函数与导数大题答案

合集下载

函数与导数例高考题汇编(含答案)

函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。

函数与导数大题训练试题+答案

函数与导数大题训练试题+答案

函数与导数大题训练1已知函数.23)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;(II )若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;(III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.2. 设.2)(ln )()(2)(--==--=epqe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数)(Ⅰ)求p 与q 的关系;(Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n nn Λ3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.答案1解:(I )23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得(舍去))(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分(II )由0]3)(ln[|ln |>+'+-x x f x a 得xx a x x a 323lnln 323lnln ++<+->或, …………① ……………………5分 设332ln 323ln ln )(2x x x x x h +=+-=,xxx x x g 323ln323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+⋅+='xx xx x x x h ,………………………………6分 ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分(III )由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减 ……………………10分 而)1()37(),0()37(ϕϕϕϕ>>, ]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ .37267)72ln(215ln +-+<≤+∴b …………… ……12分 2. 解:(I )由题意:,ln 2)(x x q px x g --= 又2)(--=eqpe e g 12 2 ()()011()()0 0,....... ........3q p pe qe p q e p q e e ep q e e p q e e∴--=--∴-+-=-+=+≠∴=而分(Ⅱ)由(I )知:,ln 2)(x xqpx x g --= 分恒成立或满足在只需为单调函数在要使令4..................................................................0)(0)(:),0()(,),0()(,2)(22)(2222'≤≥+∞+∞+-=+-=-+=x h x h x h x g p x px x h x px px x x p p x g ①当p=0时,h (x )=-2x'220 ()0,()0,()(0,), 0...... .. (5x)x h x g x x g x p >∴<∴=-<∴+∞∴=Q 在单调递减适合题意分②当p px p x px x h 1,2)(,02=+-=>其对称轴为图象为开口向上抛物线时∈(0,+∞)'min 11() 0,1 ()0,()0()(0,), 1................................................7h x p p p h x g x p pg x p ∴=--≥≥≥≥∴+∞∴≥只需即时在单调递增适合题意分③当p <0时,px p x px x h 1,2)(,2=+-=其对称轴为图象为开口向下抛物线时 ),0(+∞∉ 只需h (x )≤0,即p ≤0时h (x )≤0在(0,+∞)恒成立.0),0()(0)('适合题意单调递减在<∴+∞∴<∴p x g x g综上①②③可得,p ≥1或p ≤0(Ⅲ)证明:①即证)1(0)1ln(->≤-+x x x 设xxx k x x x k +-=-+=1)(,)1ln()('''(1,0)()0,() (0,)()0,()0(), ()(0)0x k x k x x k x k x x k x k x k ∴∈->∴∴∈+∞<∴∴=∴≤=时为单调递增函数时为单调递减函数为的极大值点 即x x x x ≤+∴≤-+)1ln(,0)1ln(…………………………………………11分 ②由①知,01,)1ln(>+≤+x x x 又 设1ln 0,1-≤∴>+=t t t x t 则22*2222222222222222ln 11ln 11,2, ln 1, 1, (1),2ln 2ln 3ln 1111...(11...1)2232311111111[(1)(...)][(1)...]222334(1)2311111[1(22334n n n n N n n n n n n n nn n nn n n n n n -∈≥∴≤-∴≤=-∴≤-∴+++≤-+-++-=--+++<--+++⨯⨯+=---+-Q 11...]1n n ++-+211121[1()]2214(1)n n n n n --=---=++∴结论成立…… ………14 分3.当]1,0(∈x 时,11)(2++-='x x ax f .(1)要使)(x f 在]1,0(∈x 上是增函数,11)(2++-='x x a x f 0≥在]1,0(上恒成立,即22111xx x a +=+≤在]1,0(上恒成立. 而211x+在]1,0(上的最小值为2,又+∈R a ,∴20≤<a . (2)ⅰ)20≤<a 时,)(x f 在]1,0(上是增函数,1)21()1()]([max +-==a f x f .ⅱ)2>a 时,0)(='x f ,得112-=a x ∈]1,0(. Θ当1102-<<a x 时,0)(>'x f ;当1112≤<-x a 时,0)(<'x f , ∴1)11()]([22max --=-=a a a f x f .1.已知()x f 定义在R 上的函数,对于任意的实数a ,b 都有()()()a bf b af ab f +=,且()12=f Ⅰ)求⎪⎭⎫ ⎝⎛21f 的值;(Ⅱ)求()n f -2的解析式(*∈N n )2.已知函数f (x )=ln (e x +a )(a 为常数)是实数R 上的奇函数,函数g (x )=λf(x)+sinx 是区间[-1,1]上的减函数。

