高中函数复习教案

合集下载

高中数学单元复习教案

高中数学单元复习教案

高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。

一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。

希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。

高中数学下册函数教案模板

高中数学下册函数教案模板

高中数学下册函数教案模板教学目标:
1. 理解函数的定义和基本性质。

2. 掌握函数的概念和代数表达式。

3. 熟练运用函数的基本操作和性质解决实际问题。

4. 提高学生的数学思维能力和解题能力。

教学内容:
1. 函数的定义和基本性质
2. 函数的概念和代数表达式
3. 函数的基本操作和性质
4. 函数的图像和应用
教学步骤:
一、复习导入
1. 让学生回顾函数的定义和基本性质。

2. 提出一个函数的实际问题,引导学生思考如何解决。

二、讲解与练习
1. 介绍函数的概念和代数表达式,示范几个例题。

2. 给学生练习一些简单的函数操作题,巩固基本知识。

三、拓展应用
1. 引导学生观察函数的图像特点,分析其变化规律。

2. 提出一些应用题,让学生运用函数解决实际问题。

四、总结反馈
1. 总结本节课学习的内容,强调函数的重要性和应用价值。

2. 收集学生的反馈意见,了解他们的学习情况和问题。

教学资源:
1. PowerPoint课件
2. 作业本和练习题
3. 教学实例和案例
评价标准:
1. 能够准确理解和运用函数的基本概念和性质。

2. 能够正确解答相关的应用题和练习题。

3. 能够发展数学思维,提出合理的解题方法和思路。

教学反思:
教师在教学过程中应注重引导学生主动思考和探索,激发他们学习的兴趣和动力。

同时,要根据学生的实际情况进行差异化教学,关注学生个体发展的需要,帮助他们更好地掌握函数知识。

高中数学函数复习课教案

高中数学函数复习课教案

高中数学函数复习课教案
一、知识回顾
1. 函数的概念:函数的定义、自变量、因变量、定义域、值域等
2. 函数的表示形式:映射关系、解析式、图象、表格等
3. 基本初等函数:一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等
4. 函数的运算:函数的加减乘除、复合函数、反函数等
二、重点难点解析
1. 函数的复合:给出一个函数和一个变量,求复合函数值
2. 反函数的求法:通过函数的图象求反函数
三、能力训练
1. 练习一:已知函数$f(x)=2x-1$,求$f(f(x))$的解析式。

2. 练习二:已知函数$f(x)=3x+2$,求反函数$f^{-1}(x)$的解析式。

3. 练习三:函数$y=\sqrt{x}$的图象如何与$x$轴交点构成的图形?
4. 练习四:如果$f(x)=\frac{1}{x}$,求$f(2)+f(3)$的值。

四、拓展应用
1. 通过函数的图象,求函数的性质和特点。

2. 通过函数的解析式,构建实际问题,进行解题。

五、任务布置
1. 复习函数的基本概念和运算法则。

2. 练习函数的复合运算和反函数的求法。

3. 拓展思维,思考函数在实际问题中的应用及解法。

六、板书设计
1. 函数的定义和表示形式;
2. 函数的运算规律;
3. 函数的图象和性质。

七、教学反馈
1. 对学生的表现进行评价,引导学生查漏补缺;
2. 学生提出教学反馈意见,以便教师调整教学方式。

高中数学函数复习有哪些教案

高中数学函数复习有哪些教案

高中数学函数复习教案一一、教学目标1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。

2、过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3、情态与价值,使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感.二、教学重点与难点重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性.三、学法与教学用具1、从观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。

通过练习、交流反馈,巩固从而完成本节课的教学目标。

2、教学用具:投影仪、计算机.四、教学思路:(一)创设情景,揭示课题观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律。

