函数项级数不一致收敛的判别
函数项级数不一致收敛的判别方法
2020年8月第29卷第3期中央民族大学学报(自然科学版)Journal of MUC( Natural Sciences Edition)Aug., 2020Vol. 29 No. 3函数项级数不一致收敛的判别方法党红,王飞(长治学院数学系,山西长治046011)摘要:函数项级数不一致收敛的判别是数学分析课程中比较难理解的一部分内容,本文主要介绍了函数项级数不一致收敛常见的5种判别方法,指出了每种判别方法的特点并加以应用。
关键词:函数项级数;不一致收敛;判别法中图分类号:〇173.丨文献标识码:A 文章编号= 1005-8036 (20201 03-0042-041函数项级数收敛性判定函数项级数一致收敛的判别方法和不一致收敛的判别方法是数学分析课程中比较难理解和掌握的一部分内容,关于函数项级数一致收敛的判别方法,本人已经在其他文章中做过相关说明m,现将常用 的5种判别函数项级数不一致收敛的方法加以总结并应用,以帮助学生更好地理解和掌握该部分知识。
1.1定义法[2]函数项级数在区域£>上不一致收敛于> 〇,v w,当〜> yv时,3%e />,有n -1I、(丨!))_ S U o)I2占0。
其中,S…U) = h U)+…“…(幻称为部分和函数列,S(x) = limS…U)称为和函数。
n—》〇〇应用定义法判别函数项级数的不一致收敛性时,不但需要求出弋(幻和S(*),而且要找到满足上述条件的^,化,*。
,但在很多情况下,和函数s(幻及部分和函数列S…u)不容易求出来,而且满足条件的不易得到,如文中的例3、例4、例5。
一般情况下,定义法重在解释不一致收敛的概念,对于函数项级数的不一致收敛的讨论与证明问题,定义法通常不是首选方法。
1.2 D i n i 判别法[3]设函数项级数的每一项在区间[a,6]上是连续的,但S U)在闭区间[a,6]上是不连续n= I的,则函数项级数在区间[a,6]上不一致收敛。
广义积分阿贝尔判别法和狄利克雷判别法
阿贝尔判别法和狄利克雷判别法是微积分中重要的判定法则,它们主要被用来判定数项级数的收敛、函数项级数的一致收敛、反常积分的收敛以及反常含参积分的一致收敛等。
它们都以数学家的名字命名,分别是尼尔斯·阿贝尔和约翰·彼得·狄利克雷。
阿贝尔判别法是说:如果∫baf(x,y)dx关于x一致收敛,g(x,y)对每一个x都单调(方向可以不同)且关于y一致有界,那么整体就一致收敛。
狄利克雷判别法则稍微有些不同:如果∫baf(x,y)dx关于y一致有界,g(x,y)对每一个x都单调(方向可以不同)且在x→b时一致收敛于0,那么整体也是一致收敛的。
请注意,这里的一致收敛性是一个非常重要的概念,在微积分理论中有着广泛的应用。
一致收敛的函数序列或函数项级数可以保持很多重要的分析性质,比如连续性、可积性等等。
总的来说,阿贝尔判别法和狄利克雷判别法为我们提供了判断广义积分收敛性的有效工具。
但是,它们的使用需要一定的数学知识和技巧,特别是在判断函数或函数序列的一致有界性、单调性和一致收敛性时。
函数项级数一致收敛性判别法归纳
函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。
函数项级数一致收敛和收敛的区别
函数项级数一致收敛和收敛的区别函数项级数一致收敛和收敛的区别,这话听起来有点深奥,但咱们可以把它拆开来聊聊。
想象一下,你在家里吃饭,结果发现菜里放了点盐,味道挺不错的。
这就是收敛,简单直接。
你的一道菜,可能不管怎么做,总有个味道能让你满意。
可是,如果你去餐馆吃饭,点了几道菜,有些菜味道好,有些菜却让你失望,这时候就得考虑一致收敛的问题了。
这种情况就有点复杂了。
一致收敛就像你在一家好餐厅,所有的菜品都能保证口味一致。
不管你点多少道,味道都不会跑偏。
这时候,无论你选择哪道菜,都能吃得心满意足。
而一般的收敛,可能你某道菜特别好吃,但旁边那道却像是被厨师打翻了,真是让人失望。
这样的差异其实就像函数项级数在收敛的时候,部分和函数的表现不尽相同。
说到这里,咱们得来点具体的例子了。
比如你有一堆函数,每个函数都在某个区间上定义,咱们就把它们放在一起,组成一个级数。
这时候,你希望这个级数能收敛。
要是它能收敛到一个特定的函数,那就是收敛。
可如果它收敛的速度、质量、稳定性都一样,简直就像每道菜都出自一个大厨,这就叫一致收敛。
想想在家做饭的乐趣,慢慢调味,最后的成果让你心满意足,那种感觉可真好。
再往深处聊聊,函数项级数的收敛性通常是个看似简单,实则复杂的东西。
有些时候,它会在特定条件下表现得特别好,但在其他情况下却又让你感到无奈。
比如,某个函数在某个点的收敛速度快,但在另一个点却慢得像蜗牛。
就像你在学校的某门功课,平时学习起来很顺利,可一到考试却发现题目难得让你抓狂。
这样的例子实在是太多了。
一致收敛就像是有个强大的保证,确保你在任何情况下都能有个好结果。
就像朋友聚会时,大家都有一份好吃的,这样你就可以放心大胆地去享受,而不用担心某一份菜会拉低整体水平。
每个人的表现都得跟上,不然就得一起掉链子。
这种一致性让你在解决问题时,倍感轻松。
学习这些概念的时候,难免会遇到一些困难。
就像考试前的复习,有时候你觉得一切都很明朗,但一到实际应用,就像掉进了迷雾之中。
函数项级数收敛和一致收敛的判别
函数项级数收敛和一致收敛的判别函数项级数收敛和一致收敛的判别函数项级数是指将一列函数相加得到的级数,例如:$%sum%limits_{n=1}^%infty f_n(x)$。
如果该级数在某个区间内收敛,则称该级数在该区间内收敛,否则称该级数在该区间内发散。
函数项级数的收敛性可以分为点态收敛和一致收敛两种。
