高二立体几何与直线方程的知识点总结
高二数学直线及方程知识点
高二数学直线及方程知识点直线及方程是高中数学中重要的知识点之一,对于理解几何形状和解决实际问题都具有重要的作用。
本文将介绍高二数学中的直线及方程知识点,包括直线方程的表示形式、直线的性质与判定以及直线与曲线的关系等内容。
希望通过本文的阅读,能够帮助同学们更好地理解和掌握直线及方程的知识。
1. 直线方程的表示形式直线方程的表示形式通常有一般式、截距式和斜截式等。
一般式的直线方程形式为Ax + By + C = 0,其中A、B和C是实数且A和B不同时为0。
截距式的直线方程形式为x/a + y/b = 1,其中a和b分别表示x轴和y轴上的截距。
斜截式的直线方程形式为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
2. 直线的性质与判定直线具有很多重要的性质,包括平行、垂直、相交等。
两条直线平行的判定条件是它们的斜率相等,两条直线垂直的判定条件是它们的斜率的乘积为-1。
两条直线相交时,它们的交点可以通过联立两条直线的方程求解得到。
此外,对于一条直线上的两点A(x1, y1)和B(x2, y2),其斜率可以通过Δy/Δx来计算。
3. 直线与曲线的关系直线与曲线之间有时会有特殊的关系,比如切线和法线。
曲线在某一点的切线是曲线在该点处与切线相切,切线的斜率等于曲线在该点的导数。
曲线在某一点的法线是与切线垂直的直线,其斜率等于切线的斜率的相反数。
通过分析曲线的性质及其方程,我们可以画出曲线在不同点处的切线和法线。
4. 直线与线段的关系直线和线段也有一些特殊的关系,比如线段的中垂线和角平分线。
线段的中垂线是线段的中点与线段所在直线的垂线,中垂线会将线段平分成两个相等的部分。
线段的角平分线是线段的两边所在直线的夹角的平分线,角平分线将角分成两个相等的角。
总结:本文介绍了高二数学中的直线及方程知识点,包括直线方程的表示形式、直线的性质与判定以及直线与曲线、线段的关系等内容。
通过对这些知识点的理解和掌握,可以帮助同学们更好地应对数学学习中的问题和挑战,为解决实际问题提供有力的数学工具。
直线与方程知识点总结
直线与方程知识点总结一、直线的表示1、比例表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线上任意的一点P(x,y)都满足比例关系:$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$2、斜截式:也叫斜率表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线可用如下斜率表达式:$$y-y_1=k(x-x_1)$$其中,k为斜率,可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$k=\frac{y_2-y_1}{x_2-x_1}$$3、标准方程:直线可以用标准方程表达:$$Ax+By+C=0$$其中,A、B、C可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$A=y_2-y_1,B=x_1-x_2,C=x_2y_1-x_1y_2$$二、方程的表示1、一元一次方程:一元一次方程可以按如下形式表示:$$Ax+B=0$$其中,A、B为常数,A≠0,解析解可以表示为:$$x=-\frac{B}{A}$$2、一元二次方程:一元二次方程可以按如下形式表示:$$Ax^2+Bx+C=0$$其中,A、B、C为常数,A≠0,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$3、二元一次方程:二元一次方程可以按如下形式表示:$$Ax+By+C=0$$其中,A、B、C为常数,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$$$y=\frac{-A\pm\sqrt{B^2-4AC}}{2B}$$4、同次及非同次线性方程组:。
直线方程知识点归纳总结
直线方程知识点归纳总结一、直线的倾斜角与斜率。
1. 倾斜角。
- 定义:直线l向上的方向与x轴正方向所成的最小正角α,叫做直线l的倾斜角。
- 范围:0^∘≤slantα < 180^∘。
2. 斜率。
- 定义:直线的倾斜角α≠90^∘时,k = tanα叫做直线的斜率。
- 经过两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠ x_2)的直线的斜率k=(y_2 -y_1)/(x_2 - x_1)。
二、直线方程的几种形式。
1. 点斜式。
- 方程:y - y_0=k(x - x_0),其中(x_0,y_0)是直线上一点,k是直线的斜率。
- 适用范围:斜率存在的直线。
2. 斜截式。
- 方程:y = kx + b,其中k是斜率,b是直线在y轴上的截距。
- 适用范围:斜率存在的直线。
3. 两点式。
- 方程:(y - y_1)/(y_2 - y_1)=(x - x_1)/(x_2 - x_1)(x_1≠ x_2,y_1≠ y_2),其中(x_1,y_1),(x_2,y_2)是直线上两点。
- 适用范围:不垂直于坐标轴的直线。
4. 截距式。
- 方程:(x)/(a)+(y)/(b)=1(a≠0,b≠0),其中a是直线在x轴上的截距,b是直线在y轴上的截距。
- 适用范围:不垂直于坐标轴且不过原点的直线。
5. 一般式。
- 方程:Ax + By+C = 0(A,B不同时为0)。
- 可以表示平面内任意一条直线。
三、直线的平行与垂直。
1. 平行。
- 设直线l_1:y = k_1x + b_1,l_2:y = k_2x + b_2。
- 当k_1 = k_2且b_1≠ b_2时,l_1∥ l_2;对于直线l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,当(A_1)/(A_2)=(B_1)/(B_2)≠(C_1)/(C_2)时,l_1∥l_2。
2. 垂直。
- 设直线l_1:y = k_1x + b_1,l_2:y = k_2x + b_2。
直线方程相关知识点总结
