-.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.17.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.【答案】1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:4=1:1,故答案为:1:1.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18.如图,Rt ABC 中,∠C =90°,AC =10,BC =1.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当BN ∥PE 时,t 的值为_____.【答案】4021【分析】作NH ⊥BC 于H .首先证明∠PEC =∠NEB =∠NBE ,推出EH =BH ,根据cos ∠PEC =cos ∠NEB ,推出EC PE =EH EN,由此构建方程解决问题即可. 【详解】解:作NH ⊥BC 于H .∵EF ⊥BC ,∠PEF =∠NEF ,∴∠FEC =∠FEB =90°,∵∠PEC+∠PEF =90°,∠NEB+∠FEN =90°,∴∠PEC =∠NEB ,∵PE ∥BN ,∴∠PEC =∠NBE ,∴∠NEB =∠NBE ,∴NE =NB ,∵HN ⊥BE ,∴EH =BH ,∴cos ∠PEC =cos ∠NEB , ∴EC PE =EH EN, ∵EF ∥AC , ∴EF AC =BE BC, ∴10EF =16316t -, ∴EF =EN =58(1﹣3t), ∴229(103)t t +-1(163)25(163)8t t --, 整理得:63t 2﹣960t+100=0,解得t =4021或403(舍弃), 故答案为:4021. 【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(本题包括8个小题)19.如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=kx在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>kx的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.【答案】(1)y=3x;(2)﹣1<x<0或x>3;(33【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【详解】(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=kx经过点B,∴k=3×1=3,∴双曲线的解析式为y=3x;(2)解23y xyx=-⎧⎪⎨=⎪⎩得31xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>kx的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解3 y x yx=⎧⎪⎨=⎪⎩,解得33xy⎧=⎪⎨=⎪⎩或33xy⎧=-⎪⎨=-⎪⎩,∴D(3,3),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD=1232⨯⨯=3.【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是求得交点坐标.20.如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.【答案】1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到132AM AB==,根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出224OM OA AM=-=,进而求出ON,在Rt△CON中,根据勾股定理求出224CN OC ON=-=,根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则132AM AB==,∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,224OM OA AM=-=,∴ON=MN﹣OM=3,在Rt△CON中,224CN OC ON=-=,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出辅助线,构造直角三角形是解题的关键.21.按要求解答下列各小题.(1)解方程:2243(2)x x -=+; (22sin 45tan 45cos 60+-°°°°. 【答案】(1)173x =;21x =-;(2)52. 【分析】(1)去括号整理后利用因式分解法解方程即可;(2)直接利用特殊角的三角函数值代入求出答案.【详解】(1)去括号得:224344x x x -=++移项合并得:23470x x --=因式分解得:()()3710x x -+=即:370x -=或10x += ∴12713x x ==-,; (22sin 45tan 45cos 60+-°°°°223112⎛ ⎝⎭=+- 312=+ 52=. 【点睛】本题考查了解一元二次方程-因式分解法,特殊角的三角函数值,正确分解因式、熟记特殊角的三角函数值是解题关键.22.如图,BC 是O 的弦,OD BC 于E ,交O 于D ,若8,2BC ED ==,求O 的半径.【答案】5.【分析】连接OB ,由垂径定理得BE=CE=4,在Rt OEB 中,根据勾股定理列方程求解.【详解】解:连接OB,8OD BC BC ⊥=142BE CE BC ∴=== 设O 的半径为R ,则2OE OD DE R =-=-在Rt OEB 中,由勾股定理得222OE BE OB =+,即()22242R R +=- 解得5R =O ∴的半径为5【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.23.已知9a 2-4b 2=0,求代数式 a b -b a -22a b ab +的值. 【答案】±3【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,已知等式利用平方差公式化简,整理得到2b=3a 或2b=-3a ,代入计算即可求出值.【详解】原式= 2a ab - 2b ab - 22a b ab+ =2222a b a b ab---=22b ab- =2b a-=-2·b a , ∵9a 2-4b 2=0, ∴22b a= 94, ∴b a =±32, ∴原式=-2×32=-3或原式=3232⎛⎫-⨯-= ⎪⎝⎭. 点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(1)2a =.【解析】(1)根据题意列函数关系式即可;(1)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-10-a )(-10x+500)=-10x 1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a≤6,则30<35+12a≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=1,a 1=58,于是得到a=1.【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+;(1)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.25.如图,△ABC 是等边三角形,AO ⊥BC ,垂足为点O ,⊙O 与AC 相切于点D ,BE ⊥AB 交AC 的延长线于点E ,与⊙O 相交于G ,F 两点.(1)求证:AB 与⊙O 相切;(2)若AB =4,求线段GF 的长.【答案】(1)见解析;(2)22.【解析】试题分析:(1)过点O 作OM ⊥AB ,垂足是M.证明OM 等于圆的半径OD 即可;(2)过点O 作ON ⊥BE ,垂足是N ,连接OF ,由垂径定理得出NG =NF =12GF.证出四边形OMBN 是矩形,在Rt OBM △利用三角函数求得OM 和BM 的长,则BN 和ON 即可求得,在Rt ONF 中利用勾股定理求得NF ,即可得出GF 的长.试题解析:()1如图,∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴∠ADO =∠AMO =90°.∵△ABC 是等边三角形,AO ⊥BC ,∴∠DAO =∠MAO ,∴OM =OD.∴AB 与⊙O 相切;()2如图,过点O 作ON ⊥BE ,垂足是N ,连接OF ,则NG =NF =12GF.∵O 是BC 的中点, ∴OB =2.在Rt △OBM 中,∠MBO =60°,∴∠BOM =30°,∴BM =12BO =1,∴OM =23OB BM -=.∵BE ⊥AB ,∴四边形OMBN 是矩形,∴ON =BM =1.∵OF =OM =3,由勾股定理得NF =()2231-=2,∴GF =2NF =22.26.如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC =1米,CD =6米,求电视塔的高ED .【答案】电视塔的高度为12米.【分析】作AH ⊥ED 交FC 于点G ,交ED 于H ;把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例列出方程,解方程即可.【详解】解:过A 点作AH ⊥ED ,交FC 于G ,交ED 于H .由题意可得:△AFG ∽△AEH ,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,∴AH=AG+GH=7米,FG=FC -CG=1.1米∴AG AH =FG EH即17=1.5EH , 解得:EH =10.1.∴ED =EH+ HD =10.1+1.1=12(米).∴电视塔的高度为12米.【点睛】此题考查的是相似三角形的应用,掌握构造相似三角形的方法和相似三角形的判定及性质是解决此题的关键.27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C(0,﹣3),点P 是直线BC 下方抛物线上的任意一点。
2018-2019学年广东省广州市越秀区九年级(上)期末数学试卷--附答案解析
故选:C .
【点评】此题是相似三角形的判定和性质,主要考查了平行四边形的性质,同高的三角形的
面积比是底的比,用相似三角形的性质得出 , 是解本 S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
题的关键.
