相似三角形的综合应用(提高)

合集下载

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)本文介绍了相似三角形解决问题的知识点,包括平行投影和中心投影。

要点一是平行投影,介绍了物体在平行光线下产生的影子,以及物高与影长的关系。

要点二是中心投影,介绍了点光源下物体产生的影子,以及离点光源远近对影子长度的影响。

通过这些知识点,可以解决一些实际问题。

需要注意的是,在利用影长计算物高时,要注意测量两物体在同一时刻的影长。

在中心投影下,一个重要的结论是,点光源、物体边缘上的点以及它们在影子上的对应点在同一条直线上。

可以根据其中两个点来求出第三个点的位置。

要点诠释:物体的中心投影受到光源和物体位置及方向的影响。

改变光源或物体的方向会导致影子方向的变化。

但不论如何改变,光源、物体和它们的影子始终分离在物体的两侧。

要点三、中心投影与平行投影的区别与联系1.联系:中心投影和平行投影都是研究物体投影的一种方法。

平行投影是在平行光线下形成的投影,例如太阳光线和月光。

中心投影是从一点发出的光线所形成的投影,例如灯泡和手电筒的光线。

在平行投影中,改变物体的方向和位置会导致投影方向和位置的变化。

在中心投影中,同一灯光下,改变物体的位置和方向也会导致投影的变化。

固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也会发生变化。

2.区别:太阳光线是平行的,因此太阳光下的影子长度与物体高度成比例。

灯光是发散的,灯光下的影子与物体高度不一定成比例。

在同一时刻,太阳光下的影子方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向。

要点诠释:在解决有关投影的问题时,必须先判断是平行投影还是中心投影,然后根据它们的特点进一步解决问题。

要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决。

要点诠释:测量旗杆高度的方法包括平面镜测量法、影子测量法、手臂测量法和标杆测量法。

2021中考数学专题复习相似三角形的应用能力提升训练题2(附答案详解)

2021中考数学专题复习相似三角形的应用能力提升训练题2(附答案详解)

2021中考数学专题复习:相似三角形的应用能力提升训练题1(附答案详解) 1.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A .3.25mB .4.25mC .4.45mD .4.75m 2.如图所示,在离某建筑物4m 处有一棵树,在某时刻,1.2m 长的竹竿垂直地面,影长为2m ,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m ,则这棵树高约有多少米( )A .6.4米B .5.4米C .4.4米D .3.4米 3.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m 4.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高1.5m ,测得 1.2AB m =,12.8BC m =,则建筑物CD 的高是( )A .17.5mB .17mC .16.5mD .18m5.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍 6.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .47.如图一天晚上,小颖由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,当她继续往前走到D 处时,测得影子DE 的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A 的高度AB 为( )A .8米B .6米C .4.5米D .3米 8.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是( ).A .18米B .16米C .20米D .15米 9.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40DE cm =,20EF cm =,测得边DF 离地面的高度 1.5AC m =,8CD m =,则树高AB 是( )A .4米B .4.5米C .5米D .5.5米10.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m11.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.12.小明在离路灯底部6m处测得自己的影子长为1.2m,小明的身高为1.6m,那么路灯的高度为_____m.13.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为____米.14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.15.在某一时刻,测得一根高为2m的竹竿的影长为3m,同时测得一根旗杆的影长为21m,那么这根旗杆的高度为_______m.16.《九章算术》是我国古代数学名著,书中有如下问题:“今有井径5尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸.问井深几何?”意思是:如图,井径5BE =尺,立木高5AB =尺,4BD =寸0.4=尺,则井深x 为__________尺.17.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A 处前进3米到达B 处时,测得影子BC 长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D 处,此时影子DE 长为____米.18.如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为_______米,BC 为_______米.19.如图,身高1.8米的小石从一盏路灯下B 处向前走了8米到达点C 处时,发现自己在地面上的影子CE 长是2米,则路灯的高AB 为_____米.20.如图,校园内有一棵与地面垂直的树,树高为53米,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,则两次测量的影长差为______米.21.如图,为了估算河的宽度,在河对岸选定一个目标作为点A再在河的这边选点B 和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.22.西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B 正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.23.如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h上,索塔h垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:5≈2.24,2≈1.41)24.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,AB表示地面所在的直线,其中AD和BC表示两根较粗的钢管,EG表示座板平面,//EG AB,交AC于点F,且13CFAF=,AB长60cm,60DAB∠=︒,75ABC∠=︒,FG长24cm,CD长24cm,(1)求座板EG的长;(2)求此时椅子的最大高度(即点D到直线AB的距离).(结果保留根号)25.如图,小华和小康想用标杆来测量河对岸的树AB的高,两人在确保无安全隐患的情况下,小康在F处竖立了一根标杆EF,小华走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=16米;然后,小华在C处蹲下,小康平移标杆到H处时,小华恰好看到标杆顶端G和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,点C、F、H、A在一条直线上,点M在CD上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根据以上测量过程及测量数据,请你求出树AB的高度.26.学习了相似三角形的知识后,爱探究的小明下晚自习后利用路灯的光线去测量了一路灯的高度,并作出了示意图:如图,路灯(点P)距地面若干米,身高1.6米的小明站在距路灯的底部(O点)20米的A点时,身影的长度AM为5米;(1)请帮助小明求出路灯距地面的高度;(2)若另一名身高为1.5米小龙站在直线OA上的C点时,测得他与小明的距离AC为7米,求小龙的身影的长度.27.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.28.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.29.小明利用刚学过的测量知识来测量学校内一棵古树的高度。

八年级数学 奥术三级 第二跳(思维训练) 第七讲 相似三角形(提高篇) (1)

八年级数学 奥术三级 第二跳(思维训练) 第七讲 相似三角形(提高篇) (1)

第七讲:相似三角形(提高篇)【知识梳理】一、通过寻觅或构造相似三角形,计算线段长度,比例线段的证明,角相等的证明等。

二、利用相似三角形的性质解决实际问题。

3、做平行线构造相似三角形是经常使用的辅助线。

3、几何变换中的函数问题,利用相似三角形构造线段的比或面积的比是经常使用的方式。

【例题精讲】【例1】如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E 。

求证:OC 2=OA·OE点拨:把OC 2=OA·OE 化成比例形式【例2】如图,ABC △中,D E 、别离是边BC AB 、的中点,AD CE 、相交于G . 求证:13GE GD CE AD ==. 【巩固】D 是△ABC 中BC 边上的中点,E 是AB 上一点,且AE =6,BE =4,连ED 并延长交AC 的延长线于F ,求AF :CF 的值。

【例3】如图,ABC ∆是一块锐角三角形余料,边长120BC =毫米,高80AD =毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个极点别离在AB 、AC 上,那个正方形零件的边长是多少?【巩固】△ABC 中的内接矩形EFGH ,EF :FG =5:9,高AD =16cm ,BC =48cm ,求矩形EFGH 的面积。

【例3】正方形ABCD 边长为4,M 、N 别离是BC 、CD 上的两个动点,当M 点在BC 上运动时,维持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.M Q N P D C B A B C D GE A【巩固】如图,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点动身,沿AB 以每秒4cm 的速度向点B 运动;同时点Q 从C 点动身,沿CA 以每秒3cm 的速度向A 点运动,设运动的时刻为x 。

(挑战压轴)专项27.4 相似三角形-一线三等角综合应用(解析版)

(挑战压轴)专项27.4  相似三角形-一线三等角综合应用(解析版)

(挑战压轴)专项27.4 相似三角形-一线三等角综合应用【方法技巧】1.如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。

