第二章 核磁共振氢谱2
核磁共振氢谱(NMR)
代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。
有机波谱分析 --核磁共振氢谱
C C CH
5.8~6.7 6.5~8.0 4.0~5.0
C CH O
6.0~8.1
CH C O 4.0~5.0
CH C N
3.7~5.0
C CH N
5.7~8.0
2-甲基-1-戊烯的氢谱
常用溶剂的特点
CDCl3:最常用的NMR溶剂。溶解性能好,峰形尖锐,价格便宜 ;峰位一般处于7.2ppm,但也会受到溶质的影响,使δ =7.0-7.4, 某些胺类使它移至 δ 7.55 。
氘代的苯、二甲基亚砜、丙酮:峰形不尖锐,常为组峰:丙酮-d6, 五重峰;二甲基亚砜-d6,堆峰或五重峰。二甲基亚砜溶解性特好 ,冬天使用易于结冻;丙酮不要用于可能与其反应的样品,如胺 类、醛类;苯可与某些分子形成“复合物”—有利有弊。
化合物中非球形对称的电子云,如π电子系统,对邻近质子会 附加一个各向异性的磁场,即这个附加磁场在某些区域与外磁 场B0的方向相反,使外磁场强度减弱,起抗磁性屏蔽作用,而 在另外一些区域与外磁场B0方向相同,对外磁场起增强作用, 产生顺磁性屏蔽的作用。 通常,抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区域 用“ + ”表示,顺磁性屏蔽作用也称作去屏蔽作用,去屏蔽 作用的区域用“ -”表示。
HC HB HO HA
HC
HB HA OH
16
HA = 3.92 ppm HB = 3.55 ppm HC = 0.88 ppm
17
HA = 4.68 ppm HB = 2.40 ppm HC = 0.88 ppm
(6)氢键的影响
-OH、-NH2等基团能形成氢键。一般的醇可形成分子间氢 键,β-二酮的烯醇式形成分子内氢键。
③三键的各向异性效应
核磁共振氢谱
+ C
+ + +
C +
- C
+
C -
- C
+
C -
ห้องสมุดไป่ตู้
- C
+
O -
-
电子云密度小, 屏蔽 电子云密度小,负屏蔽(-)
电子云密度高, 屏蔽 电子云密度高,正屏蔽(+)
1.乙酸乙酯中得的三种类型氢核电子屏蔽效 1.乙酸乙酯中得的三种类型氢核电子屏蔽效 应是否相同?若发生核磁共振, 应是否相同?若发生核磁共振,共振峰应 当怎么排列? 值大小如何? 当怎么排列?δ值大小如何?
3.3 氢键缔合对化学位移的影响
氢核电子云密度减小,其化学位移增大, 氢核电子云密度减小,其化学位移增大,向低场 位移
浓度越大,氢核化学位移向低场移动, 浓度越大,氢核化学位移向低场移动,数值增大
分子间氢键与分子内氢键
3.4 其他因素对化学位移的影响
溶剂、分子内范德华力、 溶剂、分子内范德华力、不对称因素
CH3-COO-CH2-CH3
2. 下列各组化合
1
CH3CH2CH2C
CH
与
CH3CH2CH2CH CH2 O CH3
(
物用箭头标记 的氢核中, 的氢核中,何 者共振峰位于 地场? 地场?为什么 ?