高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。

解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。

函数与导数习题及答案

函数与导数习题及答案

函数与导数 一、选择题1.已知f(x)=xln x ,若00',2)(x x f 则=等于( )A .2eB .eC.ln 22D .ln 22、设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .33.若函数c bx ax x f ++=24)(满足f′(1)=2,则f′(-1)等于( )A .-1B .-2C .2D .04.设函数f (x )=ax 3+2,若f ′(-1)=3,则a 等于( ) A .-1 B.12 C .1 D.135.设f (x )为可导函数,且lim h →∞ f (3)-f (3+h )2h=5,则f ′(3)等于( )A .5B .10C .-5D .-106.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =7x +2 C .y =x -4D .y =x -2 7.在曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4) C .(14,116)D .(12,14)8.设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .29.已知f (x )=12x 2-cos x ,]1,1[-∈x ,则导函数f ′(x )是( )A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数10.已知曲线y=x24-3ln x的一条切线的斜率为-12,则切点的横坐标为( )A.3 B.2 C.1 D.1 211.设函数f(x)=-2x1+x2,则f(x)( )A.在(-∞,+∞)内单调递增B.在(-∞,+∞)内单调递减C.在(-1,1)内单调递减,其余区间单调递增D.在(-1,1)内单调递增,其余区间单调递减12.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数13.已知函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调递减区间是(0,4),则m 等于( )A.3 B.13C.2 D.1214.函数f(x)=12x2-ln x的单调递减区间是( )A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞)15.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f′(x)>0,则对任意实数a,b( )A.a>b⇔e a f(b)>e b f(a) B.a>b⇔e a f(b)<e b f(a)C.a>b⇔e a f(a)<e b f(b) D.a>b⇔e a f(a)>e b f(b)16.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)17.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( ) A .1 B .2 C .3D .418.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b 等于( ) A .-1 B .0 C .1 D .219.已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( )A .(-1,2)B .(-1,12)C .(12,2)D .(-2,1)20.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角α为( ) A.π4 B .0 C.3π4D .1 21.已知点A (1,2)在函数f (x )=ax 3的图象上,则过点A 的曲线C :y =f (x )的切线方程是( ) A .6x -y -4=0 B .x -4y +7=0C .6x -y -4=0或x -4y +7=0D .6x -y -4=0或3x -2y +1=022.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)内存在最小值,则实数a 的取值范围是( ) A .[-5,0) B .(-5,0) C .[-3,0)D .(-3,0)23.若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是( ) A .1<a <2 B .1<a <4 C .2<a <4D .a >4或a <124.已知函数f (x )=x 3+ax 2+x +2 (a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是( ) A .(0,2] B .(0,2) C .[3,2)D .(3,2)25.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2)D .(-∞,-1)26.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]27.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .228.曲线y =ln x 在x =3处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π229.曲线f (x )=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)30.函数f (x )=12x 2-ln x 的最小值为( )A.12B .1C .-2D .3 31.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =( )A .1 B.12C .0D .-132.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )A B C D33.定义域为R 的函数f (x ),满足f (0)=1,f ′(x )<f (x )+1,则不等式f (x )+1<2e x 的解集为( )A .{x ∈R |x >1}B .{x ∈R |0<x <1}C .{x ∈R |x <0}D .{x ∈R |x >0}34.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在区间[-1,1]上是减函数,则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34 D .0<a <1235.设1<x <2,则 ln x x ,⎝⎛⎭⎪⎫ln x x 2,ln x 2x 2的大小关系是( ) A.⎝ ⎛⎭⎪⎫ln x x 2<ln x x <ln x2x 2 B.ln x x <⎝⎛⎭⎪⎫ln x x 2<ln x2x 2 C.⎝ ⎛⎭⎪⎫ln x x 2<ln x 2x 2<ln xxD.ln x 2x 2<⎝ ⎛⎭⎪⎫ln x x 2<ln xx36.函数214y x x=+的单调增区间为( ) A .(0,)+∞B .1(,)2+∞C .(,1)-∞-D .1(,)2-∞-37.如果函数()y f x =的图象如左下图,那么导函数'()y f x =的图象可能是( )38.已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .eB .e -C .1eD .1e-39.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .0a ≤B .1a <C .0a <D .1a ≤40.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,'()2f x >,则()24f x x >+的解集为( )A .(1,1)-B .(1,)-+∞C .(,1)-∞-D .(,)-∞+∞41.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A .(1,2)- B .(,3)(6,)-∞-+∞U C .(3,6)-D .(,1)(2,)-∞-+∞U42.函数2ln xy x=的极小值为( )A .24e B .0 C .2eD .143.函数,[0,4]x y xe x -=∈的最小值为( ) A .0B .1eC .44e D .22e 44.设直线x t =与函数2()f x x =,()ln g x x =的图象分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1B .12C .5 D .2 45.设函数2()(,,)f x ax bx c a b c =++∈R .若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )二、填空题1.曲线y =ln x -1在x =1处的切线方程为____________.2.已知函数3()3f x x ax a =--在(0,1)内有最小值,则a 的取值范围是___________. 3.若曲线5()ln f x ax x =+存在垂直于y 轴的切线,则实数a 的取值范围是________.4.已知直线1y x =+与曲线ln()y x a =+相切,则a 的值为________.5. 已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.6.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.7.设函数f(x)=(x2+2x-2)e x(x∈R),则f(x)的单调递减区间是________.) 8.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.9.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是____________.10.设函数f(x)=ax+1x+b(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.则函数f(x)的解析式为____________.11.已知函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.12.已知曲线y=13x3上一点P(2,83),则过点P的切线方程为____________________________________.13.已知定义在区间(-π,π)上的函数f(x)=x sin x+cos x,则f(x)的单调递增区间是________________.14.已知函数f(x)=x2+3x-2ln x,则函数f(x)的单调递减区间为__________.15.已知函数f(x)=12x2-2ax-a ln x在(1,2)上单调递减,则a的取值范围是________.16.设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:e f(2),f(3),e2f(-1)从小到大依次排列为________________.17.曲线y=x(x+1)(2-x)有两条平行于直线y=x的切线,则两切线之间的距离是________.18.已知函数f(x)=x ln k-k ln x(k>1)的图象不经过第四象限,则函数g(x)=f(x)+k的值域为________.19.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是________________.20.函数f(x)=ax-cos x,x∈[π4,π3],若∀x1,x2∈[π4,π3],x1≠x2,f(x2)-f(x1)x2-x1<0,则实数a的取值范围是________.21.若f (x )=13x 3-ax 2+x 在R 上不是单调函数,则a 的取值范围是________________.22.已知函数f (x )=e x1+ax 2(a >0),若f (x )为R 上的单调函数,则实数a 的取值范围是________.23.函数f (x )=2ln x +x 2在点x =1处的切线方程是________.24.已知函数f (x )=x 3+ax 2+bx +c ,若f (1)=0,f ′(1)=0,但x =1不是函数f (x )的极值点,则abc 的值为________. 25.已知函数ln ln ()a xf x x+=在[1,)+∞上为减函数,则实数a 的取值范围为___________. 三、解答题1.已知函数2()(2),(,)x f x x ax e x a R =++∈.(Ⅰ)当0a =时,求函数()f x 的图像在点(1,(1))A f 处的切线方程; (Ⅱ)若()f x 在R 上单调,求a 的取值范围; (Ⅲ)当52a =-时,求函数()f x 的极小值.2.已知函数f (x )=ln 2x -kx 在定义域内单调递减,求实数k 的取值范围.3.已知函数f (x )=(x +1)2(x -2),当x ∈[a ,a +2]时,f (x )的最大值为0,求实数a 的取值.4.已知x=0是函数f(x)=x3+bx2+cx的一个极值点,f(x)的图像经过点A(3,0).设f(x)在其图像上不同两点P(x1,y1),Q(x2,y2)处的切线分别为l1,l2.当l1∥l2时,求证x1+x2为定值.5.已知函数f(x)=ax2-2x+ln x(a∈R).若函数f(x)有两个极值点,求a的取值范围,并说明f(x)的极小值小于-3 2.6.设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图像在x =m处的切线的斜率为-3a.(1)求证:0≤ba<1;(2)若函数f(x)在区间[s,t]上单调递增,求|s-t|的取值范围.7.已知函数f(x)=e x2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间;(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.8.若x0是函数y=f(x)的极值点,同时也是其导函数y=f′(x)的极值点,则称x0是函数y=f(x)的“致点”.(1)已知a>0,求函数f(x)=(x2+ax+1)e x的极值和单调区间;(2)函数f(x)=(x2+ax+1)e x是否有“致点”?若有,求出“致点”;若没有,试说明理由.9.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.10.已知函数f(x)=ax3+bx+c在x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.11.已知函数f(x)=x3+bx2+cx的图象在点(1,f(1))处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数,g(x)=a e x(a,b,c∈R,e为自然对数的底数).(1)求b,c的值;(2)若∃x0∈(0,2],使g(x0)=f′(x0)成立,求a的取值范围.12.(2015·南平质检)已知函数f (x )=sin x ,g (x )=mx -x 36(m 为实数). (1)求曲线y =f (x )在点P (π4,f (π4))处的切线方程; (2)求函数g (x )的单调递减区间;(3)若m =1,证明:当x >0时,f (x )<g (x )+x 36.13.(2015·北京)设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点.14.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求函数F (x )=f (x )f ′(x )+(f (x ))2的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+sin 2x cos 2x -sin x cos x 的值.15.已知函数f (x )=ax -e x (a >0). (1)若a =12,求函数f (x )的单调区间; (2)当1≤a ≤1+e 时,求证:f (x )≤x .16.已知函数f (x )=ax +ln x ,a ∈R , (1)求f (x )的单调区间;(2)设g (x )=x 2-2x +1,若对任意x 1∈(0,+∞),总存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.17.(2015·陕西)设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13⎝ ⎛⎭⎪⎫23n .18.(2015·山东济宁育才中学上学期期中)已知a ∈R ,函数f (x )=12ax 2-ln x . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)讨论f (x )的单调性;(3)是否存在实数a ,使得方程f (x )=2有两个不等的实数根?若存在,求出a 的取值范围;若不存在,请说明理由.19.已知函数f(x)=ln x-ax2+(a-2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.20.已知函数f(x)=e x-ax-1(a∈R).(1)求函数f(x)的单调区间.(2)函数F(x)=f(x)-x ln x在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.(3)若g(x)=ln(e x-1)-ln x,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.21.已知函数f(x)=e x-a2x2e|x|.(1)若f(x)在[0,+∞)上是增函数,求实数a的取值范围;(2)证明:当a≥1时,不等式f(x)≤x+1对x∈R恒成立;(3)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得f(x0)>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.22.已知函数f(x)=x-ln x-1.(1)求曲线y=f(x)在x=2处的切线方程;(2)若x∈(0,+∞)时,f(x)≥ax-2恒成立,求实数a的取值范围.23.已知函数f(x)=x2-3x+a ln x(a>0).(1)若a=1,求函数f(x)的单调区间和极值;(2)设函数f(x)图像上任意一点处的切线l的斜率为k,当k的最小值为1时,求此时切线l的方程.24.设函数f (x )=p ⎝ ⎛⎭⎪⎫x -1x -2ln x ,g (x )=2e x (p >1,e 是自然对数的底数).(1)若对任意x ∈[2,e],不等式f (x )>g (x )恒成立,求p 的取值范围;(2)若对任意x 1∈[2,e],总存在x 2∈[2,e],使不等式f (x 1)>g (x 2)成立,求p 的取值范围.25.已知函数f (x )=1+ln xx .(1)若函数f (x )在区间⎝ ⎛⎭⎪⎫2a -1,a +14内有极值,求实数a 的取值范围;(2)当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围;(3)求证:[(n +1)!]2>(n +1)e n -2+2n +1.(n ∈N *,e 为自然对数的底数)26.已知函数f (x )=(2-a )(x -1)-2ln x ,g (x )=e x -x +1.(a 为常数,e 为自然对数的底数)(1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值;(3)若对任意给定的x 0∈(0,1],在(0,e]上总存在两个不同的x i (i =1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.27.设a ∈R ,函数2()()e x f x x ax a =--.(1)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在[2,2]-上的最小值.28.已知函数3()1f x x ax =--.(Ⅰ)若()f x 在(,)-∞+∞上单调递增,求实数a 的取值范围;(Ⅱ)是否存在实数a ,使()f x 在(1,1)-上单调递减?若存在,求出a 的取值范围;若不存在试说明理由.29.已知函数()ln 3()f x a x ax a =--∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45o ,对于任意的[1,2]t ∈,函数32()['()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围.30.已知函数()()x f x x k e =-.(Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.31.已知函数2()ln(1)(1)f x a x x =+++在1x =处有极值. (Ⅰ)求实数a 值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)令()'()g x f x =,若曲线()g x 在(1,(1))g 处的切线与两坐标轴分别交于,A B 两点(O 为坐标原点),求AOB ∆的面积.32.已知函数()ln(21)1f x a x bx =+++.(Ⅰ)若函数()y f x =在1x =处取得极值,且曲线()y f x =在点(0,(0))f 处的切线与直线230x y +-=平行,求a 的值;(Ⅱ)若12b =,试讨论函数()y f x =的单调性.33.已知函数2()1x af x x +=+(其中a R ∈).(Ⅰ)若函数()f x 在点(1,(1))f 处的切线为12y x b =+,求实数,a b 的值; (Ⅱ)求函数()f x 的单调区间.34.已知函数()ln a f x x x=+.(Ⅰ)当0a <时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在[1,]e 上的最小值是32,求a 的值.35.已知函数()2ln pf x px x x=--. (Ⅰ)若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;(Ⅱ)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围.36.已知函数()32331f x ax x a=-+-(R a ∈,且0)a ≠,求()f x '及函数()f x 的极大值与极小值.37.已知函数1()ln f x a x x=-,a ∈R .(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当1a =,且2x ≥时,证明:(1)25f x x -≤-.38.已知函数()ln a xf x x x-=+,其中a 为大于零的常数. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线1-2y x =平行,求a 的值; (Ⅱ)求函数()f x 在区间[1,2]上的最小值.39.已知函数22()ln axf x x e=-(a ∈R ,e 为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0,)()P t t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x 和22212(,())()P x f x x x ≠,求证:120x x +=.一、选择题1-5 BDBCD 6-10 DDADB 11-15 CABBD 16-20 BBCAA21-25 DCBDC 26-30 CBADA 31-35 BADCA 36-40 BACAB 41-45 BBADD 二、填空题1、x -y -2=02、(0,1)3、(-∞,0)4、25、86、a =37、(-4,0) 8、a =8 9、(-∞,-1)∪(0,1) 10、f (x )=x +1x -111、a =3. 12、[45,+∞) 13、(-π,-π2]和[0,π2] 14、.⎝⎛⎭⎪⎫0,12 15、12x -3y -16=0或3x -3y +2=0 16、f (3)<e f (2)<e 2f (-1) 17、16227 18、[e ,+∞) 19、(-∞,2-1e )∪(2-1e,2) 20、(-∞,-1)∪(1,+∞) 21、(-∞,-32] 22、[e ,+∞) 23、4x -y -3=0 24、9 25、(0,1] 三、解答题1、解:2()[(2)2]x f x e x a x a '=++++(Ⅰ)当a=0时,2()(2),x f x x e =+2()(22)x f x e x x '=++,(1)3f e =,(1)5f e '=,∴函数f (x )的图像在点A (1,f (1))处的切线方程为y-3e=5e (x-1),即5ex-y-2e=0(Ⅱ)2()[(2)2]x f x e x a x a '=++++,考虑到0x e >恒成立且2x 系数为正,∴f (x )在R 上单调等价于 2(2)20x a x a ++++≥恒成立. ∴(a+2)2-4(a+2)≤0,∴-2≤a ≤2 , 即a 的取值范围是[-2,2], (若得a 的取值范围是(-2,2),可扣1分)(Ⅲ)当52a =-时, 25()(2),2x f x x x e =-+211()()22x f x e x x '=--,令()0f x '=,得12x =-,或x ,令()0f x '>,得12x <-,或x ,令()0f x '<,得112x -<<x,()f x ',f (x )的变化情况如下表X1(,)2-∞-12- 1(,1)2- 1 (1,+∞)()f x '+0 -0 +f (x )Z极大值]极小值Z所以,函数f (x )的极小值为f (1)=2e2..解:∵函数f (x )在定义域内单调递减,∴f ′(x )=2ln xx -k ≤0在(0,+∞)上恒成立.设φ(x )=ln xx ,则φ′(x )=1-ln x x 2,∴φ(x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴φ(x )max =φ(e)=1e ,故实数k 的取值范围为⎣⎢⎡⎭⎪⎫2e ,+∞3.解:f ′(x )=2(x +1)(x -2)+(x +1)2=3(x -1)(x +1),所以f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减, 所以极大值为f (-1)=0.又f (2)=0,所以a +2=2或⎩⎨⎧a ≤-1,a +2≥-1,得a =0或-3≤a ≤-1.4.证明:由f (x )=x 3+bx 2+cx ,得f ′(x )=3x 2+2bx +c .由x =0是函数f (x )的一个极值点知f ′(0)=c =0.又由f (x )的图像经过点A (3,0),得f (3)=27+9b +3c =0, 所以b =-3,所以f (x )=x 3-3x 2.由l 1∥l 2,得f ′(x 1)=f ′(x 2),即3x 21-6x 1=3x 22-6x 2, 即3(x 1-x 2)(x 1+x 2-2)=0.因为x 1-x 2≠0,所以x 1+x 2=2, 所以当l 1∥l 2时,x 1+x 2为定值.5.解:f ′(x )=2ax 2-2x +1x,由题知2ax 2-2x +1=0在(0,+∞)上有两个不同的实根.设方程2ax 2-2x +1=0的两根为x 1,x 2,且0<x 1<x 2,根据题意得0<a <12, 所以f (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减, 在(x 2,+∞)上单调递增, 所以f (x )极小值=f (x 2).f (x 2)<-32的证明如下:由f ′(x 2)=0,得2ax 22-2x 2+1=0,则a =2x 2-12x 22∈⎝ ⎛⎭⎪⎫0,12,解得x 2>12且x 2≠1.f (x 2)=x 22·2x 2-12x 22-2x 2+ln x 2=-x 2-12+ln x 2,令g (x )=-x -12+ln x ,g ′(x )=-1+1x =1-x x ,则g (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,在(1,+∞)上单调递减,所以g (x )max <g (1)=-32,所以f (x )的极小值小于-32.6.解:(1)证明:f ′(x )=3ax 2+2bx +c ,由题设,得f ′(1)=3a +2b +c =0,① f ′(m )=3am 2+2bm +c =-3a .②∵a <b <c ,∴6a <3a +2b +c <6c ,∴a <0,c >0.将①代入②得3am 2+2bm -2b =0,∴Δ=4b 2+24ab ≥0,得⎝ ⎛⎭⎪⎫b a 2+6ba ≥0,∴b a ≤-6或b a ≥0③.将c =-3a -2b 代入a <b <c 中,得-1<ba <1.④ 由③④得0≤ba <1.(2)由(1)知,f ′(x )=3ax 2+2bx +c (a <0),Δ=4b 2-12ac >0,∴方程f ′(x )=3ax 2+2bx +c =0有两个不等的实根,不妨设其为x 1,x 2,又f ′(1)=3a +2b +c =0,∴不妨令x 1=1,则x 2=-2b3a -1, ∴x 2<0<x 1,∴当x <x 2或x >x 1时,f ′(x )<0;当x 2<x <x 1时,f ′(x )>0.∴函数f (x )的单调递增区间是[x 2,x 1].∵|x 1-x 2|=2+2b3a ,0≤b a <1,∴2≤|x 1-x 2|<83.∵函数f (x )在区间[s ,t ]上单调递增,∴[s ,t ]⊆[x 2,x 1],∴0<|s -t |<83,即|s -t |的取值范围是⎝ ⎛⎭⎪⎫0,83.7.解 (1)当a =32时,f (x )=e x 2-1e x -32x , f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2), 令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,得0<x <ln 2.∴f (x )的增区间是(-∞,0],[ln 2,+∞),减区间是(0,ln 2). (2)f ′(x )=e x 2+1e x -a , 令e x =t ,由于x ∈[-1,1], ∴t ∈[1e ,e].令h (t )=t 2+1t (t ∈[1e ,e]),h ′(t )=12-1t 2=t 2-22t 2,∴当t ∈[1e ,2)时,h ′(t )<0,函数h (t )为单调递减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调递增函数.故h(t)在[1e,e]上的极小值点为t=2,且h(2)= 2.又h(e)=e2+1e<h(1e)=12e+e,∴2≤h(t)≤e+12e.∵函数f(x)在[-1,1]上为单调函数,①若函数在[-1,1]上单调递增,则a≤t2+1t对t∈[1e,e]恒成立,所以a≤2;②若函数f(x)在[-1,1]上单调递减,则a≥t2+1t对t∈[1e,e]恒成立,所以a≥e+12e,综上可得a的取值范围是(-∞,2]∪[e+12e,+∞).8.解(1)由已知得,f′(x)=(x2+ax+1)e x+e x(2x+a)=[x2+(a+2)x+a+1]e x=(x +a+1)(x+1)e x.∵a>0,∴-a-1<-1.∴当x∈(-∞,-a-1)时,f′(x)>0;当x∈(-a-1,-1)时,f′(x)<0;当x∈(-1,+∞)时,f′(x)>0.f(x)的单调递增区间为(-∞,-a-1)和(-1,+∞),单调递减区间为(-a-1,-1).且当x=-1时,f(x)有极小值(2-a)e-1,当x=-a-1时,f(x)有极大值(a+2)e-a-1.(2)由(1)知,f′(x)=(x+a+1)(x+1)e x,令g(x)=f′(x),则g′(x)=[x2+(a+4)x+2a+3]e x.假设f(x)有“致点”x0,则x0首先应是f(x)的极值点,即f′(x0)=0,∴x0=-1或x0=-a-1.当a=0时,-a-1=-1,此时f′(x)≥0恒成立,f(x)无极值.∴要使f(x)有极值,须a≠0.若x0=-1,则由题意可知g′(-1)=0,∴1-(a+4)+2a+3=0,解得a=0,与a≠0矛盾,即-1不是f(x)的“致点”.若x0=-a-1,则g′(-a-1)=0,即(a+1)2-(a+4)·(a+1)+2a+3=0,解得a =0,与a≠0矛盾,即-a-1也不是f(x)的“致点”.∴函数f(x)无“致点”.9.解(1)当k=1时,f(x)=(x-1)e x-x2,∴f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,即x(e x-2)>0,∴x>ln 2或x<0.令f′(x)<0,即x(e x-2)<0,∴0<x<ln 2.因此函数f(x)的单调递减区间是(0,ln 2);单调递增区间是(-∞,0)和(ln 2,+∞).(2)易知f′(x)=e x+(x-1)e x-2kx=x(e x-2k).∵f(x)在[0,+∞)上是增函数,∴当x≥0时,f′(x)=x(e x-2k)≥0恒成立.∴e x-2k≥0,即2k≤e x在[0,+∞)上恒成立.由于e x≥1,∴2k≤1,则k≤12.又当k =12时,f ′(x )=x (e x -1)≥0,当且仅当x =0时取等号. 因此,实数k 的取值范围是(-∞,12]. 10.解 (1)因为f (x )=ax 3+bx +c , 故f ′(x )=3ax 2+b .由于f (x )在x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧ 12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2. 当x ∈(-∞,-2)时,f ′(x )>0, 故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0, 故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0, 故f (x )在(2,+∞)上为增函数.由此可知f (x )在x =-2处取得极大值f (-2)=16+c , f (x )在x =2处取得极小值f (2)=c -16. 由题设条件知16+c =28,解得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.11.解(1)由题意得f′(x)=3x2+2bx+c,∴f′(1)=2b+c+3=3.又f(1)=b+c+1,点(1,f(1))在直线6x-2y-1=0上,∴6-2(b+c+1)-1=0,故b=-32,c=3.(2)∵g(x0)=f′(x0),∴a e x0=3x20-3x0+3,∴a=3x20-3x0+3e x0.令h(x)=3x2-3x+3e x,则h′(x)=-3(x2-3x+2)e x,令h′(x)=0,得x=1或x=2.当x变化时,h(x)与h′(x)在x∈(0,2]上的变化情况如下表所示:]Z∴h(x)在x∈(0,2]上有极小值h(1)=3e ,又h(2)=9e2,h(0)=3>9e2,∴h(x)在x∈(0,2]上的取值范围为[3e,3),∴a的取值范围为[3e,3).12.(1)解 由题意得所求切线的斜率k =f ′(π4)=cos π4=22. 切点P (π4,22),则切线方程为y -22=22(x -π4), 即x -2y +1-π4=0. (2)解 g ′(x )=m -12x 2.①当m ≤0时,g ′(x )≤0,则g (x )的单调递减区间是(-∞,+∞); ②当m >0时,令g ′(x )<0, 解得x <-2m 或x >2m ,则g (x )的单调递减区间是(-∞,-2m ),(2m ,+∞). (3)证明 当m =1时,g (x )=x -x 36.令h (x )=g (x )+x 36-f (x )=x -sin x ,x ∈(0,+∞), h ′(x )=1-cos x ≥0,则h (x )是(0,+∞)上的增函数,故当x >0时,h (x )>h (0)=0,即sin x <x ,f (x )<g (x )+x 36. 13.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx .由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:]Z所以,f (x ,k (k f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1, e ]上的唯一零点.当k >e 时,f (x )在区间(0, e )上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点14.解 (1)已知函数f (x )=sin x +cos x , 则f ′(x )=cos x -sin x , 代入F (x )=f (x )f ′(x )+(f (x ))2,可得F (x )=cos 2x +sin 2x +1=2sin(2x +π4)+1, 当2x +π4=2k π+π2(k ∈Z ),即x =k π+π8(k ∈Z )时,F (x )max =2+1,其最小正周期T =2π2=π.(2)由f (x )=2f ′(x ),易得sin x +cos x =2cos x -2sin x ,解得tan x =13.∴1+sin2xcos2x-sin x cos x =2sin2x+cos2xcos2x-sin x cos x=2tan2x+11-tan x=116.15.(1)解当a=12时,f(x)=12x-ex.f′(x)=12-e x,令f′(x)=0,得x=-ln 2.当x<-ln 2时,f′(x)>0;当x>-ln 2时,f′(x)<0,∴函数f(x)的单调递增区间为(-∞,-ln 2);单调递减区间为(-ln 2,+∞).(2)证明令F(x)=x-f(x)=e x-(a-1)x,①当a=1时,F(x)=e x>0,∴f(x)≤x成立.②当1<a≤1+e时,F′(x)=e x-(a-1)=e x-e ln(a-1),∴当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,∴F(x)在(-∞,ln(a-1))上单调递减,在(ln(a-1),+∞)上单调递增,∴F(x)≥F(ln(a-1))=e ln(a-1)-(a-1)·ln(a-1)=(a-1)[1-ln(a-1)],∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,∴F(x)≥0,即f(x)≤x成立.综上,当1≤a≤1+e时,f(x)≤x.16.解(1)f′(x)=a+1x=ax+1x(x>0).①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,所以f(x)的单调递增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a ,在区间(0,-1a )上,f ′(x )>0,f (x )单调递增. 在区间(-1a ,+∞)上,f ′(x )<0,f (x )单调递减.综上所述,当a ≥0时,f (x )的单调递增区间为(0,+∞);当a <0时,f (x )的单调递增区间为(0,-1a ),f (x )的单调递减区间为(-1a ,+∞). (2)由已知,转化为f (x )max <g (x )max , 又g (x )max =g (0)=1.由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意. 当a <0时,f (x )在(0,-1a )上单调递增,在(-1a ,+∞)上单调递减, 故f (x )的极大值即为最大值,即f (x )max =f (-1a )=-1+ln(-1a )=-1-ln(-a ), 所以1>-1-ln(-a ),解得a <-1e 2. 故实数a 的取值范围是(-∞,-1e 2).17.(1)解 方法一 由题设f n ′(x )=1+2x +…+nx n -1, 所以f n ′(2)=1+2×2+…+(n -1)2n -2+n g 2n -1,① 则2f n ′(2)=2+2×22+…+(n -1)2n -1+n g 2n ,②①-②得,-f n ′(2)=1+2+22+…+2n -1-n g 2n =1+2-2n1-2-n g 2n =(1-n )2n -1,所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2, 可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n+1. (2)证明 因为f n (0)=-1<0,f n ⎝ ⎛⎭⎪⎫23=23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23-1=1-2×⎝ ⎛⎭⎪⎫23n ≥1-2×⎝ ⎛⎭⎪⎫232>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内单调递增,因此f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12, 故12<a n <23,所以0<a n -12=12a n +1n <12×⎝ ⎛⎭⎪⎫23n +1=13⎝ ⎛⎭⎪⎫23n.18.解 (1)当a =1时,f (x )=12x 2-ln x (x >0), f ′(x )=x -1x ,x >0,∴k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线的斜率为0.(2)f ′(x )=ax -1x =ax 2-1x ,x >0.当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >0时,令f ′(x )=0,解得x =aa (负值舍去). 当x ∈(0,a a )时,f ′(x )<0,f (x )在(0,aa )上单调递减; 当x ∈(a a ,+∞)时,f ′(x )>0,f (x )在(aa ,+∞)上单调递增. (3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根. 理由如下:由(2)可知当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根;当a >0时,函数f (x )在(0,a a )上单调递减,在(aa ,+∞)上单调递增,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值f (a a )<2,即f (a a )=12+12ln a <2,解得0<a <e 3,所以a 的取值范围是(0,e 3).19.解: (1)∵f (x )=ln x -ax 2+(a -2)x ,∴函数的定义域为(0,+∞).∴f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x =-(2x -1)(ax +1)x.∵f (x )在x =1处取得极值, 即f ′(1)=-(2-1)(a +1)=0,∴a =-1.当a =-1时,在⎝ ⎛⎭⎪⎫12,1内f ′(x )<0,在(1,+∞)内f ′(x )>0,∴x =1是函数y =f (x )的极小值点.∴a =-1.(2)∵a 2<a ,∴0<a <1.f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x=-(2x -1)(ax +1)x,∵x ∈(0,+∞),∴ax +1>0,∴f (x )在⎝ ⎛⎭⎪⎫0,12上递增;在⎝ ⎛⎭⎪⎫12,+∞上递减,①当0<a ≤12时,f (x )在[a 2,a ]上单调递增,∴f (x )max =f (a )=ln a -a 3+a 2-2a ;②当⎩⎪⎨⎪⎧a >12,a 2<12,即12<a <22时,f (x )在⎝ ⎛⎭⎪⎫a 2,12上单调递增,在⎝ ⎛⎭⎪⎫12,a 上单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫12=-ln 2-a 4+a -22=a 4-1-ln 2;③当12≤a 2,即22≤a <1时,f (x )在[a 2,a ]上单调递减, ∴f (x )max =f (a 2)=2ln a -a 5+a 3-2a 2.20.解: (1)由f (x )=e x -ax -1,得f ′(x )=e x -a .当a ≤0时,对∀x ∈R ,有f ′(x )>0,所以函数f (x )在区间(-∞,+∞)上单调递增;当a >0时,由f ′(x )>0,得x >ln a ;由f ′(x )<0,得x <ln a ,此时函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ). 综上所述,当a ≤0时,函数f (x )的单调增区间为(-∞,+∞); 当a >0时,函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ).(2)函数F (x )=f (x )-x ln x 的定义域为(0,+∞),由F (x )=0,得a =e x -1x -ln x (x >0),令h (x )=e x -1x -ln x (x >0),则h ′(x )=(e x -1)(x -1)x 2,由于x >0,e x -1>0,可知当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0, 故函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,故h (x )≥h (1)=e -1.(随着x >0的增长,y =e x -1的增长速度越来越快,会超过并远远大于y =x 的增长速度,而y =ln x 的增长速度则会越来越慢.则当x >0且x 无限接近于0时,h (x )趋向于正无穷大.)故当a >e -1时,函数F (x )有两个不同的零点; 当a =e -1时,函数F (x )有且仅有一个零点; 当a <e -1时,函数F (x )没有零点.(3)由(1)知当a =1时,对∀x >0,有f (x )>f (ln a )=0,即e x -1>x ,当x >0时,e x -1>x ,故对∀x >0,g (x )>0,先用分析法证明:∀x >0,g (x )<x .要证对∀x >0,g (x )<x ,只需证对∀x >0,e x -1x <e x,即证对∀x >0,x e x -e x +1>0,构造函数H (x )=x e x -e x +1(x >0),则H ′(x )=x e x >0,故函数H (x )在(0,+∞)上单调递增,所以H (x )>H (0)=0,则对∀x >0,x e x -e x +1>0成立.当a ≤1时,由(1)知,f (x )在(0,+∞)上单调递增,则f (g (x ))<f (x )在(0,+∞)上恒成立;当a >1时,由(1)知,函数f (x )在(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,故当0<x <ln a 时,0<g (x )<x <ln a ,所以f (g (x ))>f (x ),则不满足题意. 所以满足题意的a 的取值范围是(-∞,1].21.解: (1)∵x ∈[0,+∞),∴f (x )=e x ⎝ ⎛⎭⎪⎫1-a 2x 2, ∴f ′(x )=e x ⎝ ⎛⎭⎪⎫-a 2x 2-ax +1 .由题意,f ′(x )≥0在[0,+∞)上恒成立,当a =0时,f ′(x )=e x >0恒成立,即满足条件. 当a ≠0时,要使f ′(x )≥0,而e x >0恒成立,故只需-a2x 2-ax +1≥0在[0,+∞)上恒成立,即⎩⎪⎨⎪⎧-a 2>0,-a2·02-a ·0+1≥0,解得a <0. 综上,a 的取值范围为a ≤0.(2)证明:由题知f (x )≤x +1即为e x -a2x 2e |x |≤x +1. 在x ≥0时,要证明e x -a2x 2e |x |≤x +1成立, 只需证e x ≤a 2x 2e x +x +1,即证1≤a2x 2+x +1e x ,①令g (x )=a 2x 2+x +1e x ,得g ′(x )=ax +1·e x -(x +1)e x (e x )2=ax -xe x ,整理得g ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x ,∵x ≥0时,1e x ≤1,结合a ≥1,得g ′(x )≥0,∴g (x )在[0,+∞)上是增函数,故g (x )≥g (0)=1,从而①式得证.在x ≤0时,要使e x -a2x 2e |x |≤x +1成立,只需证e x ≤a 2x 2e -x +x +1,即证1≤a2x 2e -2x +(x +1)e -x ,②令m (x )=ax 22e -2x+(x +1)e -x ,得m ′(x )=-x e -2x [e x +a (x -1)], 而φ(x )=e x +a (x -1)在x ≤0时为增函数, 故φ(x )≤φ(0)=1-a ≤0,从而m ′(x )≤0,∴ m (x )在x ≤0时为减函数,则m (x )≥m (0)=1,从而②式得证.综上所述,原不等式e x -a2x 2e |x |≤x +1,即f (x )≤x +1在a ≥1时恒成立.(3)要使f (x 0)>x 0+1成立,即e x 0-a 2x 20e x 0>x 0+1,变形为ax 202+x 0+1e x 0-1<0,③要找一个x 0>0使③式成立,只需找到函数t (x )=ax 22+x +1e x -1的最小值,满足t (x )min <0即可.∵t ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x ,令t ′(x )=0得e x =1a ,则x =-ln a ,在0<x <-ln a 时,t ′(x )<0,在x >-ln a 时,t ′(x )>0,即t (x )在(0,-ln a )上是减函数,在(-ln a ,+∞)上是增函数,∴ 当x =-ln a 时,t (x )取得最小值t (-ln a )=a2(ln a )2+a (-ln a +1)-1.下面只需证明:a2(ln a )2-a ln a +a -1<0在0<a <1时恒成立即可.令p (a )=a2(ln a )2-a ln a +a -1,则p ′(a )=12(ln a )2≥0,从而p (a )在(0,1)上是增函数,则p (a )<p (1)=0,从而a2(ln a )2-a ln a +a -1<0,得证. 于是t (x )的最小值t (-ln a )<0,因此可找到一个常数x 0=-ln a (0<a <1),使得③式成立.22.解: (1)由题意得,f ′(x )=1-1x ,∴f ′(2)=1-12=12,f (2)=1-ln 2,∴曲线y =f (x )在x =2处的切线方程为y -(1-ln 2)=12(x -2)⇒x -2y -2ln 2=0.(2)当x ∈(0,+∞)时,f (x )≥ax -2恒成立,∴a ≤1+1x -ln xx ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0⇒x =e 2, 可得g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即a ≤1-1e 2,故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,1-1e 2 23.解: (1)f (x )的定义域为(0,+∞),当a =1时,f ′(x )=2x -3+1x =2x 2-3x +1x,由f ′(x )>0得x <12或x >1,由f ′(x )<0得12<x <1,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫12,1.∴f (x )的极大值为f ⎝ ⎛⎭⎪⎫12=-54-ln 2;极小值为f (1)=-2.(2)由题意知f ′(x )=2x -3+ax ≥22a -3=1,∴a =2,此时2x =a x ,即2x =2x ,∴x =1,切点为(1,-2), ∴此时的切线l 的方程为x -y -3=0.24.解: (1)由不等式f (x )-g (x )=p ·⎝ ⎛⎭⎪⎫x -1x -2ln x -2e x >0对x ∈[2,e]恒成立, ∴p >2x ln x +2e x 2-1对x ∈[2,e]恒成立.令h (x )=2x ln x +2ex 2-1,x ∈[2,e],则p >h (x )max .∵h ′(x )=-2(1+x 2)ln x -2x (2e -x )-2(x 2-1)2<0.∴h (x )在区间[2,e]上是减函数,∴h (x )max =h (2)=4ln 2+2e 3,故p >4ln 2+2e3.(2)依题意f (x )min >g (x )min .∵f ′(x )=p +p x 2-2x >0,∴f (x )在[2,e]上单调递增,故f (x )min =f (2).又g (x )=2ex 在[2,e]上单调递减,故g (x )min =g (e),由f (2)>g (e),解得p >4+4ln 23. 25.解: (1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln xx 2,由f ′(x )=0得x =1,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )在x =1处取得唯一的极值,由题意得⎩⎪⎨⎪⎧a +14>2a -1,2a -1<1<a +14⇒34<a <1,故实数a 的取值范围为⎝ ⎛⎭⎪⎫34,1.(2)x ≥1时,不等式f (x )≥k x +1化为1+ln x x ≥kx +1⇒k ≤(x +1)(1+ln x )x ,令g (x )=(x +1)(1+ln x )x,由题意知k ≥g (x )在[1,+∞)上恒成立,g ′(x )=x -ln x x 2,再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,当且仅当x =1时取等号, 因此h (x )=x -ln x 在[1,+∞)上递增,所以h (x )≥h (1)=1>0,故g ′(x )=x -ln xx 2>0,所以g (x )在[1,+∞)上递增,g (x )min =g (1)=2, 因此k ≤2,即k 的取值范围为(-∞,2].(3)由(2)知,当x ≥1时,f (x )≥2x +1恒成立,即1+ln x x ≥2x +1,∴ln x ≥1-2x +1>1-2x .令x =k (k +1),k ∈N *,则有ln[k (k +1)]>1-2k (k +1)=1-2⎝ ⎛⎭⎪⎫1k -1k +1,分别令k =1,2,3,…,n ,。