2.一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。

【类型1:标准“K ”型图】1.(2021秋•长安区期末)如图,将矩形ABCD 沿AE 折叠,使点D 落在BC 边的点F 处(1)求证:△ABF ∽△FCE ;(2)已知AB =3,AD =5,求tan ∠DAE 的值.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,∴∠BAF +∠AFB =90°,由折叠可得:∠D =∠AFE =90°,CB BC A A∴∠AFB+∠EFC=180°﹣∠AFE=90°,∴∠BAF=∠EFC,∴△ABF∽△FCE;(2)解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=5,由折叠可得:AD=AF=5,∴BF===4,∴CF=BC﹣BF=1,∵△ABF∽△FCE,∴=,∴=,∴CE=,∴DE=CD﹣CE=3﹣=,∴tan∠DAE===,∴tan∠DAE的值为.2.如图,在正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于F,交AD的延长线于点E.(1)求证:△ABM∽△MCF;(2)若AB=4,BM=2,求△DEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠B=∠C=90°,BC∥AD,∴∠BAM+∠AMB=90°,∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠FMC=90°,∴∠BAM=∠FMC,∴△ABM∽△MCF;(2)解:∵AB=4,∴AB=BC=CD=4,∵BM=2,∴MC=BC﹣BM=4﹣2=2,由(1)得:△ABM∽△MCF,∴=,∴=,∴CF=1,∴DF=CD﹣CF=4﹣1=3,∵BC∥AD,∴∠EDF=∠MCF,∠E=∠EMC,∴△DEF∽△CMF,∴=,∴=,∴DE=6,∴△DEF的面积=DE•DF=×6×3=9,答:△DEF的面积为9.3.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与PA的比为1:2,求边AB的长.【解答】(1)证明:由折叠的性质可知,∠APO=∠B=90°,∴∠APD+∠OPC=90°,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.4.(2020•香洲区校级一模)如图,四边形ABDC为矩形,AB=4,AC=3,点M为边AB上一点(点M不与点A、B重合),连接CM,过点M作MN⊥MC,MN与边BD交于点N.(1)当点M为边AB的中点时,求线段BN的长;(2)直接写出:当DN最小时△MNB的面积为 .【解答】解:(1)∵AB=4,∴当点M为边AB的中点时,AM=BM=2,∵四边形ABDC为矩形,∴∠A=∠B=90°,∵MN⊥MC,∴∠CMN=90°,∵∠ACM+∠AMC=90°,∠BMN+∠AMC=180°﹣∠CMN=90°,∴∠ACM=∠BMN,又∵∠A=∠B,∴△ACM∽△BMN,∴,∵AC=3,AM=BM=2,∴=,∴BN=;(2)设BM=x,DN=y,∵四边形ABDC为矩形,AB=4,AC=3,∴AM=AB﹣BM=4﹣x,BN=BD﹣DN=3﹣y,由(1)知,,∴=,∴(4﹣x)x=3(3﹣y),∴﹣x2+4x=9﹣3y,∴y=x2﹣x+3=(x﹣2)2+,∴当x=2时,y取得最小值,即DN最小,此时DN=y=,∴BM=2,BN=3﹣=,∴△MNB的面积为:×2×=.故答案为:.5.(2019•玉州区二模)已知:如图,正方形ABCD中,E是边AB上一点,AM⊥DE于点M,CN⊥DE于点N.(1)求证:MN=DM﹣AM;(2)连接AN,如果=,求证:MN=ME.【解答】证明:(1)∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADM+∠CDN=90°,∵AM⊥DE,CN⊥DE,∴∠AMD=∠CND=90°,∴∠CDN+∠DCN=90°,∴∠ADM=∠DCN,∴△ADM≌△DCN(AAS),∴DN=AM,∵MN=DM﹣DN,∴MN=DM﹣AM;(2)如图:∵四边形ABCD是正方形,∴AD=DC,∠DAE=90°,∵∠DAE=∠DNC=90°,∠ADM=∠DCN,∴△CDN∽△DEA,∴=,∴=,∵=,∴=,∴AE=AN,∵AM⊥DE,∴MN=ME.6.(2022•郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②方法一:如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x=1,即AF=1,由(1)得,设DE=y,则AE=6﹣y,∴,解得:y=3+或y=3﹣,∵0<6,0<3﹣<6,∴DE=3+或DE=3﹣.方法二:如图4,过点G作GH∥AB交BC于点H,∴△MHG∽△MBA,∴,由(2)可知AG+MG的最小值为5,即AM=5,又∵GM=3,∴,∴GH=,MH=,由GH∥AB得△CHG∽△CBF,∴,即,解得FB=3,∴AF=AB﹣FB=1.由(1)得,设DE=y,则AE=6﹣y,∴,解得:y=3+或y=3﹣,∵0<6,0<3﹣<6,∴DE=3+或DE=3﹣.、【类型2:做辅助线构造“K”型图】7.(2022春•定海区校级月考)【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.【解答】(1)证明:∵∠ACB=90°,∴∠BCD+∠ACE=90°,∵AE⊥CE,∴∠AEC=90°,∴ACE+∠CAE=90°.∴∠BCD=∠CAE.∵BD⊥DE,∴∠BDC=90°,∴∠BDC=∠AEC.∴△BDC∽△CEA.(2)解:过点E作EF⊥BC于点F.由(1)得△EDF∽△DAC.∴.∵AD⊥DE,,AC=20,∴,∴DF=16.∵BE=DE,∴BF=DF.∴BD=2DF=32.(3)解:过点A作AM⊥BC于点M,过点D作DN⊥BC的延长线于点N.∴∠AMB=∠DNC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠B=∠DCN.∴△ABM≌△DCN(AAS).∴BM=CN,AM=DN.∵AB=AE,AM⊥BC,∴BM=ME,∵,设AM=b,BE=4a,EC=3a.∴BM=ME=CN=2a,EN=5a.∵∠AED=90°,由(1)得△AEM∽△EDN.∴,∴,∴,∵,∴(2a)2+b2=14,∴a=1,.∴平行四边形ABCD的面积=【类型2:特殊“K”型图】8.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD的长为 .【解答】解:∵AB=AC,∴∠C=∠B,∴∠C+∠B+∠BAC=2∠C+∠BAC=180°,又∵2∠ADE+∠BAC=180°,∴∠C=∠ADE,又∵∠BDE+∠ADC=180°﹣∠ADE,∠CAD+∠ADC=180°﹣∠C,∴∠BDE=∠CAD,∴△BDE∽△CAD,∴=,即=,解得CD=6.故答案为:6.9.(2020秋•南京期末)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,2BP=3CD,BP=1.(1)求证△ABP∽△PCD;(2)求△ABC的边长.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵∠BPA+∠APD+∠DPC=180°,且∠APD=60°,∴∠BPA+∠DPC=120°,∵∠DPC+∠C+∠PDC=180°,∴∠DPC+∠PDC=120°,∴∠BPA=∠PDC,∴△ABP∽△PCD;(2)解:∵2BP=3CD,且BP=1,∴CD=,∵△ABP∽△PCD,∴=,设AB=x,则PC=x﹣1,∴,∴x=3.即AB=3.∴△ABC的边长为3.10.如图,AB=9,AC=8,P为AB上一点,∠A=∠CPD=∠B,连接CD.(1)若AP=3,求BD的长;(2)若CP平分∠ACD,求证:PD2=CD•BD.【解答】(1)解:∵AB=9,AC=3,∴BP=AB﹣AP=9﹣3=6,∵∠A=∠CPD,∠ACP+∠APC=180°﹣∠A,∠APC+∠BPD=180°﹣∠CPD,∴∠ACP=∠BPD,∵∠A=∠B,∴△ACP∽△BPD,∴=,∴=,∴BD=,∴BD的长为;(2)证明:∵CP平分∠ACD,∴∠PCD=∠ACP,∵∠ACP=∠DPB,∴∠PCD=∠DPB,∵∠CPD=∠B,∴△CPD∽△PBD,∴=,∴PD2=CD•BD.。