以上就是育德教育为大家准备的高中数学教师试讲教案,希望大家都能通过试讲环节。

高中数学函数复习教案二一、教学背景《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。

本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。

运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。

学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。

本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。

函数单调性复习教案

函数单调性复习教案

函数单调性复习教案教案标题:函数单调性复习教案教学目标:1. 确定学生对函数单调性的理解程度,并能够准确地定义函数的单调性。

2. 帮助学生回顾和巩固函数单调性的相关概念和性质。

3. 培养学生通过图像、表格和符号等多种方式判断函数的单调性的能力。

4. 提供练习和应用机会,以加深学生对函数单调性的理解和运用。

教学准备:1. 教师准备多媒体投影仪、电脑和投影屏幕。

2. 教师准备白板、白板笔和彩色粉笔。

3. 教师准备教材、教辅资料和练习题。

教学过程:一、导入(5分钟)1. 教师通过提问或展示一个函数图像的方式引入本节课的话题。

2. 引导学生回顾函数的基本概念和性质,例如定义域、值域、图像、奇偶性等。

二、概念复习(10分钟)1. 教师通过多媒体投影仪展示函数单调性的定义和相关概念。

2. 引导学生参与讨论,共同理解函数单调性的含义和特点。

3. 教师通过示例函数的图像和数学表达式,引导学生判断函数的单调性。

三、性质讲解(15分钟)1. 教师通过多媒体投影仪展示函数单调性的性质和判断方法。

2. 引导学生思考和讨论函数单调性与导数的关系,进一步理解函数单调性的特点。

3. 教师通过具体的例子和练习题,帮助学生掌握函数单调性的判断方法。

四、练习与应用(20分钟)1. 教师提供一些练习题,要求学生通过图像、表格和符号等方式判断函数的单调性。

2. 学生个别或小组合作完成练习,教师及时给予指导和反馈。

3. 教师引导学生应用函数单调性的概念和性质解决实际问题,培养学生的应用能力。

五、总结与拓展(10分钟)1. 教师与学生一起总结本节课的重点内容和学习收获。

2. 教师提供一些拓展问题,鼓励学生进一步思考和探索函数单调性的相关问题。

3. 教师布置课后作业,巩固和拓展学生对函数单调性的理解和应用。

教学评估:1. 教师观察学生在课堂上的参与度和表现情况。

2. 教师检查学生完成的练习题和课后作业,评估学生对函数单调性的掌握情况。

3. 教师与学生进行互动问答,检验学生对函数单调性的理解和运用能力。

切入实际,高中数学函数复习教案:让函数的应用更贴近生活

切入实际,高中数学函数复习教案:让函数的应用更贴近生活

高中数学函数是一门非常重要的知识,但是在学习的过程中,很多学生常常会出现一些问题,比如说,难以将函数的知识点与实际的应用场景联系起来,因此缺少了学习的动力和兴趣。

本文就为大家介绍一种新的教学方法——切入实际,让数学函数的应用更贴近生活,让学生更好地理解和掌握这一难点。

一、教学目标本次教学的主要目标是让学生将数学函数与实际应用场景和解决实际问题结合起来,让学生更好地理解函数的概念和性质,掌握函数的基本应用方法,从而提高学生的学习兴趣和效果,增强学生对数学的认识和理解,让学生懂得函数不仅仅是一堆代数式子,还有着丰富的现实意义。

二、教学重点和难点教学重点:构造实际应用场景,让数学函数真正地走进生活,并利用函数的性质求解实际问题。

教学难点:如何构造实际应用场景和解决实际问题,让学生对函数的应用方法有更为深入的理解。

三、教学策略本次教学主要采用“问题-解决”式的教学方法,通过给学生一些实际问题,让学生自己思考、解决,从而让学生学会如何将数学函数应用到实际场景中。

四、教学步骤1.引入老师可以给学生举一些实际例子,比如说:“如果你有一个花园,你要用多少桶水才能够将里面的草木浇水一遍?”或者是:“如果你开了一个洗衣店,每天的收入与洗涤件数之间有什么关系?”等等。

