线性代数选择题(考试用题)

合集下载

2020年10月04184线性代数真题及答案

2020年10月04184线性代数真题及答案

2020年10月《线性代数》真题一、单项选择题(本大题共5小题,每小题2分,共10分。

在每小题列出的四个备选项汇总,只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

)1.设()0125101232a x a x x f +=-=,则=0a ()A.-7B.-4C.4D.72.设A 为3阶矩阵,将A 的第2行与第3行互换得到矩阵B ,再将B 的第1列的(-2)倍加到第3列得到单位矩阵E ,则=A ()A.⎪⎪⎪⎭⎫ ⎝⎛010100021B.⎪⎪⎪⎭⎫ ⎝⎛-010100021C.⎪⎪⎪⎭⎫ ⎝⎛-010100201D.⎪⎪⎪⎭⎫ ⎝⎛010100201 3.若向量组⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫⎝⎛-=3112α,⎪⎪⎪⎭⎫ ⎝⎛-=k 623α,⎪⎪⎪⎭⎫ ⎝⎛--=k 2024α的秩为2,则数=k ()A.1B.2C.3D.44.设线性方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多个解,则数=a ()A.-2B.-1C.1D.25.设2阶矩阵A 满足032=+A E ,0=-A E ,则=+E A ()A.23-B.32-C.32D.23 二、填空题(本大题共10小题,每小题2分,共20分。

请在每小题的横线上填上正确答案,错填、未填均无分。

)6.行列式=1641931421______。

7.设3解矩阵()321,,βββ=B ,若行列式2-=B ,则行列式=-13122,,3ββββ______。

8.已知n 阶矩阵A 满足O E A A =--2,则=-1A ______。

(用矩阵A 表示)9.设A 为2阶矩阵,若存在矩阵⎪⎪⎭⎫ ⎝⎛-=1021P ,使得⎪⎪⎭⎫ ⎝⎛-=-20011AP P ,则=A ______。

10.设向量组()T0,0,11=α,()T 4,2,02=α,()Tt ,3,13-=α线性无关,则数t 的取值应满足______。

线性代数练习题(有答案)

线性代数练习题(有答案)

《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。

线性代数选择题30道(含答案)

线性代数选择题30道(含答案)

仅有零解。 10.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向
量,则( ) A.A与B相似 B.
,但|A-B|=0
C.A=B
D.A与B不一定相似,但|A|=|B|
11. 已知矩阵,则
12. 设四阶行列式,则其中x的一次项的系数为 ( ) (B) -1 (C) 2 (D) -2
(A) 1
(A) (B)
(C) (D)
16.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩
阵X=( ) A.A-1CB-1 C.B-1A-1C
B.CA-1B-1 D.CB-1A-1
17.设是四维向量,则( )
A.一定线性无关 B.一定线性相关
C.一定可以由线性表示 D.一定可以由线性表出
18.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )
13. 设分块矩阵,其中的子块A1, A2为方阵,O为零矩阵,若A可逆,则
()
(A) A1可逆,A2不一定可逆
(B) A2可逆,A1不一定可逆
(C) A1,A2都可逆
(D) A1,A2都不一定可逆
14. 用初等矩阵左乘矩阵,相当于对A进行如下何种初等变换 ( ) (A) (B) (C) (D)
15. 非齐次线性方程组在以下哪种情形下有无穷多解. ( )
27.若A为( ),则A必为方阵.
A.分块矩阵
B. 可逆矩阵
C. 转置矩阵
D.线性方程组的系数矩阵
28.当k满足(
)时,
只有零解.
A. k=2或k=-2
B. k≠2
C. k≠-2
D. k≠2且k≠-2
29.设A为n阶可逆阵,则下列(
)恒成立.