点态收敛是指对于每一个$x$,级数$%sum%limits_{n=1}^%inftyf_n(x)$都收敛,而一致收敛则是指存在一个收敛的函数$S(x)$,使得对于任意$%epsilon>0$,存在一个正整数$N$,使得当$n>N$时,对于所有$x$都有$|%sum%limits_{k=1}^n f_k(x)-S(x)|<%epsilon$。
下面将介绍函数项级数的一致收敛的判别方法:一、Weierstrass判别法Weierstrass判别法是判定函数项级数一致收敛的最常用方法之一。
其基本思想是将原函数项级数中的每一项$f_n(x)$都用一个上界函数$M_n(x)$来代替,并且要求这个上界函数满足以下两个条件:1. 对于任意$n$和$x$,都有$|f_n(x)|%leq M_n(x)$。
2. 上界函数$M_n(x)$的函数项级数$%sum%limits_{n=1}^%infty M_n(x)$在该区间内收敛。
如果满足上述条件,则原函数项级数在该区间内一致收敛。
二、Abel判别法Abel判别法是另一种判定函数项级数一致收敛的方法。
其基本思想是将原函数项级数表示为两个部分的乘积:$%sum%limits_{n=1}^%infty a_n(x)b_n(x)$,其中$a_n(x)=%sum%limits_{k=1}^n f_k(x)$,$b_n(x)$是一个单调有界函数。
如果满足以下两个条件,则原函数项级数在该区间内一致收敛:1. 函数$a_n(x)$在该区间内一致有界。
2. 函数$b_n(x)$在该区间内一致收敛到某个函数$B(x)$。
一致收敛weierstrass判别法
一致收敛weierstrass判别法
一致收敛的Weierstrass判别法是一种判断函数列或函数项级数是否一致收敛的方法。
具体来说,如果函数项级数的每一项满足一定的条件,并且这个条件与函数项的位置无关,那么就可以利用Weierstrass判别法来判断这个函数项级数是否一致收敛。
具体来说,设函数项级数为∑u_n(x),如果对于任意给定的ε>0,总存在N,使得当n>N 时,对于一切x∈D(D是函数项级数的定义域),都有|u_n(x)|<ε,那么就说函数项级数∑u_n(x)在D上一致收敛。
Weierstrass判别法指出,如果函数项级数的每一项u_n(x)满足|u_n(x)|≤a_n(对于所有x∈D),并且数列∑a_n收敛,那么函数项级数∑u_n(x)在D上一致收敛。
这个判别法的优点在于,它不需要知道函数项级数的和的具体形式,只需要知道每一项的绝对值满足的条件,以及这个条件与x的位置无关,就可以判断函数项级数是否一致收敛。
因此,它是研究函数项级数收敛性的重要工具之一。
此外,一致收敛的函数项级数具有一些很好的性质,比如可以交换极限运算和无限求和运算的顺序,这在处理一些复杂的数学问题时非常有用。
因此,研究函数项级数的一致收敛性对于数学分析来说具有重要的意义。
非一致收敛的定义
非一致收敛的定义一致收敛是高等数学中的一个重要概念,又称均匀收敛。
一致收敛是一个区间(或点集)相联系,而不是与某单独的点相联系[1]。
除了柯西准则和余项准则外,还可以通过weierstrass判别法、abel判别法和dirichlet判别法来判别函数项级数是否一致收敛。
柯西准则是柯西极限存在准则,又叫柯西收敛原理。
其是可以用来判断某个式子是否收敛的充要条件包括但是不限于数列,主要应用在数列,数项级数,函数,反常积分,函数列和函数项级数等方面。
每个方面都对应一个柯西准则,不同方面的柯西准则要用不同样式的柯西极限存在准则来进行计算。
柯西准则就是数学的一方面,数学就是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度属形式科学的一种。
数学借由抽象和逻辑推理的采用,由计数、排序、量度和对物体形状及运动的观测而产生。
数学已沦为许多国家及地区的教育范畴中的一部分。
它应用于相同领域中,包含科学、工程、医学、经济学和金融学等。
数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用领域为目标。
中国古代,数学叫做算术,又称算学,最后才改成数学.中国古代的算术就是六艺之一。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.基础数学的科学知识与运用就是个人与团体生活中不可或缺的一部分.其基本概念的提炼晚在古埃及、美索不达米亚及古印度内的古代数学文本内便丰厚见到.从那时已经开始,其发展便持续不断地存有小幅度的进展.但当时的代数学和几何学长久以来仍处在单一制的状态.代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.。
函数项级数的收敛性判断
设函数都在集合上有定义,。
若数值级数收敛,则称为函数项级数的收敛点,否则称为该函数项级数的发散点。
所有收敛的集合,称为该函数项级数的收敛域。
发散点的集合称为该函数项级数的发散域。
若上每一点均是函数项级数的收敛点,则称该函数项级数在上处处收敛。
设是函数项级数的收敛域。
,设对应的级数和为,这样,便在中定义了一个函数,称为该函数项级数的和函数。
例如,几何级数它的收敛域为,发散域为;在收敛域内,和函数是,即有设是函数项级数的前项和,则当时,有称为该函数项级数的余项和。
显然,,有[例4.1] 设,讨论函数项级数的收敛性,并求其和函数。
[解] 由于故当时,;当时,;当时,,当时,它的极限不存在;当时,,故知该级数的收敛域为,在收敛域上,它的和函数为注:1)即使每个都连续,和也仍然可以是不连续的函数。
2)函数的可微性和可积性可能不再成立。
即函数项级数(4.1)(4.2)都不成立。
若如果式(4.1)成立,则说级数可以逐项微分;如果式(4.2)成立,则说可以逐项计分。
7.4.2 函数项级数的一致收敛性处处收敛的“” 语言,应该是这样的:,使得当时,有表明,不但依赖于,还依赖于。
即对给定的、中不同的,可以有不同的,对所有的不一定有通用的自然数。