)
CH3
2
与
(
)
O
3
CH3
与
O
(
)
CH3
4
与
H3C
(
)
3.3 氢核交换对化学位移的影响
RCOOHa + R`OHb = RCOOHb + R`OHa 平均峰化学位移δobs = Naδa+ Nbδb 平均峰化学位移 例如:乙酸的浓度是 水也是0.1mol/L,而纯 例如:乙酸的浓度是0.5mol/L, 水也是 , 乙酸和水的化学位移分别为11.6 和5.2 ppm, 计算平均 乙酸和水的化学位移分别为 化学位移
核磁共振氢谱 (2)
A Z
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
精品课件
6
由自旋量子数与原子的质量数及原子序数的关系可知: 原子质
量数和原子序数均为偶数的核,自旋量子数ms =0, 即没有自旋 现象; 当自旋量子数ms =1/2时, 有自旋现象, 核电荷呈球型
精品课件
17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
核磁共振波谱法是结构分析的重要工具之一,经常使 用的是1H和13C 的共振波谱。
核磁共振波谱中最常用的氢谱将提供: 1. 分子中不同种类氢原子有关化学环境的信息 2. 不同环境下氢原子的数目 3. 每个氢原子相邻的基团的结构
精品课件
Байду номын сангаас
2
δ / ppm
溴乙烷的1H NMR (400 MHz)
精品课件
3
• 自旋-晶格弛豫又称纵向弛豫。
精品课件
15
自旋-自旋弛豫 (spin-spin Relaxation):
• 高能态核把能量传给同类低能态的自旋核,本身回到 低能态,维持Boltzmann分布。结果是高低能态自旋 核总数不变。
• 自旋-自旋弛豫过程的半衰期用T2表示。 • 液体T2~1s, 固体或粘度大的液体,T2很小,10-
异丙苯的1H NMR (400 MHz)
精品课件
4
丁酸的1H NMR(400 MHz)
精品课件
5
一、核磁共振基本原理
原子核除具有电荷和质量外, 许多原子核还具有自旋现
象。通常用自旋量子数 I或ms表示, 原子的质量数 A 表 示,及原子序数 Z 表示。
第二章核磁共振氢谱
第二章核磁共振氢谱
1.5-2.5 ppm 羰基区域 质子相邻羰基 C=O, C=C or 苯环。 3.0-4.5 ppm 醚区域. (同样醇,酯有CH-O group.) 质 子直接邻氧,如果有更多的电负性取代基化学位移移 向低场。 5.0-7.0 ppm 双键区域 . 氢直接与C=C 双键相连.
CC
σ
0.0 0.8 0.9 1.3 2.0 1.9 1.4 1.7 1.5 2.3 2.7 2.9 1.0 1.0 3.0 1.0 1.2 1.2 0.8 0.7 1.2
第二章核磁共振氢谱
对于次甲基的δ值依然可以用Shoolery 经验公式计算,但常数项改为1.5.
烯烃的化学位移计算
δ=1.50 +Σσ
第二章核磁共振氢谱
苯环质子化学位移的计算
取代苯环的氢化学位移可按照下式计算: δ=7.26+Σ Zi 7.26是未取代的苯环的δ值, Zi是取代参
数. Zi的值取决于取代基地种类以及取代 基相对于苯环氢的位置。 计算苯环化学位移的经验参数参照林永 成有机化合物结构鉴定与有机波谱学 P40
第二章核磁共振氢谱
第二章核磁共振氢谱
常见基团化学位移
第二章核磁共振氢谱
氢核类型
环丙烷
伯烷 仲烷 叔烷 烯丙基取代 碘取代 酯基取代 羧基取代 酰基取代 炔
苯基取代
醚基取代 溴取代 氯取代 羟基取代 氟取代 酰氧基取代 胺 醇 烯
苯
醛 羧酸
酚
示例
RCH3 R2CH2 R3CH C=C-CH3 I-CH3 H3C-COOR H3C-COOH H3C-COR C≡C-H
第二章 核磁共振氢谱2讲解
7 .4 5 0
7 .4 0 0
7 .3 5 0
7 .3 0 0
7 .2 5 0
7 .2 0 0
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 0
P-CH3OC6H4CH2Cl 芳氢核磁共振吸收的展开图
S a t A p r 2 2 0 9 :0 8 :0 0 2 0 0 0 : (u n title d ) W 1 : 1 H A x is = p p m S c a le = 3 .7 7 H z / c m
为复杂。对于对位取代,苯环上四个氢将分成 Ha=Ha’和Hb=Hb’两组,而且两组氢会发生偶合
作用,在谱图上表现为两组双重峰。对于邻位和
间位取代,苯环上四个氢完全不同,依据两个取 代基的情况,会分成2-4组各自分裂的峰 。
双硝基不同位置取代苯的核磁共 振谱图
• 对硝基苯谱图只有单峰,表明苯环上四个 氢一致。间硝基苯谱图有三组分裂的峰, 表明苯环上四个氢在两个硝基的作用下分 成三组各自偶合的峰。而邻硝基苯谱图上 有一个分裂的双重峰,表明苯环上四个氢 分成能偶合的两组。顺便一提:由于两个 硝基强大的吸电子和共轭作用,苯环上氢 的化学位移δ值大大增加,已达到8.0ppm以 上。
X
X
Ha
Ha' Ha
Ha'
Hb
Hb' Hb
Hb'
Hc
X'
苯环单 取代
苯环对位双 取代
Ha
Hb
X
Hb'
X'
Ha'
苯环邻位双 取代
X
Hb
Ha
Hc
X'
Hb'
第二章 核磁共振氢谱2
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 0
6 .9 5 0
6 .9 0 0
6 .8 5 0
6 .8 0 0
6 .7 5 0
6 .7 0 0
6 .6 5 0
6 .6 0 0
Jo 两主峰间的距离, 8Hz Jm 两侧峰间的距离的1/2, 2Hz.