10.(3 分)(2018 秋•越秀区期末)若关于 x 的方程 x2 − 2x + m −1 = 0 有两个实根 x1 、 x2 ,
.A 3
.B 4
.C 5
.D 6
【考点】S9:相似三角形的判定与性质; L5:平行四边形的性质
【专题】55D :图形的相似
【分析】首先证明 AD = 2BE ,BE / / AD ,进而得出 ∽ ∆BEF ∆DAF ,即可得出 ∆ABF ,∆ABD ,
第 4 页(共 23 页)
的面积,用面积的和差即可得出结论. 【解答】解:Q四边形 ABCD 是平行四边形, , ∴ AD / /BC , ∴∠DAE = ∠AEB 平分 , Q AE ∠DAB , ∴∠DAE = ∠BAE , ∴∠BAE = ∠AEB , ∴ BA = BE , Q BC = 2AB , , ∴ AD = BC = 2BE BE / / AD ∽ , ∴∆BEF ∆DAF
, ∴ EF = BE = 1 AF AD 2
, ∴ S∆BEF = ( BE )2 = 1
S∆ADF AD
4
Q∆BEF 的面积为 1,
, , ∴ S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
, ∴ S∆ABD = S∆ABF + S∆ADF = 6
, 四边形 ∴ S
DCEF = S∆BCD − S∆BEF = S∆ABD − S∆BEF = 5
★试卷3套精选★广州市某达标名校2018届九年级上学期期末学业水平测试数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°【答案】C 【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C .【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.2.某河堤横断面如图所示,堤高10BC =米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )A .103B .20米C .203D .30米【答案】A 【分析】由堤高10BC =米,迎水坡AB 的坡比3AC 的长.【详解】∵迎水坡AB 的坡比1:3∴3BC AC =∵堤高10BC=米,∴10AC===米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键3.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为().A.19B.29C.49D.59【答案】D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,∴他遇到绿灯的概率为:1−13−19=59.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【答案】D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.5.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A.7B.27C.37D.47【答案】B【解析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,作EH⊥BC 于H,从而得到∠ECH=60°,利用三角函数可求出EH、CH的值,再利用勾股定理即可求出BE的长.【详解】解:如图所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=3232⨯=CH=CE·cos60°=1212⨯=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,22225(3)27BE BH EH=+=+=.故选B.【点睛】本题考查了垂直平分线的性质、菱形的性质、解直角三角形等知识.合理构造辅助线是解题的关键. 6.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上B.可能有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上【答案】B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确.可能10次正面朝上,选项D不正确.故选:B.【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件.7.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.【答案】A【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.【详解】A 、由抛物线可知,a <0,x=﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确; B 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误;C 、由抛物线可知,a >0,x=﹣2b a>0,得b <0,由直线可知,a >0,b >0,故本选项错误; D 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误.故选A .8.如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .45【答案】C【分析】连接CD ,由直径所对的圆周角是直角,可得CD 是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC ,在Rt △OCD 中,由OC 和CD 的长可求出sin ∠ODC.【详解】设⊙A 交x 轴于另一点D ,连接CD ,∵∠COD=90°,∴CD 为直径,∵直径为10,∴CD=10,∵点C (0,5)和点O (0,0),∴OC=5,∴sin ∠ODC= OC CD = 12, ∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=32.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用. 9.如图,在⊙O中,弦AB=6,半径OC⊥AB于P,且P为OC的中点,则AC的长是()A.2 3B.3 C.4 D.2 2【答案】A【分析】根据垂径定理求出AP,根据勾股定理求出OP,求出PC,再根据勾股定理求出即可.【详解】解:连接OA,∵AB=6,OC⊥AB,OC过O,∴AP=BP=12AB=3,设⊙O的半径为2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,(2R)2=R2+32,解得:R3,即OP=PC3,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,AC2=32+32,解得:AC=3故选:A.【点睛】考核知识点:垂径定理.构造直角三角形是关键.10.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( )A .16B .13C .12D .23【答案】D【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.11.下列各坐标表示的点在反比例函数4y x =图象上的是( ) A .()1,4-B .()1,4C .()1,4-D .()2,2- 【答案】B【解析】根据反比例函数的性质,分别代入A 、B 、C 、D 点,横坐标与纵坐标的积为4即可.【详解】A 、(-1)×4= -4,故错误.B 、1×4= 4,故正确.C 、1×-4= -4,故错误.D 、2×(-2)= -4,故错误.故选B.【点睛】本题考查反比例函数图像上点的坐标特征.12.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(本题包括8个小题)13.如图,在等腰直角三角形ABC 中,90BAC ∠=,点A 在x 轴上,点B 的坐标为(0,3),若点C 恰好在反比例函数10y x=第一象限的图象上,过点C 作CD x ⊥轴于点D ,那么点C 的坐标为__________.【答案】(5,2)【分析】由∠BAC=90°,可得△ABO ≌△CAD ,利用全等三角形的性质即可求出点C 坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD ,又∵CD x ⊥轴,∴∠CDA=90°在△ABO 与△CAD 中,∠ABO=∠CAD ,∠AOB=∠CDA ,AB=CA ,∴△ABO ≌△CAD (AAS )∴OB=AD ,设OA=a (0a >)∵B (0,3)∴AD=3,∴点C (a+3,a ),∵点C 在反比例函数图象上, ∴103a a =+, 解得:2a =或5a =-(舍去)∴点C (5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.1410.(填“>”、“=”或“<”)【答案】>.【解析】先求出9【详解】∵12=9<10,∴10>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15.反比例函数2yx=和4yx=在第一象限的图象如图所示,点A在函数4yx=图像上,点B在函数2yx=图像上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为_____.【答案】1【分析】设A(m,4m),B(m,2m),则AB=4m-2m,△ABC的高为m,根据三角形面积公式计算即可得答案.【详解】∵A、B分别为4yx=、2yx=图象上的点,AB∥y轴,∴设A(m,4m),B(m,2m),∴S△ABC=12(4m-2m)m=1.故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.16.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D 作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.【答案】254 【解析】根据折叠的性质求出四边形BFDG 是菱形,假设DF =BF =x ,∴AF =AD ﹣DF =8﹣x ,根据在直角△ABF 中,AB 2+AF 2=BF 2,即可求解.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB=∠DBC∴FD ∥BG ,又∵DG ∥BE ,∴四边形BFDG 是平行四边形,∵折叠,∴∠DBC=∠DBF ,故∠ADB =∠DBF∴DF =BF ,∴四边形BFDG 是菱形;∵AB =6,AD =8,∴BD =1.∴OB =12BD =2. 假设DF =BF =x ,∴AF =AD ﹣DF =8﹣x .∴在直角△ABF 中,AB 2+AF 2=BF 2,即62+(8﹣x )2=x 2,解得x =254, 即DG =BF =254, 故答案为:254 【点睛】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.17.如图,一次函数y 1=ax+b 和反比例函数y 2=xk 的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.【答案】x <﹣2或0<x <1【分析】根据两函数图象的上下位置关系结合交点横坐标即可找出不等式的解集,此题得解.【详解】解:观察函数图象可发现:当x<-2或0<x<1时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是当x<-2或0<x<1.故答案为当x<-2或0<x<1.【点睛】本题是一道一次函数与反比例函数相结合的题目,根据图象得出一次函数与反比例函数交点横坐标是解题的关键.18.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.【答案】49 【解析】分析:首先确定阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.详解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为49, 故答案为49. 点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.三、解答题(本题包括8个小题)19.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若43AB =8AD =,求DG 的长.【答案】(1)见解析;(2833【分析】(1)根据平行四边形的性质得AB ∥CD,AB=CD ,通过两角对应相等证明△FCG ∽△FBA ,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE 的长,再由折叠性质求出BF 长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG ∽△FBA, ∴CG CF AB BF = , ∴CG CF CD BF ∴CG BF CD CF ⋅=⋅.