直线方程相关知识点总结一、直线的定义直线是平面上的一个几何图形,它由无数个点组成,这些点都在同一条直线上。
直线是最简单的平面几何图形,也是最基本的图形之一。
在数学中,直线可以用数学语言和符号来描述。
在笛卡尔坐标系中,直线可以表示为一元一次方程。
一元一次方程实际上描述了坐标系中的一条直线,因此,直线方程和一元一次方程是密切相关的。
二、直线的方程在笛卡尔坐标系中,一条直线可以用一元一次方程来表示。
一元一次方程的一般形式为y = kx + b,其中k和b是常数,k称为直线的斜率,b称为直线的截距。
斜率k表示直线的倾斜程度,截距b则表示直线与y轴的交点。
因此,一元一次方程y = kx + b就是一条直线的方程。
1. 斜率斜率是直线的一个重要属性,它描述了直线的倾斜程度。
在数学中,直线的斜率可以用两点的坐标来表示。
设直线上有两点A(x1, y1)和B(x2, y2),则直线的斜率k可以表示为:\[k = \frac{y2 - y1}{x2 - x1}\]也可以表示为:\[k = \frac{\Delta y}{\Delta x}\]其中,Δy表示y2 - y1,Δx表示x2 - x1。
斜率k的正负决定了直线的倾斜方向,如果k > 0,则直线向右上倾斜;如果k < 0,则直线向左下倾斜;如果k = 0,则直线平行于x轴;如果k不存在,则直线垂直于x轴。
2. 截距截距是直线与y轴的交点,它描述了直线在y轴上的位置。
在一元一次方程y = kx + b中,b就是直线的截距。
当x = 0时,y = b,所以截距b就是直线与y轴的交点的纵坐标。
3. 点斜式除了一般形式的直线方程y = kx + b外,直线方程还可以用点斜式表示。
点斜式表示法是指直线上的一个点A(x1, y1)以及直线的斜率k,通过这两个条件就可以确定一条直线的方程。
点斜式的一般形式为:\[y - y1 = k(x - x1)\]其中,k是直线的斜率,(x1, y1)是直线上的一个点。
直线方程知识点总结
直线与方程知识点总结一、直线基本知识 1、直线的倾斜角与斜率 1直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α 2直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在; ②经过两点),(),,(222111y x P y x P 21x x ≠的直线的斜率公式是1212x x y y k --=21x x ≠ ③每条直线都有倾斜角,但并不是每条直线都有斜率; 2、两条直线平行与垂直的判定 1两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=; 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行; 2两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1;如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直;二、直线的方程 1、直线方程的几种形式注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示 不一定;1若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y 轴,方程为1y y =; (3)3若2121y y x x ≠≠且,直线方程可用两点式表示 2、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 3. 过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-;②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λλ为参数,其中直线l 2不在直线系中.三、直线的交点坐标与距离公式 1.两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立; 2.几种距离 1两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P -+-=特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP += 2点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=3两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=注意:① 求点到直线的距离时,直线方程要化为一般式;② 求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算;补充:1、直线的倾斜角与斜率 1直线的倾斜角(2).已知斜率k 的范围,求倾斜角α的范围时,若k 为正数,则α的范围为(0,)2π的子集,且k=tan α为增函数;若k 为负数,则α的范围为(,)2ππ的子集,且k=tan α为增函数;若k 的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范围;2、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线; 注:斜率变化分成两段,090是分界线,遇到斜率要谨记,存在与否需讨论; 3. 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l2;0,0-//1221122121≠-=⇔C A C A B A B A l l3;0,0-1221122121=-=⇔C A C A B A B A l l 重合与41l 与2l 相交01221≠-⇔B A B A如果2220A B C ≠时,则:11221121-=•⇔⊥B A B A l l 2⇔21//l l )不为0,,(222212121C B A C CB B A A ≠=;31l 与2l 重合⇔)不为0,,(222212121C B A C CB B A A ==41l 与2l 相交⇔)不为0,(222121B A B BA A ≠4. 