2018年秋人教版七年级上册数学 第一章 有理数 单元测试卷(解析版)
人教版七年级数学上第1章有理数单元测试卷(A)含答案解析
2018年秋人教版数学七年级上册第1章有理数单元测试卷A卷姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学计数法表示为()A. 1.28 1014B. 1.28 10-14C. 128 1012D. 0.128 10112.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430B. 530C. 570D. 4703.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,其中正确的个数是()A. 2个B. 3个C. 4个D. 5个4.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣25.2018的相反数是()A. 2018B. -2018C.D.6.实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.7.已知|a|=5,b3=﹣27,且a>b,则a﹣b值为()A. 2B. ﹣2或8C. 8D. ﹣28.小明同学设计了一个计算程序,如图,如果输入的数是2,那么输出的结果是( )A. -2B. 2C. -6D. 69.计算:的结果是()A. -3B. 0C. -1D. 310.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.二、填空题(共10题;共20分)11.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9,﹣3;则两名学生的实际得分为________分,________分.12.已知实数a在数轴上的位置如图所示,化简的结果是________.13.已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.14.如图所示,一只青蛙,从A点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A点的左侧的某个位置处,请问这个位置到A点的距离最少是________厘米.15.一天早晨的气温是﹣5℃,中午上升了10℃,半夜又下降了7℃,则半夜的气温是________℃.16.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则=________(直接写出答案).17.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n 是正整数,且n ≥ 2)18.当x________时,代数式的值为非负数.19.若a、b、c为三角形的三边,且a、b满足,第三边c为奇数,则c=________.20. 2017年1月,杭州财政总收入实现开门红,1月全市财政总收入344.2亿元,其中344.2亿精确到亿位,并用科学计数法表示为________.三、计算题(共1题;共20分)21.计算:(1)5 ﹣(﹣2 )+(﹣3 )﹣(+4 )(2)(﹣﹣+ )×(﹣24)(3)(﹣3)÷ × ×(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.四、解答题(共5题;共50分)22.已知a、b互为相反数,c、d互为倒数,|m|=2,求代数式2m﹣(a+b﹣1)+3cd的值.23.小明有5 张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2 张卡片,使这2 张卡片上数字的乘积最大,乘积的最大值为________;(2)从中取出2 张卡片,使这2 张卡片上数字相除的商最小,商的最小值为________;(3)从中取出4 张卡片,用学过的运算方法进行计算,使结果为24请你写出符合要求的运算式子(至少一个).24.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?25.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.26.有理数a,b,c在数轴上的位置如图所示,化简:|b﹣a|﹣|c﹣b|+|a+b|.答案解析部分一、单选题1.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵128 000 000 000 000共有15位数,∴n=15-1=14,∴这个数用科学记数法表示是1.28 1014.故答案为:A.【分析】用科学记数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。
2018年秋人教版七年级上册数学第1章有理数单元测试卷(含答案)
2018年秋人教版数学七年级上册第1章有理数单元测试卷B卷姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1082.有四包洗衣粉,每包以标准克数(500克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A. +6B. ﹣7C. ﹣14D. +183.下面各组数中,相等的一组是( )A.与 B. 与 C. 与 D. 与4.如图所示的图形为四位同学画的数轴,其中正确的是()A. B.C. D.5.若实数a与-3互为相反数,则a的值为()A. B. 0.3 C. -3 D. 36.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A. a•b>0B. a+b<0C. |a|<|b|D. a﹣b>07.如果a=-,b=-2, c=-2 ,那么︱a︱+︱b︱-︱c︱等于()A. -B.C.D.8.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A. ①②③B. ①③⑤C. ②③④D. ②④⑤9.下列算式中,结果是正数的是()A. -[-(-3)]B. -|-(-3)|3C. -(-3)2D. -32×(-2)310.实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.二、填空题(共10题;共20分)11.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在________℃范围内保存才合适.12.数轴上到原点的距离小于2个单位长度的点中,表示整数的点共有________个.13.若|x+2|+|y﹣3|=0,则x+y=________ ,x y=________.14.一天早晨的气温是﹣5℃,中午上升了10℃,半夜又下降了7℃,则半夜的气温是________℃.15.定义新运算:对于任意实数都有,其中等式右边是通常的加法、减法及乘法运算.例如:.那么不等式的解集为________ .16.观察下列各式:,,,…,根据观察计算:=________.(n为正整数)17.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人,350000000用科学记数法表示为________.18.数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是________.19.计算:(3×108)×(4×104)=________(结果用科学记数法表示)20.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是________三、计算题(共1题;共20分)21.计算:(1)(-12)-5+(-14)-(-39)(2)(3)-22-(4)×(-15)(用简便方法计算)四、解答题(共5题;共50分)22.已知a、b互为相反数,c、d互为倒数,|m|=2,求代数式2m﹣(a+b﹣1)+3cd的值.23.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:14,﹣9,﹣18,﹣7,13,﹣6,10,﹣5(单位:千米).(1)B地在A地何位置?(2)若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油29升,求途中需补充多少升油?24.有一次同学聚会,他们的座位号是:小王的座位号与下列一组数中的负数的个数相等,小李的座位号与下列一组数中的正整数的个数相等6,,0,−200,,−5.22,−0.01,+67,,−10,300,−24.(1)试问小王、小李坐的各是第几号位置?(2)若这次同学聚会的人数是小王的座位号的2倍与小李的座位号的4倍的和,请问这次聚会到了多少同学?25.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.26. 已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。
2018年秋人教版七年级数学上册第一章有理数综合测试题
第一章有理数综合测试卷第Ⅰ卷 (选择题 共30分)一、选择题(每题3分,共30分) 1.6.0009精确到千分位是( ) A .6.0 B .6.00 C .6.000 D .6.0012.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )A .发给员工这种上衣10件B .售出这种上衣10件C .这种上衣剩余10件D .穿着这种上衣10件3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )A .4B .2C .1D .74.对下列各式计算结果的符号判断正确的是( ) A .(-2)×(-213)×(-3)<0 B .(-5)-5+1>0C .(-1)+(-13)+12>0 D .(-1)×(-2)<05.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( ) A .减数一定是零 B .被减数一定是零C .原来两数互为相反数D .原来两数的和等于1 6.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15.A .①②B .①③C .①④D .②④7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )A .1.5小时B .3小时C .4.8小时D .8小时8.计算12÷(-3)-2×(-3)的结果是( )A.-18 B.-10 C.2 D.189.如图1,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )图1A.R站点与S站点之间 B.P站点与O站点之间C.O站点与Q站点之间 D.Q站点与R站点之间10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )A.16 B.1C C.1A D.22请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.倒数为3的数是________.12.已知a-3与b+4互为相反数,则a+b=________.13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图2中自左向右数第3袋大米的实际重量是________kg .图214.若|x +2|+|y -3|=0,则x -y 的值为________.15.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是________(填“一类、二类、三类”中的一个).三、解答题(共52分)17.(本小题满分6分)把下列各数分别填在相应的括号里: -7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …}; 分数集合:{ …}; 负有理数集合:{ …}.18.