(2)∵AE BC ⊥,∴∠AEB=90°,∵∠B=30°, 43AB =,∴AE=1232AB , 由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF ⋅=⋅,∴12434CG =⨯,∴CG=43 , ∴DG=833. 【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.20.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的1C 处,点D 落在点1D 处,11C D 交线段AE 于点G .(1)求证:11BC F AGC ∆∆;(2)若1C 是AB 的中点,6AB =,9BC =,求AG 的长.【答案】(1)证明见解析;(2)94AG =. 【分析】(1)利用有两组对应角相等的两个三角形相似证明即可;(2)先利用勾股定理求出BF 的长,再利用(1)中相似,列比例式即可.【详解】(1)证明:由题意可知190A B GC F ∠=∠=∠=︒,∴1190BFC BC F ∠+∠=︒,1190AC G BC F ∠+∠=︒,∴11BFC AC G ∠=∠.∴11BC F AGC ∆∆.(2)∵1C 是AB 的中点,6AB =,∴113AC BC ==.在1Rt BC F 中由勾股定理得()22239BF BF +=-,解得:4BF =.由(1)得11BC F AGC ∆∆,∴11AC AG BC BF =,即334AG =, ∴94AG =. 【点睛】此题考查的是相似三角形的判定和勾股定理,掌握用两组对应角相等证两个三角形相似、及折叠问题中相等的边和勾股定理求边是解决此题的关键.21.如图,点A 的坐标为(0,﹣2),点B 的坐标为(﹣3,2),点C 的坐标为(﹣3,﹣1). (1)请在直角坐标系中画出△ABC 绕着点A 顺时针旋转90°后的图形△AB′C′;(2)直接写出:点B ′的坐标 ,点C′的坐标 .【答案】(1)见解析;(2) (4,1),(1,1).【分析】(1)利用网格特点和旋转的性质画出B、C点的对应点B′、C′即可;(2)利用(1)所画图形写出点B′的坐标,点C′的坐标.【详解】解:(1)如图,△ABC′为所作;(2)点B′的坐标为(4,1),点C′的坐标为(1,1).故答案为(4,1),(1,1).【点睛】本题考查了坐标和图形的变化-旋转,作出图形,利用数形结合求解更加简便22.如图,点P在直线y=x-1上,设过点P的直线交抛物线y=x2于A(a,a2),B(b,b2)两点,当满足PA=PB 时,称点P为“优点”.(1)当a+b=0时,求“优点”P的横坐标;(2)若“优点”P的横坐标为3,求式子18a-9b的值;(3)小安演算发现:直线y=x-1上的所有点都是“优点”,请判断小安发现是否正确?如果正确,说明理由;如果不正确,举出反例.【答案】 (1)点P横坐标为9352±;(2)27;(3)正确,理由见解析.【分析】(1)先判断点A与点B关于y轴对称得到PA∥x轴,所以P点的纵坐标为a2,P点的横坐标为a2+1,则利用PA=AB得到a2+1-a=a-(-a),然后求出a得到优点”P的横坐标;(2)由于A点为PB的中点,根据线段的中点坐标公式得到a=b32+,即2a-b=3,然后利用整体代入的方法计算代数式的值;(3)设P (x ,x-1),利用A 点为PB 的中点得到a=b x 2+,a 2=212b x +-,消去a 得到方程x 2+2(b-1)x+1-b 2=0,然后通过证明此方程一定有解判断直线y=x-1上的所有点都是“优点”.【详解】(1)∵a b 0+=,∴点A 、B 关于x 0=对称,∴AB//x 轴,∵PA AB 2a ==,∴点P 的横坐标为3a ,∴点P 的坐标为()3a,3a 1-,点A 的坐标为()2a,a, ∵AP //x 轴,∴2a 3a 1=-,解得a =∴点P 横坐标为92±; (2)∵点P 在直线y x 1=-上,∴点P 坐标为()3,2,∵PA AB =,∴3a a b -=-,∴2a b 3-=,∴()18a 9b 92a b 27-=-=;(3)设点P 坐标为()x,x 1-,结合点A 的坐标()2a,a ,当PA AB =时,分析出点B 的坐标为()22a x,2a x 1--+,把点B 坐标代入抛物线解析式2y x =中, ()222a x 12a x -+=-,整理,得()22x 4a 1x 2a 10--+-=, ∵()()2221Δ4a 142a 18a 302⎛⎫=---=-+> ⎪⎝⎭, ∴对于任意a ,总有x 使得PA=AB ,∴直线y x 1=-上的点均为优点.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;记住线段的中点坐标公式;理解判别式的意义.23.(1)问题发现:如图1,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B 、C 重合)将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BD 与CE 的数量关系是,位置关系是 ; (2)探究证明:如图2,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 的延长线上时,连接EC ,写出此时线段AD ,BD ,CD 之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF 中,∠ABC =∠ACB =∠AFC =45°.若BF =13,CF =5,请直接写出AF 的长.【答案】(1)BD =CE ,BD ⊥CE ;(2)2AD 2=BD 2+CD 2,理由详见解析;(3)62【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)证明△BAD ≌△CAE ,得到BD=CE ,根据勾股定理计算即可;(3)如图3,作辅助线,构建全等三角形,证明△BAF ≌△CAG ,得到CG =BF =13,证明CFG ∆是直角三角形,根据勾股定理计算即可.【详解】解:(1)在Rt △ABC 中,AB =AC ,∴∠B =∠ACB =90°,∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,∵AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD =CE ,∠B =∠ACE =45°,∵∠ACB =45°,∴454590BCE ∠=︒+︒=︒,故答案为BD =CE ,BD ⊥CE ;(2)2AD 2=BD 2+CD 2,理由是:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴2DE AD=,∴2AD2=BD2+CD2;(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴12622AF==.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题关键.24.已知:如图,在ABC中,D是AC上一点,联结BD,且∠ABD =∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB= 7,求AC的长.【答案】(1)见详解;(2)49 5【详解】(1)证明:∵∠A=∠A,∠ABD =∠ACB,∴△ABD∽△ACB.(2)解: ∵△ABD∽△ACB,∴AB ADAC AB=,∴757AC=,∴495AC=25.已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.【答案】证明见解析【解析】试题分析:由AD是中线以及CD2=BE·BA可得BE BDBD AB=,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即BE BDBD AB=,又∠B=∠B,∴△BED∽△BDA,∴ED BDAD AB=,∴ED·AB=AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED∽△BDA是解决本题的关键. 26.如图,无人机在空中C处测得地面A、B两点的俯角分别为60〫、45〫,如果无人机距地面高度1003CD=米,点A、D、B在同水平直线上,求A、B两点间的距离.(结果保留根号)【答案】A、B两点间的距离为100(3【分析】如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得3,然后计算AD+BD即可.【详解】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt ACD中,∵tanA=CD AD,∴AD=10031003tan603=100,在Rt BCD中,BD=CD=3,∴AB=AD+BD=3100(3.答:A、B两点间的距离为100(3)米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.27.如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30 cm,50 cm,请你帮助杨阳计算出该平行四边形的面积.【答案】1200cm2【解析】先利用勾股定理计算AC,然后根据平行四边形的面积求解.【详解】解如图,AB=30 cm,BC=50 cm,AB⊥AC,在Rt△ABC中,AC==40 cm,所以该平行四边形的面积=30×40=1 200(cm2).【点睛】本题主要考查了利用勾股定理求直角三角形边长和求平行四边形面积,熟练掌握方法即可求解.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( ) A .15πB .20πC .24πD .30π 【答案】A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=1523152ππ⋅⋅⋅=. 故选A .考点:1.简单几何体的三视图;2.圆锥的计算.2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】试题分析:A .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A 选项错误;B .∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B 选项正确.C .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C 选项错误;D .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B 选项错误.考点:1.中心对称图形;2.轴对称图形.3.方程x 2﹣x =0的解为( )A .x 1=x 2=1B .x 1=x 2=0C .x 1=0,x 2=1D .x 1=1,x 2=﹣1【答案】C【解析】通过提取公因式对等式的左边进行因式分解,然后解两个一元一次方程即可.【详解】解:∵x 2﹣x =0,∴x (x ﹣1)=0,∴x =0或x ﹣1=0,∴x 1=0,x 2=1,故选:C .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.4.如果2是方程x2-3x+k=0的一个根,则常数k的值为()A.2 B.1 C.-1 D.-2【答案】A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵1是一元二次方程x1-3x+k=0的一个根,∴11-3×1+k=0,解得,k=1.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)【答案】A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.6.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90 ,CO=CD.若B(2,0),则点C的坐标为( )A.(2,2) B.(1,2) C.2,2)D.(2,1)【答案】A【解析】连接CB.∵∠OCD=90°,CO=CD,∴△OCD是等腰直角三角形,∴∠COB=45°.∵△OAB与△OCD是位似图形,相似比为1:2,∴2OB=OD,△OAB是等腰直角三角形.∵2OB=OD,∴点B为OD的中点,∴BC⊥OD.∵B(2,0),∴OB=2,∵△OAB是等腰直角三角形,∴∠COB=45°.∵BC⊥OD,∴△OBC是等腰直角三角形,∴BC=OB=2,∴点C的坐标为(2,2).故选A.7.如图,将一块含30°的直角三角板绕点A按顺时针方向旋转到△A1B1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.30°B.60°C.90°D.120°【答案】D【分析】先判断出旋转角最小是∠CAC1,根据直角三角形的性质计算出∠BAC,再由旋转的性质即可得出结论.【详解】∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角最小是∠CAC1,∵∠C =90°,∠B =30°,∴∠BAC =60°,∵△AB 1C 1由△ABC 旋转而成,∴∠B 1AC 1=∠BAC =60°,∴∠CAC 1=180°﹣∠B 1AC 1=180°﹣60°=120°,故选:D .