有关对称问题 常见的对称问题: 1中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程;2轴对称①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-•--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x 可得到点1P 关于l 对称的点2P 的坐标),(22y x 其中21,0x x A ≠≠②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行;注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f 5. 两条直线的交角①直线1l 到2l 的角方向角;直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ②两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.6. 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”: (1) 在直线l 上求一点P,使PB PA +取得最小值,① 若点B A 、位于直线l 的同侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A② 若点B A 、位于直线的异侧时,连接AB 交于l 点P ,则P 为所求点;可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.(2)在直线l 上求一点P 使PB PA -取得最大值,方法与1恰好相反,即“异侧对称同侧连”① 若点B A 、位于直线l 的同侧时,连接AB 交于l 点P ,则P 为所求点;② 若点B A 、位于直线的异侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A3 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”;7. 直线过定点问题:① 含有一个未知参数,12)1(-+-=a x a y 1)2(+-+=⇒x x a y 1 令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(-② 含有两个未知参数0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m令⎩⎨⎧-+-=+1203y x y x ⎪⎪⎩⎪⎪⎨⎧=-=⇒7371y x从而该直线必过定点)73,71(-8. 点到几种特殊直线的距离1点00(,)P x y 到x 轴的距离0||d y =; 2点00(,)P x y 到y 轴的距离0||d x =.3点00(,)P x y 到与x 轴平行的直线y=a 的距离0||d y a =-; 4点00(,)P x y 到与y 轴平行的直线x=b 的距离0||d x a =-. 9. 与已知直线平行的直线系有:1平行于直线)(00//C C C By Ax C By Ax ≠=++=++的直线可表示为2平行于直线)(//b b b kx y b kx y ≠+=+=的所有直线为10. 易错辨析:1 讨论斜率的存在性:解题过程中用到斜率,一定要分类讨论:① 斜率不存在时,是否满足题意;② 斜率存在时,斜率会有怎样关系;2注意“截距”可正可负,不能“错认为”截距就是距离,会丢解; 求解直线与坐标轴围成面积时,较为常见; 3 直线到两定点距离相等,有两种情况:① 直线与两定点所在直线平行; ② 直线过两定点的中点;求解过某一定点的直线方程时,较为常见; 4过点),(00y x A ,平行于x 轴的直线方程为0y y = 过点),(00y x A ,平行于y 轴的直线方程为0x x =。
直线方程有哪些知识点总结
直线方程有哪些知识点总结一、直线方程的基本形式1.1 直线方程的定义直线方程是用数学语言描述平面上的直线的数学模型。
直线方程可以用多种形式表示,但最常见的形式是一般式和点斜式。
1.2 一般式一般式是直线方程的一种常用形式,其一般形式为Ax + By + C = 0,其中A、B、C是实数且A和B不同时为0。
1.3 点斜式点斜式是直线方程的另一种常用形式,其一般形式为y - y1 = m(x - x1),其中(x1, y1)是直线上的一个点,m是直线的斜率。
1.4 截距式截距式是直线方程的另一种常用形式,其一般形式为x/a + y/b = 1或者x/a - y/b = 1,其中a和b分别代表直线与x轴和y轴的截距。
1.5 斜截式斜截式是直线方程的另一种常用形式,其一般形式为y = mx + c,其中m是直线的斜率,c是直线与y轴的截距。
二、直线方程的常见性质2.1 直线的斜率直线的斜率是一个很重要的性质,它可以描述直线的倾斜程度。
直线的斜率可以通过斜率公式m = (y2 - y1)/(x2 - x1)来求得,其中(x1, y1)和(x2, y2)是直线上的两个不同点。
2.2 直线的截距直线与坐标轴的交点分别称为直线的截距。
直线的截距可以通过截距式或者截距公式来求得。
2.3 直线的倾斜方向直线的斜率可以告诉我们直线的倾斜方向,当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为零时,直线平行于x轴;当斜率不存在时,直线平行于y轴。
2.4 直线的平行和垂直关系两条直线的斜率相等时,两条直线平行;两条直线的斜率互为相反数时,两条直线垂直。
2.5 直线的交点两条直线的交点是它们的共同解,可以通过解直线方程组来求得。
2.6 直线的倾斜角直线的倾斜角是直线和x轴之间的夹角,可以通过斜率来求得。
三、解直线方程的方法3.1 解一般式解一般式的直线方程,通常需要将其转化为其他形式,比如点斜式、截距式或者斜截式。
直线方程总结知识点
一、直线方程的概念直线方程是描述平面上一条直线的数学关系式。
通常情况下,直线方程可表示为y = kx + b,其中x和y分别表示直线上的点的横纵坐标,k表示直线的斜率,b表示直线的截距。
直线方程可以用于描述直线的位置、方向等性质,是解决几何和代数问题的基本工具之一。