若存在着通用的自然数使级数收敛,则称级数一致收敛。
[定义4.1] 设函数项级数在上收敛于和函数。
若当时,对所有的都成立,则称该级数在上一致收敛或一致收敛于。
类似地,可以给出函数列在上一致收敛于函数的定义。
一致收敛性的几何形象,(以序列为例)。
设函数序列在区间上一致收敛于函数。
如果以曲线为“中心”,作一“宽度”为的带形区域,则不论正数如何小,总有一个正整数,使当时,曲线都完全在上述带形区域之内(图4.1)。
再分析例4.1中的级数。
当时故,若要,必须,即当时,由于,所以当在内找不到通用的。
从而所讨论级数在区间内部不一致收敛,在上更不可能一致收敛(图4.2)。
但是,对于任何小于的正数,所讨论级数在上是一致收敛的,因为这时可以取。
证明数项级数发散以及函数项级数非一致收敛的方法 终
1 1 1 1 = 原级数 I= , 前者是收敛的, 后者是发散的, 2 2 2n n 1 (2n 1) n 1 2n n 1 ( 2n 1)
n n n 1 2n 1
(2) (n 2 2) ln(
n 1
n2 1 ) n2
第一个级数的通项 an =
1 n n .由极限的知识,我们很容易知道 lim an = 0. n 2 2n 1
故(1)中的级数是发散的.而(2)中的通项可先进行化简,使之成为我们熟知
1 n n
n
在(1)中我们注意通项中有 n 次幂的存在,首先就会想到用根值判别法,而通 项的分母又有阶乘,我们又会联想到用比值判别法.其实,这个题目用这两种方 法 都 可以 求解 . 在这 里, 我用比 值判 别法来 解一下 :记 通项 an =
nn ,则 有 n!
an 1 (n 1) n 1 (n 1) n 1 n! = lim =e>1.由柯西判别法可知,该级 an 1 = ,故 lim n n n an (n 1)! n (n 1)!
0 就行.
三、对正项级数,利用判别法. 这里的判别法主要指的是根值判别法(柯西判别法) 、比值判别法(达朗贝尔判 别法)以及比较判别法.其中都有对级数发散情况的讨论.因此,在解决正项级数 的敛散性方面,这种方法也比较常见. 例3 判断下列级数的敛散性.
nn n 1 n!
(1)
(2)
n 1
n2 2 1 2 的可求极限的形式. bn = 2 ln(1 2 ) n 1(n ).故此级数是发散的. n n
函数项级数“非一致收敛”的几种证法
龙源期刊网
函数项级数“非一致收敛”的几种证法
作者:陶思俊黄新仁
来源:《硅谷》2008年第20期
[摘要]结合实例,讲解了函数项级数非一致收敛的三种常见证法,即利用柯西准则证明、利用余项上确界的极限不为零证明及利用和函数的连续性证明。
[关键词]函数项级数非一致收敛柯西准则和函数
中图分类号:O13文献标识码:A 文章编号:1671-7597(2008)1020122-01
函数项级数的一致收敛性和非一致收敛性的证明是数学分析中的两个重要知识点,对初学数学分析的同学来说也是个难点,尤其是非一致收敛性的证明,因为各种不同版本的《数学分析》教材对这个知识点归纳、讲解不多。
针对上述情况,本文对函数项级数非一致收敛性的证明方法加以归纳,并结合实例介绍了几种常见的证法。
一、利用柯西准则来证明
命题1.设是函数项级数的部分和函数列,则该级
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
”。
函数项级数收敛的判别方法
函数项级数收敛的判别方法复数变量函数的项级数收敛问题是数学领域内经典的研究课题之一,该问题首先是在17世纪被提出,并在随后的几个世纪里得到了广泛的研究和应用。
函数项级数是一种特殊的数列序列,它由一系列连续的函数组成,其中每一个函数都可以表示为某些常数和变量的函数。
判断一个函数项级数是否收敛,是优化、图像处理、网络通信等领域中不可避免的问题。
本文将介绍函数项级数的收敛与发散的判别方法。
一、Weierstrass判别法Weierstrass判别法是函数项级数收敛的一个非常有用的判别方法。
该定理表明,如果一个函数项级数的每一项在一个给定区间内都满足某一条件,那么这个函数项级数在该区间内是一致收敛的。
具体而言,Weierstrass判别法的公式如下:∣∣∣∣∑n=mkf(xn)∣∣∣∣∣∣∣∣≤Mk(k>m)其中mk为一个正整数,Mk为一个常数,f(x)为函数项级数中的一个函数,xn为该函数的自变量,k和m为整数。
如果函数项级数中的每一项都满足上述公式,则该函数项级数在该区间内是一致收敛的。
二、Abel判别法另一个常用的函数项级数收敛的判别方法是Abel判别法。
该方法基于逐步求和的思想,它利用收敛级数的和与函数项级数的求和部分的差来判断函数项级数的收敛性。
Abel判别法的公式如下:∑n=1∞a(x)n·b(n)x其中a(x)为任意一个单调递减的函数,b(n)为一个函数项级数中的项,在该公式中,当x>b(n)时,∣b(n)∣≤M,M为一个正数。
如果上述函数项级数收敛,那么它的和为∑n=1∞B(x),其中B(x)为一个解析函数,与我们所设置的a(x)有关。
三、Dirichlet判别法Dirichlet判别法也是一种常用的函数项级数收敛的判别方法。
该方法基于一系列的假设条件,利用假设条件推导出函数项级数的收敛性,并与收敛出的级数的和做比较。
Dirichlet判别法的公式如下:∣∣∣∑n≤Nf(x)gn(x)∣∣∣∣≤M(k>m)其中f(x)和g(x)是函数项级数中的两个函数,且f(x)单调递减且再区间[a,b]中全局有界,若对于任意一个自然数N,有∣∣∣∑n≤Nb(n)∣∣∣∣≤M,且g(x)在[a,b]中单调趋于零函数,那么函数项级数在该区间内是一致收敛的。
函数项级数的非一致性收敛的证明