专题03 相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)【题型1 利用相似三角形测量高度-平面镜测量法】【题型2 利用相似三角形测量高度-影子测量法】【题型3 利用相似三角形测量高度-手臂测量法】【题型4 利用相似三角形测量高度-标杆测量法】【题型5 利用相似三角形测量距离】【题型1 利用相似三角形测量高度-平面镜测量法】1.(2022秋•郑州期末)如图,小明探究“利用镜子反射测量旗杆的高度”.小明作为观测者,在旗杆和小明之间的地面上平放一面镜子,在镜子上作一个标记,小明看着镜子来回移动,当看到旗杆顶端在镜子中的像与镜子上的标记重合时,通过测量得到以下数据:小明的眼睛到地面的距离为1.5m,小明的站的位置到镜子上标记的距离是3.2m,旗杆的底部到小明的位置是19.2m,则旗杆的高度为()A.19.2B.16C.9D.7.5 2.(2023•龙华区一模)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米3.(2023•深圳模拟)如图,九年级(1)班课外活动小组利用平面镜测量学校旗杆的高度,在观测员与旗杆AB之间的地面上平放一面镜子,在镜子上做一个标记E,当观测到旗杆顶端在镜子中的像与镜子上的标记重合时,测得观测员的眼睛到地面的高度CD为1.6m,观测员到标记E的距离CE为2m,旗杆底部到标记E的距离AE为16m,则旗杆AB的高度约是()A.22.5m B.20m C.14.4m D.12.8m 4.(2023•青原区校级一模)为了测量校园内一棵树的高度,学校数学应用实践小组做了如下的探索实践.根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9m的水平地面点E处,然后一同学沿着直线BE后退到点D,这时该同学恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3m,该同学身高CD=1.6m.请你计算树(AB)的高度.5.(2023•新城区校级一模)【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;反射角r等于入射角i.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E 到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.6.(2023•灞桥区校级模拟)小雁塔位于西安市南郊的荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明同学对该塔进行了测量,测量方法如下,如图所示,先在点A处放一平面镜,从A处沿NA方向后退1米到点B处,恰好在平面镜中看到塔的顶部点M,再将平面镜沿NA方向继续向后移动15米放在D处(即AD=15米),从点D处向后退1.6米,到达点E处,恰好再次在平面镜中看到塔的顶部点M、已知小明眼睛到地面的距离CB=EF=1.74米,请根据题中提供的相关信息,求出小雁塔的高度MN﹒(平面镜的大小忽略不计)7.(2022秋•大名县校级期末)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF =1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【题型2 利用相似三角形测量高度-影子测量法】8.(2021秋•蓝山县期末)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.9.(2022•兴化市模拟)如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM为m.【题型3 利用相似三角形测量高度-手臂测量法】10.(2022秋•房山区期中)在设计“利用相似三角形的知识测量树高”的综合实践方案时,晓君想到了素描课上老师教的方法,如图,请一位同学右手握笔,手臂向前伸直保持笔杆与地面垂直,前后移动调整自己的位置,直到看见笔杆露出的部分刚好遮住树的主干,这时测量同学眼睛到笔的距离AB、同学到树干的距离AC,以及露出笔的长度DE,就可通过计算得到树的高度,这种实践方案主要应用了相似三角形的性质定理:相似三角形对应高的比等于相似比.(填写定理内容)11.(2022•姑苏区一模)小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处时恰好能看到铁塔的顶部B 和底部A(如图).设小明的手臂长l=50cm,小尺长a=20cm,点D到铁塔底部的距离AD=20m,则铁塔的高度为m.12.(2023•长安区校级二模)如图,是位于西安市长安区香积寺内的善导塔,善导塔为楼阁式砖塔,塔身全用青砖砌成,平面呈正方形,原为十三层,现存十一层,建筑形式独具一格.数学兴趣小组测量善导塔的高度AB,有以下两种方案:方案一:如图1,在距离塔底B点45m远的D处竖立一根高1.5m的标杆CD,小明在F处蹲下,他的眼睛所在位置E、标杆的顶端C和塔顶点A三点在一条直线上.已知小明的眼睛到地面的距离EF=0.8m,DF=1m,AB⊥BM,CD ⊥BM,EF⊥BM,点B、D、F、M在同一直线上.方案二:如图2,小华拿着一把长为22cm的直尺CD站在离善导塔45m的地方(即点E到AB的距离为45m).他把手臂向前伸,尺子竖直,CD∥AB,尺子两端恰好遮住善导塔(即A、C、E在一条直线上,B、D、E在一条直线上),已知点E到直尺CD的距离为30cm.请你结合上述两个方案,选择其中的一个方案求善导塔的高度AB.我选择方案.【题型4 利用相似三角形测量高度-标杆测量法】13.(2023•费县二模)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=10.8m,则建筑物CD 的高是m.14.(2021秋•吉林期末)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.15.(2022秋•花都区期末)如图,利用标杆BE测量建筑物的高度,如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?16.(2023•雁塔区一模)为测量一棵大树的高度,设计的测量方案如图所示:标杆高度CD=3m,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离DN=14m,人的眼睛与地面的高度AB=1.6m,人与标杆CD的水平距离BD=2m,B、D、N三点共线,AB⊥BN,CD⊥BN,MN⊥BN,求大树MN的高度.17.(2023•碑林区校级一模)某数学兴趣小组决定利用所学知识测量一古建筑的高度.如图2,古建筑的高度为AB,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古建筑AB,标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A,F,D在一直线上;从标杆GH后退4m到C处(即CG =4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C 在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请你根据以上测量数据,帮助兴趣小组求出该古建筑AB的高度.18.(2022秋•高新区期末)某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.19.(2023•碑林区一模)杭州市西湖风景区的雷峰塔又名“皇妃塔”,某校社会实践小组为了测量雷峰塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,雷峰塔的塔尖点B正好在同一直线上,测得EC=3米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,雷峰塔的塔尖点B正好又在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=5米,GC=60米,请你根据以上数据,计算雷峰塔的高度AB.20.(2022秋•益阳期末)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列入第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,古塔的塔尖点B正好在同一直线上,测得EC=1.28米,将标杆向后平移到点G处,这时地面上的点F,标杆的顶端点H,古塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与古塔底处的点A在同一直线上),这时测得FG=1.92米,CG=20米,请你根据以上数据,计算古塔的高度AB.21.(2022秋•雁塔区校级期中)青龙寺是西安最著名的樱花观赏地,品种达到了13种之多,每年3、4月陆续开放的樱花让这里成为了花的海洋,一天,小明和小刚去青龙守游玩,想利用所学知识测量一棵樱花树的高度(樱花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆EF,小刚走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离DC=1.6米;然后,小明在地面上放一个镜子,恰好在G处时,小刚刚好能从镜子里看到树的顶端B.已知EF=3.2米,CF =3米,CG=2米,点小C、F、G在一条直线上,CD⊥AC,EF⊥AC,AB ⊥AC.根据以上测量过程及测量数据,请你求出这棵樱花树AB的高度.【题型5 利用相似三角形测量距离】22.(2022秋•开封期末)如图,某“综合实践”小组为估算开封护城河的宽度,可以在河对岸选定一个目标点P,在近岸取点A和点C,使AC=30m,且AC ⊥AP,再过点C作CD⊥BC,且CD=20m,PD与AC交于点B,若测得AB =20m,则河宽AP的宽度为()A.40m B.30m C.20m D.10m 23.(2022秋•上海月考)如图,A,B是河边上的两根水泥电线杆,C,D是河对岸不远处的两根木质电话线杆,且电线、电话线及河两边都是平行的.O 是A、B对岸河边上一点,且O与A、C在同一直线上,与B、D也在同一直线上,已知AB=35m,CD=20m,OD=20m,根据所给的已知条件是否一定能求出河的大约宽度能(填能或不能或不一定).24.(2023•山西模拟)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B和点C,观察者在点E.适当调整,使得AB与EC 都与河岸BC垂直.此时AE与BC相交于点D,若测得BD=100m,DC=50m,EC=45m,请利用这些数据计算河的宽度.25.(2022秋•济南期末)如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.26.(2023•西吉县一模)如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.27.(2023•莲湖区模拟)如图,为了测量平静的河面的宽度(EP),在离河岸D点3m远的B点,立一根长为1.5m的标杆AB,已知河岸高出水面0.6m,即DE=0.6m.在河对岸的水里有一棵高出水面4.6m的大树MP,大树的顶端M在河里的倒影为点N,即PM=PN.经测量此时A,D,N三点在同一直线上,并且点M,P,N共线,若AB,DE,MP均垂直于河面EP,则河宽EP 是多少米?。

相似三角形的性质及应用--知识讲解(提高)

相似三角形的性质及应用--知识讲解(提高)