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

线性代数考试试题

线性代数考试试题

线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。

答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。

答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。

答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。

答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。

答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。

答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。

答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。

《线性代数》选择题(有答案,部分有讲解)

《线性代数》选择题(有答案,部分有讲解)
首页 上页 返回 下页 结束 铃
《线性代数》选择题
25.已知 β1 , β2 是非齐次线性方程组 Ax b 的两个不同 的解, α1 , α2 是对应齐次线性方程组 Ax 0 的基础解系, k1 , k2 为任意常数,则方程组 Ax b 的通解必是( B ). β1 β2 (A) k1α1 k2 (α1 α2 ) ; 2 β1 β2 (B) k1α1 k2 (α1 α2 ) ; 2 β1 β2 (C) k1α1 k2 ( β1 β2 ) ; 2 β1 β2 (D) k1α1 k2 ( β1 β2 ) . 2 β1 β2 ) b; α1, β1 β2 可能线性相关. 提示: A( 2
首页 上页 返回 下页 结束 铃
《线性代数》选择题
4. 设 n 阶方阵 A, B 满足 AB O ,且 B O ,则必有( D ). (A) A O ; (B) | B | 0 ; (C) ( A B ) 2 A2 B 2 ; (D) | A | 0 .
5.设 n 阶方阵 A 中有 n 2 n 个以上元素为零,则行列式 | A |的值( B ). (A) 大于零; (B) 等于零; (C) 小于零; (D) 不能确定.
首页 上页 返回 下页 结束 铃
《线性代数》选择题
10. A, B, C 均为 n 阶方阵, ABC E , 设 且 则必有( A ). (A) BCA E ; (B) BAC E ; (C) CBA E ; (D) ACB E .
提示: AA1 A1 A E
11.设 n 阶方阵 A 满足关系式 A3 O ,则必有( D ). 2 (A) A O ; (B) A O ; * ( I A) 1 I A A2 . (C) A O ; (D)