函数项级数的非一致性收敛的证明PB07210152 袁龙杰在Cauchy时代,已经对函数项级数作了许多研究,但由于实数的严格理论尚未建立起来,未彻底阐述清楚一些重要的关系,随着时代的发展,Weierstrass建立了函数项级数的一致收敛概念,并由此阐明了函数项级数的和函数的连续性,函数项级数的逐项微分和逐项积分定理,还给出了判定函数级数一致性收敛的比较判定准则.设(x),(x),…,(x),…是定义在区间[a,b]上的一列函数,称和式=(x)+(x)+…+(x),…是定义在[a,b]上的一个函数项级数,简称为级数.当x取特定值时,函数项级数便室一个数项级数.函数项级数的收敛概念是一个”点态”性的概念,即函数项级数在[a,b]上收敛是指它在这区间上的每一点都收敛.课本列举了多种函数项级数的一致性的判别法,现在我们来讨论非一致性的证明: 课本给出了非一致性的定义,我们可以从定义出发证明某个函数项级数的非一致性收敛.若在定义域I上非一致性收敛,即存在某个正数,不论自然数N多大,总能找到I 和n>N, 满足∣()∣=∣∣,于是找I的一列点{} 和趋向于的一列自然数(k=1,2,…)满足(x)∣=∣∣.这是在I上的非一致性收敛的充分必要条件.下面用定义证明:证函数项级数在(0,+)不一致收敛.证明:取正数=,=(1,2,…),则对于任意自然数n,有∣()∣=∣>>于是找区间(0,+∞)中的一列点{}和∞的一列自然数n=1,2,…,满足∣()∣>,这说明在(0,+)不一致收敛.课本列举了两个推论可以用来证明非一致收敛.推论一:一致收敛级数的通项必一致趋于零.推论二:设在(a,b)内收敛,每个(x)在x=b处左连续(或在x=a处右连续).若(或)发散,则在(a,b)内非一致收敛.要注意的是,推论一中,若通项趋于零,未必是一致收敛!证明级数在(0,+∞)上非一致收敛.证明:存在正数,对任给的自然数N,总存在>N ,且存在=(0,+∞),有=>.故通项非一致趋于零.有推论一得, 级数在(0,+∞)上非一致收敛.还可以用以下的两个定理的否命题来证明非一致收敛.定理一:假设每个函数(x)(n=1,2,…)都在区间I上连续,如果级数在区间I上一致收敛,则该函数的和函数=在区间上连续.定理二:假设每一个函数(x)(n=1,2,…)都在区间[a,b]上连续,如果级数在[a,b]一致连续,则=.例:证明在(0,+∞)内不一致收敛.证明:因为(x)==(1+x)-,故(x)=(x)=(1+x),(x>0)和(0),(x=0)显然(x)在0不连续,由定理一的否命题得,在(0,+∞)内不一致收敛.例:考察级数,它的和函数为s(x)=0,x=0;1,x0.证明:设每一个函数(x)(n=1,2,…) 都在区间[a,b]连续,但是则可以推出在[a,b]非一致连续.。
函数列不一致收敛则函数项级数不一致收敛
函数列不一致收敛是指当n趋于无穷时,函数列f_n(x)对于每一个x 是收敛的。
而函数项级数不一致收敛是指当n趋于无穷时,函数项级数∑f_n(x)在某一区间上不收敛。
本文将探讨函数列与函数项级数在数学上的特性,探讨其收敛性的差异性。
1. 函数列不一致收敛的定义函数列不一致收敛的定义是指对于一个函数列{f_n(x)},当n趋于无穷时,函数列在区间I上对每一个x收敛到f(x)。
其中,f(x)是I上的一个函数。
对于任意的ε>0,存在N,当n>N时,对于区间I内的任意x,均有|f_n(x)-f(x)|<ε成立。
2. 函数项级数不一致收敛的定义函数项级数不一致收敛的定义是指对于一个函数项级数∑f_n(x),在某一区间I上不满足一致收敛的条件。
即存在ε>0,对于任意的N,总存在n>N和x∈I,使得|∑f_n(x)-f(x)|≥ε成立。
3. 函数列不一致收敛与函数项级数不一致收敛的关系函数列不一致收敛与函数项级数不一致收敛有一定的关系,在某些情况下两者可能相互影响。
当函数列不一致收敛时,对应的函数项级数也会不一致收敛;然而,函数项级数不一致收敛并不一定与函数列不一致收敛相对应。
这种关系涉及到函数列与函数项级数的性质及收敛条件。
4. 函数列不一致收敛的判定方法函数列不一致收敛的判定方法包括Cauchy判准和Weierstrass判准。
其中,Cauchy判准是指对于任意的ε>0,在区间I上存在N,当m,n>N时,对于任意的x∈I,有|f_m(x)-f_n(x)|<ε成立;Weierstrass判准是指对于每一个x∈I,当n趋于无穷时,有|f_n(x)|<M_n成立,而级数∑M_n在I上收敛。
5. 函数项级数不一致收敛的判定方法函数项级数不一致收敛的判定方法包括柯西准则和魏尔斯特拉斯判准。
柯西准则是指对于任意的ε>0,在区间I上存在N,当m,n>N时,存在x∈I,使得|∑(f_k(x)-f_l(x))|≥ε成立;魏尔斯特拉斯判准则是指对于每一个x∈I,当n趋于无穷时,有|f_n(x)|≤M_n成立,并且级数∑M_n在I上发散。
证明函数项级数不一致收敛的方法
1 1
x
,
x
(1,1)
由 sup
x( 1,1)
Sn (x) S(x)
sup
x( 1,1)
xn x 1
( n )n
n 1
1
n
n 1
n(
n
n
) n 1 1
,(n
)
知级数 xn 在 (1,1) 内不一致收敛[1]. n0
5)
函数项级数
x
解
1)
取 e0
=1 >0,对于任意正整数
N,存在 n0
=
N
+1 >
N
,
x0
2 3N 1 π
(0, )
,使得
un0 ( x0 )
2n0
sin 1 3n0 x0
2
N
1
sin
π 2
2N 1 >1,所以函数列 {un (x)} 在 (0, ) 上不一致收敛,从而由定理
1
的推论
知函数项级数
Vol. 14, No. 1 Feb. 2012
证明函数项级数不一致收敛的方法
李峥
(河北大学 数学与计算机学院,河北 保定 071002)
摘 要:证明函数项基数不一致收敛是数学分析中的难点.本文给出了 5 个相关命题的逆否命题及利用逆否命题证明函数
项基数不一致收敛的 5 种方法.