通过这些例子,可以培养学生的“问题感”,激起他们对数学函数的兴趣。

2.知识点讲解接下来,老师就可以对数学函数的基本概念和性质进行讲解。

这部分内容采用归纳法或者推导法都可以,可以根据实际情况选择。

3.应用训练接下来,老师可以提供一些实际问题,并带领学生一步步解决问题。

比如说:(1)你有一个花园,花园的长度为20米,宽度为10米。

现在你要对花园进行喷洒草木杀虫药。

喷洒药物的剂量要求每平方米至少喷洒1毫升,问你需要多少毫升的药物才能满足要求?在这个例子中,通过构造一个具体的场景,引导学生计算出需要喷药的总量。

这个题目还可以拓展,让学生自己思考如果加入某种因素的影响,会对喷药的总量产生怎样的影响。

高一数学函数教案

高一数学函数教案

高一数学函数教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!高一数学函数教案高一数学函数教案(精选3篇)高一数学函数教案篇1第四课时(2.1.2.(2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。

高三数学三角函数复习教案

高三数学三角函数复习教案

高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教诲学生,今天作者在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面知道函数单调性的概念,学会利用函数图像知道和研究函数的性质,初步掌控利用函数图象和单调性定义判定、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生视察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究进程培养学生仔细视察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一样,从感性到理性的认知进程.【教学重点】函数单调性的概念、判定及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际运用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判定或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判定或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用以下(1)函数的单调性起着承前启后的作用。

一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准肯定义,明确指出函数的增减性是相对于某个区间来说的。

高中数学专题函数教案模板

高中数学专题函数教案模板

高中数学专题函数教案模板
一、教学目标:
1. 理解函数的基本概念;
2. 掌握函数的定义和性质;
3. 能够求解函数的定义域、值域和单调性;
4. 能够绘制函数的图像。

二、教学重点:
1. 函数的定义和性质;
2. 函数的图像绘制。

三、教学难点:
1. 函数的单调性;
2. 函数的图像绘制。

四、教学准备:
1. 课件、教材、作业本;
2. 黑板、彩色粉笔;
3. 实验器材。

五、教学过程:
1. 导入:通过举例引入函数的概念,让学生了解函数的意义;
2. 讲解:讲解函数的定义和性质,重点讲解函数的单调性;
3. 实验:让学生通过实验验证函数的性质,如函数的定义域和值域;
4. 练习:让学生通过练习巩固所学内容,并解决相关问题;
5. 辅导:对学生提出的问题进行解答和辅导;
6. 总结:对本节课的内容进行总结,并布置下节课的作业。

六、教学反思:
1. 学生的学习情况:学生是否理解了函数的定义和性质;
2. 教学方法的效果:教师采用的教学方法是否得当;
3. 改进措施:针对学生的学习情况和教学效果,进行相应的改进措施。