δAA′,δBB′ˊ近似估计或经验计算。
间和对-硝基苯乙酸的核磁共振氢 谱
• 由于苯环上两个取代基不同,苯环上四 个氢至少被分成两组。对于对硝基苯乙 酸,苯环上四个氢分成对称的两组,因 而谱图上是对称的两组双峰。而间硝基 苯甲酸,苯环上四个氢不再对称,因而 谱图上峰的分裂也是不规则的。另外, 硝基苯甲酸分子中除了苯环氢外,还有 羧基中羟基氢和一个亚甲基氢,3.8ppm 的单峰是亚甲基氢
• 数,因而Eu3+位移试剂使用比较普遍。 最常见的商品位移试剂是Eu(DPM)3 (Dipivalomethanato Europium),其对 不同类型有机物分子中的特定氢分子位 移的影响有显著差异(表9.2)。 Eu(DPM)3能将胺基和羟基氢的化学位移 增加到100ppm以上,而对其它有机基团 氢的位移分别从3ppm增加到30ppm。对 硝基和卤化物、烯类和酚等酸性有机 物,位移试剂将被分解而不可用。
四旋系统
4个质子间的相互偶合, 常见的有 AX3, A2X2, A2B2, AA′ BB ′ AX3 A2B2, A2X2 一级谱
AA′BB′ˊ二级谱
例如:CH3CHO, CH3CHX-, -OCH2CH2CO- 等 一级谱处理。
A2B2系统
A2B2系统理论上18条峰,常见14条峰,A、B各自为 7条峰,峰形对称。vA = v5,v
核磁共振 氢谱
核磁共振氢谱核磁共振氢谱(Nuclear Magnetic Resoce, NMR)是一种用于测定物质分子结构的重要方法。
它利用了原子核在磁场中的磁矩与外加磁场的相互作用,通过观测原子核吸收或发射电磁波的情况,来确定物质分子的结构。
在核磁共振氢谱中,我们主要关注的是氢原子核(质子)的行为。
这是因为在大多数化合物中,氢原子的数量最多,其行为对整个分子的性质有着重要影响。
此外,由于氢原子核的磁矩比其他原子核大得多,因此它在NMR实验中的信号最强,最容易被检测到。
核磁共振氢谱的基本原理是:当样品处于强磁场中时,如果给予样品一个射频脉冲,那么处于不同化学环境的氢原子核就会吸收不同数量的能量,从而发生能级的跃迁。
当射频脉冲停止后,这些氢原子核会以不同的速率重新放射出能量,产生不同的信号。
通过测量这些信号的强度和时间间隔,我们就可以得到关于样品的信息。
在实际操作中,我们会将样品溶解在一种称为氘代溶剂的液体中,然后放入NMR仪器中进行测量。
氘代溶剂是一种含有重氢(即氘,其原子核也是由一个质子和一个中子组成)的液体,它的优点是不会产生信号干扰。
通过分析核磁共振氢谱,我们可以确定样品中各种不同类型的氢原子的数量,以及它们之间的相对位置关系。
这对于研究物质的分子结构、化学反应过程等都有着重要的意义。
总的来说,核磁共振氢谱是一种非常强大的分析工具,它不仅可以提供关于样品的详细信息,而且操作简便、准确度高。
然而,它也有一些局限性,例如对于含有大量未定域电子的样品,或者对于某些特定的化学环境,NMR信号可能会受到干扰。
因此,在使用NMR进行分析时,我们需要根据具体的样品和目标来选择合适的条件和方法。
核磁共振谱图解析一维氢谱第二部分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
自旋-自旋耦合(spin-spin coupling)
化学位移不是唯一用来确定分子结构的参数。因为每一个原子核自身都有一个小的磁 场,这些彼此接近的原子核互相影响,改变彼此的能量和共振的频率。这个作用就叫 做自旋-自旋耦合。
26
自旋-自旋耦合(spin-spin coupling)
27
自旋-自旋耦合(spin-spin coupling)
28
自旋-自旋耦合(spin-spin coupling)
29
自旋-自旋耦合(spin-spin coupling)
30
自旋-自旋耦合(spin-spin coupling)
氢谱溶剂
简单的核磁谱图都是在溶剂里测的,溶剂的质子一定不能有干扰。 所以测核磁的溶剂一般用氘代(Deuterated)试剂。Deutrium = 2H, 经常写为D。 常用的有D2O(重水),(CD3)CO (氘代丙酮),CD3OD (氘代甲醇),(CD3)2SO (氘 代DMSO,DMSO-D6), CDCl3 (氘代氯仿)。 有的时候,一些不含质子的溶剂也用来测核磁,如CCl4 (四氯化碳),CS2 (二硫化 碳)等。 过去的氘代试剂经常加有少量的(通常为0.1%)的四甲基硅烷(TMS)作为确定化学 位移的内标(internal standard).四甲基硅烷(TMS)的四个甲基是等价的,只有 一个峰,这个峰的位置定义为化学位移为0 ppm.四甲基硅烷(TMS)沸点较低,有利 于样品的回收。 现代的谱图经常以氘代溶剂残留的极少量非氘代质子作为参考值,比如the CHCl3, 0.01% in 99.99% CDCl3。所以不加TMS的氘代试剂越来越多。