线代第一章测试题及答案

线代第一章测试题及答案

线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。

答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。

答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。

答案:线性无关4. 一个n阶方阵的行列式等于______。

答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。

答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。

2. 请解释什么是矩阵的转置。

答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。

四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。

答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。

答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

2022年线性代数试卷及答案6套

2022年线性代数试卷及答案6套

线性代数试卷及答案6套.试卷(一): 一. 填空题(每小题4分,共20分)1.已知正交矩阵P 使得⎪⎪⎪⎭⎫ ⎝⎛--=200010001AP P T ,则.________)(2006=+P A E A P T2.设A 为n 阶方阵,n λλ,,1 为A 的n 个特征值,则 ._________)det(2=A 3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:._________4.若向量组T T T t )3,2,(,)1,3,2(,)2,4,0(===γβα的秩为2,则._____=t5.,27859453251151)(32--=x x x x D 则0)(=x D 的全部根为:_________.二. 选择题 (每小题4分,共20分)1.行列式001010100 ---的值为( ).A. 1B. -1C. 2)1()1(--n n D. 2)1()1(+-n n2. 对矩阵n m A ⨯施行一次行变换相当于( ).A. 左乘一个m 阶初等矩阵B. 右乘一个m 阶初等矩阵C. 左乘一个n 阶初等矩阵D. 右乘一个n 阶初等矩阵 3. 若A 为n m ⨯矩阵,{},,0|,)(n R X AX X M n r A r ∈==<= 则( ). A. M 是m 维向量空间 B. M 是n 维向量空间 C. M 是r m -维向量空间 D. M 是r n -维向量空间 4. 若n 阶方阵A 满足,,02=A 则下列命题哪一个成立 ( ).A. 0)(=A rB. 2)(n A r =C. 2)(n A r ≥D. 2)(nA r ≤5. 若A 是n 阶正交矩阵,则下列命题哪一个不成立( ). A. 矩阵T A 为正交矩阵 B. 矩阵1-A 为正交矩阵 C. 矩阵A 的行列式是1± D. 矩阵A 的特征值是1±三. 解下列各题(每小题6分,共30分)1. 若A 为3阶正交矩阵, *A 为A 的伴随矩阵, 求).det(*A2. 计算行列式.111111111111aa a a 3. 设,,100002020B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛=求矩阵.B4. 求向量组,)2,1,2,1(1T =α,)2,1,0,1(2T =α,)0,0,1,1(3T =αT )4,2,1,1(4=α的一个 最大无关组.5. 求向量T )1,2,1(=ω在基,)1,1,1(T =α,)1,1,0(T =βT )1,1,1(-=γ下的坐标. 四. (12分) 求方程组⎪⎩⎪⎨⎧=+--+=+++-=++-+631052372322543215432154321x x x x x x x x x x x x x x x的通解(用基础解系与特解表示).五.(12分) 用正交变换化下列二次型为标准型, 并写出正交变换矩阵3123222132122),,(x x x x x x x x x f -++= 六. 证明题(6分)设r ξξξβ ,,,021≠是线性方程组β=AX 对应的齐次线性方程组的一个 基础解系,η是线性方程组β=AX 的一个解, 求证ηηξηξηξ,,,,21+++r 线性无关.试卷(二):一.计算下列各题:(每小题6分,共30分)(1),180380162176380162225379162(2)求,3222E A A ++其中⎪⎪⎭⎫⎝⎛-=3112A(3)已知向量组T T T t ),2,1(,)3,3,2(,)3,2,0(321-===ααα线性相关,求.t (4) 求向量T )4,2,1(-=α在基T T T )1,2,1(,)1,1,0(,)1,0,1(321-===ααα下的坐标.(5) 设⎪⎪⎭⎫⎝⎛=5321A , 求A 的特征值.二.(8分) 设⎪⎪⎪⎭⎫ ⎝⎛=200002130A ,且,B A AB T +=求矩阵B.三. (8分) 计算行列式: 100200300321x c b a四. (8分) 设有向量组,)6,0,2,3,3(,)7,2,0,1,1(,)5,2,1,0,1(,)3,2,1,1,0(4321T T T T -=--===αααα 求该向量组的秩以及它的一个最大线性无关组.五. (8分) 求下列方程组的通解以及对应的齐次方程组的一个基础解系.⎪⎩⎪⎨⎧=--+=+-+-=-+-+.18257,432,1042354315432154321x x x x x x x x x x x x x x六. (8分) 求出把二次型323121232221222)(x x x x x x x x x a f -++++=化为标准形的正交变换,并求出使f 为正定时参数a 的取值范围.七. (10分) 设三阶实对称矩阵A 的特征值为3(二重根)、4(一重根),T )2,2,1(1=α是A 的属于特征值4的一个特征向量,求.A 八. (10分) 当b a ,为何值时,方程组⎪⎩⎪⎨⎧=++=++=++,233,1032,4321321321x bx x x bx x x x ax 有惟一解、无穷多解、无解?九.(10分) (每小题5分,共10分) 证明下列各题(1) 设A 是可逆矩阵, ,~B A 证明B 也可逆, 且.~11--B A (2) 设βα,是非零1⨯n 向量,证明α是n n ⨯矩阵T αβ的特征向量.试卷(三):一. 填空题(共20分)1. 设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有唯一解的充分必要条件是:2. 已知E 为单位矩阵, 若可逆矩阵P 使得11223,P AP P A P E --+= 则当E A -可逆时, 3A =3. 若t 为实数, 则向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3+t )的秩为:4. 若A 为2009阶正交矩阵,*A 为A 的伴随矩阵, 则*A =5. 设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i i i E A λ=-∑ =二. 选择题(共20分)1. 如果将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵为)),(,(k i j P 将矩阵n m A ⨯的第i 列乘k 加到第j 列相当于把A :A, 左乘一个));(,(k j i P B ,右乘一个));(,(k j i PC . 左乘一个));(,(k i j PD ,右乘一个)).(,(k i j P2. 若A 为m ×n 矩阵,B 是m 维非零列向量,()min{,}r A r m n =<。

线性代数考试练习题带答案大全

线性代数考试练习题带答案大全

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

线性代数考试题及答案考研

线性代数考试题及答案考研

线性代数考试题及答案考研一、选择题1. 设矩阵A的秩为1,矩阵B与矩阵A相抵消,那么矩阵B的秩为:- A. 0- B. 1- C. 2- D. 不确定2. 若矩阵A可逆,且AB=0,则:- A. A可逆,B不可逆- B. B可逆,A不可逆- C. A和B都可逆- D. A和B都不可逆二、填空题1. 若向量组\[a_1, a_2, a_3\]线性相关,则至少存在不全为零的实数\[c_1, c_2, c_3\],使得\[c_1a_1 + c_2a_2 + c_3a_3 =\_\_\_\_\_\_。