(本小题满分6分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?图319.(本小题满分6分)规定“*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.20.(本小题满分6分)计算: (1)-14-(1-0.5)÷3×[2-(-3)2];(2)0.7×1949+234×(-14)+0.7×59+14×(-14).21.(本小题满分6分)小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?22.(本小题满分7分)小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:-3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上的数的乘积最大; (2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)23.(本小题满分7分)某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第________次记录时距A地最远;(2)求收工时距A地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?24.(本小题满分8分)股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?1.D 2.B 3.B 4.A 5.B 6.D 7.D 8.C 9.D 10.A 11.1312.-1 13.49.3 14.-5 15.4.51×10716.二类 17.解:整数集合:{-7,2018,0,99,…};分数集合:⎩⎨⎧⎭⎬⎫3.01,-0.142,0.1,-75,…;负有理数集合:⎩⎨⎧⎭⎬⎫-7,-0.142,-75,….18.解:(1)如图:(2)根据(1)可得小明家与小刚家相距4-(-5)=9(千米). 19.解:(1)根据题意,得2*6=22-62=4-36=-32. (2)根据题意,得(-2)*3=4-9=-5, 则3*[(-2)*3]=3*(-5)=9-25=-16.20.解:(1)原式=-1-0.5×13×(2-9)=-1-16×(-7)=-1+76=16.(2)原式=0.7×(1949+59)+(-14)×(234+14)=0.7×20-14×3=14-14×3=14×(1-3)=14×(-2)=-28.21.解:根据题意,得1835×(-73)×(-73)=145.22.解:(1)(-3)×(-5)=15. (2)-5÷(+3)=-53.(3)(-5)4=625.(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24. 23.解:(1)由题意,得第一次距A 地|-3|=3(千米);第二次距A地|-3+8|=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A地最远.故答案为五.(2)根据题意,得-3+8-9+10+4-6-2=2(千米).答:收工时距A地2千米.(3)根据题意,得检修小组工作一天行驶的路程为|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元.24.解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)
七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
人教版2018年 七年级数学上册 第一章有理数 单元检测卷(含答案)
2018年七年级数学上册有理数单元检测卷一、选择题:1、2017年元旦这天,西安的最高气温是5℃,最低气温是-1℃。
那么西安这天的温差(最高气温与最低气温的差)是()℃。
A.4B.3C.6D.72、某地清晨时的气温为-2℃,到中午时气温上升了8℃,再到傍晚时气温又下降了5℃,则该地傍晚气温为()A. -1℃B. 1℃C. 3℃D. 5℃3、关于0,下列几种说法不正确的是()A.0既不是正数,也不是负数B.0的相反数是0C.0的绝对值是0D.0是最小的数4、下面关于有理数的说法正确的是A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数5、在数轴上表示有理数a,﹣a,﹣b-1的点如图所示,则()A.﹣b<﹣a B.< C.> D.b-1<a6、下列说法正确的有()①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相减,差一定小于被减数;⑤两数相加,和一定大于任何一个加数.A.1个 B.2个 C.3个 D.4个7、计算12÷(-3)-2×(-3)的结果是()A.-18 B.-10 C.2 D.188、下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数4和﹣4的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a的倒数是;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个9、计算3﹣6+9﹣12…﹣2004+2007的值等于()A.1005 B.1004 C.1003 D.﹣200710、若“Δ”是新规定的某种运算符号,设xΔy=xy+x+y,则2Δm=-16中,m的值为( ).A.8 B.-8 C.6 D.-6 11、若﹣1<a<0,则a,,a2的大小关系是()A.a<<a2 B.<a<a2 C.<a2<a D.a<a2<12、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A. B.99! C.9900 D.2!二、填空题:13、一电冰箱冷冻室的温度是﹣18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高℃.14、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数和为.15、=.16、已知+=0,则的值为.17、如图是一个运算程序的示意图,若开始输入x的值为9,则第2016次输出的结果为.18、有一列数a1,a2,a3,a4,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:a1=3,则a2=1﹣=,a3=1﹣=﹣…,请你计算当a1=2时,a2016的值是.三、计算题:19、-20+(-14)-(-18) -13 20、21、22、;23、 24、四、解答题:25、在数轴上表示下列各数,并把它们用“<”连接起来(请填写题中原数)26、检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+18、﹣3、+7、+5、﹣4回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?27、已知a、b、c均为非零的有理数,且=﹣1,求++的值.28、先阅读,再解题:因为,,,…所以===参照上述解法计算:.29、如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,点B所对应的数是;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,则A、B两点间距离为;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.参考答案1、C2、B3、D4、A5、D6、A7、C8、C9、A10、D.11、B.12、C.13、23.14、答案为:215、16、答案为:﹣1.17、答案为:118、答案为:﹣1.19、解:原式=-2920、原式=-1;21、原式=1;22、原式=19;23、原式=24、原式=;25、略26、解:(1)8﹣9+4+7﹣2﹣10+18﹣3+7+5﹣4=21.答:收工时在A地的东边,距A地21千米.(2)|+8|+|﹣9|+|+4|+|+7|+|﹣2|+|﹣10|+|+18|+|﹣3|+|+7|+|+5|+|﹣4|=77,77×0.3=23.1(升),答:若每千米耗油0.3升,从A地出发到收工时,共耗油23.1升.27、解:∵a、b、c是非零实数,且a+b+c=0,∴可知a,b,c为两正一负或三负.①当a,b,c为两正一负时:++=1+1﹣1=1;②当a,b,c为三负时:++=﹣1﹣1﹣1=﹣3.故++的值可能为1和﹣3.28、解:原式=(1﹣+﹣+﹣+…+﹣)=(1﹣)=×=.29、(1)点B在点A右边距A点4个单位长度,点B所对应的数是 2 ;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,则A、B两点间距离为 12 ;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.(3)解:在(2)的条件下,经过4秒或者8秒,A、B两点相距4个单位。
人教版2018年初一上册数学第一章 有理数 单元测试题 含答案
第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣52.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃3.在、、、、中,负数的个数是()A.1B.2C.3D.44.绝对值为1的实数共有().A.0个B.1个C.2个D.4个5.比﹣1小2的数是()A.3B.1C.﹣2D.﹣36.下列正确的有()①若x与3互为相反数,则x+3=0;②﹣的倒数是2;③|﹣15|=﹣15;④负数没有立方根.A.①②③④B.①②④C.①④D.①7.将5.49亿亿记作()A.5.49×1018B.5.49×1016C.5.49×1015D.5.49×10148.下列计算,不正确的是( )A.(-9)-(-10)=1B.(-6)×4+(-6)×(-9)=30C.=-D.(-5)2÷=2009.如图,的倒数在数轴上表示的点位于下列两个点之间A.点E和点F B.点F和点GC.点G和点H D.点H和点I10.下列说法不正确的是()A.0小于所有正数B.0大于所有负数11.若a=2,|b|=5,则a+b=( )A.-3B.7C.-7D.-3或712.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点A在M与N之间,数b对应的点B在P与R之间,若|a|+|b|=3,则原点是( )A.N或P B.M或R C.M或N D.P或R二、填空题13.绝对值不大于4.5的整数有________.14.若(1﹣m)2+|n+2|=0,则m+n的值为________.15.一个数的倒数是它本身,这个数是_______, 互为倒数的两个数的_______是1,一个数的相反数是它本身这个数是________.16.点A在数轴上的位置如图所示,则点A表示的数的相反数是_____.17.对于有理数a,,我们规定:,下列结论中:;;;正确的结论有______把所有正确答案的序号都填在横线上三、解答题18.计算:(1)13+(-15)-(-23);(2)-17+(-33)-10-(-16).19.有一列数:,1,3,﹣3,﹣1,﹣2.5;(1)画一条数轴,并把上述各数在数轴上表示出来;(2)把这一列数按从小到大的顺序排列起来,并用“<”连接.20.把下列各数分别填入相应的集合里.(1)正数集合:{…};(2)负数集合:{…};(3)正分数集合:{…};(4)非正整数集合:{…}21.计算下列各题(1)15+(-)-15-(-0.25) (2)(-81)÷×÷(-32)(3)29×(-12) (4)25×-(-25)×+25×(-)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-)-(-)+(-)+]22.