关键词:函数项基数;一致收敛;连续
定义 1 设 f (x) 和 fn (x)(n =1, 2,) 都是点集 D 上有定义的函数,如果对于任意给定的 0 ,都可以找到
一个正整数 N,使得对于一切 n N 和一切 x D 都有 fn (x) f (x) ,则我们就说当 n 时, fn (x) 在 D 上
一致收敛的概念和判别法
7.1第7讲 一致收敛的概念与判别法所谓函数项级数是指级数的每项均为某一变量或多个变量的函数的级数,也就是说是无穷多个函数求和的问题,研究函数项级数主要回答下列几个问题:1. 收敛区域,即对于函数项级数:()1n n a x ∞=∑,x 在什么范围内级数是收敛的?这一问题是平凡的,因为对于给定x ,由数项级数之收敛性即可判别级数的收敛性,从而确定x 之收敛域。
2. 设()()1n n S x a x ∞==∑是收敛的,若()n a x 均为连续函数,问()S x 是否连续?回答是不一定。
例如:当1x <时,()1n n a x x −=,则有()11S x x=−,()n a x 在1x =处左连续,但()S x 在1x =处不是左连续的。
问题还可以提为:什么时候()S x 连续? 3. 可导性能否保持?即:若()n a x 均为可导函数,问()S x 是否可导?同样有问题:什么时候可导性可以保持?特别地,如果均可导,()S x 的导数与()n a x 的导数有何关系?4. 可积性问题。
即:若()n a x 均为可积函数,问()S x 是否可积?何时可积?它们的积分有何关系? 为了研究上述几个问题,我们需要引进“一致收敛”的概念。
7.2§1 一致收敛的概念讨论级数的收敛性实质上是其部分和函数()n S x 的性质,因此我们先考虑极限过程()()lim n n S x S x →∞=的性质。
上面所说的关于和函数的连续性,可导性、可积性有一个共同的特点,就是某一点x 处的连续性与可导性均与函数在该点邻域的性质有关,而不仅仅只与该点函数值相关,而可积性则更是函数在某一区间内的性质了。
另一方面,函数序列()n f x 在0x x =处是否收敛实际上只是数列()0n f x 的性质,与0x 点邻域内的性质是不相干的,因此从这一角度看,我们知道收敛性是无法用来描述其极限函数之性质的,因而有必要引入新的概念来区分不同的收敛性,以刻画函数序列的极限函数的性质。
函数项级数的一致收敛性与非一致收敛性判别法归纳
函数项级数的一致收敛性与非一致收敛性判别法归纳一 定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x fn →→()∞→n ,D x ∈ 设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n E x ∈ )1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1, E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[ 设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[ 设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当N n >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3 设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1 试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明 显然∑∞=1n n x 在)1,1(-内收敛于xx-1. 对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+ 成立,只要当N n >时,恒有()r r n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1. 存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使 ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二 函数项级数一致收敛性的判定方法定理1 Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或 ()()()ε<++++++x u x u x u p n n n 21 或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1 函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D 上一致收敛于0.定理2]2[ 函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3 放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明 因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S . 定理4 确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是 ()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n证明 充分性 设(){}x S n 是函数项级数()∑x u n 的部分和函数列, )(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题. 定理5 若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明 充分性 假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性 因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2 设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明 已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时, ()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,m ax 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6 M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3( 则函数项级数()x u n ∑在D 上一致收敛.证明 由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3 函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的. 推论2 设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明 已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()nn a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有 推论2' 设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4 证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明 对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得, ∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛. 定理7 比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明 已知 ()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数), 11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,m ax 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4 若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明 已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数). 又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,m ax 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3 比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明 由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4 有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明 由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知, 函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5 若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明 由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5 设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9 逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明 设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知, ()x u n n ∑∞=1在D 上也一致收敛于)(x S .定理10 由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u nn在D 上也一致收敛证明 由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使 得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21 ()()ε<++++++x v x v x v p n n n 21)(所以 ()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u nn在D 上也一致收敛定理11 Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12 Abel 判别法[]1 证明推论6 设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明 因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u pn nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k pn nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13 Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调; (ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明 充分性 由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n , 时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到 ()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6 若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明 由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得 在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14 积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数, ()x u n ∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛. 