七、作业布置:
1. 完成课堂练习;
2. 阅读教材相关章节。

以上就是本次高中数学专题函数教案的模板范本,可根据实际情况进行调整和完善。

希望对您有所帮助!。

高三一轮复习教案-函数与方程

高三一轮复习教案-函数与方程

课题:函数与方程(高三第一轮复习课)教学内容分析:本节课选自人教版必修一第三章第一节《函数与方程》内容。

函数与方程在高中数学中占举足轻重的地位,高考对函数零点的考查有:(1)求函数零点;(2)确定函数零点的个数:(3)根据函数零点的存在情况求参数值或取值范围。

题型既有选择题、填空题,又有解答题,客观题主要考查相应函数的图像和性质,主观题考查较为综合,涉及函数与方程、转化与化归、分类讨论、数形结合的思想方法等。

本节课通过对函数零点的讨论,将函数零点与方程的根、与函数图像三者有机结合起来。

它既揭示了函数与方程之间的内在联系,又对函数知识进行了总结拓展,同时将方程与函数图像联系起来,渗透了“数形结合”、“方程与函数”等重要思想。

学情分析:这是一个理科的普通班,学生基础普遍不扎实,学生具有强烈的畏难情绪,且眼高手低。

通过高一高二的知识积累,学生虽然对本节内容有简单的认识,但是时间较长,知识点大多遗忘。

所以,在本课开始前,先通过简单的知识梳理让学生把知识点贯穿起来,然后根据学生的实际情况进行适当的知识点拓展。

设计思想:教学理念:以第一轮复习为抓手,让学生把各个相关的知识点有机的结合起来。

教学原则:夯实基础,注重各个层面的学生。

教学方法:讲练结合,师生互动。

教学目标:知识与技能:让学生理清函数零点、函数图象与x轴的交点、方程的根三者之间的关系;弄清零点的存在性、零点的个数、零点的求解方法等三个问题。

过程与方法:利用已学过的函数的图像、性质去研究函数的零点。

情感态度与价值观:体会数形结合的数学思想及从特殊到一般的归纳思想,提高辩证思维以及分析问题解决问题的能力。

教学重点难点:重点:函数零点,方程的根,函数图象与x轴交点三者之间的互相联系。

难点:零点个数问题,含参数的零点问题。

教学程序框图:教学环节与设计意图:(一)、知识梳理设计意图:第一部分知识梳理要求学生在课前完成,学生回顾已学过的内容,结合相关知识整理出“函数与方程”的知识体系。

高一数学函数教案5篇

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇函数教学教案设计篇一教学目标:(一)教学学问点:1.对数函数的概念;2.对数函数的图象和性质。

(二)本领训练要求:1.理解对数函数的概念;2.把握对数函数的图象和性质。

(三)德育渗透目标:1.用联系的观点分析问题;2.认得事物之间的相互转化。

教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发觉、探究教学辅佑襄助:多媒体教学过程:一、引入对数函数的概念由同学的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否料想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要讨论的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(∞,+∞)2.对数函数的图象和性质:由于对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.讨论指数函数时,我们分别讨论了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并察看它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即那时候,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们紧要介绍了指数函数的反函数——对数函数.而且讨论了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3函数教学教案设计篇二一、教学内容分析本节内容是高一数学必修4(苏教版)第三章《三角恒等改换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。

高中数学重点教案

高中数学重点教案

高中数学重点教案目标:通过本课的教学,学生将能够掌握以下内容:1. 熟练掌握代数式的展开和因式分解。

2. 理解函数的概念及其图像。

3. 掌握一次函数、二次函数和指数函数的性质和变化规律。

4. 熟练解决函数方程和不等式。

5. 理解三角函数的基本概念及其性质。

教学重点:函数的概念和性质、三角函数的基本概念及性质。

教学难点:解决函数方程和不等式的方法。

教学准备:教材、教学课件、板书、教学工具。

教学过程:一、复习与导入(10分钟)1. 复习代数式的展开和因式分解的方法。

2. 导入函数的概念,引导学生思考函数的定义及其特点。

二、函数的性质与图像(20分钟)1. 讲解函数的定义和性质,引导学生理解函数的自变量和因变量的关系。

2. 通过具体的例子,让学生掌握一次函数、二次函数和指数函数的性质及其图像。

三、函数方程与不等式的解法(20分钟)1. 讲解函数方程和不等式的基本概念。

2. 带领学生掌握解决函数方程和不等式的方法,包括化简、整理等步骤。

四、三角函数的基本概念(15分钟)1. 讲解三角函数的定义和性质,引导学生理解三角函数的周期性和对称性。

2. 通过实例,让学生掌握三角函数的基本计算方法。

五、课堂练习与小结(15分钟)1. 布置练习题,让学生巩固本节课的内容。

2. 小结本节课的重点和难点,引导学生总结学习方法。

六、课后作业(5分钟)布置相应的课后作业,巩固本节课的知识点。

教学反思:本节课围绕函数的概念和性质展开,引导学生掌握函数的基本概念和解题方法。

在教学过程中,要注重引导学生发现问题、解决问题的能力,提高他们的数学思维和分析能力。

同时,灵活运用多种教学方法,激发学生的学习兴趣,提高教学效果。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

高考数学复习知识点讲解教案第6讲 函数的概念及其表示

高考数学复习知识点讲解教案第6讲 函数的概念及其表示
变式题(1) 函数 的值域为________________.
[解析] ,因为,所以 ,所以的值域为 .
(2) 函数 的值域为_ _______.
[解析] 令,,易知,在 上均单调递增,所以在上是增函数,当 时,,当时, ,故所求函数的值域为 .
(3) 函数 的值域为_ ________.
[解析] 由①,可得②,由
(3) 已知,则 ___________________.
[解析] 令,则 ,,所以 .
探究点三 函数的值域
例3(1) 函数 的值域为( )
A
A. B. C. D.
[解析] 设,则,且 ,则 ,所以函数的值域为 .故选A.
[思路点拨](1)设,化简函数为 ,结合二次函数的性质,即可求解.
5.[教材改编] 设, ,给出下列四个图形,其中能表示从集合到集合 的函数关系的是____.(填序号)