【点睛】此题考查旋转的性质,熟知图形旋转后所得图形与原图形全等是解题的关键.8.某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共握了10次手.求这次聚会的人数是多少?设这次聚会共有x 人,可列出的方程为( )A .()110x x +=B .()1=10x x -C .()21=10x x -D .1(1)102x x -= 【答案】D【分析】每个人都要和他自己以外的人握手一次,但两个人之间只握手一次,所以等量关系为12×聚会人数×(聚会人数-1)=总握手次数,把相关数值代入即可.【详解】解:设参加这次聚会的同学共有x 人,由题意得:1(1)102x x -=, 故选:D .【点睛】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.9.在ABC 中,90C ∠=︒,若已知3tan 4A =,则cos A =( ) A .35 B .45 C .34 D .43【答案】B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【详解】解:在ABC 中,90C ∠=︒,∵3tan 4BC A AC==,设BC=3x ,则AC=4x ,根据勾股定理可得:5AB x ==, ∴44cos 55AC x A AB x ===. 故选:B.【点睛】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.10.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 【答案】C【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 11.二次函数2y x x 2=--的图象与x 轴的交点个数是( )A .2个B .1个C .0个D .不能确定【答案】A【分析】通过计算判别式的值可判断抛物线与x 轴的交点个数.【详解】由二次函数22y x x =--,知112a b c ==-=-,,,∴()224(1)41290b ac -=--⨯⨯-=>. ∴抛物线与x 轴有二个公共点.故选:A .【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与x 轴的交点个数取决于24b ac -的值. 12.如图:已知AD ∥BE ∥CF ,且AB =4,BC =5,EF =4,则DE =( )A .5B .3C .3.2D .4【答案】C 【分析】根据平行线分线段成比例定理列出比例式,代入计算即可.【详解】解:∵AD ∥BE ∥CF , ∴AB DE BC EF =,即454DE , 解得,DE =3.2,故选:C .【点睛】本题考查了平行线分线段成比例,正确列出比例式是解题的关键.三条平行线截两条直线,所得的对应线段成比例.二、填空题(本题包括8个小题)13.经过点(1,tan 60)-°的反比例函数的解析式为__________. 【答案】3y = 【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k 值,即可得解.【详解】设反比例函数解析式为k y x =, 则tan 601k ︒=-, 解得:3k = ∴此函数的解析式为3y = 故答案为:3y = 【点睛】 本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.14.cos30°+22sin45°+tan60°=_____. 【答案】33+1 【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【详解】cos30°+2sin45°+tan60° =3223222+⨯+ =33122+ =33+1 故填:33+1. 【点睛】解决此类题目的关键是熟记特殊角的三角函数值.15.关于x 的一元二次方程x 2+nx ﹣12=0的一个解为x =3,则n =_____.【答案】1【分析】根据一元二次方程的解的定义,把x =3代入x 2+nx ﹣12=0中可得到关于n 的方程,然后解此方程即可.【详解】把x =3代入x 2+nx ﹣12=0,得9+3n ﹣12=0,解得n =1.故答案是:1.【点睛】本题考查一元二次方程解得概念,使方程左右两边相等的未知数的值叫做方程的解.16.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于_____.【答案】203. 【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠=,ED EF =,可求出三角形FNC 的三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC ∆∽PGF ∆,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【详解】过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H ,由折叠得:ABNM 是正方形,5AB BN NM MA ====,5CD CF ==,90D CFE ∠=∠=,ED EF =,∴853NC MD ==-=,在Rt FNC ∆中,23534FN =-=,∴541MF =-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=,解得:53x =, ∵90CFN PFG ∠+∠=,90PFG FPG ∠+∠=,∴FNC ∆∽PGF ∆,∴::::3:4:5FG PG PF NC FN FC ==,设3FG m =,则4PG m =,5PF m =,∴43GN PH BH m ===-,5(43)134HN m m PG m =--=+==,解得:1m =,∴55PF m ==,∴520533PE PF FE =+=+=, 故答案为203.【点睛】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.17.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .【答案】解:∠D=∠B 或∠AED=∠C .【分析】根据相似三角形的判定定理再补充一个相等的角即可. 【详解】解:∵∠DAB=∠CAE ∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似. 故答案为∠D=∠B (答案不唯一).18.如图,正方形ABCD 的边长为25,点E 为AB 的中点,点M ,N 分别在边BC ,CD 上(点M 不与点B ,C 重合,点N 不与点C ,D 重合),连接MN ,DE ,若以M ,N ,C 为顶点的三角形与AED ∆相似,且MNC ∆的面积为1,则CM 的长为______.【答案】1或1【分析】根据正方形的性质以及相似三角形的性质求解即可. 【详解】解:∵四边形ABCD 是正方形∴AD AB 25==DAE MCN 90∠∠==︒ ∵E 是AB 的中点,∴AE 5=∴152ADES AD AE =⨯⨯=, 当~CMNAED SS 时有,215MNC ADESCM SAE ⎛⎫== ⎪⎝⎭,∴21CM =, ∵CM>0, ∴CM=1; 当~CMNADE SS 时有,215MNC ADESCM SAD ⎛⎫== ⎪⎝⎭,。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
2020-2021学年广东省广州市白云区九年级(上)期末数学试卷
2020-2021学年广东省广州市白云区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)方程x2﹣1=0的解是()A.x1=x2=1B.x1=x2=﹣1C.x=±1D.无实数根2.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)在下列各点中,抛物线y=3x2经过点()A.(0,﹣1)B.(0,0)C.(0,1)D.(0,2)4.(3分)如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°5.(3分)如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD=OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C 6.(3分)若关于x的一元二次方程(m+1)x2﹣2x+1=0有实数根,则实数m的取值范围是()A.m≥0B.m≤0C.m≠1D.m≤0且m≠﹣17.(3分)反比例函数y=的图象经过点(﹣3,1),则下列说法错误的是()A.k=﹣3B.函数的图象在第二、四象限C.函数图象经过点(3,﹣1)D.当x>0时,y随x的增大而减小8.(3分)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6,以点B为圆心,3为半径作⊙B,则点C与⊙B的位置关系是()A.点C在⊙B内B.点C在⊙B上C.点C在⊙B外D.无法确定9.(3分)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B 或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关10.(3分)如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且经过点(﹣3,0).下列结论:①abc<0;②若(﹣4,y1)和(3,y2)是抛物线上两点,则y1>y2;③a+b+c<0;④对于任意实数m,均有am2+bm+c≥﹣4a.其中正确的结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)点A(﹣2,3)关于原点对称的点的坐标是.12.(3分)抛物线y=x2﹣3x+2与x轴的交点个数是个.13.(3分)已知一个正六边形的外接圆半径为2,则这个正六边形的周长为.14.(3分)如图是一个可以自由转动的转盘,转盘分成四个扇形,标号分别为Ⅰ,Ⅱ,Ⅲ,Ⅳ四个数字.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形区域).指针指向扇形Ⅰ的概率是.15.(3分)如图,从一块边长为2的等边三角形卡纸上剪下一个面积最大的扇形,并将其围成一个圆锥,则圆锥的底面圆的半径是.16.(3分)为了迎接2021年春节,李师傅计划改造一个长为6m,宽为4m的矩形花池ABCD ,如图,他将画线工具固定在一根4m木棍EF的中点P处.画线时,使点E,F都在花池边的轨道上按逆时针方向滑动一周.若将点P所画出的封闭图形围成的区域全部种植年花,则种植年花的区域的面积是m2.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2﹣2x﹣5=0.18.(4分)如图,P A,PB是⊙O的切线,A,B为切点,连接OP.求证:OP平分∠AOB.19.(6分)在一个不透明的盒子中装有四个球,它们分别印有“我”、“爱”、“白”、“云”字样.这些球的形状、大小、质地等完全相同,即除字样外无其他差别.(1)随机摸出一个球,恰好摸到“爱”字球的概率为;(2)随机摸出一个球后,放回并摇匀,再随机摸出一个.求两次摸到的球中,至少有一次摸到“云”字球的概率.20.(6分)如图,在平面直角坐标系xOy中,△ABC各顶点的坐标分别为A(1,1),B (5,2),C(5,5).(1)将△ABC绕点O旋转180°后,得到△A1B1C1,画出△A1B1C1;(2)在(1)的条件下,求旋转过程中,点B经过的路径长(结果保留π).21.(8分)在二次函数y=ax2+bx+3(a,b是常数)中,列表表示几组自变量x与函数值y的对应值:x…﹣2﹣1012…y=…m03n3…ax2+bx+c(1)根据以上信息,可得该二次函数的图象开口向,对称轴为;(2)求|m﹣n|的值.22.(10分)如图是一张长24cm,宽12cm的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a=;(2)若铁盒底面积是80cm2,求剪去的小正方形边长.23.(10分)如图,平面直角坐标系xOy中,点A的坐标为(2,6),直线AB∥y轴,且与x轴交于点B,反比例函数y=(x>0)的图象经过点A和点P.若⊙P经过点A,且与x轴交于B,C两点.(1)求k的值和点C的坐标;(2)判断⊙P与y轴的位置关系,并说明理由.24.(12分)(1)作图:如图,已知△ABC,∠ACB<120°,①作等边△ACD,使得点D,B分别是直线AC异侧的两个点;②作等边△BCE,使得点E,A分别是直线BC异侧的两个点;(要求尺规作图,保留作图痕迹,不写作法.)(2)推理:在(1)所作的图中,设直线BD,AE的交点为P,连接PC,①求∠APD的度数;②猜想P A,PB,PC与AE之间的等量关系,并证明:(3)变式:已知△ABC,∠ACB>120°,按(1)的方法作图后,设直线BD,AE的交点为P,连接PC.测得∠P AB=15°,P A=+,PB=,PC=.求点D到直线AB的距离.25.(12分)已知抛物线y=ax2+2ax﹣3a(a是常数)与x轴交于A,B两点(点A在点B 的左边),与y轴交于点C.