证明 由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7 设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明 首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎬⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得, ()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知, ()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15 函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明 级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6 设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时, 对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u()ε12+≤M因此,对0>∀ε,存在自然数(){}1,,1,0|,m ax 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.定理17 设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微, ()x u nn ∑/在上一致收敛,记()=x S ()x u nn ∑.定理18 设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n ∑∞=1在点0x处收敛; ()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛, ()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k kx u 1/.根据拉格朗日中值定理,[]b a x Np N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k k u 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2 若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明 由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21. ()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19 利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明 必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8 证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛. 证明 ∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知, ∑nnx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n nx n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知, ∑∞=1sin n n nx在()π2,0不一致收敛. 推论7 若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,, ()x u n ∑皆收敛.证明 与定理19类似,略.定理20[]7 设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明 必要性 用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性 用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8 设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明 与定理20的类似,略.推论12[]4 设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D 上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明 由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,m ax N N N o =,当O N n >时,对一切D x ∈,有ss sn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13 函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛. 证明 不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14 函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明 因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε )1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11 判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性. 证明 因为11)(1≤=xx u , 且 11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛. 定理23[]8 (根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明 由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8 (根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明 由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51' 设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明 由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有 ()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12 函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()xnx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n D x n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛. 推论16[]8 有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明 因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13 判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明 因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8 (对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明 由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln , 即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25 设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛. ②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛. ③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明 由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4 设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26 若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明 ①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14 试证()∑+--211x n n 在区间[]b a ,一致收敛.证明 ⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17 设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明 设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k n k k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15 证明()∑-x nn11在[)+∞,δ上一致收敛. 证明 因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k211,由Cauchy 准则证毕.定理27[]9 利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1 Cauchy 准则与M 判别法比较实用一般优先考虑;2 Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三 非一致收敛性的判别 1 利用非一致收敛的定义定义3,略.例16 讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解 ()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2 利用确界原理的逆否命题定理28 若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明 它是确界原理的逆否命题,故成立.例17 函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明 部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3 利用定理5的逆否命题定理29 设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明 略.注:此定理比较实用.4 利用Cauchy 准则逆否命题定理30 函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明 它是Cauchy 准则的逆否命题,故成立. 例18 讨论∑nnxsin 在[]π2,0=D 上的一致收敛性. 解 取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>o ε= 故∑nnxsin 在[]π2,0=D 上非一致收敛. 注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18 函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明 它是推论1的逆否命题,故成立. 