相似三角形的性质及应用--知识讲解(提高)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的性质1.(2016•长春)如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,EF与CD交于点G.(1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【思路点拨】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【答案】B.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD 是平行四边形,∴DF=BE=4.∵DF ∥EC ,∴△DFG ∽CEG ,∴=,∴CE==4×=6. 【总结升华】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.举一反三【变式】在锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,求AC 边上的高.【答案】过点B 做BF ⊥AC,垂足为点F ,∵AD,CE 分别为BC,AB 边上的高,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴Rt △ADB ∽Rt △CEB,∴, 且∠B=∠B ,∴△EBD ∽△CBA,∴, ∴, 又∵DE=2,∴AC=6,∴,BD AB BD BE BE CB AB CB==即221189BEDBCA DE AC S S ⎛⎫=== ⎪⎝⎭△△13DE AC =11862ABC AC BF S =⋅=∴△,BF=.2.已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.【答案与解析】∵DA∥BC,∴△ADE∽△BCE.∴S△ADE:S△BCE=AE2:BE2.∵AE︰BE=1:2,∴S△ADE:S△BCE=1:4.∵S△ADE=1,∴S△BCE=4.∵S△ABC:S△BCE=AB:BE=3:2,∴S△ABC=6.∵EF∥BC,∴△AEF∽△ABC.∵AE:AB=1:3,∴S△AEF:S△ABC=AE2:AB2=1:9.∴S△AEF==.【总结升华】注意,同底(或等底)三角形的面积比等于该底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.举一反三:【变式】如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.【答案】(1)∵,∽.(2)∵的周长与四边形的周长相等.=6,∽.类型二、相似三角形的应用3.(2015春•江津区校级月考)如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=2.5m,人高EF=1.5m,求树高CD.【答案与解析】解:过E作EH⊥CD交CD于H点,交AB于点G,如下图所示:由已知得,EF⊥FD,AB⊥FD,CD⊥FD,∵EH⊥CD,EH⊥AB,∴四边形EFDH为矩形,∴EF=GB=DH=1.5米,EG=FB=2.5米,GH=BD=8米,∴AG=AB﹣GB=2.4﹣1.5=0.9米,∵EH⊥CD,EH⊥AB,∴AG∥CH,∴△AEG∽△CEH,∴=,∴=,解得:CH=3.78米,∴DC=CH+DH=3.78+1.5=5.28米.答:故树高DC为5.2米.【总结升华】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.举一反三:【变式】已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高度BC.【答案】作EF⊥DC交AD于F.∵AD∥BE,∴又∵,∴,∴.∵AB∥EF, AD∥BE,∴四边形ABEF是平行四边形,∴EF=AB=1.8m.∴m.4.(2015•齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015=.【思路点拨】本题考查相似三角形的判定与性质以及正方形的性质,根据已知条件得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,从而找出规律答案即可求出.【答案与解析】2()2014解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=,AA1=2,∴A1B2=A1B1=,∴A1A2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2014A2015=2()2014,故答案为:2()2014.【总结升华】本题是相似性质的运用与找规律相结合的一道题,要注意从特殊到一般形式的变换规律.。

相似三角形的综合应用(教案)

相似三角形的综合应用(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的定义和判定方法。相似三角形是指对应角相等、对应边成比例的两个三角形。它在几何学中具有重要地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在建筑设计中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的定义、判定方法和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,关于教学难点和重点的把握,我认为在今天的课堂上,我对相似三角形的判定方法和性质的强调还不够。在今后的教学中,我需要更加突出这些知识点,通过反复讲解、举例和练习,帮助学生更好地理解和掌握。
最后,针对学生在解决实际问题时遇到的困难,我计划在接下来的课程中增加一些类似的问题进行专项训练,让学生在不断的实践中提高解决问题的能力。同时,我也会鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中去。
2.加强逻辑推理能力,运用相似三角形的判定与性质进际问题,提高解决实际问题的能力;
4.培养学生团队协作和交流表达能力,通过小组讨论和案例分析,促进学生思维碰撞和知识共享。
三、教学难点与重点
1.教学重点
(1)掌握相似三角形的判定方法:SSS、SAS、ASA、AAS;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。

特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。

直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。

模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。

相似三角形的应用举例

相似三角形的应用举例

相似三角形的应用举例相似三角形是指在形状相似的两个三角形中,对应的角度相等,而对应的边长成比例关系。

这一性质使得相似三角形在实际生活中有着广泛的应用。

本文将举例介绍相似三角形在地理测量、影视制作和建筑设计等领域的具体应用。

一、地理测量中的相似三角形应用地理测量中常常使用相似三角形原理来测量高处物体的高度以及难以直接测量的距离。

以测量一座建筑物的高度为例,通过在平面上选择两个不同位置,测量出与地平线夹角相同的两个点,再利用三角形相似原理计算出建筑物的高度。

这样的测量方法可以避免测量过程中的误差和测量的困难,提高测量的准确性和效率。

二、影视制作中的相似三角形应用在影视制作中,相似三角形的应用尤为重要。

例如,在电影中要制作一个逼真的远景特写,如果直接拍摄远处的景象,可能会因为远离拍摄现场而导致细节无法清晰展现。

为了解决这个问题,可以利用相似三角形的原理,在近距离拍摄一个类似的模型或者画面,然后通过电脑生成与实景相似的远景效果。

这种利用相似三角形的方法可以在节约成本的同时,制作出逼真的远景特写效果。

三、建筑设计中的相似三角形应用相似三角形在建筑设计中有着广泛的应用,特别是在设计高层建筑时更是如此。

以设计一座摩天大楼为例,建筑师需要保证高楼的结构坚固稳定,同时也要满足美学上的要求。

在设计过程中,利用相似三角形的原理可以根据大楼的比例尺度,在小模型上进行实际尺寸的计算和预测。

这种预测方法不仅可以方便地展示设计方案,还可以在施工前发现和修正设计中的不足之处,提高整体设计质量。

通过上述几个具体例子,我们可以看到相似三角形在地理测量、影视制作和建筑设计中的重要应用。

相似三角形原理的运用,使得我们能够更加准确地进行测量、制作出逼真的特效和设计出稳固美观的建筑物。

这一应用不仅提高了工作效率,还为我们提供了更多实际问题的解决方案。

因此,相似三角形的学习与应用在我们的生活中具有重要的意义。

初三相似三角形提高拓展专题练习附答案

初三相似三角形提高拓展专题练习附答案

14.〔1〕把两个含 450 角的直角三角板如图 1 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线
交 BE 于点 F,求证:AF⊥BE
〔2〕把两个含 300 角的直角三角板如图 2 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线交 BE
于点 F,问 AF 与 BE 是否垂直?并说明理由.
2
________________.
12. 将三角形纸片〔△ABC〕按如下图的方式折叠,使点 B 落在边 AC 上,记为点 B′,折痕为 EF.AB
A
பைடு நூலகம்
B
=AC=3,
设以点 B′,F,C 为顶点的三角形与△ABC 相似,则 BF 的长度是.
D
F
E BC=4,假
C
13.如图,
正方形 ABCD 的边长为 1cm,E、F 分别是 BC、CD 的中点,连接 BF、DE,则图中阴影局部的 面积是 cm2. 三、解答题
A.1 B.2 C.3 D.4
4.如图,
A
菱形 ABCD 中,对角线 AC、BD 相交于点 O,M、N 分别是边
M
N
B AB、AD 的中点,连接 OM、ON、MN,则以下表达正确的选
O
D
项是
C
〔〕
A.△AOM 和△AON 都是等边三角形
B.四边形 MBON 和四边形 MODN 都是菱形
C.四边形 AMON 与四边形 ABCD 是位似图形
A.8
B.9.5
C.10
D.11.5
A
D
G
二、填空题 B
E
C
8.如图,路灯距离地面 8 米F ,身高 1.6 米的小明站在距离灯的底部〔点 O 〕20 米的 A 处,则小明

相似多边形、相似三角形判定(提高)

相似多边形、相似三角形判定(提高)