顶点D不在第二象限,记△ABC的面积为S1,△ACD的面积为S2.(1)当S1=3时,求抛物线对应函数的解析式;(2)判断是否为定值,如果是,请求出这个定值;如果不是,请说明理由;(3)当a取每一个确定的值时,把抛物线y=ax2+2ax﹣3a向右平移a个单位后,得到函数y1的图象.当0≤x≤a+1时,结合图象,求y1的最大值与最小值的平均数(用含a 的式子表示).2020-2021学年广东省广州市白云区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)方程x2﹣1=0的解是()A.x1=x2=1B.x1=x2=﹣1C.x=±1D.无实数根【解答】解:x2﹣1=0,x2=1,∴x1=1,x2=﹣1,故选:C.2.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;B、此图形是中心对称图形,又是轴对称图形,故此选项符合题意;C、此图形不是中心对称图形,是轴对称图形,故此选项不符合题意;D、此图形不是中心对称图形,也不是轴对称图形,故此选项不符合题意.故选:B.3.(3分)在下列各点中,抛物线y=3x2经过点()A.(0,﹣1)B.(0,0)C.(0,1)D.(0,2)【解答】解:当x=0时,y=3x2=0;所以抛物线y=3x2经过点(0,0).故选:B.4.(3分)如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选:D.5.(3分)如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD=OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C【解答】解:∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠A=∠C,∠AOC=∠BOD,AB=CD,OB=OD,∵∠BOD≠90°,∴BD≠OB.故选:A.6.(3分)若关于x的一元二次方程(m+1)x2﹣2x+1=0有实数根,则实数m的取值范围是()A.m≥0B.m≤0C.m≠1D.m≤0且m≠﹣1【解答】解:∵关于x的一元二次方程(m+1)x2﹣2x+1=0有实数根,∴,解得m≤0且m≠﹣1.故选:D.7.(3分)反比例函数y=的图象经过点(﹣3,1),则下列说法错误的是()A.k=﹣3B.函数的图象在第二、四象限C.函数图象经过点(3,﹣1)D.当x>0时,y随x的增大而减小【解答】解:A、反比例函数y=的图象经过点(﹣3,1),∴k=﹣3×1=﹣3,故本选项正确;B、∵k=﹣3<0,∴此函数图象的两个分支位于二四象限,故本选项正确;C、∵当x=3时,y=﹣1,∴此函数图象过点(3,﹣1),故本选项正确;D、∵k=﹣3<0,∴当x>0时,y随着x的增大而增大,故本选项错误.故选:D.8.(3分)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6,以点B为圆心,3为半径作⊙B,则点C与⊙B的位置关系是()A.点C在⊙B内B.点C在⊙B上C.点C在⊙B外D.无法确定【解答】解:过点C作CD⊥AB于D,∵Rt△ABC中,∠C=90°,∠A=30°,AC=6,∴BC=AC=2,∵以点B为圆心,3为半径作⊙B,∴R<d,∴点C在⊙B外.故选:C.9.(3分)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B 或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关【解答】解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B.10.(3分)如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且经过点(﹣3,0).下列结论:①abc<0;②若(﹣4,y1)和(3,y2)是抛物线上两点,则y1>y2;③a+b+c<0;④对于任意实数m,均有am2+bm+c≥﹣4a.其中正确的结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵二次函数的图象开口向上,∴a>0,∵二次函数的图象交y轴的负半轴于一点,∴c<0,∵对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,故①正确;∵(﹣4,y1)关于直线x=﹣1的对称点的坐标是(2,y1),又∵当x>﹣1时,y随x的增大而增大,2<3,∴y1<y2,故②错误;∵抛物线的对称轴为x=﹣1,且过点(﹣3,0),∴抛物线与x轴另一交点为(1,0).∴当x=1时,y=a+b+c=0,故③错误;∵当x=1时,y=a+b+c=0,b=2a,∴c=﹣3a,∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y有最小值,∴am2+bm+c≥a﹣b+c(m为任意实数),∴am2+bm+c≥﹣4a,故④正确,故结论正确有2个.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).12.(3分)抛物线y=x2﹣3x+2与x轴的交点个数是2个.【解答】解:令x2﹣3x+2=0,∵△=(﹣3)2﹣4×1×2=1>0,∴抛物线y=x2﹣3x+2与x轴的交点个数是2.故答案是:2.13.(3分)已知一个正六边形的外接圆半径为2,则这个正六边形的周长为12.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长l=6a=12,故答案为:12.14.(3分)如图是一个可以自由转动的转盘,转盘分成四个扇形,标号分别为Ⅰ,Ⅱ,Ⅲ,Ⅳ四个数字.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形区域).指针指向扇形Ⅰ的概率是.【解答】解:扇形Ⅰ的圆心角:360°﹣60°﹣120°﹣45°=135°,设圆的半径为r,则指针指向扇形Ⅰ的概率是:=,故答案为:.15.(3分)如图,从一块边长为2的等边三角形卡纸上剪下一个面积最大的扇形,并将其围成一个圆锥,则圆锥的底面圆的半径是.【解答】解:连接AD,∵△ABC是边长为2的等边三角形,∴AD=2×=,∴扇形的弧长为=π,∴圆锥的底面圆的半径是π÷π÷2=.故答案为:.16.(3分)为了迎接2021年春节,李师傅计划改造一个长为6m,宽为4m的矩形花池ABCD ,如图,他将画线工具固定在一根4m木棍EF的中点P处.画线时,使点E,F都在花池边的轨道上按逆时针方向滑动一周.若将点P所画出的封闭图形围成的区域全部种植年花,则种植年花的区域的面积是(24﹣4π)m2.【解答】解:连接BP,如图,由题意可知BP为Rt△BEF的斜边中线,∵EF=4m,∴BP=2m,∵AB=DC=4m,BC=AD=6m,∴点P的运动轨迹为四个圆心分别在点A,B,C,D,半径为2m的四分之一圆,以及BC和AD上的一段线段.长为6m,宽为4m的矩形花池ABCD的面积为6×4=24(m2).∴种植年花的区域的面积是:24﹣π×22=(24﹣4π)(m2).故答案为:(24﹣4π).三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2﹣2x﹣5=0.【解答】解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.(4分)如图,P A,PB是⊙O的切线,A,B为切点,连接OP.求证:OP平分∠AOB.【解答】证明:∵P A,PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP(HL),∴∠AOP=∠BOP,即OP平分∠AOB.19.(6分)在一个不透明的盒子中装有四个球,它们分别印有“我”、“爱”、“白”、“云”字样.这些球的形状、大小、质地等完全相同,即除字样外无其他差别.(1)随机摸出一个球,恰好摸到“爱”字球的概率为;(2)随机摸出一个球后,放回并摇匀,再随机摸出一个.求两次摸到的球中,至少有一次摸到“云”字球的概率.【解答】解:(1)随机摸出一个球,恰好摸到“爱”字球的概率为,故答案为:;(2)列表如下:我爱白云我(我,我)(爱,我)(白,我)(云,我)爱(我,爱)(爱,爱)(白,爱)(云,爱)白(我,白)(爱,白)(白,白)(云,白)云(我,云)(爱,云)(白,云)(云,云)由表可知,共有16种等可能结果,其中两次摸到的球中,至少有一次摸到“云”字球的有7种结果,所以两次摸到的球中,至少有一次摸到“云”字球的概率为.20.(6分)如图,在平面直角坐标系xOy中,△ABC各顶点的坐标分别为A(1,1),B (5,2),C(5,5).(1)将△ABC绕点O旋转180°后,得到△A1B1C1,画出△A1B1C1;(2)在(1)的条件下,求旋转过程中,点B经过的路径长(结果保留π).【解答】解:(1)如图,△A1B1C1即为所求;(2)∵OB ==,∴点B 经过的路径长为π.21.(8分)在二次函数y=ax2+bx+3(a,b是常数)中,列表表示几组自变量x与函数值y的对应值:x…﹣2﹣1012……m03n3…y=ax2+bx+c(1)根据以上信息,可得该二次函数的图象开口向下,对称轴为直线x=1;(2)求|m﹣n|的值.【解答】解:(1)根据表格信息,可知抛物线开口向下,对称轴为直线x=1;故答案为:下,直线x=1;(2)把(﹣1,0),(0,3),(2,3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+2x+3,当x=﹣2时,m=﹣4﹣4+3=﹣5;当x=1时,n=﹣1+2+3=4;∴|m﹣n|=|﹣5﹣4|=9.22.(10分)如图是一张长24cm,宽12cm的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a=12cm;(2)若铁盒底面积是80cm2,求剪去的小正方形边长.【解答】解:(1)设底面长为mcm,宽为ncm,正方形的边长为xcm,根据题意得:,由②③得2a=24,解得a=12(cm),故答案为:12cm;(2)根据题意,得mn=80,由,得由①得,n=12﹣2x,把a=12代入②得m=12﹣x,再把m和n代入mn=80中,得(12﹣x)(12﹣2x)=80,解得x=2或x=16(舍去).答:剪去的小正方形边长为2cm.23.(10分)如图,平面直角坐标系xOy中,点A的坐标为(2,6),直线AB∥y轴,且与x轴交于点B,反比例函数y=(x>0)的图象经过点A和点P.若⊙P经过点A,且与x轴交于B,C两点.(1)求k的值和点C的坐标;(2)判断⊙P与y轴的位置关系,并说明理由.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A,点A的坐标为(2,6),∴k=2×6=12,∴反比例函数的解析式为y=,∵⊙P经过A、B点,∴P A=PB,∴P在AB的垂直平分线上,∵直线AB∥y轴,∴B(2,0),P点的纵坐标为3,把y=3代入y=得,3=,则x=4,∴P(4,3),∵⊙P与x轴交于B,C两点,∴P是BC的垂直平分线上的点,∴C(6,0);(2)相离,理由如下:∵P(4,3),B(2,0),∴PB==,∴⊙P的半径为,∵P的横坐标为4,4>,∴⊙P与y轴相离.24.(12分)(1)作图:如图,已知△ABC,∠ACB<120°,①作等边△ACD,使得点D,B分别是直线AC异侧的两个点;②作等边△BCE,使得点E,A分别是直线BC异侧的两个点;(要求尺规作图,保留作图痕迹,不写作法.)(2)推理:在(1)所作的图中,设直线BD,AE的交点为P,连接PC,①求∠APD的度数;②猜想P A,PB,PC与AE之间的等量关系,并证明:(3)变式:已知△ABC,∠ACB>120°,按(1)的方法作图后,设直线BD,AE的交点为P,连接PC.测得∠P AB=15°,P A=+,PB=,PC=.求点D到直线AB的距离.【解答】解:(1)如图1,①则等边△ACD即为所求作的三角形;②则等边△BCE即为所求作的三角形;(2)①如图2,∵△ACD和△BCE都是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠BCA=∠BCA+∠BCE,即∠BCD=∠ACE,∴△DCB≌△ACE(SAS),∴∠CDB=∠ACE,∵∠COD=∠AOP,②AE=P A+PB+PC,理由是:如图2,在PD上截取DM=AP,∵DC=AC,∠CDM=∠CAP,∴△CDM≌△CAP(SAS),∴CM=PC,∠DCM=∠ACP,∵∠ACD=∠DCM+∠ACM=60°,∴∠ACM+∠ACP=60°,即∠PCM=60°,∴△PCM是等边三角形,∴PM=PC,∵BD=DM+PM+PB=AE,∴AE=P A+PB+PC;(3)如图3,过点D作DG⊥AB于G,在BD上截取DM=AP,连接CM,由(2)同理得:△DCB≌△ACE,∴BD=AE,∠CAE=∠CDB,∵AC=CD,AP=DM,∴△ACP≌△DCM(SAS),∴PC=CM,∠ACP=∠DCM,∴△PCM是等边三角形,∴PC=PM,∵P A=+,PB=,PC=,∴P A+PB﹣PC=++﹣=+,∵P A+PB﹣PC=DM+PB﹣PM=BD,∴BD=+,∵∠APD=∠ACB=60°=∠P AB+∠PBA,∴∠PBA=60°﹣15°=45°,∵DG⊥AB,∴∠DGB=90°,∴△DGB是等腰直角三角形,∴DG=BD==+;即点D到直线AB的距离是+.25.