①已知x的相反数是﹣2,且2x+3a=5,求a的值.②已知﹣[﹣(﹣a)]=8,求a的相反数.23.一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11.(1)小虫最后是否回到了出发点A?为什么?(2)小虫一共爬行了多少厘米?24.在一次数学测验中,一年班的平均分为86分,把高于平均分的部分记作正数.李洋得了90分,应记作多少?刘红被记作分,她实际得分多少?王明得了86分,应记作多少?李洋和刘红相差多少分?25.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?参考答案1.A【解析】【分析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A.【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.2.C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.3.D【解析】【分析】根据相反数、乘方、绝对值的概念对各数进行化简,结合正负数的概念进行判断即可.【详解】因为=-9,=-2.5,=,=-9,=-27,所以负数的个数是4个,故选D.【点睛】本题考查了正数和负数的知识点,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.4.C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.5.D【解析】分析:根据题意可得算式,再计算即可.详解:-1-2=-3,故选:D.点睛:此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.6.D【解析】【分析】直接利用互为相反数的定义以及绝对值、倒数的定义分别分析得出答案.【详解】①若x与3互为相反数,则x+3=0,正确;②﹣的倒数是﹣2,故此选项错误;③|﹣15|=15,故此选项错误;④负数有1个立方根,故此选项错误.故选D.【点睛】此题主要考查了互为相反数的定义以及绝对值、倒数的定义,正确把握相关定义是解题关键.7.B【解析】【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成a时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】一亿是1×108,一亿亿是1×108×108=1016,则5.49亿亿是5.49×1016,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.8.D【解析】【分析】根据有理数的运算法则分别计算各项,由此即可解答.【详解】选项A,(-9)-(-10)=-9+10=1,选项A正确;选项B,(-6)×4+(-6)×(-9)=-24+54=30,选项B正确;选项C,=-,选项C正确;选项D,(-5)2÷=25÷=25×(-8)=-200,选项D错误.故选D.【点睛】本题考查了有理数的运算,熟知有理数的运算法则是解题的关键.9.C【解析】【分析】根据倒数的定义即可判断.【详解】的倒数是,在G和H之间.故选C.【点睛】本题考查了倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D【解析】0小于所有正数,0大于所有负数,这是正数与负数的定义,A. B正确;0既不是正数也不是负数,这是规定,C正确;0的绝对值是0,D错误.故选D.11.D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.12.B【解析】【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【详解】∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|MA|=|BR|时,|a|+|b|=3,综上所述,此原点应是在M或R点,故选B.【点睛】本题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.13.±4,±3,±2,±1,0.【解析】分析:根据有理数大小比较的方法,可得绝对值不大于4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4.详解:∵绝对值不大于4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4.故答案为:±4,±3,±2,±1,0.点睛:本题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握.14.-1【解析】【分析】根据非负数性质可得:1-m=0,n+2=0,求出m,n,再算m+n的值.【详解】若(1﹣m)2+|n+2|=0,则1-m=0,n+2=0,所以,m=1,n=-2,所以,m+n=-1.故答案为:-1.【点睛】本题考核知识点:非负数性质的运用.解题关键点:理解平方和绝对值的意义.15.1或-1,积, 0;【解析】分析:倒数等于本身的数为1和-1,相反数等于本身的数为0.详解:一个数的倒数是它本身,这个数是1和-1,互为倒数的两个数的积是1,一个数的相反数是它本身这个数是0.点睛:本题主要考查的是倒数和相反数的性质,属于基础题型.理解定义是解题的关键.16.-2【解析】【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【详解】∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2,故答案为:﹣2.【点睛】本题考查了在数轴上表示数的方法,以及相反数的含义和求法,熟练掌握相关知识是解题的关键.17.①②④【解析】【分析】根据a*b=a2-ab-5,可以判断各个小题是否正确,从而可以解答本题.【详解】∵a*b=a2-ab-5,∴(-3)*(-2)=(-3)2-(-3)×(-2)-5=9-6-5=-2,故①正确,a*a=a2-a•a-5=-5,b*b=b2-b•b-5=-5,故②正确,a*b=a2-ab-5,b*a=b2-ab-5,故③错误,(-a)*b=a2+ab-5,a*(-b)=a2+ab-5,故④正确,故答案为:①②④.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.(1) 21;(2)-44.【解析】【分析】原式利用减法法则变形,计算即可得到结果.【详解】(1)原式=13-15+23=21;(2)原式=-17-33-10+16=-60+16=-44.【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.19.(1)画数轴见解析;(2)(2) ﹣3<﹣2.5<﹣1<<1<3.【解析】试题分析:(1)按数轴的三要素规范的画出数轴,并把各数表示到数轴上即可;(2)根据各数在数轴上的位置,按照数轴上的点表示的数左边的总小于右边的,把各数用“<”连接起来即可.试题解析:(1)把各数表示到数轴上如下图所示:;(2)根据数轴上的点表示的数,左边的总小于右边的结合(1)可得:﹣3<﹣2.5<﹣1<<1<3.20.见解析【解析】分析:根据有理数的分类方法进行分析解答即可.详解:(1)正数集合:{2006,,1.88, …};(2)负数集合:{-4,-|-|,-3.14,-(+5)…};(3)正分数集合:{,+1.88 …};(4)非正整数集合:{-4,0, -(+5)…}.点睛:熟记“相反数的定义、绝对值的意义和有理数分类的方法”是解答本题的关键. 21.(1)0 (2)(3)-359(4) 25(5)-27 (6)-【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-)-15-(-0.25)=15-15- +0.25=0(2)(-81)÷×÷(-32)=81×××=(3)29×(-12)= (30- ) ×(-12)= 30×(-12) -× (-12)=-359(4)25×-(-25)×+25×(-)=25×(+-)=25×1=25(5)-24-(-4)2 ×(-1)+(-3)3= -16+16-27= -27(6)3.25-[(-)-(-)+(-)+]=3+-+-【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则. 22.① a=②8【解析】【分析】①直接利用相反数的定义得出x的值,进而得出a的值;②直接去括号得出a的值,进而得出答案.【详解】解:①∵x的相反数是﹣2,且2x+3a=5,∴x=2,故4+3a=5,解得:a=;②∵﹣[﹣(﹣a)]=8,∴a=﹣8,∴a的相反数是8.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.23.(1)小虫最后回到了出发点A; (2)小虫一共爬行了56 cm.【解析】【分析】(1)求出(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)的值,根据结果判断即可;(2)求出|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|的值即可.【详解】(1)小虫最后回到了出发点A,理由是:(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)=0,即小虫最后回到了出发点A.(2)|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|=56(厘米),答:小虫一共爬行了56 厘米.【点睛】本题考查了有理数的加减,正数、负数,数轴,绝对值的应用,关键是能根据题意列出算式.24.;;;.【解析】分析:(1)90−86即可;(2)86−5即可;(3)86−86即可;(4)用李洋的成绩减去刘红的成绩即可.详解:(1)90−86=+4;(2)86−5=81;(3)86−86=0;(4)90−81=9.点睛:本题考查了正负数的意义和正负数的有关计算,是基础知识要熟练掌握.25.(1)34.5元;(2)26元;(3)如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【解析】【分析】(1)根据算式27+4+4.5-1可得;(2)最高价在星期二,最低价在星期五;(3)收益=卖出所得-买入成本;【详解】解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,列出算式.。
人教版2018七年级数学上册第一章有理数单元练习题十一(附答案详解)