2. 设矩阵\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵\[A\]的特征值是\_\_\_\_\_\_。

三、解答题1. 已知矩阵\[B = \begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求矩阵\[B\]的逆矩阵。

2. 设\[x\]是\[3 \times 1\]的列向量,\[A\]是\[3 \times 3\]的矩阵,若\[Ax = 0\],证明\[x\]是矩阵\[A\]的零空间的基。

答案一、选择题1. 正确答案:A. 0解析:若矩阵B与矩阵A相抵消,则B的列向量是A的行向量的线性组合,因此B的秩小于等于A的秩。

由于A的秩为1,所以B的秩为0。

2. 正确答案:D. A和B都不可逆解析:若AB=0,则A和B至少有一个是不可逆的。

因为如果A可逆,则AB=I,这与AB=0矛盾。

同理,如果B可逆,则AB=I,也与AB=0矛盾。

二、填空题1. 正确答案:0解析:线性相关意味着存在不全为零的系数使得向量和为零向量。

2. 正确答案:2, -1解析:通过计算特征多项式\[|A - λI| = 0\],解得特征值为2和-1。

三、解答题1. 解:矩阵B的逆矩阵计算如下:\[B^{-1} = \frac{1}{\det(B)} \cdot \text{adj}(B)\]其中,\[\det(B) = 2 \cdot 2 - 1 \cdot 4 = 0\],因此矩阵B 不可逆,没有逆矩阵。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数选择题道(含答案)
1.设矩阵A=
100
020
003







,则A-1等于()
A.
1
3
00
1
2
001










B.
100
1
2
00
1
3








⎪⎪
C.
1
3
00
010
00
1
2







⎪⎪
D.
1
2
00
1
3
001










2.设A是方阵,如有矩阵关系式AB=AC,则必有()
A. A =0
B. B≠C时A=0
C. A≠0时B=C
D. |A|≠0时B=C
3.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()
A.η1+η2是Ax=0的一个解
B.1
2
η1+
1
2
η2是Ax=b的一个解
C.η1-η2是Ax=0的一个解
D.2η1-η2是Ax=b的一个解
4.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则
必有()
A. k≤3
B. k<3
C. k=3
D. k>3
5.下列矩阵中是正定矩阵的为()
A.
23
34




⎪ B.
34
26





C.
100
023
035
-
-







D.
111
120
102







6.下列矩阵中,()不是初等矩阵。

A.
001
010
100
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎣⎦ B.
100
000
010
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎣⎦
C.
100
020
001
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎣⎦ D.
100
012
001
⎡⎤
⎢⎥
-
⎢⎥
⎢⎥
⎣⎦
7.设向量组
123,,ααα线性无关,则下列向量组中线性无关的是( )。

A.
122331,,αααααα--- B.1231,,αααα+ C.1212,,23αααα- D.2323,,2αααα+
8.设A 为n 阶方阵,且250A A E +-=。


1(2)A E -+=( ) A. A E - B. E A + C. 1()3A E - D. 1()3A E +
9.设A 为n m ⨯矩阵,则有( )。

A.若n m <,则b Ax =有无穷多解;
B.若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;
C.若A 有n 阶子式不为零,则b Ax =有唯一解;
D.若A 有n 阶子式不为零,则0=Ax 仅有零解。