二、直线方程的常见形式1.点斜式方程点斜式方程是一种常见的直线方程形式,它的形式为y - y1 = k(x - x1),其中(k,x1,y1)为直线上的已知点,k为直线的斜率。
点斜式方程直观地表示了直线斜率的概念,方便计算直线的位置和方向。
2.斜截式方程斜截式方程是另一种常见的直线方程形式,它的形式为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程直观地表示了直线截距的概念,方便计算直线与坐标轴的交点。
3.截距式方程截距式方程是直线的截距与坐标轴的关系式,它的形式为x/a + y/b = 1,其中a和b分别表示直线在x轴和y轴上的截距。
截距式方程可以直观地表示直线截距的性质,方便计算直线的位置和方向。
三、直线方程的求解方法1.根据已知点和斜率求解如果已知直线上的一个点和斜率,可以使用点斜式方程来表示直线。
首先找到直线上的一个点(x1,y1),然后用直线的斜率k计算出直线方程y = kx + b中的截距b,最终得到直线方程。
2.根据已知点和截距求解如果已知直线上的两个点,可以使用截距式方程来表示直线。
首先根据已知的两点(x1,y1)和(x2,y2)计算出直线的斜率k,然后再计算出直线的截距a和b,最终得到直线方程。
3.根据两条直线的关系求解如果已知两条直线的关系,可以使用斜截式方程来表示直线。
首先根据两条直线的关系计算出直线的斜率k,截距b,最终得到直线方程。
1.几何问题中的应用直线方程可以用来描述几何问题中的直线性质,比如直线的位置、方向等。
例如,可以使用直线方程来描述平面上两点之间的连线,计算直线的斜率和截距等,从而解决几何问题。
高二直线的方程知识点总结
高二直线的方程知识点总结直线是数学中的基本概念之一,其方程的求解和应用广泛存在于高二数学课程中。
本文将对高二直线的方程知识点进行总结和归纳。
一、直线的一般方程直线的一般方程形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
二、直线的斜率与倾斜角直线的斜率用k表示,斜率定义为直线上任意两点的纵坐标差与横坐标差的比值。
对于一般方程为Ax + By + C =0的直线,其斜率的表达式为k = -A/B。
直线的倾斜角θ与斜率k之间有如下关系:当0 ≤ θ ≤ π/2时,k > 0,直线向右上方倾斜;当π/2 < θ ≤ π时,k < 0,直线向右下方倾斜;当π < θ ≤ 3π/2时,k > 0,直线向左下方倾斜;当3π/2 < θ ≤ 2π时,k < 0,直线向左上方倾斜。
三、直线的点斜式方程已知直线上一点P(x₁, y₁)和直线的斜率k,直线的点斜式方程表达式为y - y₁ = k(x - x₁)。
四、直线的截距式方程已知直线与x轴、y轴的交点分别为(a,0)和(0,b),直线的截距式方程表达式为x/a + y/b = 1。
五、直线的两点式方程已知直线上两点P₁(x₁, y₁)和P₂(x₂, y₂),直线的两点式方程表达式为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)。
六、直线的斜截式方程已知直线的斜率k和与y轴的截距b,直线的斜截式方程表达式为y = kx + b。
七、直线的垂直与平行关系两条直线互相垂直的条件是它们的斜率互为相反数,即k₁k₂= -1。
两条直线互相平行的条件是它们的斜率相等,即k₁ = k₂。
八、直线与圆的位置关系直线与圆的位置关系分为以下三种情况:1. 直线与圆相离,没有交点;2. 直线与圆相切,有且仅有一个交点;3. 直线与圆相交,有两个交点。
根据两者方程的联立或者判别式,可以确定直线与圆的位置关系。
高中数学直线方程关键知识重点总结
高中数学直线方程关键知识重点总结高中数学直线方程是数学中一个基础且重要的知识点。
直线方程是解决与直线有关的几何问题的重要工具,涉及到一些基础的知识点和概念。
在此,我们将对高中数学直线方程关键知识重点进行总结,以帮助学生更好地掌握这一知识点。
一、向量与坐标在学习直线方程时,我们必须首先了解向量和坐标,因为直线方程的推导和应用都与向量和坐标有密切关系。
向量是具有大小和方向的量,主要有数量积和向量积两种运算。
其中,向量积和数量积的概念是数学中对直线方程推导有很大帮助的。
坐标系是在平面或空间上任意规定一个点O,并规定用有序数对(x,y)或有序三元组(x,y,z)来表示给定点的位置的一种几何工具。
在进行直线方程的推导时,我们通常需要用到直线上的点的坐标、向量的坐标等。
二、直线方程的一般式直线方程的一般式是Ax + By + C = 0,其中A、B、C均是系数。
我们可以通过该式推导出直线的斜截式和截距式等其他形式的直线方程。
直线方程的一般式是我们在学习直线方程时首先需要掌握的基础知识之一。
三、直线的斜率和截距直线的斜率是指其倾斜程度,是一条直线的重要特征之一。
当直线与x轴的夹角为α时,斜率k=tanα,也就是斜率是该直线与x轴夹角的正切值。
我们可以通过点斜式来求出直线的斜率。
截距是指直线与y轴的交点,有x=0时的y坐标。
截距是确定直线位置的另一个重要因素。
直线方程的斜截式和截距式就是用斜率和截距来表示一条直线的位置和特征的。
四、直线方程的四种形式在学习直线方程时,我们还需要了解直线方程一般式、点斜式、斜截式和截距式这四种形式,它们分别适用于不同的情况,是使用直线方程时需要掌握的关键知识点。
一般式:Ax + By + C =0点斜式:y - y1 = k(x - x1)斜截式:y = kx + b截距式:x/a + y/b = 1通过学习这些形式,我们可以更好地理解、应用和推导直线方程。
五、两条直线的位置关系在学习直线方程时,我们还需要了解两条直线的位置关系。
直线与方程知识点归纳高二
直线与方程知识点归纳高二直线与方程知识点归纳直线和方程是高中数学中的重要知识点,它们广泛应用于几何学和代数学中。
了解直线和方程的基本概念、性质和应用,对于深入理解数学知识和解决实际问题非常重要。
本文将对直线与方程的相关知识进行归纳和总结。
一、直线的定义和性质直线是几何中最基本的图形之一,它由一系列无限延伸的点组成,并且任意两点都能确定一条直线。
直线有以下性质:1. 直线的斜率:直线的斜率是描述其倾斜程度的一个值,可以表示为一个数值或者一个代数表达式。