例19 设()()()()12sin 1212cos +⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解 取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9 若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20 讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性. 解 因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛. 5 利用求极值的方法定理31 ()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21 证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明 因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-n n x x 1收敛,1=x 时()01=-∑n n x x 收敛,故()∑-nn x x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛. 注:极限函数知道时,可考虑用.6 利用一致收敛函数列的一个性质判别[]10引理2 若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n n n x f x f =∞→lim证明 由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32 连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}D x n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22 讨论∑+221xn x在()+∞∞-,上一致收敛性. 解 显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221xk x x u k +=,由定积分概念 ()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx = 4π=()00=≠s故知∑+221xn x在()+∞∞-,上非一致收敛. 推论20 设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。
函数项级数不一致收敛的判别
( ’) 2 %& 3( % ’) 2
’! (
即得: [ %( ( ’& ) ]. ! , 再 注 意 连 续 函 数 列{%& *+, & ’& )3 %
&" -
( )) } 一致收敛时极限函数 % ( )) 在 ( 上 也 连 续, 便能导出 ($) 式。 命题 $ 给出了连续函数列 一 致 收 敛 的 必 要 条 件。 据 此, 对于一 个 在 区 间 ( 上 逐 点 收 敛 于 % ( )) 的 连 续 函 数 列{%& ( )) } , 如果在 ( 中存在一个 以 )( 为 极 限 的 数 列{ , )& } ! )! ! () 使得 ($) 式不成立, 则可断言: { } 在 ( 上 不 一 致 收 敛, 特 %( & )) 别地有如下两个推论: 推论 $ : 设连 续 函 数 列{ } 在 区 间 ( 上 逐 点 收 敛, 且 %( & )) 在 ( 中存 在 一 个 以 )! ( )! ! ( ) 为 极 限 的 数 列{)& } 使 得{%& ( )& ) } 发散, 则{ } 在 ( 上不一致收敛。 %( & )) 推论 6 : 设连 续 函 数 列{ } 在 区 间 ( 上 逐 点 收 敛, 且 %( & )) 在 ( 中存在数列{ 和{ , 满足条件: 7& } 8& } $! 6!
因为由定积分概念有 4+2
#$ "
% # 1 ! *+2 # $ #1 $%
# #$ " 1 $ %
解
. ,) ’*+2)9) 5 , $ (
级数收敛的判别方法
级数收敛的判别方法级数是数列之和的概念的推广,是数学中一个重要的概念。
在分析数列的性质时,常常会遇到级数的问题,特别是判断一个级数的和是否存在、是否有限。
级数的收敛性是很多数学问题的基础,因此研究级数收敛的判别方法是非常重要的。
在研究级数的收敛性时,我们通常会使用以下几个重要的判别方法:1.正项级数收敛判别法2.比较判别法3.比值判别法4.根值判别法5.积分判别法6.达朗贝尔判别法(柯西判别法)7.绝对收敛与条件收敛接下来,我们将逐一介绍这些判别法。
1.正项级数收敛判别法:对于一个数列{a_n},如果对于任意的n,都有a_n≥0成立,那么级数∑(n=1)^∞a_n称为正项级数。
正项级数的收敛性可直接根据其前n项和序列的有界性来判断。
如果前n项和序列有界,则正项级数收敛;如果无界,则正项级数发散。
2.比较判别法:比较判别法指的是通过将级数与一个已知的收敛级数或发散级数进行比较,来判断级数的收敛性。
(1)比较于已知的收敛级数:如果已知级数∑b_n收敛,且对于n≥1,都有0≤a_n≤b_n成立,则级数∑a_n也收敛。
(2)比较于已知的发散级数:如果已知级数∑b_n发散,且对于n≥1,都有0≤b_n≤a_n成立,则级数∑a_n也发散。
在使用比较判别法时,选择一个合适的用来比较的级数非常关键。
通常我们会选取一些常见的收敛级数或发散级数作为参照。
3.比值判别法:比值判别法是通过计算级数相邻两项的比值的极限来判断级数的收敛性。
设级数为∑a_n,如果存在正数M,使得当n足够大时,有:a_(n+1)/a_n,≤M,(比值≤M)则级数∑a_n收敛;如果对于所有的n,有,a_(n+1)/a_n,≥M(比值≥M),则级数∑a_n发散。
通过比值判别法,我们可以判断出级数的发散和收敛,并得到级数的估计和级数之间的关系。
4.根值判别法:根值判别法与比值判别法类似,也是通过计算级数相邻项的比值的极限来判断级数的收敛性。
如果存在正数M,使得当n足够大时,有:lim(n→∞)∛,a_n,/∛n ≤ M,(根值≤M)则级数∑a_n收敛;如果对于所有的n,有lim(n→∞)∛,a_n,/∛n≥M (根值≥M),则级数∑a_n发散。
判别函数项级数不一致收敛的一种方法
判别函数项级数不一致收敛的一种方法一、双优化方法1、双优化方法是一种用于解决判别函数项级数不一致收敛的一种方法,主要是通过同时优化附加项和目标函数,双优化目标函数和附加项,从而实现项级数不一致收敛的目标。
它能够降低判别函数项级数不一致收敛时算法复杂度和计算量。
2、双优化方法一般有以下三种具体实现方式:(1)同时优化目标函数和附加项。
这种方式使得双优化能够从目标函数和附加项的双重性质中获益。
(2)利用目标函数极小化,同时引入附加项作为限制条件。
目标函数极小时,同时限制附加项,实现项级数不一致收敛。
(3)不断增加附加项,一步步求解。
这种方式在附加项求解过程中不断增加附加项,从而实现项级数不一致收敛的目的。
二、双优化的优点1、可以有效降低算法复杂度。
双优化方法能够有效降低项级数不一致收敛时的算法复杂度和计算量,从而提高计算效率。
2、可以解决级数不一致收敛的问题。
双优化方法可以实现项级数不一致收敛,解决了项级数不一致收敛时算法复杂度和计算量过大的问题。
3、可以提高解决整体优化问题的准确度。
双优化方法可以提高整体优化问题的准确度,因为附加项的优化会影响到目标函数的极值,如果对目标函数和附加项都进行优化,则会产生更好的极值。
三、双优化的应用领域1、信号处理。
双优化方法可以用于优化信号处理算法,如多峰定位、目标检测等。
2、组合优化。
双优化方法也可以用于优化组合问题,可以用于优化能源优化、投资组合优化等。
3、机器学习算法。
双优化方法也可以用于机器学习算法,比如信息增益、权衡等,方便实现最优决策。
四、双优化存在的问题1、缺乏关于附加项的正确的信息。
由于双优化方法存在缺乏关于附加项的正确的信息的问题,很难实现最优化的状态。
2、双优化过程的复杂度较高。
双优化方法的过程复杂,收敛很可能陷入局部最优,无法在收敛到全局最优。
3、双优化过程会受到特定算法参数的影响。
由于双优化算法复杂,且受到特定算法参数的影响,不一定能最终收敛到最佳结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数项级数不一致收敛的判别
李 琳
(山西省综合职业技术学院, 山西 太原 !"!!!#)
[摘 要] 利用一致收敛函数列的一个性质, 给出判别函数项级数 (包括 函 数 列) 不 一 致 收 敛 的 一 种 方 法, 这种方法为教科
书所忽视, 然而它对于一类函数与函数项级数来说, 却十分有用, 特别对于 一 类 函 数 项 级 数, 判别的方法和技巧都有它们的特 点, 有一定启发性。 [关键词] 函数项级数; 不等式; 收敛 一、 一致收敛函数列的一个性质 一致收敛函数列有一个不为人注意的性质: 命题 $ 设各项连续的函数列{ } 在区间 ( 上一致收 %( & ’) 敛于 ( , 则对 ( 中任何以 )( 为 极 限 的 数 列{ , 都 % ’) )& } ! ’! ! ( ) 有
’ 1() , 又 设 0( 则有! 则: /# $ ,( # $ " ) *+2 " 1) , 1 ) )$ & 1$%
# # 1 1 % % ( 0( $ ! & ’( # ) *+# " %! & ’ % *+# $ & ’ % #*+# 3 /# ) # 1$% # # 1$% % ’% 因为 4+2 & ’ % #*+# , 所 以 ( ) (, ) 不能 $& 5, 4+2 01 /# $ . # #$ " #$ " 成立, 从而本题讨论的级数在 [, , 上不致收敛, 解毕。 - "] #
&" &" -
$ ( , % $) < $ 即知{ } 在 [! , 上不一致收敛。 %( $] & ’) 二、 性质在函数项级数中的运用
-
由命题 $ 可得相应于函数项级数的如下命题: 命题 6 { , 都有 )& }
&
设 各 项 连 续 的 函 数 项 级 数 & 4( 在区间 ( 上 & ’)
&.$
&" ’! ( ’! (
3 6 < < &" 由于 (6) 式和 (") 式 的 极 限 不 相 同, 所 以 根 据 推 论 6, {%& ( ’) } 在 [! , 上不一致收敛。 $] 设极限函数为 % ( )) , 则 [注] 此例也可根据命题 $ 判 别: ( 从而由 *+, %( % $) . *+, %( . !, . & $) & :& )
, 则% ( ! ). ! , 现 取 )& . 连续函数。设和函数为 ( % )) , 则 )& " !( &" - ) , 又设 4( $, 6 ……) . = ’) 定积分概念可得 *+,
&" -
=.$
. *+, & 4( = )& )
-
&" -
’ , 于是利用 $ > =6 )6 $ $ . & & = = 6 .$ ( ) $> &
, 则 对 ( 中 任 何 以 )( 为极限的数列 一致收敛于 ( % )) ! )! ! ( )
& 4( ) ) (<) *+, .( % ’! ) =.$ = & &" 这个命题也有 相 应 的 两 个 推 论, 不 再 赘 述, 它们对于部 分和函数容易 求 出 的 级 数 来 说, 可 像 命 题 $ 那 样 地 使 用; 当 部分和函数不易求出理, 在理解过程 中 要 重 在 不 等 式 的 技 巧 运用。另外, 由于 (<) 式涉及的 和 式 结 构, 往往能使数列级限 与定积分联系起来, 从而可把复杂的 数 列 极 限 计 算 转 化 为 定 积分, 使问题巧妙的得到解决。 例" 解 讨论函数项级数&
因为由定积分概念有 4+2
#$ "
% # 1 ! *+2 # $ #1 $%
# #$ " 1 $ %
解
. ,) ’*+2)9) 5 , $ (
,
%
(,) 不 能 成 立, 从而本题讨论的级 所以 4+2 ! 0( $. 1 /# ) 数在 [, , ] 不一致收敛性, 解毕。 ! 以上三个例题的解法中, 例 : 运用了数列极限转化为定 积分的技巧, 例 ! 运 用 了 不 等 式 的 技 巧, 而例 6 两种技巧都 运用, 例 6 的一个特殊情况 ( 7 $ %) 是许多数学分析使用的例 题, 它们一般都运用柯西准则去解 决, 比 较 起 来, 本文的方法 显得思考容易和简洁。并且对这一 特 殊 情 形 的 解 答, 还可更 简洁 地 只 运 用 第 一 技 巧, 因 为 这 时 有 4+2 ! 0( 1 /# )$ 4+2 !