高中函数和导数试题及答案

高中函数和导数试题及答案

高中函数和导数试题及答案一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 3C. 2x + 1D. 3x + 22. 若函数f(x) = sin(x) + cos(x)的导数是:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)3. 已知函数g(x) = 2x^3 - 5x^2 + 7x - 1,其在x = 1处的导数值是:A. -1B. 0C. 1D. 2二、填空题4. 若f(x) = 4x^3 - 5x^2 + 6x - 7,求f'(x) = __________。

5. 若f(x) = x^4 + 2x^3 - 3x^2 + 4x + 5,求f'(2) = __________。

三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求h'(x),并求h'(1)的值。

7. 已知函数k(x) = √x,求k'(x),并讨论k(x)的单调性。

四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x),并讨论F(x)在x > 0时的增减性。

答案解析:一、选择题1. 正确答案:A. 2x + 3解析:f'(x) = 2x + 3,根据导数的幂规则和线性规则计算得出。

2. 正确答案:A. cos(x) - sin(x)解析:f'(x) = cos(x) - sin(x),根据三角函数的导数规则计算得出。

3. 正确答案:B. 0解析:g'(x) = 6x^2 - 10x + 7,代入x = 1得g'(1) = 0。

二、填空题4. 答案:12x^2 - 10x + 6解析:根据导数的幂规则和线性规则计算。

5. 答案:44解析:f'(x) = 4x^3 + 6x^2 - 6x + 4,代入x = 2计算得出。

导数大题综合(含答案)

导数大题综合(含答案)

导数大题综合1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.2.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数()ln f x ax x x =-,且()f x 在e x =处的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.6.(2022春·广东深圳·高二校考期中)已知函数()2ln f x x a x =-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围.7.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2ln f x ax x =+.(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.8.(2022春·广东江门·高二校联考期中)已知函数()32f x x ax bx c =+++的图象在点()1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.10.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2cos sin f x ax ax x x =--(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()1ln f x a x bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222m f x x x-≥+恒成立,求实数m 的取值范围.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()e ln =--x af x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2a f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.18.(2022春·广东江门·高二江门市第二中学校考期中)已知函数()e xf x ax =-,R a ∈.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数19.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2sin 1,R f x x a x a =++∈.(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.20.(2022春·广东东莞·高二校联考期中)已知函数()()22ln f x ax a x x=-++(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1xxf x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln af x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数21()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.24.(2022春·广东广州·高二广州市玉岩中学校考期中)已知2()e (2)e (R)x x f x a a x a =+--∈(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.25.(2022春·广东深圳·高二校考期中)已知函数()21ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥26.(2022春·广东江门·高二江门市新会东方红中学校考期中)已知函数e ()ln e x f x x x x -=--,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12af x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.28.(2022春·广东广州·高二校考期中)已知函数()sin x x x f -=.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.29.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2ln =++f x x ax bx (其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.30.(2022春·广东佛山·高二校联考期中)已知函数()e ()=-∈R x f x ax a .(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.导数大题综合答案1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.所以,函数()f x 的极大值点为12x =,极大值为2ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.(1)()'236f x x x a =-++, =1x -是函数()f x 的一个极值点∴()'190f a -=-+=,∴9a =,∴()'2369f x x x =-++,令()'0f x <,解得1x <-或3x >;令()'0f x >,解得13x -<<.所以函数()f x 的减区间为()(),1,3,∞∞--+,增区间为()1,3-.(2)由(1)()3239f x x x x =-++,又 ()f x 在[]4,1--上单调递减,在[]1,3-上单调递增,在[]3,4上单调递减∴函数()f x 在的极大值为()327f =,又()476f -=,∴函数()f x 在区间[]4,4-上的最大值为()476f -=.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围..(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.的图象在点1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.(2)由(1)可知,()f x 在[)2,1--上单调递增,在(]1,2-上单调递减,且()115f -=,()212f =-,()28f -=,∴()max 15f x =,()min 12f x =-.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.【详解】(1)由题意知()2cos sin f x x x x x =--,()()21cos sin f x x x x '=-+,[],x ππ∈-时,1cos 0x -≥,sin 0x x ≥,[],x ∴∈-ππ时,()0f x '≥恒成立,所以()f x 单调递增,∴()()()f f x f ππ-≤≤,即()33f x -π≤≤π所以()f x 的值域为[]3,3ππ-.(2)注意到()00f =,()2cos sin cos f x a a x ax x x '=-+-,若1a ≥,()()2cos sin 2cos sin f x ax x x x x x x =--≥--,由(1)知,当[]0,x π∈时,()()00f x f ≥=;当(),x π∈+∞时,2cos sin 2110x x x x x x x -->--=->,所以()0f x ≥恒成立,符合题意;若0a ≤,()()2cos sin f x ax x x =--,当[]0,x π∈时,()0f x ≤,不合题意,舍去;11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()ln f x ax bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222mf x x x-≥+恒成立,求实数m 的取值范围.∴()()min 11g x g ==-⎡⎤⎣⎦,即1m ≤-所以实数m 的取值范围为(],1-∞-.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()ln =--f x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.当1e a <<时,当ln 1a x <<时,()0f x '<,()f x 单调递减;当0ln x a <<或1x >时,()0f x ¢>,()f x 单调递增;当e a =时,()0f x ¢>在定义域上恒成立,()f x 单调递增;当e a >时,当1ln x a <<时,()0f x '<,()f x 单调递减;当01x <<或ln x a >时,()0f x ¢>,()f x 单调递增;综上:当1a ≤时,()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1;当1e a <<时,()f x 的单调递增区间为()0,ln a ,()1,+∞,单调递减区间为()ln ,1a ;当e a =时,()f x 的单调递增区间为()0,∞+;当e a >时,()f x 的单调递增区间为()0,1,()ln ,a +∞;单调递减区间为()1,ln a .15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.∵21336362f f πππ⎛⎫⎛⎫-==-+ ⎪ ⎝⎭⎝⎭,∴()2max 16362f x π=-+.∵()()214f f πππ-==--,()01f =,∴()2min14f x π=--.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1x f x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln f x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.(1)解:()e '=-x f x a x ,因为函数()f x 在0x =处的切线方程为1y x =-,所以(0)1f '=,即1a =,(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.观察图象知,当且仅当01a <<时,直线y 所以a 的取值范围是01a <<.25.(2022春·广东深圳·高二校考期中)已知函数()2ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12f x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.。