斜率可以用于计算直线上两点间的变化率,也可以用于判断直线的平行性和垂直性。
2. 直线的截距:直线与坐标轴的交点称为截距,分为x轴截距和y轴截距。
两个截距可以用来确定直线的位置和方程。
3. 直线的方程:直线可以通过方程来表示,常见的直线方程形式有点斜式、一般式、截距式等。
其中点斜式方程是通过直线上的一点和斜率来确定的,一般式方程是通过直线的系数和常数项来确定的,截距式方程是通过直线与坐标轴的截距来确定的。
二、方程的基本概念和性质方程是用来表示等式的数学语句,包括代数方程、几何方程等。
在数学中,方程有以下重要概念和性质:1. 未知数和已知数:方程中的未知数是需要求解的变量,已知数是已知的常数或者已知的变量。
通过方程可以求解出未知数的值,从而使等式成立。
2. 方程的解:一个方程可以有一个或多个解,解是使得方程成立的未知数的值。
解可以通过代入法、消元法、因式分解等方法求解。
3. 一元方程和二元方程:一元方程只有一个未知数,例如x+3=7;二元方程有两个未知数,例如x+y=10。
三、直线与方程的关系直线和方程是密切相关的,直线可以表示为一个方程,并且方程可以描述直线的各种性质和特征。
下面介绍几个常见的与直线和方程相关的概念和定理:1. 直线的平行和垂直关系:如果两条直线的斜率相等,那么它们平行;如果两条直线的斜率乘积为-1,那么它们垂直。
2. 直线的交点:两条直线的交点是使得两个方程同时成立的点,可以通过联立方程求解来确定交点的坐标。
直线的方程知识点总结
直线的方程知识点总结一、直线的性质1. 直线的定义直线是由一组无限多个点构成的集合,在直线上任取两点,直线上的任意一点都可以表示为这两点的线性组合。
直线是一维的几何图形,可以用一个点和一个方向来描述。
2. 直线的斜率直线的斜率是描述直线倾斜程度的重要参数,斜率的计算公式为:m=(y2-y1)/(x2-x1),其中(x1, y1)和(x2, y2)是直线上的两个点。
斜率代表了直线与x轴正方向的夹角的正切值,斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为零表示直线平行于x轴。
3. 直线的截距直线与坐标轴的交点称为直线的截距,可以分为x轴截距和y轴截距。
直线与x轴的交点的横坐标称为直线的x轴截距,直线与y轴的交点的纵坐标称为直线的y轴截距。
直线的斜截式方程就是以斜率和截距作为参数的直线方程表示形式。
4. 直线的性质直线是一维的几何图形,它具有以下性质:(1)两点确定一条直线(2)直线的斜率存在且唯一(3)平行于同一直线的两条直线的斜率相等(4)垂直于同一直线的两条直线的斜率互为相反数二、直线的方程表示形式1. 截距式方程直线的截距式方程是直线的一种表示形式,以截距作为参数。
一条直线的截距式方程可以表示为:x/a+y/b=1,其中a和b分别是直线与x轴和y轴的截距。
2. 斜截式方程直线的斜截式方程是直线的一种表示形式,以斜率和截距作为参数。
一条直线的斜截式方程可以表示为:y=mx+b,其中m是直线的斜率,b是直线与y轴的截距。
3. 一般式方程直线的一般式方程是直线的一种表示形式,以直线的一般系数作为参数。
一条直线的一般式方程可以表示为:Ax+By+C=0,其中A、B和C是直线的一般系数。
4. 对称式方程直线的对称式方程是直线的一种表示形式,以直线的斜率和截距的倒数作为参数。
一条直线的对称式方程可以表示为:xcosα+ysinα=p,其中α是直线的倾斜角,p是直线与原点的距离。
三、直线的求解方法1. 点斜式方程的求解点斜式方程是直线的一种表示形式,以直线上一点和直线的斜率作为参数。
高考数学直线方程知识点总结
高考数学直线方程知识点总结高考数学直线方程是高中数学中的一项基础知识,也是高考数学试题中经常出现的考点。
直线方程的掌握程度直接影响到解题的准确性和速度。
下面将对高考数学直线方程的知识点进行总结,希望对你的学习有所帮助。
一、直线的一般式方程直线的一般式方程表示为Ax+By+C=0。
通过两个点P(x1, y1)和Q(x2, y2)的坐标可以确定一条直线的一般式方程。
当直线过点P(x1, y1)且斜率存在时,直线的一般式方程可以表示为y-y1=k(x-x1),其中k为直线的斜率。
二、直线的斜截式方程直线的斜截式方程表示为y=kx+b。
其中k为直线的斜率,b为直线在y轴上的截距。
通过直线的斜截式方程可以确定一条直线在平面直角坐标系中的位置。
三、直线的点斜式方程直线的点斜式方程表示为y-y1=k(x-x1)。
其中k为直线的斜率,(x1, y1)为直线上的一点。
通过直线的点斜式方程可以确定一条直线在平面直角坐标系中的位置。
四、直线的截距式方程直线的截距式方程表示为x/a+y/b=1。
其中a、b为直线在x轴和y轴上的截距。
通过直线的截距式方程可以确定一条直线在平面直角坐标系中的位置。
五、直线的平行和垂直关系1. 平行关系:两条直线的斜率相等时,两条直线平行。
2. 垂直关系:两条直线的斜率的乘积为-1时,两条直线垂直。
六、直线的截线式方程直线的截线式方程表示为x/a+y/b=1。
其中a、b为直线在x轴和y轴上的截距。
通过直线的截截式方程可以确定一条直线在平面直角坐标系中与坐标轴的交点。
七、直线的交点和距离1. 直线的交点:两条直线的交点可以通过联立方程求解得到。
2. 直线的距离:设直线L的一般式方程为Ax+By+C1=0,点P(x0, y0)到直线L的距离为d=|Ax0+B y0+C1|/√(A²+B²)。
八、直线的性质和常见问题1. 直线的斜率和方向角:直线的斜率k=tanθ,其中θ为直线的方向角。
数学立体几何平面向量直线方程三角函数知识点
一、平面的基天性质公义 1:假如一条直线上的两点在一个平面,那么这条直线在此平面公义 2:过不在一条直线上的三点,有且只有一个平面。
推论 1:经过一条直线及直线外一点,有且只有一个平面。
推论 2:经过两条订交直线,有且只有一个平面。
推论 3:经过两条平行直线,有且只有一个平面。
公义 3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为: P∈α∩β => α∩β =L,且 P∈ L深入: 1:若两订交平面有三个公共点,那么三点共线2:若两平面订交,则一个平面直线与另一个平面的交点α必然在两个平面的交线上。