(12分)已知抛物线y=ax2+2ax﹣3a(a是常数)与x轴交于A,B两点(点A在点B 的左边),与y轴交于点C.顶点D不在第二象限,记△ABC的面积为S1,△ACD的面积为S2.(1)当S1=3时,求抛物线对应函数的解析式;(2)判断是否为定值,如果是,请求出这个定值;如果不是,请说明理由;(3)当a取每一个确定的值时,把抛物线y=ax2+2ax﹣3a向右平移a个单位后,得到函数y1的图象.当0≤x≤a+1时,结合图象,求y1的最大值与最小值的平均数(用含a 的式子表示).【解答】解:y=ax2+2ax﹣3a(a是常数)与x轴交于A,B两点,则令y=ax2+2ax﹣3a=0,解得x=﹣3或1,令x=0,则y=﹣3a,故点A、B、C的坐标分别为(﹣3,0)、(1,0)、(0,﹣3a),则抛物线的对称轴为直线x=﹣1,当x=﹣1时,y=ax2+2ax﹣3a=﹣4a,故点D的坐标为(﹣1,﹣4a);∵抛物线和x轴有两个交点,且顶点D不在第二象限,则抛物线的顶点在第三象限,则a>0,函数大致图象如下:(1)由题意得:S1=×AB×OC=×4×3a=6a=3,解得a=,故抛物线的表达式为y=x2+x﹣;(2)是定值2,理由:过点D作DH⊥y轴于点H,则S2=S梯形ADHO﹣S△CDH﹣S△ACO=(1+3)×4a﹣×1×(﹣3a+4a)﹣×3×3a=3a,由(1)知S1=6a,故=2;(3)∵抛物线y=ax2+2ax﹣3a向右平移a个单位后,得到函数y1的图象,根据平移的性质,y1=a(x﹣a)2+2a(x﹣a)﹣3a=ax2+2a(1﹣a)x+(a3﹣2a2﹣3a),由平移的性质知,平移后的抛物线对称轴为直线x=﹣1+a,∵﹣1+a<a+1,故x=a+1在新抛物线对称轴的右侧.①当x=a﹣1≤0时,即x=0在x=a﹣1的右侧,即0<a≤1,当0<a≤1时,则a+1<2,则抛物线在x=a+1时取得最大值,而在x=0时取得最小值;当x=a+1时,y1=ax2+2a(1﹣a)x+(a3﹣2a2﹣3a)=0,当x=0时,y1=ax2+2a(1﹣a)x+(a3﹣2a2﹣3a)=a3﹣2a2﹣3a,则y1的最大值与最小值的平均数=(a3﹣2a2﹣3a)=a3﹣a2﹣a;②当a﹣1>0时,则此时,顶点的横坐标0<a﹣1≤a+1,当x=a﹣1时,y1取得最小值为y1=a(a﹣1)2+2a(1﹣a)(a﹣1)+(a3﹣2a2﹣3a)=﹣4a,当a﹣1﹣0<a+1﹣(a﹣1),即1<a<3,则当x=a+1时,y1的最大值为0,∴y1的最大值与最小值的平均数==﹣2a,当a﹣1﹣0≥a+1﹣(a﹣1),即a≥3,当x=0时,y1取得最大值,此时y1=a3﹣2a2﹣3a,则y1的最大值与最小值的平均数=;即y1的最大值与最小值的平均数=.。
2018-2019学年广东省广州市白云区九年级(上)期末数学试卷
16.(3分)某设计运动员在相同的条件下的射击成绩记录如下:
设计次数
20
40
100
200
400
1000
射中9环以上次数
15
33
78
4.【答案】B
【解析】解: .掷一次骰子,向上一面的点数是 ,属于随机事件,
C、旋转中心为C,不符合题意;
D、旋转中心为O,不符合题意;
故选:A.
根据旋转的性质可得解.
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
3.【答案】D
【解析】解:y=3x +2x的对称轴为:直线x=- =- .
故选:D.
直接利用公式法得出二次函数的对称轴.
此题主要考查了二次函数的性质,正确记忆对称轴公式是解题关键.
参考答案及解析
一、选择题
1.【答案】B
【解析】解: ,
抛物线的开口向下,
故选: .
根据当 时,抛物线 的开口向上,当 时,抛物线 的开口向下即可判定;
本题考查二次函数的性质,熟练掌握二次函数的性质是解决问题的关键,属于中考基础题.
2.【答案】A
【解析】解:A、旋转中心为点A,符合题意;
B、旋转中心为点B,不符合题意;
(1)求证:∠ B=∠ ACD,DE= BC;
(2)已知如图2,BG是△BDE的中线,延长ED至点F,使ED=FD,求证:BF=2BG.
25.(14分)如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠ BAC=90°,A(1,0),B(0,2),二次函数y= +bx-2的图象经过C点.
★试卷3套精选★广州市某达标名校2018届九年级上学期期末考前验收数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知函数k y x =是的图像过点()2,3-,则k 的值为( ) A .-2B .3C .-6D .6 【答案】C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数k y x =的图象经过点(-2,3), ∴k =-2×3=-1.故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .2.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( )A .16B .13C .12D .23【答案】B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=2163=.故选B . 考点:列表法与树状图法求概率. 3.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为( )A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-【答案】B 【分析】先确定抛物线的对称轴,然后根据抛物线的对称性确定图象与x 轴的另一个交点,再根据二次函数与一元二次方程的关系解答即可.【详解】解:∵二次函数22y x x k =-++的对称轴是直线1x =,图象与x 轴的一个交点坐标为(3,0), ∴图象与x 轴的另一个交点坐标为(﹣1,0),∴一元二次方程220x x k -++=的解为123,1x x ==-.故选:B .【点睛】本题考查了二次函数的图象与性质以及二次函数与一元二次方程的关系,属于常考题型,熟练掌握基本知识是解题的关键.4.下列说法,错误的是( )A .为了解一种灯泡的使用寿命,宜采用普查的方法B .一组数据8,8,7,10,6,8,9的众数是8C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差【答案】A【分析】利用抽样调查、普查的特点和试用的范围和众数、方差的意义即可做出判断.【详解】A .灯泡数量很庞大,了解它的使用寿命不宜采用普查的方法,应该采用抽查的方法,所以A 错误;B.众数是一组数据中出现次数最多的数值,所以8,8,7,10,6,8,9的众数是8正确;C. 方差反映了一组数据与其平均数的偏离程度,正确;D. 对于简单随机样本,可以用样本的方差去估计总体的方差,正确;故选A.【点睛】本题考查的是调查、众数、方差的意义,能够熟练掌握这些知识是解题的关键.5.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm【答案】B 【解析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.6.已知点A (1-,1y ),B (1,2y ),C (2,3y )是函数5y x =-图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .2y <3y <1yC .3y <2y <1yD .无法确定 【答案】B【分析】直接根据反比例函数的性质排除选项即可.【详解】因为点A (1-,1y ),B (1,2y ),C (2,3y )是函数5y x=-图象上的三点, 50k =-<,反比例函数的图像在二、四象限,所以在每一象限内y 随x 的的增大而增大,即1320y y >>>y ;故选B .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.7.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ).A .2:1B .4:1 C.2:1 D.1:2【答案】C【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD 对折后所得矩形与原矩形相似,则矩形ABCD ∽矩形BFEA ,设矩形的长边长是a ,短边长是b ,则AB=CD=EF=b ,AD=BC=a ,BF=AE=2a , 根据相似多边形对应边成比例得:BF EF =AB BC ,即b 2=b a a∴222=b 1a ∴b=2::1a故选C.【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.8.已知,如图,E (-4,2),F (-1,-1).以O 为位似中心,按比例尺1:2把△EFO 缩小,点E 的对应点)的坐标( )A .(-2,1)B .(2,-1)C .(2,-1)或(-2,-1)D .(-2,1)或(2,-1)【答案】D 【分析】由E (-4,2),F (-1,-1).以O 为位似中心,按比例尺1:2把△EFO 缩小,根据位似图形的性质,即可求得点E 的对应点的坐标.【详解】解:∵E (-4,2),以O 为位似中心,按比例尺1:2把△EFO 缩小,∴点E 的对应点的坐标为:(-2,1)或(2,-1).故选D.【点睛】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.9.函数y=kx﹣k(k≠0)和y=﹣kx(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣kx(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣kx(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.10.如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.2cm B.3cm C.6cm D.12cm【答案】A【分析】圆的半径为12,求出AB 的长度,用弧长公式可求得BC 的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【详解】AB==,∴90180BC π⨯=∴圆锥的底面圆的半径=÷(2π)=.故选A .【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.11.若一元二次方程220x mx ++=有两个相等的实数根,则m 的值是( )A .2B .2±C .8±D .± 【答案】D【分析】根据一元二次方程根的判别式0∆=,即可得到答案【详解】解:∵一元二次方程220x mx ++=有两个相等的实数根,∴24120m ∆=-⨯⨯=,解得:m =±故选择:D.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值.12.若关于x 的方程260x mx +=+的一个根是2x =﹣,则m 的值是( )A .5B .6-C .2D .5-【答案】A【分析】把2x =﹣代入方程,即可求出m 的值.【详解】解:∵方程260x mx +=+的一个根是2x =﹣,∴2(2)260m --+=,∴5m =,故选:A.【点睛】本题考查了一元二次方程的解,以及解一元一次方程,解题的关键是熟练掌握解方程的步骤.二、填空题(本题包括8个小题)13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.【答案】0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.14.小红在地上画了半径为2m 和3m 的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.【答案】59. 【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【详解】∵大圆半径为3,小圆半径为2,∴S 大圆239ππ==(m 2),S 小圆224ππ==(m 2),S 圆环=9π﹣4π=5π(m 2), ∴掷中阴影部分的概率是5599ππ=. 故答案为:59. 【点睛】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.,点O从B点出发,以每秒1个单位长度沿射线BA向右运动;同时射线BP 15.如图,已知射线BP BA绕点B顺时针旋转一周,当射线BP停止运动时,点O随之停止运动.以O为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP与O恰好有且只有一个公共点,则射线BP旋转的速度为每秒______度.【答案】30或60【分析】射线BP与O恰好有且只有一个公共点就是射线BP与O相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线BP与O在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线BP旋转的速度为每秒60°÷2=30°;如图2,当射线BP与O在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线BP旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.16.