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析1. f(x)=x5+ax3+bx-8且f(-2)=0,则f(2)等于()A.-16B.-18C.-10D.10【答案】A【解析】略2.;若..【答案】4【解析】略3.函数,的最大值是()A.B.-1C.0D.1【答案】D【解析】,所以当时;当时,所以函数在上单调递增,在上单调递减.所以.故D正确.【考点】用导数求最值.4.已知曲线f(x)=ln x在点(x0,f(x))处的切线经过点(0,-1),则x的值为()A.B.1C.e D.10【答案】B【解析】【考点】函数导数的几何意义5.函数的定义域为.【答案】【解析】函数的定义域为即函数的定义域为【考点】函数的定义域6.(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:在会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?【答案】该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元.【解析】设每天生产甲种产品x吨,乙种产品y吨,建立目标函数和约束条件,利用线性规划,即可求出结果.试题解析:解:设每天生产甲种产品吨,乙种产品吨. 1分依题意可得线性约束条件4分目标函数为, 5分作出线性约束条件所表示的平面区域如图所示8分将变形为当直线在纵轴上的截距达到最大值时, 9分即直线经过点M时,也达到最大值. 10分由得点的坐标为 12分所以当时, 13分因此,该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元. 14分【考点】简单的线性规划.7.(本题满分12分)已知函数(为实数).(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;(Ⅲ)已知,求证:.【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)详见解析.【解析】(1)先求导,利用导数的几何意义,再求进行求解;(2)求导,求极值点,根据函数在区间上不存在极值,得到的取值范围,根据条件存在满足,所以,所以求函数的最大值,因为含参,所以讨论对称轴于定义域的关系,求二次函数的最值,得到关于的不等式,再进行求解;(3)先判定函数的单调性,并求其最大值,得到,再进行换元,令,则,即,再代入裂项向消法求和,证明不等式.试题解析:(Ⅰ)当时,,,则,函数的图象在点的切线方程为:,即(Ⅱ),由由于函数在区间上不存在极值,所以或由于存在满足,所以对于函数,对称轴①当或,即或时,,由,结合或可得:或②当,即时,,由,结合可知:不存在;③当,即时,;由,结合可知:综上可知:或(Ⅲ)当时,,当时,,单调递增;当时,,单调递减,∴在处取得最大值即,∴,令,则,即,∴.故.【考点】1.导数的几何意义;2.函数的单调性;3.函数的极值;4.放缩法.8.设,那么()A.B.C.D.【答案】C【解析】根据指数函数的性质,可知,根据指数函数的单调性,可知,根据幂函数的单调性,可知,从而有,故C是正确的.【考点】利用指数函数的性质、幂函数的性质比较大小.9.(本小题满分10分)已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)过点作曲线的切线,求此切线方程.【答案】(Ⅰ)(Ⅱ)【解析】第一问根据题中所给的条件,函数在处取得极值,得到函数在处的导数为零,从而得出实数的值,再带入验证,满足条件,第二问根据第一问的结果,从而确定出函数的解析式,根据过某点的曲线的切线方程的求解方法,首先设出切点的坐标,应用导数的几何意义,确定出切线的斜率,从而应用点斜式方程,写出切线方程,将带入切线方程,从而解得切点的横坐标的值,带入求得切线方程.试题解析:(Ⅰ) 1分,即解得, 4分此时在两边(附近)符号相反,所以处函数取得极值,同理,在处函数取得极值. 5分(Ⅱ)设切点坐标为.则切线方程为 7分化简,得,即, 9分所求的切线方程为:.10分【考点】函数的极值,导数的应用,切线的方程.10.设函数,.(1)判断函数在上的单调性;(2)证明:对任意正数a,存在正数x,使不等式成立.【答案】(1)上是增函数;(2)证明详见解析.【解析】本题主要考查了函数单调性的判断方法、导数在最大值、最小值问题中的应用、利用导数判断函数的单调性常用的方法,考查了学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用导数的办法,通过导数大于或小于0判断函数的单调性;第二问,先将化为,从而原不等式化为,即,令,利用导数研究它的单调性和最值,最后得到存在正数,使原不等式成立.试题解析:(1),令,则,当时,,∴是上的增函数,∴,故,即函数是上的增函数.(2),当时,令,则故,∴,原不等式化为,即,令,则,由得:,解得,当时,;当时,.故当时,取最小值,令,则.故,即.因此,存在正数,使原不等式成立.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.11.(本题满分14分)已知函数有最小值.(1)求实数的取值范围;(2)设为定义在上的奇函数,且时,,求的解析式.【答案】(1);(2).【解析】(1)分类讨论将表达式中的绝对值号去掉成为有两个一次函数的分段函数,从而问题可转化于在每个分段上存在最小值,即可求解;(2)利用奇函数的性质可知,当时,,再由结合已知条件即可求解.试题解析:(1),要使函数有最小值,需,即时,有最小值;(2)∵是上的奇函数,∴,设,则,∴,即.【考点】1.分段函数;2.奇函数的性质;3.分类讨论的数学思想.12.若直线与曲线有两个不同的交点,则实数的取值范围是()A.B.C.D.【答案】B【解析】数形结合法如上图.直线:是过定点P(-2,4)的动直线,曲线是以原点为圆心,2为半径的上半圆.当直线在PA位置时,即与圆相切时,由圆心到直线距离等于半径得,;当在PB位置时,.由图像知,当直线在PA与PB之间时,有两个交点,所以.故选B.【考点】直线与圆的相交问题.【方法点睛】直线与圆的位置关系常有两种方法研究:一、利用圆心到直线的距离与半径的关系判断交点个数,或由交点个数求参数范围;二、将直线代入圆的方程,利用判别式研究交点个数,或由交点个数求参数范围.但当直线与半圆或四分之一圆等相交问题,常借助图像属性结合去研究交点问题.例如本题,因研究的圆是半圆,所以数形结合方法比较好.13.已知,符号表示不超过的最大整数,若函数有且仅有个零点,则的取值范围是A.B.C.D.【答案】C【解析】,构造函数,在同一坐标系内作出函数与函数的图象,由图象可知,当时,与的图象有三个公共点,故选C.【考点】1.函数与方程;2.数形结合思想;3.新定义函数问题.【方法点睛】本题主要考查学生接受新知识的能力以及数学中的数学结合思想、函数与方程思想等思想方法,属难题.解决此类问题的关键是将函数的零点问题通过等价转化,将问题转化为两个函数交点的个数问题,再正确画出两个函数的图象,由数形结合进行求解.14.函数的极小值为.【答案】【解析】, 令得;令得.所以函数在上单调递减;在上单调递增.所以在处函数取的极小值为.【考点】用导数求极值.15.若定义在上的函数满足,其导函数满足,则下列结论中一定正确的有①,②,③,④.【答案】①③【解析】令,,,恒成立.在上单调递增. ,,,即恒成立;,即.恒成立.故正确的有①③.【考点】用导数研究函数的性质.16.已知,,,则的大小关系是()A.B.C.D.【答案】B【解析】,,又,,故选B.【考点】1、对数式的运算;2、对数式的比较大小.【方法点睛】纵观历年数学高考试题,几乎每套题都有指数式和对数式大小比较的客观题目,结合近年来的数学高考试题,总结归纳指数式和对数式比较大小的六种解题方法.(1)单调函数法同底的指数式和对数式比较大小,就是利用指数函数和对数函数的单调性来比较;(2)中间桥梁法底不同的指数式和对数式比较大小,如果不能直接利用指数函数和对数函数的单调性来比较,可利用特殊数值(如0 或1)作为中间桥梁,进而可比较出大小;(3)特值代入法对于在给定的区间上比较指数式和对数式的大小的问题,可在这个区间上取满足条件的特殊值,代入后通过计算简化或避免复杂的变形与讨论,使问题简捷获解;(4)估值计算法估值计算是指通过估值、合理猜想等手段,准确、迅速地选出答案;(5)数形结合法画出指数函数和对数函数的图象,利用直观的图象往往能得到更简捷的解法.特征构造法对于含有几何背景的指数式和对数式的大小问题,可根据题目特点,构造函数或利用其他几何特征进行解题.17.已知函数,那么f (1)等于10C.1D.0A.2B.log3【答案】A【解析】【考点】函数求值18.若直线与曲线恰有一个公共点,则实数k的取值范围是______________.【答案】或【解析】曲线,即(x≥0),表示一个半圆(单位圆位于x轴及x轴右侧的部分).如图,A(0,1)、B(1,0)、C(0,-1),当直线y=x+k经过点A时,1=0+k,求得k=1;当直线y=x+k经过点B、点C时,0=1+k,求得k=-1;当直线y=x+k和半圆相切时,由圆心到直线的距离等于半径,可得,求得,或(舍去),故要求的实数k的范围为(-1,1]∪{-2},【考点】直线与圆的位置关系19.已知函数其中为参数.(1)记函数,讨论函数的单调性;(2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.【答案】(1)当时,函数在定义域上单调递增.当时,在上单调递增,在单调递减,在上单调递增;(2)证明见解析.【解析】第(1)小题设计为分类讨论函数的单调性.首先化简g(x),然后对g(x)求导化简得,注意到,所以就找到的临界点,然后对和进行分类讨论求解;第(2)小题设计为证明题,实质转化为求函数的最值.先求,然后构造函数,通过求导求函数H(x)的极值,从而得函数H(x)的最小值,命题得证.试题解析:(1)证明:函数的定义域是.,,当时,则,所以,所以函数在定义域上单调递增.当时,令,则可知函数在上单调递增,在单调递减,在上单调递增.(2)令则或若曲线与轴正半轴有交点,则且交点坐标为又则所以曲线在点处的切线方程为,即令函数在区间上单调递增,在区间上单调递减,所以当时,有最小值,所以,则【考点】导数,导数的几何意义,函数的单调性,函数的极值,函数的最值.【方法点睛】本题以三次为背景,第(1)小题设计为分类讨论函数的单调性,其中讨论的标准就是导函数的正负性,需要一定的运算能力.第(2)小题设计为证明题,其实就是函数的恒成立问题,可以转化为函数的最值问题,求函数的最值,需转化为求函数的极值,需转化为求函数的单调性,解题思路清晰,需要有一定的运算能力.20.已知动点与平面上两定点连线的斜率的积为定值-2.(1)试求动点的轨迹方程;(2)设直线与曲线交于两点,求.【答案】(1)();(2).【解析】(1)设,表示两直线的斜率,利用斜率乘积为,建立方程化简即可得到点的轨迹方程;(2)将直线代入曲线,整理得,可求出方程的根,进而利用弦长公式可求.试题解析:(1)设点,则依题意有整理得由于,求得的曲线的方程为();(2)由消去得:,设,则【考点】直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.【方法点晴】本题主要考查了轨迹方程的求解及直线与圆锥曲线的弦长的计算,属于中档试题,本题解答中,第1问中,以斜率为载体,考查了曲线方程的求解,关键在于利用斜率公式,根据题设条件建立关于的关系式,化简整理得曲线的轨迹方程;第2问题中,熟记弦长公式,利用弦长公式求解直线与圆锥曲线的弦长,准确、仔细计算是解答的关键.21.若函数在处取得极值.(1)求的值;(2)求函数的单调区间及极值.【答案】(1)(2)单调递增区间是,单调递减区间是,极小值为,极大值为.【解析】(1)求出原函数的导函数,由函数在x=1时的导数为0列式求得a的值;(2)把(1)中求出的a值代入,求其导函数,得到导函数的零点,由导函数的零点对定义域分段,利用导函数在不同区间段内的符号求单调期间,进一步求得极值点,代入原函数求得极值.试题解析:(1),由,得.(2),.由,得或.当时;②当时或.当变化时,的变化情况如下表:-+-因此,的单调递增区间是,单调递减区间是.函数的极小值为,极大值为.【考点】利用导数求过曲线上某点处的切线方程;利用导数研究函数的单调性22.(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【答案】(Ⅰ)f(x)在x=1处取极大值.满足题意.(Ⅱ)见解析;(Ⅲ)见解析【解析】(Ⅰ)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.23.某校内有一块以为圆心,(为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售,已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.(1)设(单位:弧度),用表示弓形的面积;(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.(参考公式:扇形面积公式,表示扇形的弧长)【答案】(1) ;(2),.【解析】(1)由,利用扇形及三角形面积公式即得;(2)先由题意将利润表示成关于的函数关系式,再利用导数判断函数单调性求得最大值即可.试题解析:(1)因为,,所以.(2)设总利润为元,种植草皮利润为元,种植花卉利润为元,种植学校观赏植物成本为元,,,,∴,设,,,,,在上为减函数;,,在上为增函数;当时,取到最小值,此时总利润最大:.答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值.【考点】1、数学建模能力;2、利用导数研究函数的单调性及最值.24.设点是函数图象上的任意一点,点,则的最小值为()A.B.C.D.【答案】A【解析】函数变形为表示圆的下半部分,点在直线上,圆心到直线的距离,圆的半径为2,则的最小值为【考点】1.直线和圆的位置关系;2.数形结合法25.已知a为实数,f(x)=(x2﹣4)(x﹣a).(1)求导数f′(x);(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2)和(2,+∞)上都是递增的,求a的取值范围.【答案】(1)3x2﹣2ax﹣4.(2)最大值为,最小值为.(3)[﹣2,2].【解析】(1)按导数的求导法则求解(2)由f′(﹣1)=0代入可得f(x),先求导数,研究函数的极值点,通过比较极值点与端点的大小从而确定出最值(3)(法一)由题意可得f′(2)≥0,f′(﹣2)≥0联立可得a的范围(法二)求出f′(x),再求单调区增间(﹣∞,x1)和[x2,+∞),依题意有(﹣∞,﹣2)⊆(﹣∞,x1)[2,+∞]⊆[x2,+∞)解:(1)由原式得f(x)=x3﹣ax2﹣4x+4a,∴f'(x)=3x2﹣2ax﹣4.(2)由f'(﹣1)=0得,此时有.由f'(x)=0得或x=﹣1,又,所以f(x)在[﹣2,2]上的最大值为,最小值为.(3)解法一:f'(x)=3x2﹣2ax﹣4的图象为开口向上且过点(0,﹣4)的抛物线,由条件得f'(﹣2)≥0,f'(2)≥0,∴﹣2≤a≤2.所以a的取值范围为[﹣2,2].解法二:令f'(x)=0即3x2﹣2ax﹣4=0,由求根公式得:所以f'(x)=3x2﹣2ax﹣4.在(﹣∞,x1]和[x2,+∞)上非负.由题意可知,当x≤﹣2或x≥2时,f'(x)≥0,从而x1≥﹣2,x2≤2,即解不等式组得﹣2≤a≤2.∴a的取值范围是[﹣2,2].【考点】利用导数求闭区间上函数的最值;导数的运算;利用导数研究函数的单调性.26.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1);(2)直线的方程为,切点坐标为.【解析】(1)第一步,先求函数的导数,第二步,再求,根据导数的几何意义,,最后代入直线方程,就是所求的切线方程;(2)设切点,首先求在切点处的切线方程,即求和,然后因为切线过点,所以将原点代入切线方程,转化为关于的方程,求出切点,最后再整理切线方程. 试题解析:(1)在点处的切线的斜率,切线的方程为;(2)设切点为,则直线的斜率为,直线的方程为:.又直线过点,,整理,得,,,的斜率,直线的方程为,切点坐标为.【考点】本题主要考查导数的几何意义,直线方程的点斜式。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

函数与导数 大题练习(含解析)

函数与导数 大题练习(含解析)

函数与导数 大题专练1.已知函数f (x )=2x 2-ax +1+ln x (a ∈R ).(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若a =5,求f (x )的单调区间;(3)若3<a ≤4,证明:f (x )在x ∈[1,e]上有唯一零点.解析:(1)若a =0,则f (x )=2x 2+1+ln x ,f ′(x )=4x +1x ,故f ′(1)=5,即曲线y =f (x )在点(1,f (1))处的切线斜率为5,又f (1)=3,所以所求切线方程为y -3=5(x -1),即5x -y -2=0.(2)当a =5时,f (x )=2x 2-5x +1+ln x ,其定义域为(0,+∞),f (x )=4x -5+1x =(4x -1)(x -1)x, 当x ∈⎝⎛⎭⎫0,14,(1,+∞)时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,14和(1,+∞)上单调递增. 当x ∈⎝⎛⎭⎫14,1时,f ′(x )<0,所以f (x )在⎝⎛⎭⎫14,1上单调递减. (3)由f (x )=2x 2-ax +1+ln x 得f ′(x )=1x +4x -a =4x 2-ax +1x. 设h (x )=4x 2-ax +1,Δ=a 2-16,当3<a ≤4时,Δ≤0,有h (x )≥0,即f ′(x )≥0,故f (x )在(0,+∞)上单调递增.又f (1)=3-a <0,f (e)=2e 2-a e +2=e(2e -a )+2>0,所以f (x )在x ∈[1,e]上有唯一零点.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.解析:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0.所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞.3.已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.解析:解法一 (1)f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增.②若a >0,则当0<x <e a 时,f ′(x )>0;当x >e a 时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e x x -2e ,由(1)知,当a =e 时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.设g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.所以当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e , 即xf (x )-e x +2e x ≤0.解法二 (1)同解法一.(2)证明:由题意知,即证e x ln x -e x 2-e x +2e x ≤0(x >0),从而等价于ln x -x +2≤e xe x. 设函数g (x )=ln x -x +2,则g ′(x )=1x-1. 所以当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而g (x )在(0,+∞)上的最大值为g (1)=1.设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0;当x ∈(1,+∞)时,h ′(x )>0.故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增.从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0.4.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,其中a 为常数. (1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1x ln(1+x )的最大值. 解析:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1.①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增, 当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x -21+x , 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2. 由(1)可知当a =2时,f (x )在(0,1]上单调递减,∴f (x )<f (0)=0,∴h ′(x )<0,从而h (x )在(0,1]上单调递减,∴h (x )≥h (1)=0,∴g (x )在(0,1]上单调递增,∴g (x )≤g (1)=2ln2,∴g (x )的最大值为2ln2.5.已知函数f (x )=x ln x -ax +a (a ∈R ).(1)f (x )在点(1,f (1))处的切线方程为y =-x +t ,求a 和t 的值;(2)对任意的x >1,f (x )≥0恒成立,求a 的取值范围.解析:(1)函数定义域为x ∈(0,+∞),f ′(x )=ln x +1-a ,由已知f ′(1)=-1,则1-a =-1,即a =2,所以f (1)=0-2+2=0,将(1,0)代入切线方程有t =1,所以a =2,t =1.(2)对任意x ∈(1,+∞),f (x )≥0恒成立,即ln x +a x-a ≥0恒成立, 令g (x )=ln x +a x -a ,有g ′(x )=x -a x 2,①当a >1时,g (x ),g ′(x )随x 的变化情况为由表可知g (x )min 又因为在函数h (x )=ln x +1-x 中,h ′(x )=1-x x ,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,所以g (x )min =g (a )=h (a )<h (1)=0,与“对任意x ∈(1,+∞),ln x +a x -a ≥0恒成立”矛盾,故a >1不合题意;②当a ≤1时,g ′(x )=x -a x 2≥0,则g (x )在[1,+∞)上单调递增,所以g (x )≥g (1)=0,即对任意x ∈(1,+∞),ln x +a x-a ≥0恒成立, 故a ≤1满足题意,综上所述,实数a 的取值范围为(-∞,1].6.已知函数f (x )=(x -1)e x -ax 2(e 是自然对数的底数,a ∈R ).(1)判断函数f (x )极值点的个数,并说明理由;(2)若∀x ∈R ,f (x )+e x ≥x 3+x ,求a 的取值范围.解析:(1)f (x )的定义域为R ,f ′(x )=x e x -2ax =x (e x -2a ).当a ≤0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴f (x )有1个极值点;当0<a <12时,f (x )在(-∞,ln(2a ))上单调递增,在(ln(2a ),0)上单调递减,在(0,+∞)上单调递增, ∴f (x )有2个极值点;当a =12时,f (x )在R 上单调递增,此时f (x )没有极值点;当a >12时,f (x )在(-∞,0)上单调递增, 在(0,ln(2a ))上单调递减,在(ln(2a ),+∞)上单调递增,∴f (x )有2个极值点,综上所述,当a ≤0时,f (x )有1个极值点;当a >0且a ≠12时,f (x )有2个极值点;当a =12时,f (x )没有极值点.(2)由f (x )+e x ≥x 3+x ,得x e x -x 3-ax 2-x ≥0.当x >0时,e x -x 2-ax -1≥0,即a ≤e x -x 2-1x对∀x >0恒成立. 设g (x )=e x -x 2-1x (x >0),则g ′(x )=(x -1)(e x -x -1)x 2. 设h (x )=e x -x -1(x >0),则h ′(x )=e x -1.∵x >0,∴h ′(x )>0,∴h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,即e x >x +1,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴g (x )≥g (1)=e -2,∴a ≤e -2;当x =0时,原不等式恒成立,a ∈R ;当x <0时,e x -x 2-ax -1≤0,设m (x )=e x -x 2-ax -1(x <0),则m ′(x )=e x -2x -a .设φ(x)=e x-2x-a(x<0),则φ′(x)=e x-2<0,∴m′(x)在(-∞,0)上单调递减,∴m′(x)>m′(0)=1-a,若a≤1,则m′(x)>0,∴m(x)在(-∞,0)上单调递增,∴m(x)<m(0)=0;若a>1,∵m′(0)=1-a<0,∴∃x0<0,使得x∈(x0,0)时,m′(x)<0,即m(x)在(x0,0)上单调递减,∴m(x)>m(0)=0,不符合题意,舍去.∴a≤1.综上,a的取值范围是(-∞,e-2].。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

函数与导数练习题(含解析)

函数与导数练习题(含解析)