核磁共振氢谱2化学位移PPT教案
• 例:乙醇CH3CH2OH 3 组质子的积分曲线高度比为 3:2:1
第9页/共55页
积分曲线 (integration line)
第10页/共55页
甲基与苯环质子的积分曲线高度比为 3:2
第11页/共55页
乙醚的核磁共振氢谱
CH3CH2OCH2CH3
氘代溶剂的干扰峰
CDCl3
7.27(s)
CD3CN
2.0
CD3OD
3.3(5), 4.5(OH)
CD3COCD3 2.1(5) , 2.7(水)
CD3SOCD3 2.5 (5), 3.1(水)
D2O
4.7(s)
C6D6
7.3(s)
第8页/共55页
积分曲线 (integration line)
• 1H NMR谱中的峰面积 (peak area) 正比于等价质 子的数目
例如: CH3CH3 CH2=CH2 HC≡CH δ(ppm): 0.86 5.25 1.80
第21页/共55页
sp杂化碳原子上的质子:叁键
碳碳叁键:直线构型,π电子云呈
圆筒型分布,形成环电流,产生 的感应磁场与外加磁场方向相反。
H质子处于屏蔽区,屏蔽效应强, 共振信号移向高场, δ减小。 δ= 1.8~3 H-C≡C-H: 1.8
重氢环己烷C6D11H 的低温1H-NMR谱
第31页/共55页
八、 溶剂效应 • 溶剂不同使化学位移改变的效应。 • 原因:溶剂与化合物发生相互作用。
如形成氢键、瞬时配合物等。 • 一般化合物在CCl4和CD3Cl中NMR谱重现性好。
在苯中溶剂效应则较大。
第32页/共55页
核磁共振氢谱(1H-NMR)
第二章核磁共振氢谱(1H-NMR)§1 概述基本情况1H天然丰度:99.9844%,I=1/2,γ=26.752(107radT-1S-1)共振频率:42.577 MHz/Tδ: 0~20ppm§2 化学位移1.影响δ值的因素A.电子效应(1)诱导效应a电负性电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大b.多取代有加和性c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计(2).共轭效应氮、氧等杂原子可与双键、苯环共轭。
苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动(3). 场效应在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学位移发生变化.这些通过电场发挥的作用称为场效应(4). 范德华(Van der Waals)效应在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动B.邻近基团的磁各向异性某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。
磁各向异性产生的屏蔽作用通过空间传递,是远程的。
(1)芳环在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。
(2)双键>C=O, >C=C<的屏蔽作用与苯环类似。
在其平面的上、下方各有一个锥形屏蔽区(“+”),其它区域为去屏蔽区。
(3)三键互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。
三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。
氢谱2
化合物的结构为: 化合物的结构为:
例8. 一个化合物的分子式为 C12H17O2N , 其NMR谱图如下 谱图如下 图所示,试推断该化合物的结构。 图所示,试推断该化合物的结构。
解:从分子式计算该化合物的不饱和度为: 从分子式计算该化合物的不饱和度为:
=5 ,