如图,在菱形ABCD 中,边长为10,60A ∠=︒.顺次连结菱形ABCD 各边中点,可得四边形1111D C B A ;顺次连结四边形1111D C B A 各边中点,可得四边形2222A B C D ;顺次连结四边形2222A B C D 各边中点,可得四边形3333A B C D ;按此规律继续下去….则四边形2019201920192019A B C D 的周长是_________.【答案】20185532+ 【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD 中,边长为10,∠A=60°,设菱形对角线交于点O ,∴30DAO ∠=︒,∴152OD AD ==,353AO OD ==, ∴10BD =,103AC =,顺次连结菱形ABCD 各边中点,∴△AA 1D 1是等边三角形,四边形A 2B 2C 2D 2是菱形,∴A 1D 1=A A 1=12AB =5,C 1D 1 =123A 2B 2=C 2D 2=C 2B 2=A 2D 2=12AB=5, ∴四边形A 2B 2C 2D 2的周长是:5×4=20, 同理可得出:A 3D 3=5×12,C 3D 3=12C 1D 1=12⨯3, A 5D 5=5212⎛⎫⨯ ⎪⎝⎭,C 5D 5=12C 3D 3=212⎛⎫⨯ ⎪⎝⎭3,∴四边形A 2019B 2019C 2019D 2019553+故答案为:20185532+ 【点睛】 本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.17.如图,四边形ABCD 是O 的内接四边形,且8AB AD ==,点E 在BC 的延长线上,若60DCE ∠=︒,则O 的半径OB =_________________.【答案】83 【分析】根据圆内接四边形的性质,证得ABC 是等边三角形,再利用三角函数即可求得答案. 【详解】如图,连接BD ,过点O 作OF ⊥BD 于F ,∵四边形ABCD 是O 的内接四边形,且AB=AD=8,∠DCE=60︒,∴∠DCE=∠A=60︒,∠BOD=2∠A=120︒,∴ABC 是等边三角形,AB=AD=BD= 8,∵OB=OD ,OF ⊥BD , ∴∠BOF=1602BOD ∠=︒,BF=142BD =, ∴483sin sin 6033BF OB BOF ∠====︒. 83. 【点睛】本题考查了圆内接四边形的性质,等边三角形的判定和性质,三角形函数的应用等知识,运用“圆内接四边形的任意一个外角等于它的内对角”证得∠A=60︒是解题的关键.18.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.【答案】6000【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【详解】解:由题意可得,甲的速度为:4000÷(12-2-2)=500米/分,乙的速度为: 40005002500222+⨯-⨯+=1000米/分, 乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案为6000.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本题包括8个小题)19.二次函数图象过A ,C ,B 三点,点A 的坐标为(1,0)-,点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB OC =,求二次函数的表达式.【答案】21.25 3.755y x x =-++【分析】根据题目所给信息可以得出点C 的坐标为(0,5),把A 、B 、C 三点坐标代入可得抛物线解析式.【详解】解∵点A 的坐标为(1,0)-点B 的坐标为(4,0)∴5OC AB ==又∵点C 在y 轴正半轴上∴点C 的坐标为(0,5)设二次函数关系式为25y ax bx =++把(1,0)A -,(4,0)B 代入得 1.25a =-, 3.75b =∴21.25 3.755y x x =-++【点睛】本题考查的知识点是用待定系数法求二次函数解析式,根据题目信息得出点C 的坐标是解此题的关键. 20.某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:(1)填空:a =_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.【答案】(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)101522a =---=(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键. 21.如图,在大楼AB 的正前方有一斜坡CD ,CD=13米,坡比DE:EC=1:125,高为DE ,在斜坡下的点C处测得楼顶B 的仰角为64°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中A 、C 、E 在同一直线上. (1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度;(参考数据:sin64°≈0.9,tan64°≈2).【答案】(1)斜坡CD 的高度DE 是5米;(2)大楼AB 的高度是34米.【解析】试题分析:(1)根据在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125,高为DE ,可以求得DE 的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB 的高度.试题解析:(1)∵在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125, ∴1512125DE EC ==,设DE=5x 米,则EC=12x 米,∴(5x )2+(12x )2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD 的高度DE 是5米;(2)过点D 作AB 的垂线,垂足为H ,设DH 的长为x ,由题意可知∠BDH=45°,∴BH=DH=x ,DE=5,在直角三角形CDE 中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC , ∴2=AB AC, 解得,x=29,AB=x+5=34,即大楼AB 的高度是34米.22.直线1y k x b =+与双曲线2k y x=只有一个交点12A (,),且与x 轴、y 轴分别交于B 、C 两点,AD垂直平分OB ,交x 轴于点D .(1)求直线1y k x b =+、双曲线2ky x=的解析式; (2)过点B 作x 轴的垂线交双曲线2k y x =于点E ,求 ABE ∆的面积.【答案】(1)24y x =-+;2y x =;(2)12ABE S ∆=. 【分析】(1)由题意利用待定系数法求一次函数以及反比例函数解析式即可;(2)根据题意求出BE 和BD 的值,运用三角形面积公式即可得解.【详解】解:(1)由已知得OD 1=,OB 2DO 2==,∴B 20(,). 将点A 、点B 坐标代入1y k x b =+,得1102k 2k b b =+⎧⎨=+⎩,解得1k 24b =-⎧⎨=⎩, 直线解析式为y 2x 4=-+;将点A 坐标代入2k y x=得2k 2=, ∴反比例函数的解析式为2y x =. (2)∵E 和B 同横轴坐标,∴当x 2=时2y 1x==,即 BE 1= , ∵B 20(,),A 12(,),D (1,0) ∴BD=1,即为ΔABE 以BE 为底的高,∴ΔABE 11S BE ?DB 22==. 【点睛】本题考查反比例函数和几何图形的综合问题,熟练掌握待定系数法求反比例函数解析式以及运用数形结合思维分析是解题的关键.23.如图,抛物线y=x 2 +bx+c 与x 轴交于A (﹣1,0),B (3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.【答案】(1)y=x2﹣2x﹣1;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(1)(122+4)或(122-4)或(1,﹣4).【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=1,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【详解】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函数解析式是y=x2﹣2x﹣1.(2)∵y=﹣x2﹣2x﹣1=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(1)设P的纵坐标为|y P|,∵S△PAB=2,∴1AB•|y P|=2,2∵AB=1+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣1,解得,2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴点P在该抛物线上滑动到(24)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=2.【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;1.二次函数图象上点的坐标特征. 24.(1)计算:2cos60°+4sin60°•tan30°﹣6cos 245°(2)解方程:229(2)4(1)x x -=+【答案】(1)0;(2)145x =,28x = 【分析】(1)根据特殊角的三角函数值代入计算即可;(2)对原方程变形后利用因式分解法求解即可.【详解】解:(1)2cos60°+4sin60°•tan30°﹣6cos 245°2133********⎛⎫=⨯+⨯⨯-⨯ ⎪ ⎪⎝⎭123=+- 0=(2)229(2)4(1)x x -=+ [][]223(2)2(1)x x -=+ [][]223(2)2(1)0x x --+=[][]3(2)2(1)3(2)2(1)0x x x x -++--+=3(2)2(1)0x x -++=或3(2)2(1)0x x --+=解得:145x =,28x = 【点睛】本题考查特殊角的三角函数值混合运算和因式分解法解一元二次方程,解题的关键是熟记特殊角的三角函数值和熟练掌握因式分解法解一元二次方程.25.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,求线段AE 的长.【答案】1【分析】连接OC ,利用直径AB=10,则OC=OA=5,再由CD ⊥AB ,根据垂径定理得CE=DE=12CD=4,然后利用勾股定理计算出OE ,再利用AE=OA-OE 进行计算即可.【详解】连接OC ,如图,∵AB 是⊙O 的直径,AB =10,∴OC =OA =5,∵CD ⊥AB ,∴CE =DE =12CD =12×8=4, 在Rt △OCE 中,OC =5,CE =4,∴OE =22oc CE -=3,∴AE =OA ﹣OE =5﹣3=1.【点睛】本题考查了垂径定理,掌握垂径定理及勾股定理是关键.26.解方程:(1)24810x x -+=;(2)752652x x x【答案】(1)1312x =+,2312x =-;(2)125x =-,267x =. 【分析】(1)运用公式法解方程即可; (2)运用因式分解法解方程即可.【详解】(1)∵()2248441480b ac =-=--⨯⨯=>⊿, ∴()848832322482b x a ---±====⨯⊿, ∴131x =+,231x =; (2)移项,得:()()7526520x x x +-+=,提公因式得:()()52760x x +-=,∴520x +=或760x -=,∴125x =-,267x =; 【点睛】本题主要考查解一元二次方程-公式法和因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.27.某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. 【分析】(1)找出x=6时,y 1、y 2的值,根据利润=售价-成本进行计算即可;(2)利用待定系数法分别求出y 1、y 2关于x 的函数关系式,然后根据P=y 1-y 2得到关于x 的函数关系式,然后利用二次根式的性质进行求解即可;(3)求出当x=4时,P 的值,设4月份的销售量为t 千克,则5月份的销售是为(t+20000)千克,根据总利润=每千克利润×销售数量,即可得出关于t 的方程,解方程即可求得答案.