人教版2018七年级数学上册第一章有理数单元练习题十一(附答案详解)1.如图,的倒数在数轴上表示的点位于下列两个点之间( )A . 点E 和点FB . 点F 和点GC . 点F 和点GD . 点G 和点H2.2016年,北京市旅游业总体保持稳定健康发展态势,接待旅游总人数2.85亿人次,增长4.6%增速同比提高0.3百分点;实现旅游总收入5020.6亿元,将5020.6亿用科学记数法表示应为( )A . 102.020610⨯B . 110.5020610⨯C . 115.020610⨯D . 950.20610⨯3.如果+160元表示增加160元,那么﹣60元表示( )A . 增加100元B . 增加60元C . 减少60元D . 减少220元4.下列各式中,正确的是( )A . (-3)2=(-3)×2B . (-3)2=(-2)3C . (-3)2=32D . (-3)2=-325.下列各式,错误的是( )A . -1<3B . 0>-5C . -3>-2D . -9<-86.冬天来了 ,天气冷了,如果温度上升3ºC 记作+3ºC,那么温度下降6ºC,记作( )A . +6ºCB . -6ºC C . +9ºCD . -9ºC7.下列各式写成乘法的形式正确的是( )A . -23=(-2)×(-2)×(-2)B . 23=3×2C . 23=3×3D . 23=2×2×28.据某行业研究报告提出,预计到2021年,中国共享单车用户数将达1.98亿,运营市场规模大约有望达到291亿元,将291亿用科学记数法表示应为( )A . 291×107B . 2.91×108C . 2.91×109D . 2.91×10109.下列各式中一定为负数的是( )A .B .C .D .10.已知实数a 、b 、c 在数轴上的位置如图所示,则下列结论不正确的是( ).11.比-3大而比2小的所有整数的和是.12.民航资源网2017年11月29日消息:11月285日,伴随着从北京飞来的ZH9112航班降落在明月山机场机坪,迎春机场迎来了有一个历史性时刻﹣旅客吞吐量首次突破50万人数,其中50万用科学记数法表示为_____.13.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是第________个.14.海中一潜艇所在高度为-30米(规定海平面以下为“-”),此时观察到海底一动物位于潜艇的正下方25米处,则该动物所在的高度为________米.15.将数字302000用科学记数法表示为______.16.比较大小:58-_______47-.(填“<” 或“>” ).17.将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:_____.18.如果+8%表示“增加8%”,那么“减少10%”可以记作_____.19.用四舍五入法,精确到百分位,对2.017取近似数是__________.20.计算:|-5+3 |=_______21.一辆货车从超市(O点)出发,向东走2km到达小李家(A点),继续向东走4km 到达小张家(B点),然后又回头向西走10km到达小陈家(C点),最后回到超市.(1)以超市为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C、O的位置;(2)小陈家(C点)距小李家(A点)有多远?(3)若货车每千米耗油0. 5升,这趟路货车共耗油多少升?22.计算:(﹣2)2×5﹣(﹣1)2016+1÷.23.计算:(1)12124234⎛⎫-+-⨯-⎪⎝⎭(2)()2411236⎡⎤--⨯--⎣⎦24.某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?25.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.26.观察下列各式:(1)根据以上式子填空:①= ;②= (n是正整数)(2)根据以上式子及你所发现的规律计算:27.某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)28.(1)(-5)×6+(-125) ÷(-5);(2)312+(-12)-(-13)+223(3)(23-14-38+524)×48;(4)(4)-18÷ (-3)2+5×(-12)3-(-15) ÷5答案1.D【解析】分析:根据倒数的定义即可判断.详解:的倒数是,∴在G 和H 之间,故选:D .点睛:本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识.2.C【解析】试题解析:由科学记数法可知,5020.6亿元11502060000000 5.020610==⨯.故选C.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. n 的值是易错点,由于502060000000有12位,所以可以确定n =12-1=11.3.C【解析】在同一个问题中,正负数表示具有相反意义的量.则+160元表示增加160元,那么﹣60元表示减少60元.故选C.4.C【解析】分析:原式各项利用乘方的意义计算得到结果,即可做出判断.详解:A 、∵(-3)2=9,(-3)×2=-6,(-3)2≠(-3)×2,错误;B 、∵(-3)2=9,(-2)3=-8,(-3)2≠(-2)3,错误;C 、∵(-3)2=9,32=9,∴(-3)2=32,正确;D 、∵(-3)2=9,-32=-9,∴(-3)2≠-32,错误.故选C .点睛:此题考查了乘方的意义,熟练掌握乘方的意义是解本题的关键.乘方的定义为:求n 个相同因数a 的积的运算叫做乘方.在中,它表示n 个a 相乘,其中a 叫做底数,n 叫做指数.5.C【解析】【分析】根据数的大小比较,进行分析判断.【详解】A. -1<3,负数小于正数,所以A选项的说法是正确的;B. 0>-5,0大于负数,所以B选项的说法是正确的;C. -3>-2,两个负数比较大小,绝对值大的反而小,所以C选项的说法是错误的;D. -9<-8, 两个负数比较大小,绝对值大的反而小,所以D选项的说法是正确的.故答案为:C.【点睛】本题考查了有理数的大小比较,属于基础题型.6.B【解析】试题解析:“正”和“负”相对,所以如果温度上升3℃记作+3℃,那么温度下降6℃记作-6℃.故选B.7.D【解析】分析:根据乘方的运算法则可得D正确.详解:A选项-23=-2×2×2=-8,故A错;B选项23=2×22=8,故B错;C选项23=2×2×2,故C错、D正确.故选D.点睛:本题考查了乘方的意义,(n个a相乘),正确理解乘方的意义是关键. 8.D【解析】分析:按照科学记数法的定义进行解答即可.详解:291亿=29000000000=. 故选D.点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定). 9.B【解析】因为.;.;.;.,所以为负数,故选.10.C【解析】选项C.0a c ->,有a c >,与图中矛盾,所以选C.11.-2【解析】试题分析:因为比-3大而比2小的所有整数是-2,-1,0,1,所以-2-1+0+1=-2. 考点:1.有理数的大小比较;2.有理数的加减.12.5×105.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,由于50万有6位,所以可以确定n=6-1=5.【详解】50万=500 000=5×105.故答案是:5×105.【点睛】考查了用科学记数法表示大数,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.【解析】分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 详解:∵|-0.6|<|+0.7|<|+2.5|<|-3.5|,∴-0.6最接近标准,故答案为:③.点睛:本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.14.-55【解析】【分析】根据题意先列式,再由有理数的减法法则进行计算即可.【详解】根据题意得:−30−25=(−30)+(−25)=−55米.故答案为:−55.【点睛】本题考查了正负数的运算,牢牢掌握有理数的减法法则是解答本题的关键.15.53.0210⨯【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:302000用科学记数法表示为: 53.0210⨯. 故答案为: 53.0210⨯.16.<【解析】分析:作差比较大小.详解: 54308756---=-<,故5487-<-. 点睛:比较大小的方法:(1)作差比较法: 0a b a b ->>; 0a b a b -<⇒< (a b ,可以是数,也可以是一个(2)作商比较法:若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b . 17.﹣8+10﹣6﹣4【解析】(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4; 故答案为:﹣8+10﹣6﹣4.18.﹣10%【解析】分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.详解:若增加表示为正,则减少表示为负,则+8%表示“增加8%”,那么“减少10%”可以记作-10%.故答案是:-10%.点睛:本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.19.2.02【解析】试题解析: 2.017 2.02.≈(精确到百分位).故答案为: 2.02.20.2【解析】|-5+3|=|-2|=2,故答案为2.21.(1)见解析;(2)6km;(3)10L【解析】试题分析:(1)根据数轴与点的对应关系,可知超市在原点,小李家所在的位置表示的数是+2,小张家所在的位置表示的数是+6,小陈家所在的位置表示的数是-4;.(2)2-(-4)=6;.(3)先算这趟路一共有多少千米,再乘以货车每千米耗油的升数.试题解析:(1)如下图:点O 表示超市,点A 表示小李家,点B 表示小张家,点C 表示小陈家...(2)从图中可看出小陈家距小李家6千米..故小陈家距小李家6千米..(3)0.5×(|+2|+|+4|+|-10|+|+4|)=0.5×20=10(升)..故这趟路货车共耗油10升.点睛:数轴:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.22.22【解析】【分析】先算乘方,再算乘除,最后算加减.【详解】解: 原式=4×5﹣1+×2,=20﹣1+3,=22.【点睛】本题考核知识点:有理数混合运算.解题关键点:掌握运算法则.23.(1)-2;(2)1 6【解析】试题分析:(1)原式先计算绝对值运算,再计算乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.试题解析:解:(1)原式=(12124234⎛⎫-+-⨯⎪⎝⎭=﹣12+16﹣6=﹣2;(2)原式=﹣1﹣16×(2﹣9)=﹣1+76=16.24.-1℃【解析】【分析】用原来的气温减去两次下降的温度,计算即可.【详解】根据题意得7-4-4=-1℃.答:该地第二天0时的气温是-1℃【点睛】本题主要考查的是有理数的加减运算,比较简单.25.|a+b|<|a﹣b|=|a|+|b|.【解析】分析: 画出数轴,依据绝对值的几何意义,得到|a+b|<|a-b|,|a-b|=|a|+|b|,即可得出|a+b|,|a-b|,|a|+|b|的大小关系.详解:∵有理数a,b异号,如图,假设a>0>b,∴当BO<AO时,|a+b|<AO;当BO≥AO时,|a+b|<BO,而|a﹣b|=AB>AO或BO,∴|a+b|<|a﹣b|,又∵|a|+|b|=AO+BO=AB,∴|a﹣b|=|a|+|b|,∴|a+b|<|a﹣b|=|a|+|b|.当a<0<b时,同理可得|a+b|<|a﹣b|=|a|+|b|.点睛:本题主要考查了绝对值以及有理数的运算,数轴上某个数与原点的距离叫做这个数的绝对值.26.(1)①;②;(2)【解析】分析:(1)由于1:=1﹣=﹣=﹣…利用题目规律即可求出结果;(2)首先把题目利用(1)的结论变为,然后利用有理数的加减混合运算法则计算即可求解.详解:(1)①=;②=(n是正整数);(2)++…++==1﹣=.点睛:本题主要考查了有理数的混合运算,解题时首先正确理解题目中隐含的规律,然后利用规律把题目变形,从而使计算变得比较简便.27.(1)a=-6,b=+5;(2)见解析;(3)身高相同【解析】试题分析:(1)用学生的身高减去平均身高即可;(2)用最高学生的身高减去最低学生的身高;(3)算出6名学生的平均身高,与全班同学的平均身高比较即可. 解:(1)a =154-160=-6,b =165-160=+5.(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.28.(1)-5;(2)6;(3)12;(4)38 【解析】试题分析:这是一组有理数的混合运算题,按有理数的相关运算法则结合运算律进行计算即可. 试题解析:(1)原式=30255-+=-;(2)原式=1232633++=; (3)原式=3212181012--+=;(4)原式=()1531895323888⎛⎫-÷+⨯---=--+= ⎪⎝⎭。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