函数与导数一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2)B .(2,3)C .1(0,)2D .1(2,1)2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .114.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e -D .e9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围. 24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+.(Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0xxe a x a g x --≥恒成立,求实数a 的取值范围.29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e 内有两个零点,求a 的取值范围.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围.一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2) B .(2,3)C .1(0,)2D .1(2,1)【答案】A 【解析】函数()f x 的定义域为(0,)+∞,且函数()f x 单调递增,f (1)2log 1110=-=-<,f (2)2111log 210222=-=-=>, ∴在(1,2)内函数()f x 存在零点,故选:A .2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-【答案】C【解析】因为函数()f x 的图象关于原点对称,所以()f x 为奇函数, 因为()()()133f x f x f x +=--=-, 故函数()f x 的周期为4,则()()20211f f =;而()()11f f -=-,所以由(2021)1(1)2f f -=-可得1(1)3f =;而121(1)(3)log (31)3f f m =-=--=, 解得43m =-. 故选:C .3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .11【答案】C【解析】:因为0x >时,()22x f x x =+,所以12(1)213f =+=;又因为()f x 是奇函数,所以()()()22448f f -=-=-+=-, 即()()51238f f +-=-=-, 故选:C.4.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 【答案】D【解析】对A ,函数22xxy -=-在()0,∞+单调递增,故A 不符合;对B ,函数tan y x x =为偶函数,故B 不符合;对C ,函数'1cos 0y x =-≥在()0,∞+恒成立,所以在()0,∞+单调递增,故C 不符合; 对D ,函数既是奇函数又在()0,∞+单调递减,故D 符合; 故选:D5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】()sin()ln sin ln ()f x x x x x x x f x -=----=-=,()f x ∴为偶函数,排除A ,C 选项;当(0,1)x ∈时,sin 0,ln 0x x x ><,()0f x ∴>,排除D 选项,故选B .故选B6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<【答案】C【解析】因为对任意的[)()1212,1,x x x x ∈+∞≠,有2121()()0f x f x x x -<-,所以对任意的[)()1212,1,x x x x ∈+∞≠,21x x -与21()()f x f x -均为异号, 所以()f x 在[1,)+∞上单调递减,又函数()1f x +为偶函数,即(1)(1)f x f x +=-,所以(2)(4)f f -=,所以()()()2(4)31f f f f -=<<. 故选:C.7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞【答案】D【解析】因为2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间, 所以1()20f x ax x '=+>在区间1,22⎛⎫⎪⎝⎭上成立, 即212a x >-在区间1,22⎛⎫⎪⎝⎭上有解,因此,只需212412a >-=-⎛⎫ ⎪⎝⎭,解得2a >-.故选D8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e - D .e【答案】B【解析】设切点坐标为(),ln t t t ,()ln f x x x =,()ln 1f x x '=+,直线l 的斜率为()ln 1f t t '=+,所以,直线l 的方程为()()ln ln 1y t t t x t -=+-,将点()0,e -的坐标代入直线l 的方程得()ln ln 1e t t t t --=-+,解得t e =, 因此,直线l 的斜率为()2f e '=. 故选:B.9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )【答案】A【解析】27982443log log 3log log 82a ===>=,5553log 11log log 2b ==<=,0.2543log 8log 82c =-==,又55log 11log 51b =>=,1b c a ∴<<<,又2()2f x x x =-在[1,)+∞上单调递增,f ∴(b )f <(c )f <(a ).故选:A .10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数【答案】D【解析】因为()sin f x x x =-的定义域为R ,()sin()()sin ()f x x x x x f x -=---=-+=-,所以函数为奇函数,故A 正确;因为()cos 10f x x '=-≤,所以()sin f x x x =-在R 上为减函数,故B 正确;因为(0)sin 000f =-=,且()sin f x x x =-在R 上为减函数,所以函数()f x 的唯一零点是0,故C 正确;因为()sin f x x x =-,不存在0T ≠,使得()sin()()f x T x T x T f x +=+--=,故D 错误. 故选:D11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞【答案】C【解析】:因为ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,当0x ≥时,()()ln 1f x x =+在定义域上单调递增,且()00f =,当0x <时()00f =,要使(4)(23)f x f x -<-,则423230x x x -<-⎧⎨->⎩解得32x >,即3,2x ⎛⎫∈+∞⎪⎝⎭故选:C12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦【答案】D【解析】函数()f x 满足()()x e f x f x x '-=,()(1)x f x f x e x '-∴=,则()1x f x e x'⎛⎫= ⎪⎝⎭, 可设()ln xf x x c e=+,c 为常数,故()()ln x f x x c e =+,()11f c e e ∴=⋅=-, 1c ∴=-,故()()ln 1xf x x e =-,1()ln 1x f x e x x ⎛⎫'=+- ⎪⎝⎭,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,令1()ln 1g x x x =+- ,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则22111()x g x x x x -'=-=, 1,12x ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,故()g x 单调递减;()1,∈+∞x 时,()0g x '>,故()g x 单调递增,()g x ∴在1x =时取得最小值(1)0g =,()0g x ∴≥恒成立,1()ln 10x f x e x x ⎛⎫'=+-≥ ⎪⎝⎭在1,2x ⎡⎫∈+∞⎪⎢⎣⎭成立,故()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上递增,又()1f e =-,所以不等式13f e m ⎛⎫-≤- ⎪⎝⎭即13(1)f f m ⎛⎫-≤ ⎪⎝⎭,根据单调性得11312m ≤-≤,解得2152m ≤≤. 故选:D.13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦【答案】B【解析】设()t f x =,则方程为210t at --=,解得t =,且10t =>,20t =<,当0x ≤时,()1x f x xe+=,则()()11x f x x e+'=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减,当()1,0x ∈-时,()0f x '>,()f x 单调递增, 可知()f x 在1x =-处取得极小值()11f -=-;当0x >时,()33=-f x x x ,则()()()233311f x x x x '=-=-+,当()0,1x ∈时,()0f x '>,()f x 单调递增, 当()1,x ∈+∞时,()0f x '<,()f x 单调递减, 可知()f x 在1x =处取得极大值()12f =, 如图作出函数()f x 的图象,要使关于x 的方程()()210fx a f x -⋅-=有5个不同的实根,有1221t t <⎧⎨>-⎩,解得302a <<.故选:B.14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦【答案】D 【解析】由于定义在R 上的偶函数()f x 在[)0,+∞上递减,则()f x 在(,0)-∞上递增,又ln 1(ln 1)ax x ax x --=--++,则(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥ 可华化为: 2(ln 1)2(1)f ax x f --≥,即(ln 1)(1)f ax x f --≥对[]1,3x ∈恒成立,则1ln 11ax x -≤--≤,所以:ln x a x ≥且ln 2x a x+≤ 对[1,3]x ∈同时恒成立. 设ln ()xg x x =,21ln ()x g x x -'=,则()g x 在[1,e)上递增,在(,3]e 上递减,max1()()g x g e e ∴==. 设ln 2()x h x x+=,21ln ()0x h x x --'=< ,()h x 在[1,3] 上递减,min2ln 3()(3)3h x h +== . 综上得:a 的取值范围是12ln 3[,]3e +.15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2【答案】B【解析】当)x ⎡∈⎣时,()(g x ∈,令2x =12x =±.∵()()2f x f x =+,∴()f x 的周期为2,所以()f x 在[-1,5]的图象所示:结合题意,当17422a =-+=,19422b =+=时,b a -取得最大值.最大值为1. 故选:B.二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________. 【答案】3 【解析】()ln 1y ax x =-+,11y a x '∴=-+. 由题意可知,当0x =时,12y a '=-=,解得3a =. 故答案为:3.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.【答案】3【解析】画出()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩的图像如下,因为()(0)f x m m =<有且只有两个不等实根, 即函数()y f x =与y m =有两个不同交点,由图像可得,112m -<<-, 所以1x ,2x ,关于直线32x =对称, 则123232x x +=⨯=. 故答案为:3.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 【答案】1,12⎡⎫⎪⎢⎣⎭【解析】作出函数()f x 的大致图象如图所示,由已知关于x 的方程()f x a =或()12f x a =+恰有5个不相等的实数根,则01,11,2a a <<⎧⎪⎨+≥⎪⎩解得1,12a ⎡⎫∈⎪⎢⎣⎭.故答案为:1,12⎡⎫⎪⎢⎣⎭19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.【答案】(),0-∞【解析】由220x x ->, 可得2x >或0x <, 所以函数的定义域为()(),02,-∞+∞又()211t x =--在区间(),0-∞的单调递减,13log y t =单调递减,∴函数()212log 2y x x =-的单调递增区间是(),0-∞, 故答案为(),0-∞.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.【答案】(,1)(0,1)-∞-【解析】 令3()()f x g x x =,0x >, 因为当0x >时,()3()0xf x f x '-<,则当0x >时,4()3()()0xf x f x g x x'-'=<,即()g x 在(0,)+∞上单调递减, 又因为()f x 为奇函数,即()()f x f x -=-,则33()()()()()f x f x g x g x x x--===-, 故()g x 为偶函数且在(,0)-∞上单调递增, 因为()10f -=,故()()110g g -==,由()0f x >可得3()0x g x >,所以0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,所以001x x >⎧⎨<<⎩或01x x <⎧⎨<-⎩. 解可得,1x <-或01x <<. 故答案为:()(),10,1-∞-⋃.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.【答案】3,4∞⎛⎫-+ ⎪⎝⎭【解析】1240xxa ++⋅>可化为212224xx x xa --+>-=--, 令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.【答案】(1)答案见解析;(2)[e 1,)-+∞.【解析】 【分析】(1)先对函数求导,分0a ≤和0a >两种情况讨论,可求解函数的单调性;(2)由已知得e 1ln x a x x x=--有实数解,构造函数,利用函数的单调性及函数的性质求得a 的范围.【详解】解:(1)函数()f x 的定义域为R ,()e '=-xf x a当0a ≤时,()0f x '>,则()f x 在(,)-∞+∞上单调递增;当0a >时,令()xf x e a '=-,得ln x a =,则()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.(2)由()()f x g x =,得e ln 1xax x x =--,因为0x >,所以e 1ln x a x x x=--.令e 1()ln x h x x x x=--,0x >,则()22e 1(1)e e 1()x x x x x x h x x x----+'==. 令()0h x '=,得1x =.当(0,1)x ∈时,()0h x '<,()h x 为减函数;当(1,)x ∈+∞时,()0h x '>,()h x 为增函数.所以min ()(1)e 1h x h ==-.又因为e 1e 1()ln ln x x h x x x x x x -=--=-,因为0x >,e 1x>,所以e 10x x->,所以当0x →时,()h x →+∞. 所以函数()h x 的值域为[e 1,)-+∞,因此实数a 的取值范围为[e 1,)-+∞.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围.【答案】(1)1a f e -=-极小值,()f x 无极大值;(2)0ln3m <≤.【解析】 【分析】(1)对函数进行求导得()ln 1f x x a '=-+,令()10a f x x e -'=⇒=,再列表,从而求得函数的极值;(2)利用导数研究函数的最值,对m 分两种情况讨论,即01m <≤和1m ,即可得答案; 【详解】(1)依题()ln 1f x x a '=-+,()10a f x x e-'=⇒=,x ,()f x ',()f x 的变化如下:列表分析可知,()11a a f f ee --==-极小值,()f x 无极大值. (2)对于()()ln 1f x x x =-,可得()ln f x x '=.因此,当()0,1x ∈时,()f x 单调递减;当()1,x ∈+∞时,()f x 单调递增. (1)当01m <≤时,()()()min ln 1ln f x f m m m m m m ==-=-. 依题意可知()()()02ln 210mf mg m m m e m -≤⇒+--≤.构造函数:()21mm e m ϕ=--(01m <≤),则有()2mm e ϕ'=-.由此可得;当()0,ln 2m ∈时,()0m ϕ'<;当()ln 2,1m ∈时,()0m ϕ'>, 即()m ϕ在()0,ln 2m ∈时单调递减,()ln 2,1m ∈单调递增. 注意到:()00ϕ=,()13e ϕ=-,因此()0m ϕ<.同时注意到2ln 0m m ≤,故有()2ln 210mm m e m +--≤. (2)当1m 时,()()min 11f x f ==-.依据题意可知()()101031ln 322m me f m g m e m ⎛⎫-≤⇒---≤⇒≤⇒<≤ ⎪⎝⎭.综上(1)、(2)所述,所求实数m 取值范围为0ln3m <≤.24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 【答案】(1)答案见解析;(2)1a ≥;(3)证明见解析. 【解析】 【分析】(1)对函数求导,然后分0a ≤,0a >两种情况,由导函数的正负可求得其单调区; (2)利用导数求()f x 的最大值小于零即可,或()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >,然后构造函数ln 1()x g x x+=,利用导数求其最大值即可; (3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k+=∈时,有11lnk k k +<,然后利用累加法可得111ln(1)123n n +<+++…+,当*,1kx k N k =∈+时,有11ln 1k k k +>+,再利用累加法可得1111ln(1)2341n n +>+++…+,从而可证得结论【详解】(1)()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,()0f x '≥,所以()f x 在(0,)+∞上递增;.当0a >时,令()0f x '=,则1x a=, 当10x a <<时,()0f x '>;当1x a>时,()0f x '<, 所以()f x 在区间1(0,)a上递增,在1(,)a+∞上递减.(2)方法1:构造函数()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,由(1)()f x 在(0,)+∞上递增,又(1)10f a =->,不符合题意,舍;.当0a >时,由(1)知()f x 在区间1(0,)a 上递增,在1(,)a+∞上递减;所以max 11()()ln()0f x f a a==≤,解得:1a ≥. 综上:1a ≥ 方法2:分离参数()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >设ln 1()x g x x+=,0x >,2ln ()xg x x -'=,令()0g x '=,1x =,则 当01x <<时,()0g x '>;当1x >时,()0g x '<,所以()g x 在区间(0,1)上递增,在(1,)+∞上递减;所以max ()(1)1g x g ==,所以:1a ≥(3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k +=∈时,11ln 1k k k k ++<-,即11ln k k k +<; 所以,2ln11<,31ln 22<,41ln 33<,……,11ln n n n +<; 上述不等式相加可得:2341111lnln ln ln112323n n n+++++<+++…+, 即:2341111ln112323n n n +⋅⋅<+++…+, 即:111ln(1)123n n+<+++…+,*n N ∈; .当*,1k x k N k =∈+时,ln 111k k k k <-++,即111ln 1k k k -+⎛⎫<- ⎪+⎝⎭,即11ln 1k k k +>+ 所以,21ln12>,31ln 23>,41ln 34>,……,11ln 1n n n +>+;上述不等式相加可得:23411111lnln ln ln1232341n n n +++++>+++…+, 即:23411111ln1232341n n n +⋅⋅>+++…+, 即:1111ln(1)2341n n +>+++…+,*n N ∈; 综上:当*n N ∈时,111111ln(1)123123+++<+<+++++n n n.25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.【答案】(1)1y =; (2)19a ≤<时函数()f x 在(0,2)上无零点;当9a =时,函数()f x 在(0,2)上有一个零点;当9a >时,函数()f x 在(0,2)上有两个零点. 【解析】(I )当3a =时,()3221f x x x x =-++,()2'341f x x x =-+,()'10f =,()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为1y =.(II )()()2'11f x ax a x =-++,1a >,依题意有()'0f x ≥,即0∆≤,()2140a a +-≤,解得1a =.(III)(1)1a =时,函数()f x 在R 上恒为增函数且()01f =,函数()f x 在()0,2上无零点. (2)1a >时:当10,x a ⎛⎫∈ ⎪⎝⎭,()'0f x >,函数()f x 为增函数;当1,1x a ⎛⎫∈⎪⎝⎭,()'0f x <,函数()f x 为减函数; 当()1,2x ∈,()'0f x >,函数()f x 为增函数. 由于()22103f a =+>,此时只需判定()3162a f =-+的符号:当19a <<时,函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点. 综上,19a ≤<时函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+. (Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 【答案】(1)1a =,2b e =--;(2)证明见详解【解析】(1) ()f x 在1x =处切线方程为(1)y e x b =-+,而2()(2)(1)xf x x e a x'=-+-∴(1)1f e a e '=-+=-,即1a =而(1)21f e =--,故切点为(1,21)e -- ∴121e b e -+=--,即2b e =-- 故有:1a =,2b e =--(2)由(1)知:()(3)2ln x f x x e x x =-+-且定义域(0,)x ∈+∞∴(2)2(1)(2)()x x x x e x xe x f x x x--+--'==,若()(2)(1)xg x x xe =-- 令()1x h x xe =-,即()(1)x h x x e '=+在(0,)x ∈+∞有()0h x '>恒成立∴()h x 单调增,又(0)10h =-<,(1)10h e =->:即()h x 的零点1x 在(0,1)内 ∴1(0,)x 上()0h x <,1(,)x +∞上()0h x > 故在()g x 中1(0,1)x ∈,(0,)x ∈+∞上有当10x x <<时,()0>g x ,即()0f x '>,()f x 单调增 当12x x <<时,()0<g x ,即()0f x '<,()f x 单调减 当2x >时,()0>g x ,即()0f x '>,()f x 单调增 ∴()f x 存在唯一的极大值点0x =1(0,1)x ∈又有01()()(1)21f x f x f e =>=--而001xx e =,000000003()32ln 13x x f x x e e x x x x =-+-=--且0(0,1)x ∈ ∴0()5f x <-(利用均值不等式,但等号不成立,因为0x 无法取1)综上,得证:021()5e f x --<<-27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)单调递减区间为(),1-∞,单调递增区间为()1,+∞;(2)31,e ⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)依题意()()()()()1111xx f x ex x x e '=-+-=-+,当(),1x ∈-∞时,()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0f x '>,()f x 单调递增,所以()f x 的单调递减区间为(),1-∞,单调递增区间为()1,+∞.(2)当2x >时,()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭恒成立, 即()()222e 14422xa a a x x ax x a x ⎛⎫-+-≥+-++ ⎪⎝⎭, 即()()222e 442x a x x x x --+=-≥,即2e xx a -≥恒成立,即max 2e x x a -⎛⎫≥ ⎪⎝⎭.令()()22e x x h x x -=>,则()()123e exx x x h x ---'==, 易知()h x 在区间()2,3内单调递增,在区间()3,+∞内单调递减, 所以()()3max 13e h x h ==,所以31e a ≥. 所以实数a 的取值范围是31,e ⎡⎫+∞⎪⎢⎣⎭. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0x xe a x a g x --≥恒成立,求实数a 的取值范围.【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞;(2)(]0e ,. 【解析】(1)函数的定义域为()0,+∞,()()()211112x x g x x x x-+-=+-=', 令()0g x '>即()()2110x x +-<,解得112x -<<, 当()0,1x ∈时,()0g x '>,()g x 单调递增, 当()1,x ∈+∞时,()0g x '<,()g x 单调递减, 故()g x 的单调递增区间为()0,1,单调递减区间为()1,+∞. (2)依题意得()222()ln ln x x x xe a x a g x xe a x a x ax ax xe a x ax --=--+-=--设()()ln 0xh x xe a x ax x =--∈∞,,+,则()()()()+111xx a x a h x x e x e x x ⎛⎫=+-=+- ⎝'⎪⎭, 0a >,∴设()0h x '=的根为0x ,即有00xae x =,可得00x lna lnx =-, 当()00,x x ∈时,()0h x '<,()h x 单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,∴()()()00000000min 0ln ln xah x h x x e a x ax x a x a ax x ==--=+--⋅ln 0a a a =-≥解得a e ≤,∴实数a 的取值范围是(]0e ,. 29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e内有两个零点,求a 的取值范围.【答案】(1)在(0,1)上单调递减,在(1,)+∞上单调递减;(2)342,1a e ⎡⎤∈-⎢⎥⎣⎦;(3)[,]a e e ∈-⋃.【解析】(1)()f x 的定义域为(0,)+∞,1(21)(1)()21x x f x x x x+-'=--= 令()0f x '>,得1x >;令()0f x '<,得01x <<,所以()f x 的单调减区间(0,1),单调递增区间为(1,)+∞.(2) ()f x 的定义域为(0,)+∞,2222(2)()()2a x ax a x a x a f x x a x x x--+-'=--==, 当0a =时,2()0f x x =≥恒成立;当0a >时,(0,)x a ∈时,()0f x '<;(,)x a ∈+∞时,()0f x '>,所以()f x 在(0,)a 上单调递减,(,)a +∞上单调递增,所以2min ()()ln 0f x f a a a ==-≥,解得01a <≤;当0a <时,()f x 在(0,)2a -上单调递减,(,)2a-+∞上单调递增, 所以222min()()ln()02422a a a af x f a =-=+--≥,解得3420-≤<e a ;综上,a 的取值范围34[2,1]e -. (3)法一:显然,1x =不是()g x 的零点,所以1x ≠由()0g x =,得22ln x a x =,令2()ln x h x x=,2(2ln 1)()(ln )x x h x x '-=,令()0h x '=得12x e =, 当121[,1)(1,]x e e∈时,()0f x '<;当12(,]e x e ∈时,()0f x '>,所以()h x 在1[,1)e和12(1,]e 单调递减,12(,]e e 单调递增,又1[,1)x e ∈时,()0h x <,22ln x a x=不成立,所以只需12222()2()a h e e a h e e⎧⎪>=⎨⎪≤=⎩,故a 的取值范围[,]e e -⋃.法二:22222()ln ,()x a g x x a x g x x-'=-=,当0a =时,不合题意,舍去;当0a >时,()g x在上单调递减,)+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)01()0()0e e g g e g e ⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln 0211ln 0ln 0a e a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得]a e ∈; 当0a <时,()g x在(0,上单调递减,()+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)(01()0()0e e g g e g e ⎧⎪⎪⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln(0211ln 0ln 0a a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得[,a e ∈-; 综上,a的取值范围[,]e e -⋃.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)(],0-∞.【解析】(1)当0b =时,函数()3ln f x ax x =-,可得()f x 的定义域为()0,∞+,则()321313ax f x ax x x-'=-=,①当0a ≤时,()0f x '<,()f x 在()0,∞+上单调递减.②当0a >时,由()0f x '>,得x >()f x 在⎫+∞⎪⎭上单调递增;由()0f x '<,得0x <<,则()f x 在⎛ ⎝上单调递减. (2)由1a b ==,知()32ln f x x x x =--,可得()322132132x x f x x x x x--'=--=,又由()()()()()32322223213313111131x x x x x xx x x x x x --=-+-=-+-+=-++,当01x <<时,()0f x '<,()f x 单调递减; 当1x >时,()0f x '>,()f x 单调递增,所以()()min 10f x f ==,则0m ≤,故m 的取值范围为(],0-∞.。