可以考虑该化合物含有一个苯环或一个吡啶环。 可以考虑该化合物含有一个苯环或一个吡啶环。 从积分曲线可知各种氢原子数之比为 1:1:1:1:2:8:3, : : : : : : , 其数值之和正好与分子式中氢原子数目符合。 其数值之和正好与分子式中氢原子数目符合。由氢谱中各峰组所 对应的氢原子数目及峰形知分子无对称性。 对应的氢原子数目及峰形知分子无对称性。 δ 7.55~9.55 ppm 范围,超过苯环的 δ 值,从它们裂分情况看, 范围, 从它们裂分情况看, ~ 存在两个较大的偶合常数,因此可知,分子内存在着吡啶环, 存在两个较大的偶合常数,因此可知,分子内存在着吡啶环,由 5个不饱和度知分子还应有一个双键或一个脂肪环。 个不饱和度知分子还应有一个双键或一个脂肪环。 个不饱和度知分子还应有一个双键或一个脂肪环 值较高, Ⅰ峰组为单峰,说明它无邻碳氢;其 δ 值较高,说明该氢处于 峰组为单峰,说明它无邻碳氢; 位的去屏蔽取代基团之间。 吡啶环 N 原子和 β 位的去屏蔽取代基团之间。 较小, 值较高, Ⅱ峰组的峰形为 d×d,3J 和 4J 较小,其 δ 值较高,因此可推 × , 断出它为吡啶环 N 原子另一侧 的 α-氢。 氢
峰是单峰,推断为甲基信号;很可能是CH3-CO-。 ②d 峰是单峰,推断为甲基信号;很可能是 -。 因为: 单峰 并有3个质子 单峰, 个质子; 化学位移在 因为:ⅰ.单峰,并有 个质子;ⅱ.化学位移在 δ 2.0~2.6 ~ Ppm范围内;ⅲ.分子式含氧,不会是 CH3-O-基,因为 范围内; 分子式含氧 分子式含氧, 范围内 - 之间。 其δ 3.0~3.8 ppm 之间。 ~ 6)解析低场信号:无大于8 ppm 的信号。 )解析低场信号:无大于 的信号。 7)重水交换无变化,证明氧原子上无质子相连,即不存 )重水交换无变化,证明氧原子上无质子相连, 型质子。 在 OH 型质子。 8)已解析出有 C6H5-和CH3-CO-,还剩下 C2H4O的 ) -,还剩下 -, 的 归属未找到。 归属未找到。从 b组峰和 c 组峰的峰形看,两个亚甲基 组峰和 组峰的峰形看, 应相连, -。一端与苯相连 一端与氧相连 一端与苯相连, 相连。 应相连,即- CH2-CH2-。一端与苯相连,一端与氧相连。 -
核磁共振氢谱 (2)
I 1, 2 H 1 ,14 N 7 , I 3,10 B5
讨论:
(1) I=0 的原子核 16 O; 12 C; 22 S等 ,无自 旋,没有磁矩,不产生共振吸收 (2) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2: 11B,35Cl,79Br,81Br I=5/2:17O,127I 这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少; (3)I=1/2的原子核
atomic nuclear spin
若原子核存在自旋,产生核磁矩: h I ( I 1) 自旋角动量: p 2 p 核 磁 矩: 1 H 2.79270 13 0.70216 磁旋比 ;自旋量子数(I)不为零的核都具有磁矩
C
质量数(a) 原子序数(Z) 自旋量子(I) 奇数 偶数 偶数
1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自 旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有 机化合物的主要组成元素。
18:35:41
z B0
z m=1/2 m=1 m=0 m= -1
z m=2 m=1 m=0 m= -1 m= -2
m=-1/2 I=1 I=1/2
18:35:41
美国化学家Paul C. Lauterbur和英国物理 家Peter Mansfield 因为在核磁共振成像 技术(Magnetic Resonance Imaging, MRI )领域的奠基性的成就,以及该技术在 医学领域的广泛应用而一同分享了2003 年生理学医学奖。
一、 原子核的自旋
(2)与外磁场相反,能量高,磁量 子数m=-1/2;
18:35:41
核磁共振氢谱[1] (2) (1)
CH3COOH + H2O 1:1
残留H2O对活泼质子信号的影响:活 泼H信号不固定
影响化学位移的因素
⑦ 溶剂效应:溶剂不同使化学位移改变的效应 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由 于不同溶剂极性不同,与溶质形成氢键的强弱不同引起的.