2018年秋人教版七年级数学上册第一章检测卷(含答案)
第一章检测卷时间:120分钟 满分:120分 题 号 一 二 三 总 分得 分一、选择题(共10小题,每小题3分,共30分) 1.-2018的倒数是( )A .-2018B .2018C .-12018 D.120182.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3 3.若a +(-3)=0,则a =( ) A .-3 B .0 C .3 D .64.移动支付被称为中国新四大发明之一.据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为( )A .3.79×108B .37.9×107C .3.79×106D .379×106 5.下列计算正确的是( )A .-3+2=-5B .(-3)×(-5)=-15C .-(-22)=-4D .-(-3)2=-96.如图,数轴上每两个相邻的点之间距离均为1个单位长度,点Q ,R 所表示数的绝对值相等,则点P 表示的数为( )A .0B .3C .5D .7 7.下列说法正确的有( )①有理数与数轴上的点一一对应;②若a ,b 互为相反数,则ab =-1;③如果一个数的绝对值是它本身,那么这个数是正数;④近似数7.30所表示的准确数的范围大于或等于7.295,而小于7.305.A .1个B .2个C .3个D .4个8.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是( )A .b >0B .|a |>-bC .a +b >0D .ab <09.若|a |=5,b =-3,则a -b 的值为( ) A .2或8 B .-2或8 C .2或-8 D .-2或-8 10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律得出22016的末位数字是( )A .2B .4C .6D .8二、填空题(共6小题,每小题3分,共18分)11.公元1247年著名数学家秦九韶完成的著作《数书九章》是中世纪世界数学的最高成就,书中提出的联立一次同余式的解法,比西方早五百七十余年,这个时间我们记作+1247;约公元前150年中国现存最早的数学书《算数书》成书,忽略公元元年的影响,则这个时间可记作________.12.在数轴上,表示-3的点A 与表示-8的点B 相距________个单位长度. 13.计算2×3+(-4)的结果为________.14.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.15.在一个秘密俱乐部中,有一种特殊的计算方法:a *b =3a -2b .聪明的小王计算3*(-2)时发现了这一秘密,他是这样计算的:3*(-2)=3×3-2×(-2)=13.现在规定:a *b =a 2-4(b -1)+1999,请计算:(-2)*(-3)=________.16.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =三、解答题(共8小题,共72分)17.(8分)把下列各数填入相应的集合里:+5,-12,4.2,0,-5.37,37,-π,-3.(1)正有理数集合:{ …};(2)负数集合:{ …}; (3)分数集合:{ …}; (4)整数集合:{ …}.18.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来: -112,0,2,-|-3|,-(-3.5).19.(8分)计算:-23+6÷3×23.圆圆同学的计算过程如下:解:原式=-6+6÷2=0÷2=0.请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(8分)计算:0 3 4 13 2 5 6 314 7 8 57 6 c a b(1)13+(-7)-(-9)+5×(-2);(2)⎪⎪⎪⎪-312×127÷43÷(-3)2.21.(8分)某种植物成活的主要条件是该地区的四季温差不得超过20℃,若不考虑其他因素,表中的四个地区中,哪个地区适合大面积栽培这种植物?地区温度 A 地区 B 地区 C 地区 D 地区 四季最高气温/℃ 21 37 32 -2 四季最低气温/℃-2718-11-4522.(10分)小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?23.(10分)(1)某文具店在一周内的盈亏情况如下表(盈余为正,单位:元),表中星期六的盈亏被墨水涂污了,请你算出星期六的盈亏数;(2)某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月赢利2万元,7~10月平均每月赢利1.7万元,11~12月平均每月亏损2.3万元,那么这个公司去年全年的盈亏情况如何?24.(12分)下面是按规律排列的一列数:第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34⎣⎡⎦⎤1+(-1)45⎣⎡⎦⎤1+(-1)56; ……(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.C 2.A 3.C 4.A 5.D 6.C 7.A 8.D 9.B 10.C 11.-150 12.5 13.2 14.6.96×105 21万 15.201916.110 解析:找规律可得c =6+3=9,a =6+4=10,b =ac +1=91,所以a +b +c =110.17.+5,4.2,37(2分) -12,-5.37,-π,-3(4分)-12,4.2,-5.37,37(6分) +5,0,-3(8分) 18.解:数轴表示如图所示,(4分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)19.解:圆圆的计算过程不正确.(3分)正确的计算过程为:原式=-8+43=-203.(8分)20.解:(1)原式=13-7+9-10=5.(4分) (2)原式=72×127×34×19=12.(8分)21.解:A 地区温差为21-(-27)=21+27=48(℃);B 地区温差为37-18=19(℃);C 地区温差为32-(-11)=32+11=43(℃);D 地区温差为-2-(-45)=-2+45=43(℃).(6分)其中只有B 地区温差不超过20℃,故B 地区适合大面积栽培这种植物.(8分)22.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.(10分)23.解:(1)星期六盈亏情况为:458-(-27.8-70.3+200+138.1-8+188)=38,星期六盈利,盈利38元.(5分)(2)记盈利额为正数,亏损额为负数,公司去年全年盈亏额(单位:万元)为(-1.5)×3+2×3+1.7×4+(-2.3)×2=3.7.答:这个公司去年全年盈利3.7万元.(10分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34×…×⎣⎡⎦⎤1+(-1)40324033⎣⎡⎦⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。
人教版 数学七年级上册 第1章 有理数 单元测试卷 (含解析)
七年级(上)数学第1章有理数单元测试卷一.选择题(共10小题)1.在0,,,0.05这四个数中,最大的数是A.0B.C.D.0.052.已知月球与地球之间的平均距离约为,把用科学记数法可以表示为A.B.C.D.3.的绝对值和相反数分别是A.,B.,C.,D.,4.若,则等于A.B.5C.D.5.计算:A.B.1C.D.46.如图,数轴上点对应的数是,将点沿数轴向左移动2个单位至点,则点对应的数是A.B.C.D.7.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是A.B.C.D.8.若,,且,则的值为A.B.C.D.19.如图,,在数轴上的位置如图所示,那么的结果是A.B.C.D.10.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有A.2种B.3种C.4种D.5种二.填空题(共8小题)11.计算:.12.在,,0,,,,19中正数有个.13.已知,,为互不相等的整数,且,则.14.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.对于有理数、,定义一种新运算,规定☆,则3☆.16.数轴上,点在点的右边,已知点表示的数是,且.那么点表示的数是.17.如图所示,直径为1个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是.18.现定义新运算“※”,对任意有理数、,规定※,例如:1※,则计算3※.三.解答题(共7小题)19.计算下列各式:(1);(2).20.如图,在数轴上有,两点,点在点的左侧.已知点对应的数为2,点对应的数为.(1)若,则线段的长为;(2)若点到原点的距离为3,且在点的左侧,,求的值.21.下面是佳佳同学的一道题的解题过程:,①,②,③,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.22.如图,在数轴上有三个点、、,请回答下列问题.(1)、、三点分别表示、、;(2)将点向左移动3个单位长度后,点所表示的数是;(3)将点向右移动4个单位长度后,点所表示的数是.23.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米),,,,,.(1)处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?24.在“□1□2□3□4□5□6□7□8□9“的小方格中填上“”“”号,如果可以使其代数和为,就称数是“可表出数“,如1是“可表出数”:因为是1的一种可被表出的方法.(1)13“可表出数”,14“可表出数”(填“是“或“不是“;(2)共有个“可表出数”;(3)求27共有多少种可被表出的方法.25.现有15箱苹果,以每箱为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质量的差(单位:02 2.53箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?参考答案一.选择题(共10小题)1.在0,,,0.05这四个数中,最大的数是A.0B.C.D.0.05解:,最大的数是0.05.故选:.2.已知月球与地球之间的距离约为,用科学记数法可以表示为A.B.C.D.解:将384000用科学记数法表示为:.故选:.3.的绝对值和相反数分别是A.,B.,C.,D.,解:,的相反数是.故选:.4.若,则等于A.B.5C.D.解:,,.故选:.5.计算:A.B.1C.D.4解:.故选:.6.如图,数轴上点对应的数是,将点沿数轴向左移动2个单位至点,则点对应的数是A.B.C.D.解:点向左移动2个单位,点对应的数为:.故选:.7.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是A.B.C.D.解:,故不符合题意;,故不符合题意;,故符合题意;.,故不符合题意.综上,只有计算结果为负.故选:.8.若,,且,则的值为A.B.C.D.1解:,,,,,,或,,或.故选:.9.如图,,在数轴上的位置如图所示,那么的结果是A.B.C.D.解:根据题意得:,且,,,原式.故选:.10.