归入平面:不共线三点均分别在两个平面,则两平面相等。
两直线均分别在两个平面,则两平面相等。
二、空间中直线与直线之间的地点关系订交直线:同一平面,有且只有一个公共点;共面直线平行直线:同一平面,没有公共点;异面直线:不一样在任何一个平面,没有公共点,既不订交,也不平行。
2 公义 4(平行的传达性):平行于同一条直线的两条直线相互平行。
3 等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4 异面直线判断定理:过平面外一点与平面一点的直线和平面不经过这点的直线是异面直线。
这个定理是判断空间两条直线是异面直线的理论依照。
5注意点:βP·L(1)直线所成的角θ∈(0 ,2]。
(2)两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a⊥ b;(3)直线相互垂直,有共面垂直与异面垂直两种情况;三.线面平行1 判断定理:平面外一条直线与此平面的一条直线平行,则该直线与此平面平行。
2 直线与平面的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(由线面平行推线线平行)四.平面与平面平行1 判断定理1:一个平面的两条交直线与另一个平面平行,则这两个平面平行。
2 判断定理2:一个平面的两条订交直线分别平行于另一平面的两条订交直线,则这两个平面平行。
高中数学必修二、直线与方程、圆的方程、立体几何初步
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)��90,0∈α时,0≥k ;当()��180,90∈α时,0<k ;当�90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠−−=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y −=−直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x −−=−−(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x ya b+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数);平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y −=−,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
直线方程知识点总结
直线方程知识点总结一、直线的一般方程:直线的一般方程是Ax+By+C=0。
这里A、B和C都是实数,同时也不能同为零。
在一般方程中,A和B的值决定了直线的斜率和方向,C的值决定了直线与坐标轴的交点。
二、直线的斜截式方程:直线的斜截式方程是y=mx+b。
在这个方程中,m代表了直线的斜率,b代表直线在y 轴上的截距。
斜截式方程是一种非常直观和易于理解的形式,它可以帮助我们快速确定直线的斜率和截距。
三、直线的点斜式方程:直线的点斜式方程是y-y1=m(x-x1)。
其中m代表直线的斜率,而(x1,y1)代表直线上的某一点。
点斜式方程可以帮助我们通过一个点和斜率来确定一条直线。
四、直线的两点式方程:直线的两点式方程是(y-y1)/(x-x1)=(y-y2)/(x-x2)。
在这个方程中,(x1,y1)和(x2,y2)分别代表直线上的两个点。
两点式方程可以帮助我们通过两个点来确定一条直线。
五、直线的垂直和平行关系:如果两条直线的斜率的乘积为-1,则它们是垂直的;如果两条直线的斜率相等,则它们是平行的。
根据这个定义,我们可以很容易地确定两条直线之间的关系。
六、直线的距离及垂线方程:如果直线的一般方程是Ax+By+C=0,那么从点(x1,y1)到直线的距离可以用公式d=|Ax1+By1+C|/sqrt(A^2+B^2)来表示。
此外,我们还可以通过斜率m来求得垂线方程。
七、直线与坐标轴的交点:如果已知直线的一般方程Ax+By+C=0,那么它分别与x轴和y轴的交点可以用以下方式求得:1. 交x轴时,直线的交点为(-C/A, 0)2. 交y轴时,直线的交点为(0, -C/B)以上就是直线方程的一些基本知识点总结,通过掌握这些知识,我们可以更好地理解和运用直线方程,从而解决各种相关问题。
直线方程知识点归纳总结高中
直线方程知识点归纳总结(高中)1. 直线的一般方程直线的一般方程可以表示为Ax + By + C = 0,其中A、B和C是实数,且A和B不同时为0。
例如,2x + 3y - 5 = 0就是一条直线的一般方程。
2. 直线的斜截式方程直线的斜截式方程可以表示为y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
例如,y = 2x + 3就是一条直线的斜截式方程,斜率为2,截距为3。
3. 直线的点斜式方程直线的点斜式方程可以表示为y - y₁ = m(x - x₁),其中m是直线的斜率,(x₁, y₁)是直线上的一点。
例如,y - 2 = 3(x - 4)就是一条直线的点斜式方程,斜率为3,通过点(4, 2)。
4. 直线的两点式方程直线的两点式方程可以表示为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)是直线上的两个点。
例如,(y - 1)/(x - 2) = (3 - 1)/(5 - 2)就是一条直线的两点式方程,通过点(2, 1)和(5, 3)。
5. 直线的垂直平行关系如果两条直线的斜率相等且截距不同,那么它们是平行的。
如果两条直线的斜率互为倒数,那么它们是垂直的。
6. 直线的角平分线直线的角平分线是指将一个角平分成两个相等的角的直线。
对于两条直线l₁和l₂,如果l₁和l₂的斜率之积为-1,那么l₁和l₂是互相垂直的。
7. 直线的距离公式直线Ax + By + C = 0到点(x₁, y₁)的距离可以用公式d = |Ax₁ + By₁ + C| / √(A² + B²)来计算。
8. 直线与坐标轴的交点直线与x轴的交点可以通过令y = 0来求解。
直线与y轴的交点可以通过令x = 0来求解。