相似多边形、相似三角形判定一、相似多边形1.相似多边形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.② 顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.四、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证A B C D E F △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.五、相似证明中的基本模型六、.黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果AC BCABAC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中618.0215≈-=AB ACA BC【例1】 三角形三边之比为357∶∶,与它相似的三角形最长边是21cm ,另两边之各是 ( ) A .15cm B . 18cm C . 21cm D . 24cm【巩固】ABC △的三边长分别为2、10、3,'''A B C △的两边长分别为1和5,若ABC △与'''A B C △相似,则'''A B C △的第三条边长 .【拓展】已知ABC △的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm 和60cm 的细木条各一根,做一个三角形木架与ABC △相似,要求以其中一根为边,将另一根截成两段(允许有余料)作为另外两边,那么另外两边的长度(单位:cm )分别为 多少?【例2】 已知点M 将线段AB 黄金分割(AM >BM),则下列各式中不正确的是( )A.AM ∶BM=AB ∶AMB.AM=215-ABC.BM=215-ABD.AM ≈0.618AB【例3】 著名的斐波那契数列指的是数列:1,1,2,3,5,8,13,21,34,…,这个数列从第三项开始,每一项都等于前两项之和.该数列有很多性质,“相邻两个斐波那契数的比值随序号的增加而逐渐趋于黄金分割比=0.6180339887…”是其中的一个性质.请经过探究,猜测该数列中的第2010项与2011项的比值与黄金分割比的大小关系为( )A 、大于B 、等于C 、小于D 、无法确定【例4】 如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图1),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.角角角判定法【例5】如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.【巩固】如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.【例6】在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求FNNE的值.【巩固】已知,如图:CE 是Rt △ABC 的斜边上的高,在CE 的延长线上任取一点P ,连结AP 自B,作BG ⊥AP 于G 交CP 于D ,求证:2CE DE PE =∙【例7】 如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F . (1)求证:△ADE ∽△BEF .(2)若AE :EB=1:2,求DE :EF 的比值.【巩固】如图,已知E 是正方形ABCD 的边CD 上一点,BF ⊥AE 于F ,求证:AB 2=AE•BF.【例8】如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于点E、F,则AF:AD=BE:BD吗?说明理由边角边判定法【例9】已知△ABC中,点D、E分别在AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE,若∠BDE+∠BCE=180°那么,△DCF∽△BEF? 为什么?【巩固】如图,点C,D都在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB(2)当△ACP∽△PDB时求∠APB的度数。

相似三角形的应用于实际问题求解

相似三角形的应用于实际问题求解

相似三角形的应用于实际问题求解相似三角形是几何学中一个重要的概念,广泛应用于实际问题的求解中。

在实际应用中,我们经常会遇到一些无法直接测量或计算的物理量,但通过相似三角形的应用,我们可以利用已知的信息来求解未知量。

本文将以几个实际问题为例,介绍相似三角形的应用方法。

问题一:高楼的高度难以直接测量,如何利用相似三角形求解?解决问题一的方法是利用日晷的阴影来推算高楼的高度。

首先,在一个特定的时间,测量日晷的阴影长度与高楼的阴影长度。

假设日晷的高度为h₁,阴影长度为s₁;高楼的高度为h₂,阴影长度为s₂。

由于日晷和高楼处于相似三角形中,可以建立以下比例关系:h₁/s₁ = h₂/s₂通过已知的日晷高度和阴影长度,可以求解出高楼的高度。

问题二:无法直接测量的河宽,如何利用相似三角形求解?解决问题二的方法是利用两个位置的观测角度来推算河宽。

假设我们站在一岸的A点,观测到对岸的B点在岸边的角度为θ₁;然后我们移动到岸边的C点,观测到对岸的B点在岸边的角度为θ₂。

假设岸边的距离为d,河宽为w。

由于三角形ABC和三角形ABD相似,可以建立以下比例关系:w/d = tan(θ₁)w/(d + AC) = tan(θ₂)通过已知的观测角度和岸边距离,可以求解出河宽。

问题三:测量不便的高山高度,如何利用相似三角形求解?解决问题三的方法是利用水平线和山顶的观测角度来推算高山的高度。

假设我们站在水平线上的A点,观测山顶的角度为θ₁;然后我们移动到水平线上的B点,观测山顶的角度为θ₂。

假设两个观测点之间的距离为d,山顶的高度为h。

由于三角形ABC和三角形ABD相似,可以建立以下比例关系:h/d = tan(θ₁)h/(d + AB) = tan(θ₂)通过已知的观测角度和观测点之间的距离,可以求解出高山的高度。

通过以上实际问题的求解,我们可以看出相似三角形的应用是十分灵活的。

它不仅能够用于测量高度、宽度等无法直接测量的物理量,还可以应用于地理测量、地质勘查、建筑设计等领域。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)1.如图,在△ABC中,∠B=∠C,点D在AB边上,点E在AC边上,且AD=CE。

求证:△BED∽△CDE。

2.如图,在△ABC中,点D在AB边上,点E在AC边上,且∠XXX∠C。

求证:△BED∽△ABC。

ABF∽△ECF证明:首先根据题目中给出的比例式,可以得到:frac{BF}{AB}=\frac{BE}{BC}$$移项可得:frac{AB-BF}{AB}=\frac{BC-BE}{BC}$$化简可得:frac{AF}{AB}=\frac{CE}{BC}$$由此可知,△ABF与△ECF的两个对应角分别为∠A和∠C,因为它们有一个共同的角∠B,所以根据相似三角形的性质,可知△ABF∽△ECF。

例1】如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,要证明FD2=FB·FC。

证明:连接AF,因为AE=ED,所以∠EAD=∠EDA,即AD是∆AEF的角平分线,所以AF=EF,又因为AF∥BC,所以∆BFC与∆AFE相似,所以FB/AF=FC/FE,即FB·FE=FC·AF,代入AF=EF,得到FB·FC=FD2,即证。

例2】如图,四边形ABCD是平行四边形,点E在边BA 的延长线上,CE交AD于F,要证明AC·BE=CE·AD。

证明:连接BE、CF,因为AB∥CD,所以∠BCE=∠EAD,所以∆BCE与∆EAD相似,所以BE/AD=CE/AC,即AC·BE=CE·AD,即证。

例3】如图,△ACB为等腰直角三角形,AB=AC,∠BAC=90°,∠DAE=45°,要证明AB2=BE·CD。

证明:连接AE、BD,因为AB=AC,所以∠ABC=∠ACB=45°,所以∆ABD与∆AEC相似,所以AB/AC=BD/CE,即AB·CE=BD·AC,又因为AB=AC,所以AB2=BD·AC,代入AB·CE=BD·AC,得到AB2=BE·CD,即证。

探索相似三角形相似的条件 知识讲解(提高)

探索相似三角形相似的条件 知识讲解(提高)