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有A.2种B.3种C.4种D.5种解:数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,动点的不同运动方案为:方案一:;方案二:;方案三:;方案四:;方案五:.故选:.二.填空题(共8小题)11.计算:2.解:.故答案为:2.12.在,,0,,,,19中正数有4个.解:在,,0,,,,19中正数有:,,,19,共有4个,故答案为:4.13.已知,,为互不相等的整数,且,则4或1.解:,,为互不相等的整数,且,、、三个数为,1,4或,2,1,则或1.故答案为:4或1.14.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.解:如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:.故答案为:.15.对于有理数、,定义一种新运算,规定☆,则3☆7.解:3☆,故答案为:7.16.数轴上,点在点的右边,已知点表示的数是,且.那么点表示的数是3.解:,故答案为:3.17.如图所示,直径为1个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是.解:直径为单位1的圆的周长,,点表示的数为.故答案为:.18.现定义新运算“※”,对任意有理数、,规定※,例如:1※,则计算3※.解:3※故答案为:.三.解答题(共7小题)19.计算下列各式:(1);(2).解:(1);(2).20.如图,在数轴上有,两点,点在点的左侧.已知点对应的数为2,点对应的数为.(1)若,则线段的长为3;(2)若点到原点的距离为3,且在点的左侧,,求的值.解:(1),故答案为:3;(2)点到原点的距离为3,设点表示的数为,则,即,点在点的左侧,点在点的左侧,且点表示的数为2,点表示的数为,,,解得.21.下面是佳佳同学的一道题的解题过程:,①,②,③,④(1)佳佳同学开始出现错误的步骤是①;(2)请给出正确的解题过程.解:(1)佳佳同学开始出现错误的步骤是①.故答案为:①.(2).22.如图,在数轴上有三个点、、,请回答下列问题.(1)、、三点分别表示、、;(2)将点向左移动3个单位长度后,点所表示的数是;(3)将点向右移动4个单位长度后,点所表示的数是.解:(1)从数轴看,点、、三点分别为:,,3,故答案为:,,3;(2)将点向左移动3个单位长度后,点所表示的数是,故答案为;(3)将点向右移动4个单位长度后,点所表示的数为0,故答案为:0.23.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米),,,,,.(1)处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?解:(1)(千米),答:处在岗亭西方,距离岗亭4千米;(2)(千米)(升答:这一天共耗油22升.24.在“□1□2□3□4□5□6□7□8□9“的小方格中填上“”“”号,如果可以使其代数和为,就称数是“可表出数“,如1是“可表出数”:因为是1的一种可被表出的方法.(1)13是“可表出数”,14“可表出数”(填“是“或“不是“;(2)共有个“可表出数”;(3)求27共有多少种可被表出的方法.解:(1)奇数和偶数相加或相减都是奇数,和2、3和4、5和6、7和8,9,可看做是5个奇数.最后的结果肯定为奇数,为奇数,14为偶数,且,是可表出数,而14不是可表出数,故答案为:是;不是;(2)若小方格全为“”号,总和为45,若小方格全为“”号,总和为,奇数和偶数相加或相减都是奇数,不小于,且不大于45的所有奇数都是“可表出数”,共有46个“可表出数”.故答案为:46;(3)若小方格全为加号,总和为45,要使最后答案为27,则其中“”号后面的数的总和为36,“”号后面的数的总和为9,不同方法数为8种:1,8或2,7或3,6或4,5或1,2,6或2,3,4或1,2,6或1,3,5这些数字前得符号为负.共有8种可被表出的不同方法.25.现有15箱苹果,以每箱为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质量的差(单位:02 2.53箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?解:(1)(千克).答:最重的一箱比最轻的一箱重5千克;(2)(千克).答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;(3)(千克)(元.答:这15箱苹果全部售出共可获利3068元.。
2018年秋人教版七年级数学上册《第1章有理数》测试卷含答案
一、选择题 (共 12 小题,总分 36 分 ) 1. (3 分 )7 的相反数是 ( A .7 ) B .- 7 ) C.- 4 D. - 6 ) D . 2 或- 2 1 C.7 1 D .- 7
2. (3 分 )下列四个数中最大的数是 ( A .0 B .- 2
3. (3 分 )数轴上的点 A 到原点的距离是 4,则点 A 表示的数为 ( A .4 B .- 4 ) C. 4 或- 4
A . a> b> c
6. (3 分 )若 a= 2, |b|= 5,则 a+ b= ( A .- 3 B.7
7. (3 分 )我国是最早认识负数,并进行相关运算的国家.在古代数学名著 算术》里,就记载了利用算筹实施
“ 正负术 ” 的方法,图 (1)表示的是计算 3+ )
(- 4)的过程.按照这种方法,图 (2) 表示的过程应是在计算 (
4. (3 分 )下列说法正确的是 ( A .负数没有倒数 C.任何有理数都有倒数
B .正数的倒数比自身小 D .- 1 的倒数是- 1
1 5. (3 分 )已知: a=- 2+ (- 10), b=- 2- (- 10), c=- 2× (- ) ,下列判断正 10 确的是 ( ) B . b> c> a ) C.- 7 D .- 3 或 7 《九章 C. c> b> a D . a> c> b
二、填空题 (共 6 小题,总分 18 分 ) 13. (3 分 )在知识抢答中,如果用+ 10 表示得 10 分,那么扣 20 分表示为 __ __. 14. (3 分 )在- 42,+ 0.01,π , 0, 120 这 5 个数中,正有理数是 __ 1 1 2 15. (3 分 )计算 4- 2+ 3 × ( - 12) = __ __. _. _.
人教版七年级上册数学 第 1章 有理数 单元测试卷(含答案解析)
人教版七年级上册数学第1章有理数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.−72的相反数是()A. −72B. −27C. 27D. 722.下列各式:①−(−2);②−|−2|;③−22;④−(−2)2,结果为负数的个数有()A. 4个B. 3个C. 2个D. 1个3.5967用科学记数法表示为()A. 596.7B. 5.967×103C. 0.5967×103D. 5967×10−14.在检测一批足球时,随机抽取了4个足球进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.5.丁丁做了以下4道计算题:①(−1)2014=2014;②0−(−1)=1;③−12+13=−16;④12÷(−12)=−1.请你帮他检查一下,他一共做对了()A. 1题B. 2题C. 3题D. 4题6.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个7.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算3+(−4)的过程.按照这种方法,图(2)表示的过程应是在计算()第5页,共17页A.(−5)+(−2) B. (−5)+2 C. 5+(−2) D. 5+28. 下列各组数中,互为相反数的有( )①−(−2)和和−|−2|; ②(−1)2019和−12; ③23和32; ④(−2)3和−23 A. ④B. ①C. ①②③D.①②④9. 如图,数轴上的点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且b −2a =3c +d +21,那么数轴上原点对应的点是( )A. A 点B. B 点C. C 点D. D 点10. 若|abc|=−abc ,且abc ≠0,则 |a|a+|b|b+|c|c=( )A. 1或−3B. −1或−3C. ±1或±3D. 无法判断二、填空题(本大题共9小题,共27分)11. 如果全班某次数学测试的平均成绩为80分,某同学考了85分,记作+5分,得分82分和78分应分别记作_________________________.12. 已知a >0,b <0,a +b >0,则在a ,b ,−a ,−b 这四个数中最大的数是_____________.13. 数轴上与表示−1点相距3单位长度的点表示的数是_______.14. 最小的正整数是____,最大的负整数是_____,绝对值最小的数是_____; 15. 若|a|=6,|b|=2,且|a +b|=a +b ,则a −b 的值______. 16. 如果|a −1|+|b +2|=0,那么a −b =_______17. 如图是一个计算程序,若输入的值为−1,则输出的结果应为___________.18. 数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是。
2018年秋七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版
第一章 有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .﹣10℃C .+5℃D .﹣5℃2.(4分)下列四个数中,是正整数的是( ) A .﹣1B .0C .21D .1 3.(4分)如图所示,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c 4.(4分)﹣8的相反数是( ) A .﹣8 B .81C .8D .﹣81 5.(4分)﹣2018的绝对值是( ) A .2018 B .﹣2018 C .20181 D .﹣201816.(4分)计算:0+(﹣2)=( ) A .﹣2 B .2C .0D .﹣207.(4分)已知a=(143﹣152)﹣161,b=143﹣(152﹣161),c=143﹣152﹣161,判断下列叙述何者正确?( ) A .a=c ,b=c B .a=c ,b ≠cC .a ≠c ,b=cD .a ≠c ,b ≠c8.(4分)已知两个有理数a ,b ,如果ab <0且a+b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大9.(4分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( ) A .0.827×1014B .82.7×1012C .8.27×1013D .8.27×101410.(4分)如果四个互不相同的正整数m ,n ,p ,q ,满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=4,那么m+n+p+q=( ) A .24 B .21 C .20 D .22二.填空题(共4小题,满分20分,每小题5分)11.(5分)一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点为 . 12.(5分)如果|x|=6,则x= .13.(5分)某日的最高气温为5℃,最低气温为﹣5℃,则这一天的最高气温比最低气温高 ℃. 14.(5分)若a ≠b ,且a 、b 互为相反数,则ba= .三.解答题(共9小题,满分90分) 15.(8分)计算: (1)(32﹣43+61)÷121(2)﹣12×4﹣(﹣2)2÷216.