第二节 核磁共振氢谱
4、有机化合物中质子化学位移规律:
② 磁各向异性
双键
CH3CH3 CH2=CH2 0.96 5.25
A α=1.27,β=0.85
B α=1.23,β=0.72
C α=1.17,β=1.01
② 磁各向异性
单键
影响化学位移的因素
③ 共轭效应(C效应):
当芳环、C=C与-OR,=C=O,-NO2等吸电 、供电基团相连时,d值发生相应的变化 例:
用惰性溶剂稀释时,δ↓ -OH : 0.5~5 ; -CONH2 : 5~8 ; -COOH : 10~13
O R C CH2
O C R' R
OH
O R' R
O
H
O R'
C CH C 11~16 ppm
影响化学位移的因素
⑥活泼质子交换:
酸性 H( 与 O 、 N 、 S 相连的 H) ,存在 H交换反应:
饱和碳原子上的质子的 d 值:叔碳 > 仲碳 > 伯碳
与H相连的碳上有电负性大的原子或吸电子基团(N, O, X, NO2, CO等), d 值变大。电负性越大,吸电子能力越强 , d 值越大。 d 值:芳氢 > 烯氢 > 烷氢
有机化合物中各种质子的化学位移值
核磁共振氢谱
250Hz
J1 31P1H
150~
900Hz
1)s-p杂化 CH3-: -12.4Hz, CH2=: +2.3Hz
2)取代基的影响 吸电子基团使2J往正方向变化
3)构象
4)邻位键的影响 2J往负方向变化
O
CH4
H3C
CN
H
H2C
CN
H
(-12.4Hz)
(-14.4Hz)
(-20.3Hz)
O (-21.5Hz)
苯环上氢值的计算公式: 7.26 Zi
2.2 耦合常数J
2.2.1 耦合的矢量模型
H
H
H
C
C
核自旋 电子自旋
H
H
两个氢核相距奇数根键时,自旋相反,J > 0
两个氢核相距偶数根键时,自旋相同,J < 0
耦合作用随键的数目的增加而迅速下降
2.2.2 1J与2J 影响2J的因素
J1 13C1H
125~
团(或质子)互换,则它们为对映异位(enantiotopic)在 非手性溶剂中为化学等价,是等频的;但在手性溶剂中为
化学不等价,是异频的。
• 没有对称操作能使分子中的两基团(或质子)互换,则
它们为化学不等价,是异频的。非对映异位(diastereotopic)。
2. 分子内的快速运动
• 分子的内旋转 例:RCH2—CXYZ
隔离H因无3J耦合,经常显示粗略的单峰。
5)多取代苯环
五取代:单峰 四取代:A2,AX,AB体系 三取代:AMX,ABX,ABC,AB2体系。
60MHz
2.5.2 取代的杂芳环
由于电负性杂原子的存在,杂芳环上不同位置氢的已 拉开一定距离,取代基使之进一步拉开,因此经常可按一 级谱分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X Ha Hb Hc Ha' Hb'
X Ha Hb X' Ha' Hb'
Hb Hb' Ha' Ha X X'
X Hb Hc Hb' Ha X'
苯环单 取代
苯环对位双 取代
苯环邻位双 取代
苯环间位双 取代
• 1。苯环单取代,苯环上还有5个氢,这5个 氢在核磁共振谱图上是否发生分裂,取决 于取代基X的吸斥电子和共轭等效应的大小。 • A)若X为烃基,-Cl,Br等则Ha,Ha’,Hb, Hb’和Hc五个氢没有明显的差别,在核磁共 振谱图上表现为单一的宽峰。 • B)但X为O、N和S等杂原子或是,则5个氢 可以分成三组,即Ha,Ha’;Hb,Hb’和 Hc。分为较高场的邻对位三个氢峰组 和相 对低场的间位二个氢。间位氢显示3J偶合三 重峰。属于这类取代基的有-OH,-OR,NH2, NHR,-NRR’,SH,SR等。
四旋系统
4个质子间的相互偶合, 常见的有
AX3, A2X2, A2B2, AA′ BB ′
AX3 A2B2, A2X2 一级谱
AA′BB′ˊ二级谱
例如:CH3CHO, CH3CHX-, -OCH2CH2CO- 等