这些交点可以作为直线的特殊点,用于确定直线的方程。
9. 直线的平移与旋转直线的平移可以通过改变直线的截距来实现。
高二直线方程基础知识点
高二直线方程基础知识点直线方程是高中数学中的基础知识点之一,它是解决几何问题的关键方法之一。
本文将为大家介绍高二直线方程的基础知识点,包括直线方程的定义、斜率与截距、两点式和点斜式等内容。
一、直线方程的定义直线方程是指由直线上的点的坐标与直线的性质之间的数学关系,用代数方式表达。
在平面直角坐标系中,一条直线可以由一个方程来表示。
二、斜率与截距1. 斜率:斜率是直线的一个重要特征,表示直线上两个点之间的倾斜程度。
在平面直角坐标系中,直线的斜率可以通过两点坐标的变化量来求得,计算公式为:斜率 k = (y2 - y1) / (x2 - x1)其中,(x1, y1)、(x2, y2)是直线上的两个点的坐标。
2. 截距:截距是直线与坐标轴交点的坐标值。
在直角坐标系中,一条直线可以表示为 y = kx + b 的形式,其中 k 表示斜率,b 表示截距。
斜率表示直线的倾斜程度,截距表示直线与 y 轴的交点坐标。
三、两点式两点式是表示直线方程的一种常见形式,通过给定直线上的两个点,可以确定直线方程。
两点式的一般形式为:(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。
四、点斜式点斜式也是表示直线方程的一种常见形式,通过给定直线上的一个点和直线的斜率,可以确定直线方程。
点斜式的一般形式为:y - y1 = k(x - x1)。
五、常见问题与解答1. 如何根据两点求直线方程?可以使用两点式,根据已知的两个点的坐标,利用两点式的公式进行计算,得到直线方程。
2. 如何根据一个点和斜率求直线方程?可以使用点斜式,根据已知的一个点的坐标和直线的斜率,利用点斜式的公式进行计算,得到直线方程。
3. 直线方程的斜率和截距分别表示什么?直线方程中的斜率表示直线的倾斜程度,截距表示直线与 y 轴的交点坐标。
六、总结直线方程是解决几何问题的重要方法之一,理解斜率与截距的概念,掌握两点式和点斜式的运用是学习直线方程的基础。
直线与方程有关知识点总结
直线与方程有关知识点总结1. 直线的基本性质直线是最简单的几何图形之一,它是由无数个点连成的。
直线的基本性质包括以下几点:1)任意两点确定一条直线2)直线上的任意点与该直线上的两点距离相等3)直线是平面上的无限延伸4)直线上任意两点之间的距离是最短的2. 直线的方程直线的方程是指描述直线位置的数学式子,通常是用代数式表示。
直线的一般方程一般形式为 Ax + By + C = 0,其中 A、B、C 为常数,且 A 和 B 不同时为 0。
直线的斜率截距方程一般形式为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。
3. 直线的斜率直线的斜率是描述直线倾斜程度的一个指标,一般用 k 表示。
斜率的定义是直线上任意两点的纵坐标之差与横坐标之差的比值。
斜率可以表示为 k = (y2 - y1) / (x2 - x1),其中 (x1, y1) 和 (x2, y2) 是直线上的两个点。
斜率的符号表示直线的倾斜方向,正斜率表示向上倾斜,负斜率表示向下倾斜,斜率为零表示平行于 x 轴,斜率不存在表示平行于 y 轴。
4. 直线的截距直线的截距是描述直线与坐标轴的交点,一般用 b 表示。
直线的斜率截距方程是一种常用的表示直线方程的形式,一般表示为 y = kx + b。
其中 b 表示直线与 y 轴的交点,称为直线的 y 截距,b 的相反数表示直线与 x 轴的交点,称为直线的 x 截距。
5. 直线的平行与垂直关系两条直线平行表示它们的斜率相等,而两条直线垂直表示它们的斜率的乘积为 -1。
如果直线的斜率为 k,则与这条直线垂直的直线的斜率为 -1/k。
6. 直线的点斜式方程直线的点斜式方程是表示直线方程的一种方式,一般形式为 y - y1 = k(x - x1),其中 (x1, y1) 是直线上的一个点,k 为直线的斜率。
7. 直线的斜截式方程直线的斜截式方程是表示直线方程的一种方式,一般形式为 y = kx + b,其中 k 为直线的斜率,b 为直线的 y 截距。
高考数学直线方程知识点总结(2篇)
高考数学直线方程知识点总结1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3.⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线.②在和的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在.②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4.直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5.过两直线的交点的直线系方程为参数,不包括在内)____点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1.两点P1(____1,y1)、P2(____2,y2)的距离公式:.特例:点P(____,y)到原点O的距离:2.定比分点坐标分式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何初步1、柱、锥、台、球的结构特征2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,'h为斜高,l为母线)()lrrS+=π2圆柱表()lrrS+=π圆锥表()22RRlrlrS+++=π圆台表(3)柱体、锥体、台体的体积公式V Sh=柱,2V Sh r hπ==圆柱,13V Sh=锥,hrV231π=圆锥'1()3V S S h=++台'2211()()33V S S h r rR R hπ=++=++圆台(4)球体的表面积和体积公式:34=3V Rπ球;24S Rπ=球面二、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。
判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅I,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断)。