(8分)①已知x 的相反数是﹣2,且2x+3a=5,求a 的值. ②已知﹣[﹣(﹣a )]=8,求a 的相反数.17.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,求:x 3﹣x 2+(﹣cd )2017﹣(a+b )2018列的值18.(8分)已知a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1. (1)写出a ,b ,c 的值;(2)求代数式3a (b+c )﹣b (3a ﹣2b )的值. 19.(10分)计算:﹣23+6÷3×32圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)奥运会期间,志愿者小王在奥运村一条东西向的道路上负责接送残疾运动员,如果规定向东为正,向西为负,某天上午的行车记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+6、﹣3、﹣7、+5. (1)最后一名残疾运动员的目的在小王出车地点什么方位、距离是多少? (2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升? 21.(12分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求m+cd+mba +的值. 22.(12分)探索规律:(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788,⎩⎨⎧=⨯=⨯6455,⎩⎨⎧=⨯=⨯13111212;(2)已知25×25=625,那么24×26= ;(3)请用代数式把你从以上的过程中发现的规律表示出来. 23.(14分)(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:1﹣2n = (3)利用上述规律计算下式的值:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-222221001199114113112112018年秋七年级上学期 第一章 有理数 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可. 【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃; 故选:D .【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负. 2.【分析】正整数是指既是正数还是整数,由此即可判定求解. 【解答】解:A 、﹣1是负整数,故选项错误; B 、0是非正整数,故选项错误; C 、21是分数,不是整数,错误; D 、1是正整数,故选项正确. 故选:D .【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单. 3.【分析】直接利用数轴上A ,B ,C 对应的位置,进而比较得出答案. 【解答】解:由数轴上A ,B ,C 对应的位置可得: a <0,故选项A 错误; b <c ,故选项B 错误; b >a ,故选项C 正确; a <c ,故选项D 错误; 故选:C .【点评】此题主要考查了数轴,正确得出各项符号是解题关键.4.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 【解答】解:﹣8的相反数是8, 故选:C .【点评】此题主要考查了相反数,关键是掌握相反数的定义. 5.【分析】根据绝对值的定义即可求得. 【解答】解:﹣2018的绝对值是2018. 故选:A .【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键. 6.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:0+(﹣2)=﹣2. 故选:A .【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键. 7.【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可. 【解答】解:∵a=(143﹣152)﹣161=143﹣152﹣161,b=143﹣(152﹣161)=143﹣152+161,c=143﹣152﹣161, ∴a=c ,b ≠c . 故选:B .【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数. 8.【分析】先由有理数的乘法法则,判断出a ,b 异号,再用有理数加法法则即可得出结论. 【解答】解:∵ab <0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】由题意确定出m,n,p,q的值,代入原式计算即可求出值.【解答】解:∵四个互不相同的正整数m,n,p,q,满足(5﹣m)(5﹣n)(5﹣p)(5﹣q)=4,∴满足题意可能为:5﹣m=1,5﹣n=﹣1,5﹣p=2,5﹣q=﹣2,解得:m=4,n=6,p=3,q=7,则m+n+p+q=20,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,故答案是:﹣50.【点评】主要考查了数轴及图形的变化类问题,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6. 【解答】解:|x|=6,所以x=±6. 故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数. 13.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:∵某日的最高气温为5℃,最低气温为﹣5℃, ∴这一天的最高气温比最低气温高:5﹣(﹣5)=10(℃). 故答案为:10.【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键. 14.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可. 【解答】解:∵a 、b 互为相反数, ∴a=﹣b . ∴1-=-=bbb a . 故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b 是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值. 【解答】解:(1)原式=(32﹣43+61)×12=8﹣9+2=1; (2)原式=﹣4﹣2=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】①直接利用相反数的定义得出x 的值,进而得出a 的值; ②直接去括号得出a 的值,进而得出答案. 【解答】解:①∵x 的相反数是﹣2,且2x+3a=5, ∴x=2, 故4+3a=5, 解得:a=31;②∵﹣[﹣(﹣a )]=8, ∴a=﹣8, ∴a 的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键. 17.【分析】根据题意得出a+b=0、cd=1、x=5或x=﹣5,再分情况列式计算可得. 【解答】解:根据题意知a+b=0、cd=1、x=5或﹣5, 当x=5时,原式=53﹣52+(﹣1)2017﹣02018=125﹣25﹣1﹣1 =98;当x=﹣5时,原式=(﹣5)3﹣(﹣5)2+(﹣1)2017﹣02018=﹣125﹣25﹣1﹣1 =﹣152.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义、绝对值的性质及有理数的混合运算顺序和运算法则. 18.【分析】(1)根据a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,可以求得a 、b 、c 的值; (2)先对题目中的式子化简,然后将(1)a 、b 、c 的值代入即可解答本题. 【解答】解:(1)∵a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1; (2)3a (b+c )﹣b (3a ﹣2b ) =3ab+3ac ﹣3ab+2b 2=3ac+2b 2,∵a=﹣2,b=±3,c=﹣1, ∴b 2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.【分析】圆圆的计算过程错误,写出正确的解题过程即可. 【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+34=﹣320. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.【分析】(1)根据有理数的加法运算,可得答案; (2)根据单位耗油量乘以行车距离,可得共耗油量.. 【解答】解:(1)+8﹣9+4+7﹣2﹣10+6﹣3﹣7+5=﹣1(km ). 答:最后一名残疾运动员的目的在小王出车地点的正西1km (2)8+9+4+7+2+10+6+3+7+5=61(km ).61×0.3=18.3升. 答:这天下午汽车共耗油18.3升.【点评】本题考查了正数和负数,利用了有理数的加法运算. 21.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答; (2)分两种情况讨论,即可解答.【解答】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+m ba +=2+1+0=3; 当m=﹣2时,m+cd+mba +=﹣2+1+0=﹣1.【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义. 22.【分析】(1)利用乘法法则计算即可求出所求; (2)原式变形后,利用平方差公式计算即可求出值; (3)根据以上等式得出规律,写出即可. 【解答】解:(1)⎩⎨⎧=⨯=⨯63976488,⎩⎨⎧=⨯=⨯24642555,⎩⎨⎧=⨯=⨯14313111441212;(2)已知25×25=625,那么24×26=624; (3)根据题意得:n 2=(n+1)(n ﹣1)+1. 故答案为:(2)624【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键. 23.【分析】(1)根据有理数的乘法和乘方运算分别计算结果可得; (2)根据以上表格中的计算结果可得; (3)根据以上规律,将原式裂项、约分即可得.【解答】解:(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-n n n 1111112,故答案为:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+n n 1111; (3)原式2001011001012110010110099454334322321100111001199119911411411311311211211=⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= 【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的乘法和乘方运算法则及数字的变化规律.。
【七年级数学】2018年七年级数学上第1章有理数单元测试卷A(人教版附答案和解释)
2018年七年级数学上第1章有理数单元测试卷A(人教版附
答案和解释)
1 D 3
10利用如图1的二维码可以进行身份识别某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生表示6班学生的识别图案是()
A B c D
二、填空题(共10题;共1=14,
∴这个数用科学记数法表示是128 1014 .
故答案为A.