[解析]对于①,在集合中找不到与2对应的元素,故不是从集合到集合 的函数;对于③,在集合中可以找到两个元素与1对应,故不是从集合到集合 的函数;对于④,在集合中找不到与2对应的元素,故不是从集合到集合 的函数.故填②.
[解析] 由,解得,故函数的定义域为 ,设,则 ,所以,所以函数的值域为 .
探究点四 以分段函数为背景的问题
微点1 分段函数求值
例4(1) 已知函数则 的值为( ) Bຫໍສະໝຸດ A. B. C. D.18
[解析] 函数 , .故选B.
[思路点拨](1)根据分段函数的解析式求出,再求 的值.
(3)的值域是 .(4)且的值域是 .(5)且的值域是 .
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 给出下列函数:(1);(2) ;(3);(4).其中与函数 是同一个函数的是________.(填序号)

高中数学函数的复习教案

高中数学函数的复习教案

高中数学函数的复习教案教学目标:1. 复习掌握函数的概念、性质以及相关定理;2. 掌握各种类型函数的图像特征、性质和应用;3. 提高解题能力,能够熟练运用函数知识解决实际问题。

教学内容:1. 函数的概念及基本性质;2. 基本初等函数及其性质;3. 复合函数、反函数、函数的奇偶性;4. 三角函数及其性质;5. 指数函数、对数函数及其性质;6. 函数图像的绘制与分析。

教学重点:1. 函数的概念及基本性质;2. 复合函数、反函数、函数的奇偶性;3. 函数图像的绘制与分析。

教学难点:1. 函数的概念及性质的理解和运用;2. 复合函数、反函数、函数的奇偶性的运用;3. 函数图像的绘制与分析的技巧掌握。

教学步骤:一、导入环节(5分钟)教师介绍函数的概念及其在数学中的重要性,并与学生讨论函数在现实生活中的应用。

二、知识点复习(20分钟)1. 复习函数的概念、符号表示、性质;2. 复习基本初等函数及其性质;3. 复习复合函数、反函数、函数的奇偶性。

三、概念强化与拓展(15分钟)1. 复习三角函数及其性质;2. 复习指数函数、对数函数及其性质。

四、图像绘制与分析(20分钟)1. 学生根据给定函数绘制函数图像,并分析函数的性质;2. 学生通过实例练习,加深对函数图像的理解。

五、练习与拓展(15分钟)教师布置相关练习题或拓展题,要求学生独立完成,并对答案进行讲解和讨论。

六、课堂总结与作业布置(5分钟)教师对本节课的重点知识进行总结,并布置相应作业,要求学生巩固复习所学内容。

教学反思:本节课通过复习高中数学函数的相关知识点,强化学生对函数的概念和性质的理解,提高学生的解题能力和应用能力。

在教学中注重理论与实践相结合,引导学生灵活运用函数知识解决实际问题,达到知识的巩固和能力的提升的目的。

普通高中高三数学教案5篇

普通高中高三数学教案5篇

普通高中高三数学教案5篇作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。

那么教案应该怎么写才合适呢?以下是小编整理的普通高中高三数学教案,仅供参考,大家一起来看看吧。

普通高中高三数学教案1一、教学过程1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=_3的反函数。

2.新课。

先让学生用几何画板画出y=_3的图象,学生纷纷动手,很快画出了函数的图象。

有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):教师在画出上述图象的学生中选定'生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=_3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。

)师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。

)生3:问题出在他选择的次序不对。

师:哪个次序?生3:作点B前,选择_A和_A3为B的坐标时,他先选择_A3,后选择_A,作出来的点的坐标为(_A3,_A),而不是(_A,_A3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按_A、_A3的次序选择,果然得到函数y=_3的图象。

)师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=_3的反函数y=的图象呢?(学生再次陷入思考,一会儿有学生举手。