【详解】(1)当x=6时,y 1=3,y 2=1,∵y 1-y 2=3-1=2,∴6月份出售这种蔬菜每千克的利润是2元;(2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩, ∴1273=-+y x ;将(3,4)代入y 2=a(x-6)2+1,得,4=a (3-6)2+1,解得:a=13, ∴()222116141333y x x x =-+=-+, ∴P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∴当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000,∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC 的顶点均在⊙O 上,若∠A=36°,则∠OBC 的度数为( )A .18°B .36°C .60°D .54°【答案】D 【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A =72°,然后根据OB=OC ,求得∠OBC=(180°-∠O )=(180°-72°)=54°. 故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算.2.如图,是抛物线2y ax bx c =++的图象,根据图象信息分析下列结论:①20a b +=;②0abc >;③240b ac ->;④420a b c ++<.其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④【答案】D 【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x 、y 轴的交点,通过推算进行判断. 【详解】①根据抛物线对称轴可得12b x a=-= ,20a b +=,正确; ②当x=0 ,c 0y =< ,根据二次函数开口向下和12b a -=得,0a < 和0b > ,所以0abc >,正确; ③二次函数与x 轴有两个交点,故240b ac =-> ,正确;④由题意得,当x 0= 和x=2 时,y 的值相等,当x 0=,y 0< ,所以当x=2,y 420a b c =++< ,正确;故答案为:D .【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.3.关于二次函数y =x 2+2x+3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0).A .1B .2C .3D .4 【答案】B【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x+3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x+3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确;④y =x 2+2x+3,当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B .【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.4.已知如图,ABC 中,AB AC =,点D 在AB 边上,且AD BD BC ==,则A ∠的度数是( ).A .18︒B .36︒C .54︒D .72︒【答案】B 【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x .∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.5.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【答案】A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.6.已知Rt△ABC中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是()A.sinA=23B.cosA=23C.tanA=23D.tanB=23【答案】D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C=90°,BC=6,AC=4,∴AB2264213+=A、sinA=313 BCAB=B、cosA=213 ACAB=C 、tanA =32BC AC =,故此选项错误;D 、tanB =AC 2BC 3=,故此选项正确. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键. 7.如图是抛物线2(0)y ax bx c a =++≠的部分图象,其顶点坐标是(1,)m ,给出下列结论:①0abc <;②20a b +=;③24()0b a c m --=;④30a c +>;⑤0a b c -+>.其中正确结论的个数是( )A .2B .3C .4D .5【答案】C 【分析】①根据开口方向,对称轴的位置以及二次函数与y 轴的交点的位置即可判断出a,b,c 的正负,从而即可判断结论是否正确;②根据对称轴为1x =即可得出结论;③利用顶点的纵坐标即可判断;④利用1x =-时的函数值及a,b 之间的关系即可判断;⑤利用1x =-时的函数值,即可判断结论是否正确.【详解】①∵抛物线开口方向向上,0a ∴> .∵对称轴为b x 02a=-> , ∴0b < .∵抛物线与y 轴的交点在y 轴的负半轴,∴0c < ,∴0abc >,故错误;②∵对称轴为12b x a=-= , ∴2b a =- , 20a b ∴+= ,故正确; ③由顶点的纵坐标得,244ac b m a-=, ∴244ac b am -=,∴2440b am ac +-=,∴24()0b a c m --=,故正确;④当1x =-时,30y a b c a c =-+=+> ,故正确;⑤当1x =-时,0y a b c =-+> ,故正确;所以正确的有4个,故选:C .【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.8.下列事件中,是必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数为偶数B .三角形的内角和等于180°C .不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D .抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A 、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B 、三角形的内角和等于180°是必然事件;C 、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D 、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0, 而抛物线的对称轴为直线x=-b 2a=1,即b=-2a , ∴3a+b=3a-2a=a <0,所以①正确;∵2≤c≤3,而c=-3a ,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确; ∵抛物线的顶点坐标(1,n ),∴x=1时,二次函数值有最大值n ,∴a+b+c≥am 2+bm+c ,即a+b≥am 2+bm ,所以③正确;∵抛物线的顶点坐标(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年白云区初三上数学期末试卷
一、选择题(每小题3分,共30分)
1. 下列是一元二次方程的为( )
A.210x y -+=
B.2230x x --=
C.230x +=
D.22100x y +-=
2.点A (3,-1)关于原点对称的点的坐标为( )
A.(3,1)
B.(-3,-1)
C.(-3,1)
D.(1,-3)
3.将方程222x x -=配成2()x a k +=的形式,方程两边需加上( )
A.1
B.2
C.4
D.-1
4. 如图,ABC ∆是O 的内接三角形,若70ABC ∠=,则AOC ∠的度数
等于( )
A. 110
B.120
C.130
D.140
5.在抛物线2113
y x =--的对称轴的左侧( )
A.y 随x 的增大而增大
B.y 随x 的增大而减小
C.y 随x 的减小而增大
D.以上都不对 6.已知O 的直径为13cm ,圆心O 到直线l 的距离为8cm ,则直线l 与O 的位置关系是( )
A. 相交
B.相切
C.相离
D.相交或相切
7.下列事件中,属于不可能事件的是( )
A.某个数的绝对值小于0
B.某个数的相反数等于它本身
C.某两个数的和小于0
D.某两个负数的积大于0
8.下列命题中的真命题是( )
A.各边相等的多边形是正多边形
B.正七边形既是轴对称图形,又是中心对称图形
C.各角相等的多边形是正多边形
D.正八边形既是轴对称图形,又是中心对称图形
9.反比例函数k y x =
在第一象限的图象如图2所示,则k 的值可能是( ) A.1 B.2 C.3 D.4
10. 如图3,已知Rt ABC ∆中,90306,,=C ABC AB cm ∠=∠=,将ABC ∆绕着点B 顺时针旋转至''A BC ∆的位置,且A 、B 、'C 三点在同一条直线上,则点C 经过的最短路线的长度是( )
A.12cm
B.52cm π
C.532cm π
D.233
cm
二、填空题(本大题共6小题,每小题3分,共18分)
11. 若1x =是一元二次方程230x x m -+=的一个根,则m = .
12. 如图4,、、、A B C D 均在O 上,E 为BC 延长线上的一点,若
102=A ∠,则DCE ∠= .
13. 在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同。
若从中随机摸出一个球,它是白球的概率是23
,则n = . 14. 关于x 的一元二次方程230x x m -+=,其根的判别式为 .
15. 如图5,O 是ABC ∆的外接圆,30C ∠=,2AB cm =,则O 的半径为 cm .
16. 把一根长30cm 的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是 2cm .
三、解答题。
17. (本小题满分13分,分别为6、7分)解下列方程:
(1)230x x -=
(2)2690x x --=
反比例函数23m y x
-=的图象如图6所示。
(1)m 的取值范围是 .
(2)若(2),A a -,(3),B b -是该函数图象上的两点,试说明a 与b 的大小关系.
19. (本小题满分9分,分别为5、4分)
一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球。
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率。
20. (本小题满分11分,分别为2、5、4分)
已知二次函数241y x x =-+.
(1)该抛物线的对称轴为 ;
(2)用配方法,求出该抛物线的顶点坐标;
(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式。
如图7,将OAB ∆绕点O 逆时针旋转80°得到OCD ∆,点A 与点C 是对应点.
(1)画出OAB ∆关于点O 对称的图形(保留画图痕迹,不写画法);
(2)若110A ∠=,40D ∠=,求AOD ∠的度数。
22.(本小题满分10分,分别为4、6分)
如图8,O 中,弦CD 与直径AB 交于点H .
(1)当90B D ∠+∠=时,求证:H 是CD 的中点;
(2)若H 为CD 的中点,且22CD =,3BD =,求AB 的长.
23.(本小题满分12分,分别为2、5、5分)
如图9,在平面直角坐标系中,已知(333),A -、,(6B ,0)且OA OB =.
(1)若''OA B ∆与△OAB 关于原点O 成中心对那称则点A 、B 的对称点'A 、'B 的坐标分别为'A ,'B .
(2)若将△OAB 沿x 轴向左平移m 个单位,此时点A 恰好落在反比例函数63y x =
的图象上, 求m 的值;
(3)若△OAB 绕点O 按逆时针方向旋转α(0<a<90)
①当30α=时点B 恰好落在反比例函数k y x
=的图象上,求k 的值;
②问点A 、B 能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能请说明理由.
24.(本小题满分11分,分别为1、4、9分)
已知二次函数2(5)5y x a x =+-+.
(1)该抛物线与y 轴交点的坐标为 ;
(2)当1a =-时,求该抛物线与x 轴的交点坐标;
(3)已知两点A (2,0)、B (3,0),抛物线2(5)5y x a x =+-+与线段AB 恰有一个交点,求a 的取值范围.
25.(本小题满分14分,分别为3、9、2分)
如图10.AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直AB 上,另 一边DE 过△ABC 的内切圆圆心O.且点E 在半圆上.
(1)当正方形的顶点F 也在半圆弧上时,半圆的半径与正方形边长的比为 .
(2)当正方形DEFG 的面积为100,且ABC ∆的内切圆O 的半径4r =.求半圆的直径AB 的值;
(3)若圆的半径为R ,直接写出O 半径r 可取得的最大值。