探索相似三角形相似的条件(提高)责编:常春芳【学习目标】1.相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A 的对应点是A′,点B 的对应点是B′,点C 的对应点是C′; (2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1 时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似. 两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点诠释:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC,那么线段AB 被点CAB AC黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:AC =5 -1 AB ≈0.618AB(0.618是黄金分割的近似值, 5 -1是黄金分割的准确值). 2 22.作一条线段的黄金分割点:如图,已知线段 AB ,按照如下方法作图:(1)经过点 B 作 BD ⊥AB ,使 BD = 1AB .2(2)连接 AD ,在 DA 上截取 DE =DB . (3)在 AB 上截取 AC =AE .则点 C 为线段 AB 的黄金分割点. 要点诠释:一条线段的黄金分割点有两个. 【典型例题】 类型一、相似三角形的概念1、买 西 瓜 为 什 么 挑 大 个 ? 思 驰 是 一 个 好 奇 心 很 强 的 女 孩 , 凡 事 都 喜 欢 问 个 为 什 么 . 一 天 , 思 驰 跟 爸 爸 上 街 买 西 瓜 . 见 爸 爸 选 中 的 全 是 大 个 西 瓜 , 她 的 小 脑 袋 瓜 又 转 开 了 : 买 西 瓜 为 什 么 挑 大 个 ? “ 你 这 个 沈 老 师 的 得 意 门 生 , 能 用 学 过 的 数 学 知 识 解 决 吗 ? ” , 爸 爸 “ 将 ” 了 思 驰 一 军 . 回 到 学 校 , 思 驰 就 找 来 远 兮 一 起 商 量 . 两 人 便 开 始 了 一 番 精 彩 对 话 . 思 驰 : 西 瓜 可 以 近 似 看 成 球 体 , 可 以 应 用 球 的 体 积 公 式 . 远 兮 : 大 西 瓜 和 小 西 瓜 的 皮 厚 几 乎 相 等 .思 驰 : 人 们 买 瓜 是 为 了 吃 瓤 . 远 兮 : 瓤 的 体 积 在 整 个 西 瓜 体 积 中 占 的 比 越 大 越 好 . 思 驰 : 两 者 的 体 积 比 如 何 求 呢 ? 经 过 一 段 时 间 的 商 讨 , 她 们 提 出 了 解 决 方 案 : 设 瓜 瓤 ( 视 为 球 体 ) 的 半 径 为 r , 瓜 皮 厚 度 为 4 r 33 r ra , 则 瓤 和 整 个 瓜 的 体 积 比 为 :3 == ( )3 < 1 当 a 一 定 时 , r 值 越 大 , ( 4(r + a )33(r + a )3r + a( r r + a)3 的 值 越 接 近 于 1, 即 西 瓜 越 大 , 瓤 与 整 个 瓜 的 体 积 比 越 接 近 于 1. 思 驰 把 解 决 方 案 讲 给 父 亲 听 后 , 父 亲 充 满 了 赞 许 之 意 , 但 父 亲 同 时 又 提 出 了 : 你 能 用 你 正 在 学 习 的 相 似 图 形 知 识 解 决 问 题 吗 ? 等 你 学 完 图 形 的 相 似 这 一 章 后 , 我 相 信 你 还 能 找 出 新 的 方 法 的 . 问 题 : 你 认 为 生 活 中 还 有 哪 些 与 它 类 似 的 情 形 ? 【思路点拨】通 过 选 西 瓜 的 方 法 学 会 分 析 解 决 生 活 中 简 单 的 实 际 问 题 , 将 西 瓜 沿 球 心 所 在 直 线 切 开 , 得 到 瓤 和 皮 两 个 圆 , 根 据 相 似 形 的 性 质 , 计 算 其 半 径 的 比 , 得 到 面 积 比 , 从 而 得 出 正确结果.【答案与解析】解:如图,设西瓜外径为 R,西瓜内径为 r,瓜皮厚度为 a,S r 2于是两圆面积比为r=SR,(r + a)2当 r 越大时,S r:S R 越接近与 1,故西瓜越大越合算.与此类似,买鸡蛋也应挑大个的.【总结升华】此题是一道材料分析题,通过题目信息所给出的研究方法,进行探究是解答此类题目的基本思路.类型二、相似三角形的三个判定定理2.(2015•湖州模拟)如图,在正方形ABCD 中,E、F 分别是边AD、CD 上的点,,连接EF 并延长交BC 的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG 的长.【思路点拨】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG 的长,即可求得BG 的长.【答案与解析】(1)证明:∵ABCD 为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF= DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD 为正方形,∴ED∥BG,∴,又∵DF= DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【总结升华】此题考查了相似三角形的判定、正方形的性质、平行线分线段成比例定理等知识的综合应用,解题的关键是数形结合思想的应用.举一反三【变式】如图,已知在△ABC 与△DEF 中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.【答案】解:在△ABC 中,∠B=180°-∠A-∠C=79°,在△ABC 和△DEF 中,⎧∠B=∠E⎨,⎩∠A=∠D∴△ABC∽△DEF.3、(2015•大庆模拟)如图,△ABC 中,AB=5,BC=3,CA=4,D 为AB 的中点,过点D 的直线与BC 交于点E,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE 的长为多少?【答案与解析】解:∵D 为AB 的中点,∴BD= AB= ,∵∠DBE=∠ABC,∴当∠DBE=∠ACB 时,△BDE∽△BAC 时,如图1,则= ,即= ,解得DE=2;当∠BDE=∠ACB 时,如图 2,DE 交 AC 于 F ,∵∠DAF=∠CAB , ∴△ADF ∽△ACB , ∴△BDE ∽△BCA , ∴=,即=,解得 DE=,综上所述,若直线 DE 截△ABC 所得的三角形与△ABC 相似,则 DE=2 或.【总结升华】此 题 主 要 考 查 了 相 似 三 角 形 的 判 定 与 性 质 , 注 意 分 类 讨 论 思 想 在 本 题 的 应 用 , 避 免 漏 解 . 举一反三【变式】如 图 , 在 △ ABC 于 △ ADE 中 ,件 , 这 个 条 件 是 .AB AE BC ED, 要 使 △ ABC 于 △ ADE 相 似 , 还 需 要 添 加 一 个 条【答案】∠ B=∠ E .4、如 图 , 方 格 纸 中 每 个 小 正 方 形 的 边 长 为 1, △ ABC 和 △ DEF 的 顶 点 都 在 方 格 纸 的 格 点 上 . ( 1) 判 断 △ ABC 和 △ DEF 是 否 相 似 , 并 说 明 理 由 ; ( 2) P 1 , P 2 , P 3 , P 4 , P 5 , D , F 是 △ DEF 边 上 的 7 个 格 点 , 请 在 这 7 个 格 点 中 选 取 3 个 点 作 为 三 角 形 的 顶 点 , 使 构 成 的 三 角 形 与 △ ABC 相 似 ( 要 求 写 出 2 个 符 合 条 件 的 三 角 形 , 并 在 图 中 连 接 相 应 线 段 , 不 必 说 明 理 由 )5 5 2 2 10 2 54 2 10【思路点拨】( 1) 首 先 根 据 小 正 方 形 的 边 长 , 求 出 △ ABC 和 △ DEF 的 三 边 长 , 然 后 判 断 它 们 是 否 对 应 成 比 例 即 可 . ( 2) 只 要 构 成 的 三 角 形 与 △ ABC 的 三 边 比 相 等 即 可 ( 答 案 不 唯 一 ). 【答案与解析】 解 : ( 1) △ ABC 和 △ DEF 相 似 ;根 据 勾 股 定 理 , 得 AB=2 , AC= ,BC=5;DE=4,DF=2 , EF=2 ;∵ AB = AC = BC = = , DE DF EF 4∴ △ ABC ∽ △ DEF . ( 2) 答 案 不 唯 一 , 下 面 6 个 三 角 形 中 的 任 意 2 个 均 可 ; △ DP 2 P 5 , △ P 5 P 4 F , △ DP 2 P 4 , △ P 5 P 4 D , △ P 4 P 5 P 2 , △ FDP 1 .【总结升华】此 题 主 要 考 查 的 是 相 似 三 角 形 的 判 定 方 法 : 如 果 两 个 三 角 形 的 三 组 对 应 边 的 比 相 等 , 那 么 这 两 个 三 角 形 相 似 .( SSS ) 举一反三 【变式】如 图 , 已 知 每 个 小 正 方 形 的 边 长 均 为 1, △ ABC 与 △ DEF 的 顶 点 都 在 小 正 方 形 的 顶 点 上 , 那 么 △ DEF 与 △ ABC 相 似 的 是 ( )【答案】B.由 勾 股 定 理 求 得 各 三 角 形 的 三 边 长 , 然 后 根 据 三 组 对 应 边 的 比 相 等 的 两 个 三 角 形 相 似 , 即 可 求 得 答 案 . 注 意 排 除 法 在 解 选 择 题 中 的 应 用 . 类型三、黄金分割折纸与证明---用纸折出黄金分割点: 第一步:如图(1),先将一张正方形纸片 ABCD 对折,得到折痕 EF ;再折出矩形 BCFE 的对角线 BF . 第二步:如图(2),将 AB 边折到BF上,得到折痕BG,试说明点G 为线段 AD 的黄金分割点(AG >GD )BC 2 + CF 2555 -11【思路点拨】连接GF,设正方形的边长为1,由折纸第一步,可知DF= ,在Rt△BCF 中,根据勾股定理2得出BF,在Rt△A′GF 和Rt△DGF 中,根据勾股定理由GF 不变列出关于AG 的方程,解方程求出AG 的长,即可说明点G 是AD 的黄金分割点.【答案与解析】1证明:如图,连接GF,设正方形ABCD 的边长为1,则DF= .25在Rt△BCF 中,BF= =,2则A′F=BF-BA′= -1.2设AG=A′G=x,则GD=1-x,在Rt△A′GF 和Rt△DGF 中,有A'F2+A'G2=DF2+DG2,1即( -1)²+x2=( )2+(1-x)2,2 2解得x= ,2即点G 是AD 的黄金分割点(AG>GD).【总结升华】本题考查黄金分割的概念:把线段AB 分成两条线段AC 和BC(AC>BC),且使AC 是AB 和BC 的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.举一反三:【变式】(2012•恩施州)如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC 的中点E,再折出线段AE,然后通过折叠使EB 落到线段EA 上,折出点B 的新位置B′,因而EB′=EB.类似地,在AB 上折出点B″使AB″=AB′.这时B″就是AB 的黄金分割点.请你证明这个结论.【答案】设正方形ABCD 的边长为2,AB 2 + BE 25E 为 BC 的中点, ∴BE=1∴AE= = , 又∵B ′E=BE=1,∴AB ′=AE-B ′E= -1,∴AB ″:AB=( -1):2∴点 B ″是线段 AB 的黄金分割点.5 5。