完整版)导数大题练习带答案

完整版)导数大题练习带答案

完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。

Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。

+\infty)$。

Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。

m+3]$ 上的最值。

$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。

m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。

Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。

证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。

2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。

Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。

$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈ (1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数. 5.已知函数2()ln f x x x ax =-.(1)若()0f x ≤恒成立,求实数a 的取值范围; (2)若()112212ln 2ln 200x ax x ax x x -=-=>>,证明:()1212ln ln 10ln 2x x x x ⋅<<.6.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x x x =+与()g x x ()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小;(2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值. 7.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .8.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 9.已知函数2()ln f x a x x =+,其中a R ∈且0a ≠. (1)讨论()f x 的单调性;(2)当1a =时,证明:2()1f x x x ≤+-; (3)求证:对任意的*n N ∈且2n ≥,都有:222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭.(其中e 2.718≈为自然对数的底数) 10.设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.【参考答案】一、解答题1.(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)求出函数的导数,通过讨论a 的范围,解关于导函数的不等式,求出函数的单调区间即可;(2)根据导函数在()1,e 上存在零点,则()0f x '=在()1,e 上有解,则有1e 2a <<,即22e a <<,得到函数()f x 的最小值,构造函数2()ln (1ln 2)4x g x x x x =--+,22e <<x ,利用导数判断出其单调性,结合不等式传递性可证.(1)函数()f x 的定义域是(0,)+∞,(2)(1)()2(2)a x a x f x x a x x'--=+-+=, ①0a 时,20x a ->,令()0f x '>,解得:1x >,令()0f x '<, 解得:01x <<,故()f x 在(0,1)递减,在(1,)+∞递增; ②02a <<时,令()0f x '>,解得:1x >或02ax <<,令()0f x '<,解得:12ax <<,故()f x 在0,2a ⎛⎫⎪⎝⎭递增,在,12⎛⎫ ⎪⎝⎭a 递减,在()1,+∞递增;③2a =时,()0f x ',()f x 在(0,)+∞递增;④2a >时,令()0f x '>,解得:2ax >或01x <<,令()0f x '<,解得:12ax <<,故()f x 在(0,1)递增,在1,2⎛⎫⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a递增;综上:0a 时,()f x 在(0,1)递减,在(1,)+∞递增,02a <<时,()f x 在0,2a ⎛⎫ ⎪⎝⎭递增,在,12⎛⎫⎪⎝⎭a 递减,在(1,)+∞递增;2a =时,()f x 在(0,)+∞递增;2a >时,()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a 递增;(2)因为(2)(1)()2(2)a x a x f x x a x x'--=+-+=, 又因为导函数()'f x 在(1,)e 上存在零点,所以()0f x '=在(1,e)上有解, 则有1e 2a <<,即22e a <<,且当12a x <<时,()0f x '<,()f x 单调递减,当e 2ax <<时,()0f x '>,()f x 单调递增,所以22()ln (2)ln (1ln 2)22424⎛⎫=+-+=--+ ⎪⎝⎭a a a a a f x f a a a a a ,设2()ln (1ln 2)4x g x x x x =--+,22e x <<,则()ln 1(1ln 2)ln ln 222x xg x x x '=+--+=--,则11()02g x x ''=-<,所以()g x '在(2,2e)上单调递减,所以()g x 在(2,2e)上单调递减,则()()()222e 22e e 2e 1ln 2e 2g eln g =--+=-<,所以()2e g x >-,则根据不等式的传递性可得,当()1,e x ∈时,()2e .f x >-【点睛】本题考查利用导数表示曲线上某点处的斜率,考查函数的单调性,考查导数的综合应用以及分类讨论思想,转化思想,属于难题. 2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x ++-=,令()()221ln 24x F x x x+=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+- 即2212211ln 1x x x x x -=-+-,即221221ln 20x x x x x -++-= 由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x xx x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x +---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.5.(1)1,e∞⎡⎫+⎪⎢⎣⎭(2)证明见解析 【解析】 【分析】(1)()0f x ≤恒成立,等价于ln xa x ≥恒成立,即max ln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x=,利用导数求出函数()g x 的最大值,即可得出答案;(2)()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点,即()1212,0x x x x >>为方程ln 2x a x =的两个根,由(1)知102ea <<,且1201x x <<<,则要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证2122112212ln x x x x x x ->,令12,1x t t x =>,则要证22n 1l t tt ->,令()()12ln 1t t t t t ϕ=-->,利用导数证明()min 0t ϕ>即可. (1)解:因为函数()f x 的定义域为()0,∞+,所以()0f x ≤恒成立, 等价于ln xa x ≥恒成立,所以maxln x a x ⎛⎫≥ ⎪⎝⎭, 令()ln x g x x =,则()21ln x g x x-'=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减, 所以()()max 1e eg x g ==,故1ea ≥,即实数a 的取值范围是1,e∞⎡⎫+⎪⎢⎣⎭;(2)证明:()112212ln 2ln 200x ax x ax x x -=-=>>, 即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点, 即()1212,0x x x x >>为方程ln 20x ax -=的两个根, 即()1212,0x x x x >>为方程ln 2xa x=的两个根, 由(1)知102ea <<,即102ea <<,且1201x x <<<, 由11ln 2x ax =,22ln 2x ax =,得()1212ln ln 2x x a x x -=-, 所以1212ln ln 2x x a x x -=-, 要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证121212ln ln 112ln ln ln ln x x x x x x +=+>⋅,即1211222ax ax +>, 即12114a x x +>,也就是121212ln ln 112x x x x x x -+>⨯-, 整理得221211222ln x x x x x x ->,即证2122112212ln x x xx x x ->, 令12,1x t t x =>,则要证2112ln t t t t t -=->, 令()()12ln 1t t t t tϕ=-->,则()()222221122110t t t t t t t t ϕ--+'=+-==>,所以()t ϕ在()1,+∞上单调递增,所以()()10t ϕϕ>=, 所以当t >1时,12ln t t t->, 故原结论成立,即()1212ln ln 10ln 2x x x x ⋅<<.【点睛】本题考查了不等式恒成立问题和不等式的证明问题,考查了利用导数求函数的最值,考查了分离参数法,考查了转化思想,考查了学生的数据分析能力和逻辑推理能力,难度较大. 6.(1)12K K <; (2)1.【解析】 【分析】(1)对()f x 、()g x 求导,应用曲率公式求出()1,1处的曲率1K ,2K ,即可比较大小;(2)由题设求出()h x 的曲率平方,利用导数求2K 的最大值即可. (1)由()11f x x '=+,()21f x x ''=,则()()()()13332222211112511f K f ''===+'+⎡⎤⎣⎦,由()g x '=,()3214g x x -''=-,则()()()2333222221124511112g K g ''===⎡⎤'+⎡⎤⎛⎫⎣⎦+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以12K K <; (2)由()cos h x x '=,()sin h x x ''=-,则()322sin 1cos xK x =+,()()2223322sin sin 1cos 2sin xxK x x ==+-,令22sin t x =-,则[]1,2t ∈,故232tK t -=, 设()32t p t t -=,则()()32643226t t t t p t t t----'==,在[]1,2t ∈时()0p t '<,()p t 递减, 所以()()max 11p t p ==,2K 最大值为1. 7.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩【解析】 【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=,所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增.()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+. (2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a af x x a x x--=+-+=, 当1,22a a ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--. 当1e,22e 2a a <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减; 在区间()',e ,02a f x ⎛⎫> ⎪⎝⎭,()f x 递增.所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭.当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2ef a a a =+-+=-+-.所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩.【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 8.(1)答案见解析 (2)e π-- 【解析】 【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值. (1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增, 当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减, 此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0; 当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞ 上单调递减,极值点个数为1. (2)由()()0af x g x +=,得sin 1xx a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根, 所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=,所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<,所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭.又()01h =-,()e h ππ-=-, e 1π-->-所以当)e ,0xa -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用. 9.(1)答案见解析; (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)求得()'f x ,对参数a 进行分类讨论,即可求得不同情况下函数的单调性; (2)构造函数()ln 1g x x x =-+,利用导数研究函数单调性和最值,即可证明; (3)根据(2)中所求得2211ln 1n n ⎛⎫+<⎪⎝⎭,结合累加法即可求证结果. (1)函数()f x 的定义域为(0,)+∞,22()2a a xf x x x x'+=+=,①当0a >时,()0f x '>,所以()f x 在(0,)+∞上单调递增;②当0a <时,令()0f x '=,解得x =当0x <<220a x +<,所以()0f x '<,所以()f x 在⎛ ⎝上单调递减,当x >220a x +>,所以()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.综上,当0a >时,函数()f x 在(0,)+∞上调递增;当0a <时,函数()f x 在⎛⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当1a =时,2()ln f x x x =+,要证明2()1f x x x ≤+-, 即证ln 1≤-x x ,即ln 10x x -+≤, 设()ln 1g x x x =-+,则1()xg x x-'=,令()0g x '=得,可得1x =, 当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<. 所以()(1)0g x g ≤=,即ln 10x x -+≤,故2()1f x x x ≤+-. (3)由(2)可得ln 1≤-x x ,(当且仅当1x =时等号成立), 令211x n=+,1,2,3,n =,则2211ln 1n n ⎛⎫+<⎪⎝⎭, 故2211ln 1ln 123⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭ (222)111ln 123n ⎛⎫++<++ ⎪⎝⎭…21111223n +<++⨯⨯…()11n n +-1111223⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭…11111lne 1n n n ⎛⎫+-=-<= ⎪-⎝⎭,即222111ln[111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211]lne n ⎛⎫+< ⎪⎝⎭, 故222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ (21)1e n⎛⎫+< ⎪⎝⎭. 【点睛】本题考察利用导数研究含参函数单调性,以及构造函数利用导数证明不等式,以及数列和导数的综合,属综合困难题.10.(1)单调递增区间为(2)-∞-,,(2)+∞,;单调递减区间为(22)-, (2)542542a -<<+ 【解析】 【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间; (2)由(1)中所得函数的单调性,得极值,可结合函数的图象得其与直线y a =三个交点时的a 的范围.(1)由已知可得:2()36f x x '=-,令()0f x '=,即2360x -=, 解得12x =-,12x =, 所以当2x >或2x <-时,()0f x '>,当22x -<<时,()0f x '<.所以()f x 的单调递增区间为(2)-∞-,,(2)+∞,; 单调递减区间为(22)-,. (2)由(1)可知()y f x =的图象的大致走势及走向,如图所示,又(2542f -=-2542f =+所以当542542a -<+y a =与函数()y f x =的图象有三个不同的交点,方程()f x a 有三个不等实根.。

导数大题练习题答案知识讲解

导数大题练习题答案知识讲解

导数练习题(B )答案1. (本题满分12分)已知函数f(x) = ax 3 +bx 2 十(c_3a _2b)x +d(I) 求c,d 的值;(II) 若函数f(x)在x=2处的切线方程为 f(x)的解析式;(III )在(II )的条件下,函数y=f(x)与 三个不同的交点,求m 的取值范围. 2. (本小题满分12分)已知函数 f(x)二alnx —ax —3(a ・ R). (I )求函数f(x)的单调区间;(II )函数f(x)的图象的在x=4处切线的斜率为-,若函数g(x^-x 3 x 2[f'(x) m ]在区间232(1, 3) 上不是单调函数,求 m 的取值范围.3. (本小题满分14分)已知函数f(x)=x 3 ax 2 bx c 的图象经过坐标原点,且在x=1处取得极大值.(I )求实数a 的取值范围;2(II )若方程f(x)「d^恰好有两个不同的根,求f(x)的解析式;9(III )对于(II )中的函数 f(x),对任意:、二 R ,求证:| f(2s in :)-f(2s in -)^81 . 4. (本小题满分12分)已知常数a 0 , e 为自然对数的底数,函数f(x)=e x —x , g(x) =x 2 —al nx .(I) 写出f(x)的单调递增区间,并证明e a a ; (II) 讨论函数y =g(x)在区间(1,e a )上零点的个数. 5. (本小题满分14分)已知函数 f (x) =ln(x-1)-k(x-1) 1 .(I )当k =1时,求函数f (x)的最大值;(II )若函数f(x)没有零点,求实数k 的取值范围;6. (本小题满分12分)已知x=2是函数f(x) =(x 2 • ax -2a -3)e x 的一个极值点(e =2.718…).(I )求实数a 的值;(II )求函数f(x)在X [3,3]的最大值和最小值.23示. 求函数 的图象有7.(本小题满分14分)<<<<<<精品资料》》》》》已知函数f(x) =x?_4x (2「a)l nx,(a・ R, a = 0)(I)当a=18时,求函数f(x)的单调区间;(II)求函数f (x)在区间[e,e2]上的最小值.& (本小题满分12分)已知函数f (x) =x(x -6) aln x在x (2,::)上不具有单调性.(I)求实数a的取值范围;(II )若f (x)是f(x)的导函数,设g(x) = f (x)・6二,试证明:对任意两个不相等正数x_ 38 —.、为、X2,不等式|g(>q) -g(x2)|牙区—X2丨恒成立.9.(本小题满分12分)1已知函数f(x) x2-ax (a「1)lnx,a 1.2(I)讨论函数f(x)的单调性;(II )证明:若 a :: 5,则对任意NX • (0,::),捲=X2,有 f (x1)―> -1.10.(本小题满分14分)1已知函数 f (x) x2 a ln x, g(x) = (a 1)x ,a 一:「1 .2(I)若函数f(x), g(x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数a的取值范围;(II ) 若 a (1, e] (e= 2.718281 ,)设F(x)= f (x)- g(x),求证:当x n x^ [1,a]时,不等式|F(x,)-F(X2)卜:1 成立.11.(本小题满分12分)设曲线 C : f(x)=l nx-ex ( e = 2.71828 …),f r(x)表示 f (x)导函数.(I)求函数f(x)的极值;(II )对于曲线C上的不同两点AgyJ , Bgy z),为::x?,求证:存在唯一的x°(为匈,使直线AB 的斜率等于f (x o).12.(本小题满分14分) 定义F(x, y) (1 x)y,x, y (0,,(I )令函数f(x)=F(3,log2(2x-x2 4)),写出函数f(x)的定义域;(II )令函数g(x) =F(1,log2(x3 ax2 bx 1))的图象为曲线C,若存在实数b使得曲线C在x°(-4 :::x° :一1)处有斜率为一8的切线,求实数a的取值范围;(III )当x,r N *且x :::y 时,求证F(x, y) F(y,x).d =3 c = 0 (II )依题意 f '(2)=~3 且 f(2)=512a +4b -3a -2b = -3©a +4b -6a -4b +3 =5 解得 a =1,b - -6 所以 f (x) =x 3 -6x 2 9x 3................. (8 分)(III ) f (x) 3x 2 -12x • 9 .可转化为:x 3 -6x 2 • 9x • 3 = x 2 -4x • 3 5x m 有二个不等实根, 即:g x ]=x 3 -7x 2 8x - m 与x 轴有三个交点;g x [=3x 2 -14x 8=3x-2 x-4 ,当且仅当g 2 A 68—m -0且 g 4i=「16—m :::0时,有三个交点,(3 丿 27 故而,-16 5唱为所求.2•解:(I ) f'(x)0)x当a .0时,f(x)的单调增区间为0,1】,减区间为1 当a ::: 0时,f(x)的单调增区间为,减区间为0,1丨 当a=1时,f(x )不是单调函数3a 3(II ) f'(4)得a - -2, f(x) - -2ln x 2x -32 68 g m, g4=—16_m . (3)27(2 分)1.解:函数 f (x)的导函数为 f '(x) =3ax 2 • 2bx • c -3a -2b(I )由图可知 函数f(x)的图象过点(0, 3),且f '(1)=0 刁曰d =3彳得 ‘n 13a +2b +c —3a —2b =0(4分)(10 分)(12 分)(5 分)(6 分)(2 分)4 21 3 m2 2g(x) x ( 2)x —2x, g'(x)=x (m 4)x—23 2g(x)在区间(1,3)上不是单调函数,且g'(0) - -23.解:(I ) f (0) =0= c =0, f (x) =3x 2 2ax b, f (1) =0= b - -2a-3 .f (x) =3x 2 2ax—(2a 3) =(x -1)(3x 2a 3),由f (x) =0= x =1或x = —2; 3,因为当x =1时取得极大值, 所以- _3 .1= a ::: -3,所以a 的取值范围是:(-",一3);3(II )由下表:依题意得:・(2a 3)2「空旦,解得:a 「9279所以函数f (x)的解析式是:f(x) =X 3 -9x 2 15x(III )对任意的实数 :都有- 2乞2sin‘2,—2乞2sin ■: < 2,在区间[-2,2]有: f (-2) - -8 -36 -30 - -74, f (1) =7, f (2) =8 -36 - 30 =2 f (x)的最大值是 f(1) -7, f (x)的最小值是 f (-2) - -8 -36-30 - -74 函数f(x)在区间[-2,2]上的最大值与最小值的差等于81, 所以 | f(2sin : ) - f (2sin 一:)|_81 .J g'⑴ <o,0(3) > o.工m : -3,(8 分). 19 ( 10 分)|m > —,I 3m (二 3)3(12 分)(4分)(14分)4.解:(I ) f (x) =e x -1 _0,得f(x)的单调递增区间是(0,;), T a 0 , A f (a) f (0) =1,二 e a ■ a 1 a ,即 e a a ............................ ........ ^2a 2(x )(x2x2a (0,〒)(II ) g(x)=2x -旦xg (x)g(x) 当x=±时,2单调递减函数y=g(x)取极小值.2a ) —,由 g (x^0 ,得2a 2极小值由(I ) e aag(1) =1 0, g(e a )<<<<<<精品资料》》》》》... (2 分) (4分)x 诗,列表/2a 、 (2,;)+ 单调递增)昶(1-1 n?),无极大值. g( 2a2 2 22 aae >e• C a ,a2=e a _a 2 =(e a a)(e a _a) 02aa…e ,(8 分)(6分)(10 分)(i )当上却,即0亠2时,函数y =g(x)在区间(1,e a )不存在零点2(ii )当』.1,即a 2时2若寸(1一1 n|) 0 ,即2 :::a :::2e 时,函数y = g(x)在区间(1,e a )不存在零点 若号(1-"2)=0,即a =2e 时,函数y =g(x)在区间(1,e a )存在一个零点x = e ; 若旦(1一1 n a ) :::0,即a 2e 时,函数y =g(x)在区间(1,e a )存在两个零点;2 2综上所述,y =g(x)在(1, e a )上,我们有结论: 当0 :: a ::: 2e 时,函数f (x)无零点; 当a=2e 时,函数f(x)有一个零点; 当a 2e 时,函数f(x)有两个零点....... (12 分)5•解:(I )当 k=l 时,f (x)二 xx —1f (x)定义域为(1 , +閃),令「(x)=0,得 X=2 , ........... (2 分)•••当 x (1,2)时,f (X )0,当 x (2,::)时,f (x):::0 , 二f (x)在(1,2)内是增函数,在(2,::)上是减函数 .•.当x =2时,f(x)取最大值f(2) =0 ........................... (4分)(II )①当kM 时,函数y=ln (x —1)图象与函数y=k(x —1)—1图象有公共点,二函数f(x)有零点,不合要求;........... (8分)1 +kk(x-「_____ k.....................x -11 1 1 k —kx②当k 0时,f (x)k = X —1x —1令 f(x)=0,得,••• x (1,「k ' k.f(x)在(1,1」)内是增函数,在[1」,;)上是减函数, )时,f (x) 0, x (1 ,::)时,f(x) ::0 , kk kf (x)的最大值是f (1 •丄)=—ln k ,kT 函数f(x)没有零点,.-lnk ::0 , k 1 ,因此,若函数f(x)没有零点,则实数k 的取值范围k ・(1,;).6.解:(I )由 f (x) (x 2 ax -2a -3)e x 可得f (x) =(2x a)e x (x 2 ax 「2a 「3)e x =[ x 2 (2 a)x -a -3]e x ................................T x=2是函数f(x)的一个极值点,.• f (2) =0.(a ■ 5)e 2 =0,解得 a = -5 • (II )由 f (x)=(x-2)(x-1)e x 0,得 f(x)在(二,1)递增,在(2,;)递增, 由f (x) <0,得f(x)在在(1,2)递减.f(2)=e 2是 f (x)在 x [3,3]的最小值;.....2(4 分)(6 分)(10 分)(6 分)(8分)<<<<<<精品资料》》》》》33f(2)= 4', f (3) =e • f (3)-f (2)=e - —e?f(x)在 X .= [?,3]的最大值是 f(3)=e 3 .27.解:(I) f (x) = x 2_4x 一 16l nx , f'(x)»4 尊2(x 2)(x -4)x x由 f'(x) 0 得(x 2)(x -4) • 0,解得 x 4或 x : -2注意到x 0,所以函数f(x)的单调递增区间是(4, +乂)由 f'(x) <0 得(x 2)(x — 4) :::0,解得-2V x V 4, 注意到x 0,所以函数f(x)的单调递减区间是(0,4].综上所述,函数f(x)的单调增区间是(4, +呵,单调减区间是(0,4]6分(H) 在 x := [e, e 2]时,f (x) = x 2 -4x (2 -a)ln x22-a 2x …4x ,2-a所以 f'(x) =2x -4 •x设 g(x)二 2x 2 -4x 2 _a当 a :: 0时,有△ =16+4>2(2-a) =8a ::: 0 ,此时g(x) 0,所以f'(x) 0 , f(x)在[e,e 2]上单调递增, 所以 f (x)min = f (e)二 e 2 -4e • 2 - a8 分当a 0时, 令 f'(x) 0 , 海2,即a 羽(e 2 -1)2时,e,e 2]单调递减,所以f (x) f --②若 e :: 1 —::: e 2,即 2(e -1)2 ::: a ■ 2(e 2 -1)2 时间,1 2 3 e2(4e. e 一7) .0, f(3) . f(—) 4 2......... (12 分)=f(e) = e 2 -4e 2 _a△ =16 -4 2(2 -a) =8a 0 ,即 2x 2 -4x • 2 - a 0,解得 x 或 x <1 空;2 2解得1 一但::::即 2x 2 -4x • 2 - a :: 0 , 令 f'(x) <0 , ①若1鼻2f(x)在区间[min 二 f (e 2) = e 4 _ 4e 2 4 _ 2a . •』,e 2]上单调递增,2a ■—v2a)2a -3 (2 -a)ln(1).2 2f (x)在区间[e,e 2]单调递增,f(x)在区间[e,1即 0 : a Wg e -1)2 时,2f(e) =e -4e 2 - a a >2[e 2 -1)2时,::a ::: 2(e 2 -1)2 时,f &馬 聖 - -2a -3 (2 — a)ln(12当 a <2(e-1)2 时,f(x)min 二 e 2-4e 2-a]上单调递减,在区间[12、2 a2所以 f (X )min = f (1 ③若1 4 .2所以 f (x)min 综上所述,当 当 2(e-1)2二 a 4 - 4e 2 4 - 2a ; +耳);2);14分f (X)min28.解:(I ) f(x)=2x —6 ?=空 6^-a ,XXT f(x)在x (2,;)上不具有单调性,.••在x (2, ;)上f (x)有正也有负也有0,(2 分)即二次函数y=2x 2_6x a 在x (2,::)上有零点T y =2x 2_6x - a 是对称轴是(4分)x=|,开口向上的抛物线J. y*。