2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。
2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
图2-3 线面角判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。
即:(2)垂直于同一平面的两直线平行。
即:★判断或证明线面垂直的方法 ⑴ 利用定义,用反证法证明。
⑵ 利用判定定理证明。
⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。
⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。
⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。
★1.5 三垂线定理及其逆定理⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。
如图:⑵ 三垂线定理及其逆定理已知PO ⊥α,斜线PA 在平面α内的射影为OA ,a 是平面α内的一条直线。
① 三垂线定理:若a ⊥OA ,则a ⊥PA 。
即垂直射影则垂直斜线。
② 三垂线定理逆定理:若a ⊥PA ,则a ⊥OA 。
即垂直斜线则垂直射影。
⑶ 三垂线定理及其逆定理的主要应用 ① 证明异面直线垂直;② 作出和证明二面角的平面角; ③ 作点到线的垂线段。
5、面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
6、面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
判定定理:性质定理:⑴ 若两面垂直,则这两个平面的二面角的平面角为90°; (2)(3)(4)图2-7 斜线定理图2-8 三垂线定理图2-10 面面垂直性质 2图2-11 面面垂直性质3(二)、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。
(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。
(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。
(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。
(三)、唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。
(2)过已知平面外一点,有且只能作一平面和已知平面平行。
(3)过两条异面直线中的一条能且只能作一平面与另一条平行。
四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交oo(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o0;②线面垂直:线面所成的角为o90;③斜线与平面所成的角:oo即也就是斜线与它在平面内的射影所成的角。
o oα(3)二面角:关键是找出二面角的平面角。
方法有:①定义法;②三垂线定理法;③垂面法;o oα五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。
求它们首先要找到表示距离的线段,然后再计算。
注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上);②转移法:转化为另一点到该平面的距离(利用线面平行的性质);③体积法:利用三棱锥体积公式。
第三章 直线与方程1、直线的倾斜角与斜率 (1)直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围00180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠)③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=- 二、直线的方程 1、直线方程的几种形式2、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x3. 过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-;②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中. 三、直线的交点坐标与距离公式 1.两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离 (1)两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P-+-= 特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP += (2)点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=(3)两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=补充:1、直线的倾斜角与斜率2、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
注:斜率变化分成两段,090是分界线,遇到斜率要谨记,存在与否需讨论。
3. 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,如果2220A B C ≠时,则:(1)1221121-=∙⇔⊥B AB A l l(2)⇔21//l l )不为0,,(222212121C B A C CB B A A ≠=;(3)1l 与2l 重合⇔)不为0,,(222212121C B A C CB B A A ==(4)1l 与2l 相交⇔)不为0,(222121B A B BA A ≠。