2024中考备考重难点重难点相似三角形模型及其综合题综合训练(11大题型+满分技巧+限时分层检测)

2024中考备考重难点重难点相似三角形模型及其综合题综合训练(11大题型+满分技巧+限时分层检测)

重难点02 相似三角形模型及其综合题综合训练中考数学中《相似三角形模型及其综合题综合训练》部分主要考向分为五类:一、K型相似二、8字图相似三、A字图相似四、母子型相似五、手拉手相似相似三角形的综合题中各种相似模型的掌握是解决对应压轴题的便捷方法,所以本专题是专门针对相似三角形模型压轴题的,对提高类型的学生可以自主训练。

考向一:K型相似1.(2023•锡山区校级四模)如图,矩形ABCD中,AB=10,BC=8.点P在AD上运动(点P不与点A、D重合)将△ABP沿直线翻折,使得点A落在矩形内的点M处(包括矩形边界),则AP的取值范围是,连接DM并延长交矩形ABCD的AB边于点G,当∠ABM=2∠ADG时,AP的长是.2.(2023•福田区模拟)综合与探究在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上的点F处.(1)如图①,若BC=2BA,求∠CBE的度数;(2)如图②,当AB=5,且AF•FD=10时,求EF的长;(3)如图③,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,请直接写出的值.3.(2023•桐柏县一模)【初步探究】(1)把矩形纸片ABCD如图①折叠,当点B的对应点B'在MN的中点时,填空:△EB'M△B'AN (“≌”或“∽”).【类比探究】(2)如图②,当点B的对应点B'为MN上的任意一点时,请判断(1)中结论是否成立?如果成立,请写出证明过程;如果不成立,请说明理由.【问题解决】(3)在矩形ABCD中,AB=4,BC=6,点E为BC中点,点P为线段AB上一个动点,连接EP,将△BPE沿PE折叠得到△B'PE,连接DE,DB',当△EB'D为直角三角形时,BP的长为.考向二:8字图相似1.(2023•海州区校级二模)“关联”是解决数学问题的重要思维方式.角平分线的有关联想就有很多……【问题提出】(1)如图①,PC是△P AB的角平分线,求证:.小明思路:关联“平行线、等腰三角形”,过点B作BD∥P A,交PC的延长线于点D,利用“三角形相似”.小红思路:关联“角平分线上的点到角的两边的距离相等”,过点C分别作CD⊥P A交P A于点D,作CE⊥PB交PB于点E,利用“等面积法”.请根据小明或小红的思路,选择一种并完成证明.【理解应用】(2)如图②,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,使点C恰好落在边AB上的E点处,落AC=1,AB=2,则DE的长为.【深度思考】(3)如图③,△ABC中,AB=6,AC=4,AD为∠BAC的角平分线.AD的垂直平分线EF交BC延长线于点F,连接AF,当BD=3时,AF的长为.【拓展升华】(4)如图④,PC是△P AB的角平分线,若AC=3,BC=1,则△P AB的面积最大值是.2.(2023•衢州二模)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC中点时,求tan∠CGE的值;(3)如图3,当时,连接CF并延长交AB于点H,求的值.考向三:A字图相似1.(2023•宿城区一模)如图,在矩形ABCD中,AB=5,AD=3,先将△ABC沿AC翻折到△AB′C处,再将△AB'C沿翻折到△AB'C'处,延长CD交AC′于点M,则DM的长为.2.(2023•沙坪坝区校级模拟)如图,△ABC中,D在AB上,E在BC上,∠AED=∠ABC,F在AE上,EF=DE.(1)如图1,若CE=BD,求证:BE=CF;(2)如图2,若CE=AD,G在DE上,∠EFG=∠EFC,求证:CF=2GF;(3)如图3,若CE=AD,EF=2,∠ABC=30°,当△CEF周长最小时,请直接写出△BCF的面积.3.(2023•中山区模拟)如图,在平面直角坐标系中,直线y=﹣x+4与x轴,y轴分别交于点A、B,点P为射线AO上的一个动点,过点P作PQ⊥AB于点Q,将沿PQ翻折得到R.设△PQR与△AOB重合部分的面积为S,点P的坐标为(m,0).(1)求AR的长.(用含m的代数式表示)(2)求S关于m的函数解析式,并直接写出自变量m的取值范围.考向四:母子型相似1.(2023•樊城区模拟)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF =6,AD=9,求CE的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,连接DE、DF分别交AC于M,N,∠EDF=∠BAD,DF=AE,若MN=18,求EF的值.2.(2023•润州区二模)如图1,在△ABC中,点D在边AB上,点P在边AC上,若满足∠BPD=∠BAC,则称点P是点D的“和谐点”.(1)如图2,∠BDP+∠BPC=180°.①求证:点P是点D的“和谐点”;②在边AC上还存在某一点Q(不与点P重合),使得点Q也是点D的“和谐点”,请在图2中仅用圆规作图,找出点Q的位置,并写出证明过程.(保留作图痕迹)(2)如图3,以点A为原点,AB为x轴正方向建立平面直角坐标系,已知点B(6,0),C(2,4),点P在线段AC上,且点P是点D的“和谐点”.①若AD=1,求出点P的坐标;②若满足条件的点P恰有2个,直接写出AD长的取值范围是.考向五:手拉手相似1.(2023•宝安区校级三模)【问题背景】已知D、E分别是△ABC的AB边和AC边上的点,且DE∥BC,则△ABC∽△ADE,把△ADE绕着A逆时针方向旋转,连接BD和CE.①如图2,找出图中的另外一组相似三角形;②若AB=4,AC=3,BD=2,则CE=;【迁移应用】在Rt△ACB中,∠BAC=90°,∠C=60°,D、E,M分别是AB、AC、BC中点,连接DE和CM.①如图3,写出CE和BD的数量关系;②如图4,把Rt△ADE绕着点A逆时针方向旋转,当D落在AM上时,连接CD和CE,取CD中点N,连接MN,若,求MN的长.【创新应用】如图5:,BC=4,△ADE是直角三角形,∠DAE=90°,tan∠ADE=2,将△ADE绕着点A旋转,连接BE,F是BE上一点,,连接CF,请直接写出CF的取值范围.2.(2023•东港市二模)(1)问题发现:如图1,已知正方形ABCD,点E为对角线AC上一动点,将BE绕点B顺时针旋转90°到BF处,得到△BEF,连接CF.填空:①=;②∠ACF的度数为;(2)类比探究:如图2,在矩形ABCD和Rt△BEF中,∠EBF=90°,∠ACB=∠EFB=60°,连接CF,请分别求出的值及∠ACF的度数;(3)拓展延伸:如图3,在(2)的条件下,将点E改为直线AC上一动点,其余条件不变,取线段EF 的中点M,连接BM,CM,若,则当△CBM是直角三角形时,请直接写出线段CF的长.3.(2023•晋中模拟)综合与实践问题情境:(1)如图1,在△ABC和△ADE中,AB=AC,AD=AE.如图2,将△ABC绕顶点A按逆时针方向旋转15°得到△AB'C',连接B′D,C′E,求证:B′D=C′E.深入研究:(2)①如图3,在正方形ABCD和正方形CEFG中,已知点B,C,E在同一直线上,连接DE,AF,交于点P,求AF:DE的值;②如图4,若将正方形CEFG绕点C按顺时针方向旋转一定角度,AF:DE的值变化吗?请说明理由.拓展应用:(3)如图5,若把正方形ABCD和正方形CEFG分别换成矩形ABCD和矩形CEFG,且AD:AB=CG:CE=k,请直接写出此时AF:DE的值.(建议用时:150分钟)1.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.2.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接P A,PC,求P A+PC的最小值.3.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.4.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.5.(2023•湖州)【特例感知】(1)如图1,在正方形ABCD中,点P在边AB的延长线上,连结PD,过点D作DM⊥PD,交BC的延长线于点M.求证:△DAP≌△DCM.【变式求异】(2)如图2,在Rt△ABC中,∠ABC=90°,点D在边AB上,过点D作DQ⊥AB,交AC于点Q,点P在边AB的延长线上,连结PQ,过点Q作QM⊥PQ,交射线BC于点M.已知BC=8,AC=10,AD =2DB,求的值.【拓展应用】(3)如图3,在Rt△ABC中,∠BAC=90°,点P在边AB的延长线上,点Q在边AC上(不与点A,C重合),连结PQ,以Q为顶点作∠PQM=∠PBC,∠PQM的边QM交射线BC于点M.若AC=mAB,CQ=nAC(m,n是常数),求的值(用含m,n的代数式表示).6.(2023•鞍山)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN的长.7.(2023•益阳)如图,在Rt△ABC中,∠ACB=90°,AC>BC,点D在边AC上,将线段DA绕点D按顺时针方向旋转90°得到DA′,线段DA′交AB于点E,作A′F⊥AB于点F,与线段AC交于点G,连接FC,GB.(1)求证:△ADE≌△A′DG;(2)求证:AF•GB=AG•FC;(3)若AC=8,tan A=,当A′G平分四边形DCBE的面积时,求AD的长.8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO ⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2,求证:ND=NO.9.(2022•湖北)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.尝试证明:(1)请参照小慧提供的思路,利用图2证明:=;应用拓展:(2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).10.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.11.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD~△ACE;②若tan∠BAC=,求cos∠DCE的值.。