2024届新高考数学大题精选30题--导数(解析版)

2024届新高考数学大题精选30题--导数(解析版)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。

导数大题专题及答案

导数大题专题及答案

导数大题专题题型一.求含参数的单调性问题一.讨论是否存在极值点问题1.求f(x)= -ax+1 的单调区间2. 已知函数f(x) x a(其中 a R). x11(Ⅰ)若函数 f (x) 在点(1,f (1))处的切线为y 1 x b,求实数a,b的值;Ⅱ)求函数 f (x) 的单调区间.3. 设函数f(x) x3 3ax b(a 0) .(Ⅰ)若曲线y f (x)在点(2, f (x))处与直线y 8相切,求a,b的值;(Ⅱ)求函数f(x) 的单调区间与极值点.1.设a 0且a ≠1,函数f(x) 1x2 (a 1)x aln x.21)当a 2时,求曲线y f(x)在(3, f (3) )处切线的斜率;2)求函数f(x) 的极值点2.已知函数 f (x) (x2 ax 2a2 3a)e x(x R), 其中 a R(1) 当 a 0时,求曲线y f ( x)在点(1, f (1)) 处的切线的斜率;2(2) 当 a 2时,求函数 f (x)的单调区间与极值。

33.(本小题13分)设函数f(x) =[ ax2(4a 1)x 4a 3 ] e xⅠ)若曲线y= f (x)在点( 1, f (1) )处的切线与x轴平行,求a;Ⅱ)若 f (x)在x=2处取得极小值,求a的取值范围.x4.已知函数 f (x) (x k)2e k。

求 f (x)的单调区间;三. 讨论极值点和定义域问题11.已知函数 f (x) aln x ,a R .x (I )若曲线 y f (x)在点 (1, f (1))处的切线与直线 x 2y 0垂直,求 a 的值; (II )求函数 f(x) 的单调区间(Ⅰ)当k =2时,求曲线 y= f ( x )在点(1,f (1)) 处的切线方程; (Ⅱ)求 f ( x )的单调区间 2. 已知函数 f ( x )=In(1+ x )- x2x +2 x ( k3.(本小题满分13 分) 已知函数f(x) ln(x 1) ax 1 a( a1).x 1 2(Ⅰ)当曲线y f (x) 在(1, f (1))处的切线与直线l : y 2x 1平行时,求a的值;(Ⅱ)求函数f(x) 的单调区间.四.讨论极值点和区间的关系问题1.(本小题满分13 分)已知函数 f (x) x2 2a 1,其中 a 0.x(I )若曲线y f(x) 在(1, f (1))处的切线与直线y 1平行,求a的值;II )求函数f(x) 在区间[1,2] 上的最小值.2.已知函数f(x) ln x a。

高三数学函数与导数试题答案及解析

高三数学函数与导数试题答案及解析

高三数学函数与导数试题答案及解析1.已知定义域为的函数,若对任意的,有,则称函数为“定义域上的函数”,以下五个函数:①;②;③;④;⑤,其中是“定义上的函数”的有A.2个B.3个C.4个D.5个【答案】C【解析】对于①,,满足条件;对于②,,当x1x2>0时,不满足,故②不是“定义域上的函数”;对于③,,因为,所以,故,③满足条件;对于④,,故④满足条件;对于⑤,,因为,所以,可得,故⑤满足条件.是“定义域上的函数”有①③④⑤,共4个.【考点】1.新定义问题;2.函数性质的应用.2.设函数,,其中,且,则.【答案】【解析】根据题意有.【考点】函数值求和.3.幂函数过点,则= .【答案】【解析】根据题意可知,解得或,又因为,解得,故.【考点】幂函数解析式的求解.4.若实数满足,且,则的最小值为.【答案】4【解析】由已知,,又,所以(当且仅当时取等号),所以最小值为4.【考点】基本不等式.5.设函数,其中.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)试讨论函数极值点的个数;(Ⅲ)求证:对任意的,不等式恒成立.【答案】(Ⅰ)切线方程为;(Ⅱ)当时,无极值点;当时,有2个极值点;当时,有1个极值点;(Ⅲ)证明过程详见解析.【解析】(Ⅰ)求出导函数,并求出x=0时的导数即切线的斜率,然后由直线的点斜式求出切线方程;(Ⅱ)求出导函数,并讨论其等号函数,从三种情况讨论,并在当时,导函数等于零时的根于区间端点-1的大小为分类标准进行讨论求解;(Ⅲ)构造函数函数,利用导数法证明即恒成立.取即可证明.试题解析:(Ⅰ)当时,,则,曲线在原点处的切线方程为(Ⅱ),令当时,,所以0,则0,所以在上为增函数,所以无极值点;当时,,所以0,则0,所以在上为增函数,所以无极值点;当时,,令0,则,当时,,,此时有2个极值点;当时,,,此时有1个极值点;综上:当时,无极值点;当时,有2个极值点;当时,有1个极值点; 8(Ⅲ)对于函数,令函数则,,所以函数在上单调递增,又时,恒有即恒成立.取,则有恒成立,即不等式恒成立.【考点】①求切线方程;②讨论函数的极值点个数;ƒ证明不等式.【方法点睛】利用导数证明不等式:构造辅助函数,把不等式的证明转化为利用导函数研究函数的单调性或最值,从而证明不等式,而构造函数是用导数证明不等式的关键.构造辅助函数的一般方法及解题程序如下:1.移项(有时需要作简单的横等变形),使不等式的一端为零,另一端即为所构造的函数;2.求,并验证在指定区间上的单调性;3.求出区间端点的函数值(最值),作比较即得所证.6.甲、乙两地相距千米,汽车从甲地匀速行驶到乙地,速度不得超过千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米/时)的函数,指出定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?全程运输成本最小是多少?【答案】(1)(2)为使全程运输成本y最小,当时,行驶速度为100,此时运输成本为1200元,当c<100时,行驶速度为c,此时运输成本为【解析】(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对速度的范围进行分类讨论,如等号成立时速度值不超过,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速,可以判断出函数在上的单调性,用单调性求出全程运输成本的最小值.试题解析:(1)全程运输成本为(2)依题意,有,当且仅当即时上式中等号成立而所以当取最小值,所以也即当=100时,全程运输成本最小达到1200元当时综上,为使全程运输成本最小,当时,行驶速度为100,此时运输成本为1200元,当时,行驶速度为,此时运输成本为【考点】基本不等式在实际应用问题的应用【名师】本题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.属中档题.特别注意在解第(2)问时由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对速度的范围进行分类讨论,如等号成立时速度值不超过,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速,可以判断出函数在上的单调性,用单调性求出全程运输成本的最小值.7.设是定义在上的函数,其导函数为,若+,,则不等式(其中为自然对数的底数)的解集为()A.B.C.D.【答案】D【解析】构造函数,因此,故函数在上是减函数,所以,即,因此的解集,故答案为D.【考点】1、构造辅助函数;2、导数在函数单调性中的应用.【思路点睛】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,根据题意构造辅助函数,,研究的单调性,结合原函数的性质和函数值即可求解.8.已知,函数,若关于的方程有6个解,则的取值范围为()A.B.C.D.【答案】D【解析】函数在上递减,在和上递增,的图象如图所示,由于方程最多只有两解,因此由题意有三解,所以且三解满足,,,,所以有两解,,,所以,故选D.【考点】函数的零点,方程根的分布.【名师点晴】本题考查方程根的分布,难度很大.它是一个与复合函数有关的问题,解题方法与我们常规方法不一样,常规方法是求出函数的表达式,解方程或作出函数的图象,由数形结合方法得出结论,但本题的表达式很复杂,由于含有参数,几乎不能求出正确结果,因此我们从复合函数的角度来考虑,以简化方法.方程可以这样解,求出方程的解为,再解方程即得,这样得到题中解法.9.设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.【答案】(1);(2);(3)见解析.【解析】(1)依题意,函数是定义域上的单调函数,其导数恒大于等于零或者恒小于等于零,求导之后利用分离常数法来解决.(2)构造新函数,注意到,利用导数判断的单调性即可解决.(3)利用(2)得出结论,,对进行赋值,令,,即有所以(),进而华健不等式的左边每一项,最后求和就可以证明.试题解析:(1)∵又函数在定义域上是单调函数.∴或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;若在上恒成立,则在上恒成立.即在上恒成立.∵在上没有最小值∴不存在实数使在上恒成立.综上所述,实数的取值范围是.(2)当时,函数.令则显然,当时,,所以函数在上单调递减又,所以,当时,恒有,即恒成立.故当时,有(3)法1:证明:由(2)知即令,,即有所以()因此故对任意的正整数,不等式成立.法2:数学归纳法证明:1、当时,左边=,右边=,原不等式成立.2、设当时,原不等式成立,即则当时,左边=只需证明即证,即证由(2)知即令,即有所以当时成立由1、2知,原不等式成立【考点】1、导数的运算;2、利用导数判断函数的单调性;3、利用导数求函数的极值和最值;4、恒成立问题.【思路点睛】本题第一问考查分离常数法解不等式问题,分离常数法是解不等式恒成立问题可以首先采用的方法.第二问是利用导数证明不等式,基本的思路是先直接作差构造一个函数,然后利用导数作为工具,求出函数的单调区间,结合特殊点就可以求解出结论.第三问是在第二问的基础上,对自变量进行赋值,转化为数列的问题来求解.三个问题,考查三个基本方法,是一个不错的题目.10.函数的定义域是()A.B.C.D.【答案】B【解析】由题意,得,解得,所以函数的定义域为,故选B.【考点】1、函数的定义域;2、不等式的解法.【方法点睛】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围,其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0;(4)实际问题还需要考虑使题目本身有意义.11.已知函数在上是增函数,,若,则的取值范围是()A.B.C.D.【答案】B【解析】因为函数在上是增函数,所以在上是减函数,且是偶函数,所以在上是减函数,在上是增函数,由,得,即,解得;故选B.【考点】1.函数的图象变换;2.函数的单调性;3.对数不等式.12.已知函数若,则的取值范围是_______.【答案】或【解析】当时,由,得;当时,由,得,所以的取值范围是或.【考点】1、分段函数;2、指数函数、对数函数的图象与性质.【方法点睛】对于分段函数的求值问题,一定要注意自变量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,解题中需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.13.下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.【答案】C【解析】A:既是奇函数,又是偶函数;B:是奇函数;C:的定义域为,不关于原点对称,既不是奇函数,又不是偶函数;D:其定义域为关于原点对称,且,故为偶函数,故选C.【考点】函数的奇偶性判定.14.()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分15.函数的定义域是___________.【答案】【解析】由题意,得,解得,即函数的定义为.【考点】函数的定义域.【知识点睛】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0;(4)实际问题还需要考虑使题目本身有意义.16.对于实数和,定义运算“*”:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是.【答案】【解析】由所给的新定义的含义可得如图所示,要使方程恰有三个互不相等的实数根,需满足当时,是方程即的两个根,所以当时,是方程即的根,所以所以,令,令所以,则令,解得因为,所以在单调递减所以所以所以的取值范围为故答案为【考点】新定义的函数问题;分段函数;函数与方程.【方法定睛】本题是一道新定义题,通过这道题发现,新定义问题并不神秘,表面上是没有见过的问题,但是只要理解了新定义并紧扣新定义,抓住新定义本质特征或隐含的规律,或抓住新定义运算法则或顺序,就可将其转化为我们熟悉的问题.17.设为三角形三边长,,若,则三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【答案】B【解析】∵,∴,即,∴,即,故三角形的形状为直角三角形,故选:B.【考点】三角形的形状判断.【思路点睛】本题考查的知识点是三角形形状判断,对数的运算性质,熟练掌握对数的换底公式是解决本题的关键,结合对数的运算性质,及换底公式的推论,可将已知化为:,再由勾股定理判断出三角形的形状.18. 已知函数,若的图像的一条切线经过点,则这条切线与直线及轴所围成的三角形面积为( ) A .B .1C .2D .【答案】C 【解析】设函数经过点的切线的切点为,则即切线的斜率为,由斜率公式得所以,所以斜率,切点为,切线方程为其与直线,及轴围成的三角形面积为,故选C .【考点】利用导数研究曲线上某点的切线.19. 已知x 0是函数的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f(x 1)<0,f(x 2)<0B .f(x 1)<0,f(x 2)>0C .f(x 1)>0,f(x 2)<0D .f(x 1)>0,f(x 2)>0【答案】 【解析】函数是单调递增函数,又因为,,所以,,故选B.【考点】1.函数的性质;2.函数的零点.20. 已知函数在定义域上表示的曲线过原点,且在处的切线斜率均为.有以下命题: ①是奇函数;②若在内递减,则的最大值为;③若的最大值为,最小值为,则;④若对,恒成立,则的最大值为.其中正确命题的个数为( ) A .个B .个C .个D .个【答案】B【解析】由题意得函数过原点,则.又.则必有,解得,所以.令得.则函数在上的最小值是负数.由此得函数图象大致如图:得出结论是:①③正确;②④错误.故选B .【考点】导数几何意义,函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.21.已知函数是定义域为的偶函数,当时,,若关于的方程,有且仅有个不同实数根,则实数的取值范围是()A.B.C.D.【答案】C【解析】,作函数的图象如右图,要使关于的方程,有且仅有个不同实数根,设,则当,方程,有个根,当,方程,有个根,当或,方程,有个根,当,方程,有个根,当,方程,有个根.则方程的两个根为;①若,则,故;②若,则,故.综上,实数的取值范围是.故选C.【考点】根的存在性及根的个数判断.【方法点睛】根据函数的奇偶性作出分段函数的图象,利用换元法判断函数的根的个数,再利用数形结合即可得到结论.本题主要考查分段函数的应用,根的存在性及根的个数判断,本题既考查了函数的性质的判断与应用,又考查了数形结合的思想的应用.利用换元法结合函数奇偶性的对称性,利用数形结合是解决本题的关键.综合性较强,属于压轴题.22.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频率分布如下表:假设汽车只能在约定日期(某月某日)的前11天出发,汽车只能在约定日期的前12天出发(将频率视为概率).(l)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车和汽车应如何选择各自的路径;(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车按(1)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.【答案】(1)汽车选择公路,汽车选择公路;(2)汽车为生产商获得毛利润更大.【解析】(1)依据题设条件计算概率,通过比较分析求解;(2)借助题设条件运用数学期望的大小分析推证.试题解析:(1)频率分布表,如下:设分别表示汽车在约定日期前11天出发选择公路1、2将货物运往城市乙;、分别表示汽车在约定日期前12天出发选择公路1、2将货物运往城市乙;,,,,所以汽车选择公路1,汽车选择公路2.(Ⅱ)设表示汽车选择公路1时,销售商付给生产商的费用,则.的分布列如下:.∴表示汽车选择公路1时的毛利润为(万元).设表示汽车选择公路2时的毛利润,.则的分布列如下:∵,∴汽车为生产商获得毛利润更大.【考点】概率和随机变量的分布列与数学期望等有关知识的运用.23.已知函数若存在实数,使函数有两个零点,则实数的取值范围是()A.B.C.D.【答案】C【解析】画出函数的图象如下图所示,由图象可知在区间符合题意.【考点】1.分段函数;2.零点问题;3.不等式.【思路点晴】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间上是连续不断的曲线,且·,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.函数零点个数的判断通常转化为两函数图象交点的个数,其步骤是:(1)令;(2)构造,;(3)作出图象;(4)由图象交点个数得出结论.24.已知函数.若,则实数的取值范围是()A.B.C.D.【答案】D【解析】因为令,则就是.画出函数的图象可知,,或,即或.由得,或.由.由得,或.再根据图象得到,故选D.【考点】1、分段函数的解析式;2、分段函数的图象和性质及数形结合思想.【方法点睛】本题主要考查分段函数的解析式、分段函数的图象和性质及数形结合思想,属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解,解答本题的关键是根据函数的图象,先由,求的范围,再根据图象求的范围.25.已知函数,则当时,函数的零点个数是A.B.C.D.【答案】D【解析】令,得.设,则.由图知,方程有两解,,且,.从而方程有两解,方程也有两解.所以方程有个解,选D.【考点】1、分段函数;2、函数的零点.26.已知,又若满足的有四个,则的取值范围为()A.B.C.D.【答案】B【解析】依题意,即,由于这个是对钩函数,可排除A,C,D.也可以画出函数图象如下图所示,要有四个交点,则选B.【考点】函数图象与性质.【思路点晴】先按题意,我们将其分类参数,也就是说,把含有的放一边,其它的方另外一边,得到,此时,可以利用基本不等式得到,由于这个是对钩函数,易排除A,C,D.当我们在研究两个函数有四个零点问题的时候,也可以先分离参数,将不含参数部分的图象画出来,根据图象来求参数的取值范围.27.已知函数,函数在处的切线与直线垂直.(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)由导数几何意义得,求出导数,代入解得(Ⅱ)函数存在单调递减区间,等价于在上有解,求出导函数化简不等式得在上有解,最后根据二次方程实根分布得充要条件,解得b的取值范围是.(Ⅲ)先根据是函数的两个极值点,即是两个根,得,再化简,消参数b得,再令得,解得,由解出函数定义域:,可得,最后利用导数求函数最值试题解析:(Ⅰ)∵,∴.∵与直线垂直,∴,∴.(Ⅱ)由题知在上有解,设,则,所以只需故b的取值范围是.(Ⅲ)令得由题,则,所以令,又,所以,所以整理有,解得,所以在单调递减故的最小值是【考点】导数几何意义,利用导数研究函数单调性,利用导数求函数最值【思路点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.28.已知是R上的增函数,则实数a的取值范围()A.[4,8 )B.(4,8)C.(1,8)D.(1, +∞)【答案】A.【解析】由题意得,选A.【考点】分段函数单调性【方法点睛】已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.29.直线分别与曲线交于点,则的最小值为()A.2B.C.1D.【答案】A【解析】令,令,在上为增函数,即在区间成立,而的导数恒为,也就是说,从起,越来越陡,保持匀速递增,两个图象的水平距离越来越大,故当时,取得最小值为.【考点】函数导数与不等式,数形结合的数学思想.【思路点晴】本题考查函数导数与不等式,数形结合的数学思想方法.一开始,我们可以先利用导数画出两个函数的图象.对比这两个图象间的水平距离,会发现可以先求出函数的切线与平行的那条的方程,由此就可以求出两者水平距离的最小值.由于是匀速递增的,而在增加得越来越快,从图象上看出,两种水平距离越来越大.30.已知函数的定义在实数集上的奇函数,且当时,(其中是的导函数),若,,,则A.B.C.D.【答案】A【解析】因为是奇函数,则,则不等式为,即,设,则是偶函数,又,所以是上的减函数,是上的增函数,,,又,所以,即.故选A.【考点】函数的奇偶性,单调性.导数的应用.【名师】1.奇函数在和上的单调性相同,偶函数在和上的单调性相反,2.对于已知不等式中既有又有,一般不能直接确定的正负,即不能确定的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有,,,等等.31.函数且,则 .【答案】【解析】时,,此方程无解,当时,,所以.【考点】分段函数求值.32.已知为奇函数,则的值为()A.B.C.D.【答案】A【解析】因为函数为奇函数,则,故选A.【考点】函数的奇偶性.33.已知函数,若对,使得,则的取值范围是()A.B.C.D.【答案】C【解析】因为,使得等价于,又因为,(时等号成立),,所以,即,故选C.【考点】1、全称量词与存在量词的应用;2、对数函数的性质及配方法求最值.【方法点睛】本题主要考查函数的最值、全称量词与存在量词的应用,属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.34.已知函数,恒过点,且.(1)求的解析式;(2)若对都成立,求实数的取值范围;(3)当时,证明:.【答案】(1);(2);(3)证明见解析.【解析】(1)由恒过点,∴,由得,进而;(2)对都成立等价于,只需利用导数求出最大值即可;(3)设,则可得∴在上单调递增,成立,即可证原式.试题解析:(1)由题意得恒过点,∴,又∵,∴,∴.(2),即,即,设,令,得,∴在上单调递增,在上单调递减,,∴.(3)设,则,由(2)得,当时,,所以>0,∴在上单调递增,又∵,∴,即,即,得证.【考点】1、利用导数函数的单调性及求最值;2、不等式恒成立问题及不等式证明问题.【方法点睛】本题主要考查利用导数研究函数的单调性、不等式恒成立及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简,或者构造新函数进一步利用导数证明.本题(3)就是构造函数后利用单调性证明的.35.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府。