&" -
8& . $
且 *+,
&" -
*+, %( .( % )! ) & )& )
($)
这个性质仅在某些数学分析教 科 书 中 作 为 习 题 来 安 排, 它的证明并不难, 只需注意{ } 在 ( 上一致收敛时, 有 %( & )) ( ) ( ) 从而由 ( ) ( ) *+,/01 2 %& ’ 3 % ’ 2 . ! 2 %& )& 3 % )& 2 # %45
#$ " 1 $ % # # #$ " 1 $ %Βιβλιοθήκη 例6 解讨论函数项级数 !
#
1$%
*+##) (, 8 7 & %) 在 [, , ] 上的一 ! #7
致收敛性。 运用狄利 克 菜 判 别 法, 可 知 此 级 数 逐 点 收 敛, 设和 % 函数为 ( , 则( 现取 /# $ ( # $ % , , 则 /# $ . /) . ,) $ ,, ( ……) # *+#1) 又设 0( ,( #$ " ) $ 7 则有 1 )) 1 1 1 # # *+# # *+# % # 1 # # $! ! 0( #! ! *+# # 1 /# ) 1 # #1 1$% 1$% 1$% $% 17 保持互相垂直的两条直线分别绕着两个定 (上接第 (!! 页) 点转动, 则两直线交点的轨迹 是 圆; (:) 平面内到与两个定点 的距离之比为常数 ( 的 点 的 轨 迹 是 圆; (!) 平 7 7 5 , 且 7 ( %) 面内到两个定点的距离的平方 和 为 常 数 ( 大 于 ( < => < ( ) 的点 的轨迹是圆; (6) 平面内的一条线段的两端点分别在互相垂 直的两条直线上运动, 则线段中点轨迹是圆。 同是一个圆, 竟 然 有 这 么 多 表 示 方 法, 它们又都如此令 人惊讶地美妙、 和谐与统一, 在适当的坐标下方程可以写成 /( - ?( $ 7( 的形式。 椭圆双曲线抛物线本是互不相同的曲 : @ 圆锥曲 线 中, 线, 但可以用统一 的 定 义 将 它 们 表 示 出 来: 平面内到一个定 点与一条直线的距离之比等于常数 & 的点 的 轨 迹: 当,8&8 分 别 表 示 椭 圆、 双 曲 线、 抛 物 线, 而且在极坐标 %, & 5 %, & $ %, &A 系中它们有统一形式的方程 A $ (% ’ BC* ) " 四、 利用数学的奇异美, 培养学生的求异意识 数学家庞加莱 说: “数 学 的 优 美 感 不 过 就 是 问 题 的 解 答 适合我们心灵而 产 生 的 一 种 满 足。 ” 数学思想方法和数学模 型化方法是 一 道 道 绚 丽 多 彩 的 耀 眼 光 芒, 它们独特的奇异 美, 精巧绝伦, 令人赏心悦目, 充分 利 用 这 种 不 可 抗 拒 的 奇 异 美的魅力, 可以培 养 学 生 的 求 异 意 识, 从而逐步培养起创新 意识以至创造性思维的能力。 课本有这 样 的 典 型 题: 已 知, % @ 在不等式中, 7、 D、 2) E 且 7 8 D 求证 7 7-2 , 笔 者 认 为, 这是一个式子内涵丰富 8 D D- 2 的问题, 可以从下几个问题加以引申: 这个表 示: 在浓度 = @ 在化学上, 7 的溶液中加入溶质 2 D
&" &
……) , 则 *+, 7& . $ , 且 *+, %( ($ & 3 $6& ) 6, . *+, . !; . $, & 7& )
&" &" &" -
(6) 又取 8& . ( %( . *+, & 8& ) ( & . $, ……) , 则 *+, 6, 6 % $ $ $ ) . $
6!!D 年 < 月 第 $! 卷 第 $ 期
(高等教育版) 山E 西E 财E 经E 大E 学E 学E 报
FG0@&7* GH %I7&)+ J+&7&AK 7&? LAG&G,+A/ 4&+MK@/+BN( I+OIK@ K?0A7B+G& K?+B+G&)
91@ ; , 6!!D PG* ; $! QG ; $
&" &" -
( ’) 2 %& 3( % ’) 2
’! (
即得: [ %( ( ’& ) ]. ! , 再 注 意 连 续 函 数 列{%& *+, & ’& )3 %