沪科版数学九年级上册《相似三角形的综合应用》教学设计1

沪科版数学九年级上册《相似三角形的综合应用》教学设计1

沪科版数学九年级上册《相似三角形的综合应用》教学设计1一. 教材分析《相似三角形的综合应用》是沪科版数学九年级上册的一章内容。

本章主要介绍了相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。

相似三角形是中学数学中的一个重要概念,它在几何学和其他学科中都有广泛的应用。

通过本章的学习,学生可以加深对相似三角形的理解,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角形的基本性质,对三角形的内角和、边长关系等有一定的了解。

然而,学生对于相似三角形的概念和相关性质可能还不够熟悉,需要通过本章的学习来进一步掌握。

此外,学生可能对于将相似三角形应用于实际问题中还存在一定的困难,需要通过实例分析和练习来提高。

三. 说教学目标1.知识与技能目标:学生能够掌握相似三角形的性质和判定方法,并能够应用于实际问题中。

2.过程与方法目标:学生能够通过观察、分析和推理等方法,探索相似三角形的性质,培养解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,与同伴合作解决问题,培养团队合作精神。

四. 说教学重难点1.教学重点:相似三角形的性质和判定方法。

2.教学难点:相似三角形在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生观察、分析和推理等思维活动,探索相似三角形的性质。

2.教学手段:利用多媒体课件和实物模型等辅助教学,帮助学生直观地理解相似三角形的概念和性质。

六. 说教学过程1.引入新课:通过展示一些实际问题,引发学生对相似三角形的思考,激发学生的学习兴趣。

2.探究相似三角形的性质:引导学生观察和分析一些几何图形,引导学生通过推理得出相似三角形的性质。

3.应用相似三角形的性质:通过一些实际问题,让学生运用相似三角形的性质解决问题,巩固所学知识。

4.总结与拓展:引导学生总结本节课所学的知识,并给出一些拓展问题,激发学生的进一步学习兴趣。

七. 说板书设计板书设计要简洁明了,突出相似三角形的性质和判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的应用
【学习目标】
1、探索相似三角形的性质,能运用性质进行有关计算.
2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).
【知识回顾】
一、相似三角形的性质
(1)对应边的比相等,对应角相等.
(2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方......
. (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.
二、相似三角形的应用:
1、利用三角形相似,可证明角相等;线段成比例(或等积式);
2、利用三角形相似,求线段的长等
3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等.
【典型例题】
例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少?
【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?
例2:阅读以下文字并解答问题:
在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高
A B
C Q
M D N
P
E
度.在同一时刻的阳光下,他们分别做了以下工作:
小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).
小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.
小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.
小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.
图1 图2 图3 图4
(1)在横线上直接填写甲树的高度为米.
(2)求出乙树的高度(画出示意图).
(3)请选择丙树的高度为()
A、6.5米
B、5.75米
C、6.05米
D、7.25米
(4)你能计算出丁树的高度吗?试试看.
【同步练习】如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度.
例3:如图,已知AD 是△ABC 的中线,M 是边AC 上的一动点,=CM nAM ,BM 交AD 于N 点。

⑴ 如图①,若1n =,则
=AN ND 。

如图②,若2n =,则=AN
ND 。

如图③,若3n =,则=AN
ND。

⑵ 猜想,AN
ND
与n 存在怎样的关系?并证明你的结论。

⑶ 当n = 时,恰有AN CM
ND AM
=
【同步练习】如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME =
例4:如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形
DBCE 重叠部分的面积记为y .
(1)用x 表示ADE △的面积;
(2)求出05x <≤时y 与x 的函数关系式; (3)求出510x <<时y 与x 的函数关系式; (4)当x 取何值时,y 的值最大?最大值是多少?
【同步练习】如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ),Q 是BC 边上的任意一点. 连AQ 、DQ ,过P 作PE ∥DQ 交AQ 于E ,作PF ∥AQ 交DQ
B
C A
E
A '
D
B
C
A
于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF 取得最大值?最大值为多少?
例5:等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
【同步练习】如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长.
例6:如图,已知抛物线y =4
3x 2
+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =
t
43
x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.
(1)填空:点C 的坐标是___________,b =_______,c =_______; (2)求线段QH 的长(用含t 的式子表示);
(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.
A C
B
Q P
O
H x
y
巩固练习
1.
ABC △中,CD AB ⊥于D ,
一定能确定ABC △为直角三角形的条件的个数是( )①1A ∠=∠,②CD DB
AD CD
=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤CD AC BD AC •=• A .1 B .2 C .3 D .4 2. 如图,在正方形ABCD 的外侧,作等边三角形△ADE ,EB ,CE 分别交AD 于点G ,H .设△CDH ,
△GHE 的面积分别为S 1,S 2,则( ) A .212S 3S =. B .213S 2S = C .21S 32S =
. D .21S 2S 3=
3. 如图,在Rt ΔABC 内有边长分别为a ,b ,c 的三个正方形,则a ,b ,c 满足的关系式( ) A .b=a+c B .b=ac C .b 2=a 2+c 2 D .b=2a=2c
4. 某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图,在
Rt △ABC 中,∠C=90°,AC=30cm ,AB=50cm ,依次裁下宽为1cm 的矩形纸条a 1、a 2、a 3…,
若使裁得的矩形纸条的长都不小于5cm ,则每张彩纸能裁成的矩形纸条的总数是( ) A .24 B .25 C .26 D .27
5. 如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,
213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和
为 .
6. 在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在
坡面上.已知铁塔底座宽CD=12m ,塔影长DE=18m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )
A .24m
B .22m
C .20m
D .18m
7. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,
保持AM 和MN 垂直,
(1)证明:Rt Rt ABM MCN △∽△;
(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;
(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.。

相关文档
最新文档