《函数与导数》测试题(含标准答案)

《函数与导数》测试题(含标准答案)

《函数与导数》测试题一、选择题1.函数的单调递增区间是( )A. B.(0,3) C.(1,4) D 。

解析 ,令,解得,故选D2。

已知直线y=x+1与曲线相切,则α的值为 ( )A.1 B. 2 C 。

-1 D 。

-2 解:设切点,则,又。

故答案 选B 3。

已知函数在R 上满足,则曲线在点处的切线方程是( )A. B 。

C. D 。

解析 由得几何,即,∴∴,∴切线方程,即选A4。

存在过点的直线与曲线和都相切,则等于() A .或 B .或 C .或 D .或解析 设过的直线与相切于点,所以切线方程为即,又在切线上,则或,x e x x f )3()(-=)2,(-∞),2(+∞()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-()0f x '>2x >y ln()x a =+00(,)P x y 0000ln 1,()y x a y x =+=+0'01|1x x y x a===+00010,12x a y x a ∴+=∴==-∴=()f x 2()2(2)88f x f x x x =--+-()y f x =(1,(1))f 21y x =-y x =32y x =-23y x =-+2()2(2)88f x f x x x =--+-2(2)2()(2)8(2)8f x f x x x -=--+--22()(2)44f x f x x x --=+-2()f x x =/()2f x x =12(1)y x -=-210x y --=(1,0)3y x =21594y ax x =+-a 1-25-641-21474-25-6474-7(1,0)3y x =300(,)x x 320003()y x x x x -=-230032y x x x =-(1,0)00x =032x =-当时,由与相切可得, 当时,由与相切可得,所以选. 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

02函数与导数大题 答案1. 已知函数322()4361,f x x tx t x t x R t R =+-+-∈∈,其中,(1)当t =1时,求曲线()(0,(0))y f x f =在点处的切线方程; (2)当t≠0时,求函数()f x 的单调区间;(3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点。

2. 设函数)1ln(2)1()(2x x x f +-+=(1)若关于x 的不等式0)(≥-m x f 在]1,0[-e 有实数解,求实数m 的取值范围; (2)设1)()(g 2--=x x f x ,若关于x 的方程p x =)(g 至少有一个解,求p 的最小值. (3)证明不等式:nn 131211)1ln(++++<+ )(*N n ∈ 3. 已知函数)0(1ln)(2>+-=a x ax xx f (1)若)(x f 是单调函数,求a 的取值范围。

(2)若)(x f 有两个极值点21,x x ,证明:2ln 23)()(21->+x f x f 。

…12分4. 设函数22()f x a x =(0a >),()ln g x b x =.(1) 将函数()y f x =图象向右平移一个单位即可得到函数()y x ϕ=的图象,试写出()y x ϕ=的解析式及值域;(2) 关于x 的不等式2(1)()x f x ->的解集中的整数恰有3个,求实数a 的取值范围; (3) 对于函数()f x 与()g x 定义域上的任意实数x ,若存在常数,k m ,使得()f x kx m ≥+和()g x kx m ≤+都成立,则称直线y kx m =+为函数()f x 与()g x 的“分界线”.设2a =,b e =,试探究()f x 与()g x 是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.1解析:(1)简单考查导数的几何意义,导数运算以及直线方程;(2)考查导数在研究函数的单调性方面的运用,分类讨论;(3)考查分类讨论,函数与方程以及函数零点的性质,是中档偏上题。

(1)当t =1时,322()436,(0)0,()1266,(0)6,f x x x x f f x x x f ''=+-==+-=-()(0,(0))6.y f x f y x ==-所以曲线在点处的切线方程为(2)22()1266,()0.2tf x x tx t f x x t x ''=+-==-=令,解得或 因为t≠0,以下分两种情况讨论: ①若0,x ()()tt t f x f x '<<-则当变化时,,的变化情况如下表:所以,()f x 的单调递增区间是(,)2-∞,(-t ,∞);()f x 的单调递减区间是(,)2t t -。

②若0,x ()()tt t f x f x '>-<则当变化时,的变化情况如下表:所以,()f x 的单调递增区间是(-∞,t ),(,)2+∞;()f x 的单调递减区间是(,)2t t -。

综上可得:当t<0时,()f x 的单调递增区间是(,)2t -∞,(-t ,∞);()f x 的单调递减区间是(,)2t t -当t>0时, ()f x 的单调递增区间是(-∞,t ),(,)2t +∞;()f x 的单调递减区间是(,)2t t -。

(3)由(2)可知,当t >0时,()f x 在(0,)2t 内的单调递减,在(,)2t +∞内单调递增,以下分两种情况讨论:①当12()2tt f x ≥≥即时,在(0,1)内单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-⨯-⨯+< 所以对任意[2,],()t f x ∈+∞在区间(0,1)内均存在零点。

②当01022t t <<<<即时,()f x 在(0,)2t 内的单调递减,在(,1)2t内单调递增,若(]0,1t ∈,则337710244t f t t t ⎛⎫=-+-≤-< ⎪⎝⎭ (可以证明()3714g t t t =-+-在区间⎛ ⎝⎭递增,在区间⎫⎪⎪⎝⎭上递减,且0g <⎝⎭,所以()02t f g t ⎛⎫=< ⎪⎝⎭对(]0,1t ∈恒成立),()21643643230f t t t t t =-++≥-++=-+>(也可以利用二次函数的性质,得出()()21643h t f t t ==-++在区间(]0,1上的最小值为()110h =>,所以()()10f h t =>对(]0,1t ∈恒成立)所以()f x 在区间,12t ⎛⎫⎪⎝⎭存在零点; 若()1,2t ∈,则3377110244t f t t t ⎛⎫=-+-<-+< ⎪⎝⎭,()010f t =->所以()f x 在区间0,2t ⎛⎫⎪⎝⎭内存在零点综上所述,对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点。

2. 解:(1)依题意得,在区间]1,0[-e 上,m x f m ≥ax )(()12212)1(2)(++=+-+='x x x x x x f ,而函数)(x f 的定义域为),1(∞+-∴)(x f 在)0,1(-上为减函数,在),0(∞+上为增函数,则)(x f 在]1,0[-e 上为增函数2)1()(2max -=-=∴e e f x f即实数m 的取值范围为22-≤e m ………………………………4分 (2)1)()(g 2--=x x f x )]1ln(x [2)1ln(22x x x +-=+-=,xxx x g +=+-='12)111(2)( 显然,函数)(g x 在)0,1(-上为减函数,在),0(∞+上为增函数 则函数)(g x 的最小值为0)0(g =所以,要使方程p x =)(g 至少有一个解,则0≥p ,即p 的最小值为0 …………8分 (3)由(2)可知:g()2[ln(1)]0x x x =-+≥在),1(∞+-上恒成立 所以x x ≤+)1ln(,当且仅当x =0时等号成立令*1()x n N n =∈,则)1,0(∈x 代入上面不等式得:n n 1)11ln(<+ 即n n n 11ln <+,即nn n 1ln )1ln(<-+ 所以,11ln 2ln <-,212ln 3ln <-,313ln 4ln <-,…,nn n 1ln )1ln(<-+将以上n 个等式相加即可得到:nn 131211)1ln(++++<+ ……………12分3解:(Ⅰ)f (x )=-ln x -ax 2+x (x >0) ,f '(x )=- 1x -2ax +1=-2ax 2-x +1x.…2分令Δ=1-8a .当a ≥ 18时,Δ≤0,f '(x )≤0,f (x )在(0,+∞)单调递减. …4分当0<a < 18时,Δ>0,方程2ax 2-x +1=0有两个不相等的正根x 1,x 2,不妨设x 1<x 2,则当x ∈(0,x 1)∪(x 2,+∞)时,f '(x )<0,当x ∈(x 1,x 2)时,f '(x )>0, 这时f (x )不是单调函数.综上,a 的取值范围是[ 18,+∞). …6分(Ⅱ)由(Ⅰ)知,当且仅当a ∈(0, 18)时,f (x )有极小值点x 1和极大值点x 2,且x 1+x 2=12a ,x 1x 2=12a.f (x 1)+f (x 2)=-ln x 1-ax 21+x 1-ln x 2-ax 22+x 2=-(ln x 1+ln x 2)- 1 2(x 1-1)- 12(x 2-1)+(x 1+x 2)=-ln(x 1x 2)+ 1 2(x 1+x 2)+1=ln(2a )+14a +1. …9分令g (a )=ln(2a )+14a +1,a ∈(0, 18],则当a ∈(0, 1 8)时,g '(a )= 1 a -14a 2=4a -14a 2<0,g (a )在(0, 18)单调递减, 所以g (a )>g ( 18)=3-2ln 2,即f (x 1)+f (x 2)>3-2ln 2.4分析: (1)简单考查函数图像的平移及值域的不变性; (2)该题考查把不等式2(1)()x f x ->的解集中的整数恰有3个转化为解集的两个端点所在区间问题,从而把问题转化为研究二次方程的根的分布问题;又由于转化后的不等式可以分解因式因此可以化为更简单的问题求解; (3)该题一般的思考应该是分两次研究两个恒成立问题,含有两个参数,增加问题的难度,如果能转化为求公共切线问题,就可以使问题得到简化,因此可以想到这两条曲线是否存在公共点,即探讨两曲线的交点,再研究过交点的公共切线;该题考查函数性质、数形结合、解不等式、导数及其运用、分类讨论、转化化归能力、分析问题解决问题能力,其中(1)是简单题, (2)是中档题, (3)是难题。

4解:(1)22()(1)x a x ϕ=-,值域为[0,)+∞ …………2分 (2)解法一:不等式2(1)()x f x ->的解集中的整数恰有3个,等价于22(1)210a x x --+>恰有三个整数解,故210a -<,令22()(1)21h x a x x =--+,由(0)10h =>且2(1)0(0)h a a =-<>, 所以函数22()(1)21h x a x x =--+的一个零点在区间(0,1),则另一个零点一定在区间[3,2)--, …………4分故(2)0,(3)0,h h ->⎧⎨-≤⎩解之得4332a ≤<. …………6分解法二:22(1)210a x x --+>恰有三个整数解,故210a -<,即1a >,[][]22(1)21(1)1(1)10a x x a x a x --+=--+->,所以1111x a a <<-+,又因为1011a<<+, …………4分 所以1321a -≤<--,解之得4332a ≤<. ……6分(3)设21()()()ln 2F x f x g x x e x =-=-,则2'()e x e F x x x x -=-==.所以当0x <<'()0F x >;当x >'()0F x <.因此x =()F x 取得最小值0,则()f x 与()g x 的图象在x =)2e. ………8分设()f x 与()g x 存在 “分界线”,方程为(2ey k x -=,即2ey kx =+-由()2e f x kx ≥+-x ∈R 恒成立,则2220x kx e --+≥在x ∈R 恒成立 .所以22244(2)4844(0k e k e k ∆=-=-=≤成立,因此k =………8分下面证明()(0)2eg x x ≤->恒成立.设()ln 2e G x e x =-,则()e G x x '=-=.所以当0x <<'()0G x >;当x >'()0G x <.因此x =()G x 取得最大值0,即()()02eg x x ≤->成立.故所求“分界线”存在,其方程为:2ey =-. …………12分。

相关文档
最新文档