一级谱处理。
A2B2系统
A2B2系统理论上18条峰,常见14条峰,A、B各自为 7条峰,峰形对称。vA = v5,v
O CH3
t J=1.8
t J=8.1
NO 2
dt J=7.7, 1.5 ddd J=8.1, 2.2, 1.1
8.5
8.0
Aromatic substitution pattern: para
Tri-substituted Benzene---AMX System
谱仪频率对耦合的影响
O N
+
a是不加位移试剂的正己醇的核磁共振氢谱,四个 相邻的亚甲基具有差不多的化学位移,分裂的峰 重叠在一起,根本不能区分。但当加入 Eu(DPM)3位移试剂后,不仅各峰的化学位移增 加,而且各峰分开,分裂的多重峰也清晰可辩 (图 b)。这样,就可以很容易地将正己醇分子 中的各种氢都能推断出来
a b
• 含有未配对电子的金属离子具有磁性,这样在 有机样品中加入金属离子配合物往往会引起试 样的核磁共振峰的化学位移变化,这类能引起 有机物分子核磁共振峰化学位移变化的试剂就 是位移试剂。常用的位移试剂是镧系元素铕 (Eu)和镨(Pr)的三价正离子与β-二酮及其衍 生物形成的配合物。通常Eu3+的位移试剂是使 有机物分子中特定氢的化学位移增加,即向高 δ值方向移动;Pr3+位移试剂则相反,是将有机 物分子中特定氢的化学位移向低δ值方向移动。 因绝大多数有机物分子中氢的化学位移δ值为 正
7.60
7.50
7.40
Aromatic substitution pattern: ortho
O CH3
NO 2
dd J=8.1, 0.7
td J=7.4, 1.1
~td J=8.1, 1.5
dd J=7.7, 1.5
8.1
8.0
7.9
7.8
7.7
7.6
7.5
7.4
Aromatic substitution pattern: meta
(2)提高谱仪的分辨率
• 随着场强的增加,特别是超导磁体,可 以获得很高的磁场均匀度,从而提高谱 仪的分辨率。因此使用高频率的仪器, 可简化图谱。前面我们已经讨论了Δν/J 决定了谱图的复杂程度。J的数值反映了 核磁距相互作用能量的大小,它是分子 本身固有的,化学位移也是不随着仪器 的频率改变而发生变化。但是Δν的确与 仪器的频率成正比。
4 .0 5 0
4 .0 0 0
3 .9 5 0
3 .9 0 0
3 .8 5 0
3 .8 0 0
3 .7 5 0
3 .7 0 0
3 .6 5 0
3 .6 0 0
3 .5 5 0
3 .5 0 0
3 .4 5 0
AAˊBBˊ系统:
理论上出现28条峰,AA′,BB′各自14条峰。 例如:
A B C B' X A' B Y B' A' A X B B' A' A OH OH B B' A' A Cl Cl
• 数,因而Eu3+位移试剂使用比较普遍。 最常见的商品位移试剂是Eu(DPM)3 (Dipivalomethanato Europium),其对 不同类型有机物分子中的特定氢分子位 移的影响有显著差异(表9.2)。 Eu(DPM)3能将胺基和羟基氢的化学位移 增加到100ppm以上,而对其它有机基团 氢的位移分别从3ppm增加到30ppm。对 硝基和卤化物、烯类和酚等酸性有机物, 位移试剂将被分解而不可用。
O
-
3 400 MHz
3, d(2.4) 3’, ddd 5.0, 1.5, 0.9
O
-
S
6’
5’
N
N
+
6 5
4’ 3’ 6, d (9.2)
8.00 ppm and 7.80 ppm
O
80 MHz: 16 Hz
400 MHz: 80 Hz
5, dd 9.2, 2.4
6’, dt 5’, ddd 7.9, 1.0 7.9, 7.4, 1.6
Spin System in Pople notation---AMX System
Aromatic substitution pattern: ortho
AA’ XX’ Typical spectra for ortho (symmetrical)