)师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=_3上的点B(_,y)的横坐标_与纵坐标y交换,而y=_3的反函数也正好是将_与y交换。

师:完全正确。

下面我们进一步研究y=_3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?(多数学生回答可由y=_3的图象得到y=的图象,于是教师进一步追问。

)师:怎么由y=_3的图象得到y=的图象?生5:将y=_3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

函数的单调性复习教案人教版

函数的单调性复习教案人教版
2.函数单调性基础知识讲解(10分钟)
目标:让学生了解函数单调性的基本概念和判断方法。
过程:
讲解函数单调性的定义,包括其主要判断方法和条件。
详细介绍函数单调性的判断方法,使用图表或示意图帮助学生理解。
3.函数单调性案例分析(20分钟)
目标:通过具体案例,让学生深入了解函数单调性的特性和重要性。
过程:
③设计有趣的比喻或例子,如将函数单调性比作“爬山”和“下山”,让学生更容易理解和记忆。
3.板书设计简洁明了:
①使用简洁明了的语言,避免冗长的解释,如“增函数”可以用箭头向上表示,“减函数”可以用箭头向下表示。
②合理安排板书的布局,使得知识点的呈现有序且不拥挤,便于学生跟随和记忆。
教学反思与总结
1.教学反思:
2.教学总结:
本节课的教学效果总体上是积极的,学生对函数单调性的概念和应用有了更深入的理解和掌握。在知识方面,学生能够准确描述函数单调性的定义,掌握判断函数单调性增减的方法,并能够运用到具体函数中。在技能方面,学生能够将函数单调性的知识应用到实际问题中,通过分析函数的单调性来解决优化问题和不等式问题。在情感态度方面,学生对函数单调性产生了浓厚的兴趣,对数学学习更加积极和主动。
(1)复习函数单调性的基本概念和判断方法,要求学生能够准确描述函数单调性的定义,掌握判断函数单调性增减的方法,并能够运用到具体函数中。
(2)应用函数单调性解决实际问题,要求学生能够将函数单调性的知识应用到实际问题中,通过分析函数的单调性来解决优化问题和不等式问题。
(3)强化函数单调性的综合应用,要求学生能够综合运用函数单调性的知识,解决复杂的数学问题,提高他们的数学思维和问题解决能力。
然而,本节课的教学中也存在一些问题和不足。首先,学生在理解和运用函数单调性的判断方法上还存在一定的困难,需要进一步加强指导和练习。其次,小组讨论的组织和管理需要改进,以提高学生的参与度和讨论的有序进行。针对这些问题,我将在今后的教学中采取相应的改进措施和建议。例如,在讲解函数单调性的判断方法时,可以设置具体的例题和练习题,让学生多次接触和练习,加深对概念的理解。同时,制定明确的小组讨论规则,对小组讨论进行有效的引导和监督,确保每个学生都能够积极参与并充分表达自己学生的学习效果,为今后的教学提供参考和借鉴。

必修一第三章指数函数与对数函数复习教案

必修一第三章指数函数与对数函数复习教案

第三章指数函数及对数函数总复习教学目标:1、知识及技能理解有理数指数器的含义,掌握塞的运算性质 理解指数函数的概念和性质,能画出指数函数的图像 通过实例,了解指数函数模型背景 理解对数的概念及运算性质,会灵活运用换底公式 理解对数函数的概念和性质,能画出对数函数的图像通过实例,了解对数函数模型背景知道指数函数及对数函数互为反函数,理解互为反函数的两个函数的定义域及值域的关系, 及会求一个函数的反函数。