10.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )
A.A 与B 相似
B.A B ≠,但|A-B |=0
C.A=B
D.A 与B 不一定相似,但|A|=|B|
11. 已知矩阵3 4 6 2 4 2
1 6 3 1 1
2 3- 0 2
1 1 1 1 1 =A ,则. )(=A r
; 1 )(A ;
2 )(B ;
3 )(C 5 )(D 12. 设四阶行列式11120
111001
11
11------=x D ,则其中x 的一次项的系数为 ( )
(A) 1 (B) -1 (C) 2 (D) -2
13. 设分块矩阵⎪⎪⎭
⎫ ⎝⎛=231
A A O A A ,其中的子块A 1, A 2为方阵,O 为零矩阵,若A 可逆,则 ( ) (A) A 1可逆,A 2不一定可逆 (B) A 2可逆,A 1不一定可逆
(C) A 1,A 2都可逆 (D) A 1,A 2都不一定可逆
14. 用初等矩阵⎪⎪⎪⎭⎫ ⎝⎛010100001左乘矩阵⎪⎪⎪⎭
⎫ ⎝⎛=642113112A ,相当于对A 进行如下何种初等变换 ( )
(A) 21r r ↔ (B) 32r r ↔ (C) 21c c ↔ (D) 32c c ↔
15. 非齐次线性方程组b x A =⨯55在以下哪种情形下有无穷多解. ( )
(A) 5),( ,4)(==b A A R R (B) 4),( ,3)(==b A A R R
(C) 4),( ,4)(==b A A R R (D) 5),( ,5)(==b A A R R
16.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )
A.A -1CB -1
B.CA -1B -1
C.B -1A -1C
D.CB -1A -1 17.设54321,,,,ααααα是四维向量,则( )
A.54321,,,,ααααα一定线性无关
B.54321,,,,ααααα一定线性相关
C.5α一定可以由4321,,,αααα线性表示
D.1α一定可以由5432,,,αααα线性表出 18.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( )
A.A =0
B.A =E
C.r (A )=n
D.0<r (A )<(n )
19.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( )
A.Ax =0只有零解
B.Ax =0的基础解系含r (A )个解向量
C.Ax =0的基础解系含n -r (A )个解向量
D.Ax =0没有解
20.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( )
A.21ηη+是Ax =b 的解
B.21ηη-是Ax =b 的解
C.2123ηη-是Ax =b 的解
D.2132ηη-是Ax =b 的解 21、如果矩阵A 满足2A A =,则( )
A 、A=0
B 、A=E
C 、A=0或A=E
D 、A 不可逆或A
E -不可逆
22、若非齐次线性方程组Ax b =中,方程的个数少于未知量的个数,则( )
A 、0Ax =有无穷多解
B 、0Ax =仅有零解
C 、Ax b =有无穷多解
D 、Ax b =有唯一解
23、设321,,x x x 是齐次线性方程组0Ax =的基础解系,则下列向量组中,不是0Ax =的基 础解系的是[ ]
A 、3214,3,x x x
B 、321211,,x x x x x x +++
C 、3211,,x x x x +
D 、122331, , x x x x x x ---
24、设A 、B 是两个n 阶正交阵,则下列结论不正确的是[ ]
A 、A
B +是正交阵 B 、 AB 是正交阵
C 、1A -是正交阵
D 、1
B -是正交阵
25、设秩r s =),,,(21αααΛ, β不能由向量组s ααα,,,21Λ线性表示,则[ ]
A 、秩1),,,,(21+=r s βαααΛ,
B 、秩r s =),,,,(21βαααΛ,
C 、不能确定秩),,,,(21βαααs Λ
D 、以上结论都不正确
26.设βααα,,,321均为n 维向量,又βαα,,21线性相关,βαα,,32线性无关,则下列正确的是( )
A .321,,ααα线性相关
B .321,,ααα线性无关
C .1α可由βαα,,32线性表示
D .β可由21,αα线性表示 27.若A 为( ),则A 必为方阵.
A.分块矩阵
B. 可逆矩阵
C. 转置矩阵
D.线性方程组的系数矩阵
28.当k 满足( )时, 只有零解.
A. k=2或k=-2
B. k ≠2
C. k ≠-2
D. k ≠2且k ≠-2
29.设A 为n 阶可逆阵,则下列( )恒成立.
A.(2A)-1=2A -1
B.(2A -1)T =(2A T )-1
C.[(A -1)-1]T =[(A T )-1]-1
D.[(A T )T ]-1=[(A -1)-1]T
30.设A 是n 阶方阵,则A 能与n 阶对角阵相似的充要条件是( ).
A. A 是对角阵
B. A 有n 个互不相同的特征向量
C. A 有n 个线性无关的特征向量
D. A 有n 个互不相同的特征值
参考答案:1----5 BDAAC 6----10 BDCDA 11----15 CACBC 16----20 ABACC 21----25 DADAA 26----30 CBDCC。

相关文档
最新文档