O CH3 O
CH3
8.00
7.90
7.80
7.70
ABC
随着ΔvAB/J 值的降低,AMX→ABX → ABC ABC 系统更加复杂,最多出现 15 条峰,
峰的相对强度差别大,且相互交错,难
以解析
提高仪器的磁场强度, ΔvAB /J 值
增大,使二级谱转化为一级谱
ABC → ABX →AMX
例如:60兆赫兹的谱图中属于ABC系统,但 220兆赫兹的谱图可用AMX系统处理
双硝基不同位置取代苯的核磁共 振谱图
• 对硝基苯谱图只有单峰,表明苯环上四个 氢一致。间硝基苯谱图有三组分裂的峰, 表明苯环上四个氢在两个硝基的作用下分 成三组各自偶合的峰。而邻硝基苯谱图上 有一个分裂的双重峰,表明苯环上四个氢 分成能偶合的两组。顺便一提:由于两个 硝基强大的吸电子和共轭作用,苯环上氢 的化学位移δ值大大增加,已达到8.0ppm以 上。
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 06Leabharlann .9 5 06 .9 0 0
6 .8 5 0
6 .8 0 0
6 .7 5 0
6 .7 0 0
6 .6 5 0
6 .6 0 0
Jo 两主峰间的距离, 8Hz Jm 两侧峰间的距离的1/2, 2Hz.
δAA′,δBB′ˊ近似估计或经验计算。
• 对于苯环双取代,若两个取代基相同(X=X’), 则对位取代苯环上的四个氢Ha=Ha’=Hb=Hb’, 在核磁共振谱图上表现为单峰。若邻位取代,苯 环上四个氢分成Ha,Ha’和Hb,Hb’两类,在核 磁共振谱图上表现为双峰。若间位取代,苯环上 四个氢分成Ha;Hb,Hb’和Hc三类,而且这三类 氢还会发生偶合作用,因而在核磁共振谱图上表 现位三组分裂的多重峰(参见图9.5a)。当苯环 双取代的两个取代基不同(X≠ X’)时,情况更 为复杂。对于对位取代,苯环上四个氢将分成 Ha=Ha’和Hb=Hb’两组,而且两组氢会发生偶合 作用,在谱图上表现为两组双重峰。对于邻位和 间位取代,苯环上四个氢完全不同,依据两个取 代基的情况,会分成2-4组各自分裂的峰 。
B
= v5ˊ,JAB = 1/2[1-6]
例如:β-氯乙醇
F ri A p r 2 1 1 8 :5 4 :0 6 2 0 0 0 : (u n title d ) W 1: 1H A x is = p p m S c a le = 4 .5 9 H z / c m
4 .1 5 0
4 .1 0 0
间和对-硝基苯乙酸的核磁共振氢 谱
• 由于苯环上两个取代基不同,苯环上四 个氢至少被分成两组。对于对硝基苯乙 酸,苯环上四个氢分成对称的两组,因 而谱图上是对称的两组双峰。而间硝基 苯甲酸,苯环上四个氢不再对称,因而 谱图上峰的分裂也是不规则的。另外, 硝基苯甲酸分子中除了苯环氢外,还有 羧基中羟基氢和一个亚甲基氢,3.8ppm 的单峰是亚甲基氢
D2O 交换: NaOD交换: 例如:
OH OH
-OH, -NH2, -COOH, -SH…
OH OH COOH O (A) O (B) COOH
(4)化学位移试剂
• 我们知道:正常的核磁共振氢谱的化学 位移值在0-10ppm范围,化学位移的范 围非常窄。假如,化学位移范围被拉大, 尤其是相邻重叠峰的化学位移增加,则 各峰之间就可以区别分辨。
邻二氯苯的谱图如下:
F ri A p r 2 1 2 1 :1 5 :2 3 2 0 0 0 : (u n title d ) W 1: 1H A x is = p p m S c a le = 2 .9 6 H z / c m
7 .4 5 0
7 .4 0 0
7 .3 5 0
7 .3 0 0
7 .2 5 0
4’, ddd 7.4, 5.0 , 1.0
8.5
8.0
7.5
80 MHz
耦合常数的值(Hz) 与谱仪频率无关 在不同频率的谱仪 下得到的化学位移 值(ppm)是相同的。