(8)体会三种函数的增长率。

2、过越方法让学生结合实际问题,感受运用函数概念建立模型的过程及方法。

3、情感、态度及价值(1)通过本章的学习,充分认识到数学的应用价值(2)培养学生的观察问题、分析问题的能力(3)体会函数及方程、数形结合、分类讨论等数学思想方法0教学重点:L 指数函数及对数函数的概念2 .指数函数及对数函数的图像、性质和运算性质3 .函数增长快慢的比较教学难点:指数函数及对数函数的图像及性质的应用(1)(2)(3)(4)(5) (6) (7)(1)(g)"-4・(-2)一3+(;)° -9 2(2)(√9)^7(√10Γ)Ξ÷√100Γ(3)l g500+lg^-∣lg64+50(lg2+l g5)2(4) |1 + Ig0.001∣ + Jg2∣-41g3 + 4 + lg6-lg0.02 2、化简2 1 I 1 1 5(1) (2a y h2)(-6a2b3)÷(-3a^b^)2÷lg0.36 + -lg8Iog rt√27÷ log rt 8-Iog w√≡⑷-------------- j ------------------------------------- (U Y " D-Iog fl 0.3 +log, 23、求值l-2x(1)已知121=3,12'=2,求8∣, 的值(2)若涉<0,且。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数概念与表示一.要点精讲1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。

5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f:A→B”。

函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。

注意:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述。

(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。

6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。

7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。

二.典例解析题型1:函数概念例1.(1)设函数).89(,)100()]5([)100(3)(f x x f f x x x f 求⎩⎨⎧<+≥-= (2)(2001上海理,1)设函数f (x )=⎩⎨⎧+∞∈-∞∈-),1(,log ]1,(,281x x x ,则满足f (x )=41的x 值为 。

题型二:判断两个函数是否相同例2.试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x (3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x 1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

题型三:函数定义域问题例3.求下述函数的定义域:(1)02)23()12lg(2)(x x x x x f -+--=; (2)).lg()lg()(22a x ka x x f -+-=题型四:函数值域问题例4.求下列函数的值域:(1)232y x x =-+;(2)y =;(3)312x y x +=-;(4)y x =+(5)y x =(6)|1||4|y x x =-++;(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x y x -=-。

题型五:函数解析式例5.(1)已知3311()f x x x x +=+,求()f x ; (2)已知2(1)lg f x x +=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。

题型六:函数应用例6.(2003北京春,理文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。

当每辆车的月租金每增加50元时,未租出的车将会增加一辆。

租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?题型7:课标创新题例7(1)设d cx bx ax x x f ++++=234)(,其中a 、b 、c 、d 是常数。

如果,30)3(,20)2(,10)1(===f f f 求的值)6()10(-+f f ;(2)若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的取值范围。

三.思维总结“函数”是数学中最重要的概念之一,学习函数的概念首先要掌握函数三要素的基本内容与方法。

由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围它依赖于对各种式的认识与解不等式技能的熟练。

1.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等。

2.求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出。

3.求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的。

其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。

①直接法:利用常见函数的值域来求一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ;反比例函数)0(≠=k xk y 的定义域为{x |x ≠0},值域为{y |y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a >0时,值域为{ab ac y y 4)4(|2-≥}; 当a <0时,值域为{ab ac y y 4)4(|2-≤}。

②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xk x y ,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

四.练习1、(2006山东 文2)设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A .0 B .1 C .2 D .32、(2006安徽 文理15)(1)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__ ________; (2)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。

3、.已知函数()f x 定义域为(0,2),求下列函数的定义域:(1) 2()23f x +;(2)2y =4、已知函数f (x )=31323-+-ax ax x 的定义域是R ,则实数a 的取值范围是( ) A .a >31 B .-12<a ≤0 C .-12<a <0 D .a ≤31 5、求函数232y x x =-+,[1,3]x ∈的值域。

6、(2006重庆理21)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x 。

(Ⅰ)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(Ⅱ)设有且仅有一个实数x 0,使得f (x 0)= x 0。

求函数f (x )的解析表达式。

7、(2006湖南 理20)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)物体质量(含污物)污物质量-1为8.0,要求清洗完后的清洁度为99.0。

有两种方案可供选择,方案甲:一次清洗;方案乙:分两次清洗。

该物体初次清洗后受残留水等因素影响,其质量变为)31(≤≤a a 。

设用x 单位质量的水初次清洗后的清洁度是18.0++x x )1(->a x ,用y 单位质量的水第二次清洗后的清洁度是a y ac y ++,其中c )99.08.0(<<c 是该物体初次清洗后的清洁度。

相关文档
最新文档