【分析】用科学记数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。
2【答案】c
【考点】正数和负数的认识及应用
【解析】【解答】根据题意,由下降500)+(-2 0,再把-2输入,则有(-2)×(-3)÷3=2 0,满足输出条,因此输出的结果为2,故答案为B【分析】输入数字2,则有2×(-3)÷3=-2 0,根据题意,再把-2输入,则有(-2)×(-3)÷3=2 0,满足输出条,因此输出的结果为2。
9【答案】D
【考点】含乘方的有理数混合运算
【解析】【解答】解原式=2+1
=3.。
人教版七年级数学上册第一章有理数单元检测附答案解析2018
○………外○…………装…………○…………订………○学校:___________姓名:_________班级:___________考号:_________人教版七年级上册第一章有理数单元检测附答案解析2018考试时间:120分钟满分:120分姓名:__________ 班级:__________考号:__________一、单选题(每小题3分,共12题;共36分)1.实数1,-1,0,- 12四个数中,最大的数是( )A. 0B. 1C. -1D. - 12 2.下列各对数中,是互为倒数的一对是( )A. 4和-4B. -3和13 C. -2和−12 D. 0和0 3.计算5﹣(﹣2)×3的结果等于( )A. ﹣11B. ﹣1C. 1D. 11 4.下列所画的数轴中正确的是() A. B.C.D.5.实数-3的相反数是( )A. 3B. 13C. −13D. -26.如果收入15元记作+15元,那么支出20元记作( )A. 20元B. -20元C. 20D. -20 7.如图,如果数轴上A ,B 两点之间的距离是7,那么点B 表示的数是( )A. ﹣3B. ﹣2C. 2D. ﹣1 8.数a ,b 在数轴上的位置如图所示,则a+b 是( )A. 正数B. 零C. 负数D. 都有可能 9.-3+8-7的正确读法是( )。
A. 负3正8负7B. 减3加8负7C. 负3加8减7D. 减3加8减7 10.﹣13的绝对值是( )A. 13 B. ﹣13 C. 3 D. ﹣311.(2015•德州)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是( )A. 5.62×104m 2B. 56.2×104m 2C. 5.62×105m 2D. 0.562×104m 212.某风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为( ) A. 0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105二、填空题(每空3分,共18分)13.用科学记数法表示:23450000=________. 14.若x ,y 互为倒数,则−(xy )2018= ________.15.如果出售一个商品,获利记为正,则-20元表示________。
人教版初中七年级上册数学第一章《有理数》单元测试含答案解析
《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
人教版七年级数学上册《第一章有理数》单元测试卷(带答案)
人教版七年级数学上册《第一章有理数》单元测试卷(带答案)一、选择题1.若10℃表示零上10℃,则17-℃表示( )A .零上17℃B .零上27℃C .零下17℃D .零下17-℃2.以下说法正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .正有理数和负有理数统称有理数D .有理数包括整数、零、分数3.如图所示,在数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .3.1D .2.34.下列各数中,互为相反数的是( )A .13-与3- B .0与0 C .5--和5-D .12和0.5 5.- 3的绝对值是( )A .13B .3C .-3D .-136.在﹣2,3,0,﹣3.14这四个数中,最小的数为( )A .﹣2B .3C .0D .﹣3.147.下列计算正确的是( )A .﹣3+9=6B .4﹣(﹣2)=2C .(﹣4)×(﹣9)=﹣36D .23÷32=18.下列各对数中,数值相等的是( )A .2233()44和B .|-10|=10和-(-10)C .2233--()和 D .3223和9.我国南水北调东线北延工程2022年度供水任务顺利完成,共向黄河以北调189000000立方米,数据189000000用科学记数法表示为( ) A .618910⨯B .718.910⨯C .81.8910⨯D .91.8910⨯10.下列由四舍五入法得到的近似数精确到千位的是( )A .44.110⨯B .0.0035C .7658D .2.24万二、填空题11.直播购物逐渐成为人们一种主流的购物方式,10月21日“双十一”正式开始预售,据官方数据显示,李佳琦直播间累计观看人数达到了16750000人.请把数16750000用科学记数法表示为 .12.比较大小:-|-2.7| -(-3.3)(填“<”““>”或“=”).13.如图.A 、B 两点在数轴上(A 在B 的右侧),点A 表示的数是2,A 、B 之间的距离为4则点B 表示的数是14.若一0.5的倒数与m+4互为相反数,则m=三、计算题15.(1)18×(13-)-8÷(-2).(2)(-2)3+[-9+(-3)2×13] (3)11182414289--⨯-()() (4) 22333[2()2]22-÷-⨯--四、解答题16.世界最高峰珠穆朗玛峰的海拔高度是8844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?17.将﹣2.5,12,2,﹣(﹣3)这四个数在数轴上表示出来,并用“<”把它们连接起来.18.质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“-”记录,记录如下:-6,-3,-2,0,+1,+4,+5,-1(1)通过计算,求出8袋洗衣粉的总重量(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元19.若23(2)0x y ++-=,求xyx y-的值. 五、综合题20.如图,点A,B,C为数轴上三点,点A表示-2,点B表示4,点C表示8.(1)A、C两点间的距离是.(2)当点P以每秒1个单位的速度从点C出发向CA方向运动时,是否存在某一时刻,使得PA=3PB?若存在,请求出运动时间;若不存在,请说明理由.21.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)若以小明家为原点,向东的方向为正方向,用1个单位长度表示1km,请在如图所示的数轴,,表示出小彬家,小红家和学校的位置;上,分别用点A B C(2)小彬家与学校之间的距离为;(3)如果小明跑步的速度是200m/min,那么小明跑步一共用了多长时间?22.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一km天中七次行驶纪录如下:(单位:)第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距A地多远?(2)若每km耗油0.3升,问一天共耗油多少升?答案解析部分1.【答案】C2.【答案】B【解析】【解答】解:A:正整数和负整数统称整数,说法错误,漏掉了0;B:整数和分数统称有理数,说法正确;C:正有理数和负有理数统称有理数,说法错误,漏掉了0;D:有理数包括整数、零、分数,说法错误,整数里面已经包括了零。
人教版七年级上册数学 第一章有理数 单元测试(解析版)
第一章 有理数 单元测试一、选择题1.如果向东走2m 记为+2m ,则向西走3m 可记为( ) A .+3m B .+2m C .-3m D .-2m2.下列各数:0.01,10,-6.67,31-,0,-(-3),-|-2|,-(-4²),其中属于非负整数的有( )A .1个B .2个C .3个D .4个 3.下列说法错误的是( )A.-2的相反数是2B.3的倒数是31C.(-3)-(-5)=2D.-11,0,4这三个数中最小的数是04.2018年中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕,本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为( ) A.0.55×10⁶ B.5.5×10⁵ C.5.5×10⁴ D.55×10⁴5.数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是()A.a >-4B.bd >0C.|a|>|d|D.b+c >06.在“有理数的加法与减法运算”的学习过程中,小明做过如下数学试验:“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果正确的是( ) A.0+(-3)-(+1)=-4 B.0+(-3)+(+1)=-2 C.0+(+3)+(-1)=+2 D.0+(+3)+(+1)=+47.下列计算结果最小的是( ) A.(-2-3)² B .C .-3²÷(-3)²D .(-1)⁴ 8.下列说法正确的是( ) A .近似数117.08精确到十分位B .按科学记数法表示的数5.04×10⁵,其原数是50400C .将数60340精确到千位是6.0×10⁴D .用四舍五入法得到的近似数8.1750精确到千分位 9.若|b+2|与(a-3)²互为相反数,则的值为( ) A.81 B.81- C.-8 D.810.已知整数a ₁,a ₂,a ₃,a ₄…满足下列条件:a ₁=0,a ₂=-|a ₁+1|,a ₃=-|a ₂+2|,a ₄=-|a ₃+3|,……,依此类推,a ₂₀₁₉的值为( ) A.2019 B.-2019 C.-1009 D.1009 二、填空题11.52-的相反数是________;绝对值等于4的数是________.12.若两个数的乘积等于-1,则称其中一个数是另一个数的负倒数,那么321-的负倒数为__________.13.a 是最小的正整数,b 是最小的非负数,m 表示大于-4且小于3的整数的个数,则a-b+m=____.14.把-2²,(-2)²,-|-2|,21-按从小到大的顺序排列是____________.15.下图是一个数值转换机,若输入数为3,则输出数是__________.16.已知数a 、b 在数轴上对应的点在原点两侧,并且到原点的距离相等,数x 、y 互为倒数,那么2|a+b|-2xy 的值等于_______.17.规定符号的意义为a b=ab-a ²+|-b|+1,那么-34=____. 18.若|m|=7,则m=____;若n ²=36,则n=____,m+n=____.19.若数轴上点A 表示的数是-1,且点B 到点A 的距离为2020,则点B 表示的数是__________.20.猜数字游戏中,小明写出如下一组数:353219161187452,,,,,…,小亮猜测出第六个数是6764,根据此规律,第n (n 为正整数)个数是_________________.三、解答题21.将下列各数填在相应的集合里, -3.8,-20%,4.3,720--,4²,0,⎪⎭⎫⎝⎛53--,-3²,整数集合:{ …}; 分数集合:{ …};正数集合:{ …};负数集合:{ …}.22.小琼和小凤都十分喜欢唱歌,她们两个一起参加社区的文艺汇演,在汇演前,主持人让她们自己确定一个出场顺序,可她们俩争着先出场,最后,主持人想了一个主意,如图所示.23. 计算: (1);(2);(3).24.一辆货车从仓库O 出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A .B ,C ,D ,E ,最后回到仓库O ,货车行驶的记录(单位:千米)如下:+1,+3,-6,-1,-2,+5.(1)请以仓库O为原点,向东为正方向,选择适当的单位长度画出数轴,并标出A,B,C,D,E的位置;(2)该货车共行驶了多少千米?(3)如果货车运送的水果以100千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量(单位:千克)可记为:+50,-15,+25,-10,-15,则该货车运送的水果总质量是多少千克?25.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)如果点A、C表示的数互为相反数,求点B表示的数;(3)在(1)的条件下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求点D表示的数.答案一、选择题1.C向东与向西具有相反的意义,因为向东走2m记为+2m,所以向西走3m可记为-3m,故选C.2.D -(-3)=3,-|-2|=-2,-(-4²)=16,非负整数有10,0,-(-3),-(-4²),共4个.3.D -11,0,4这三个数中最小的数是-11,所以D错误,故选D.4.B 55万=550000=5.5×10⁵.5.C 由数轴可知,-5<a <-4,-2<b <-1,0<c <1,d=4,所以a <-4,bd <0,|a|>|d|,b+c <0,故选C .6.B 根据“向左为负,向右为正”得0+(-3)+(+1)=-2,故选B .7.C (-2-3)²=25,,-3²÷(-3)²=-1,(-1)⁴=1,故选C .8.C 近似数117.08精确到百分位;按科学记数法表示的数5.04×10⁵,其原数是504000;用四舍五入法得到的近似数8.1750精确到万分位,只有C 正确,故选C .9.C 由题意得|b+2|+(a-3)²=0,因为|b+2|≥0,(a-3)²≥0,所以b+2=0,a-3=0,所以b=-2,a=3,所以=(-2)³=-8.10.C 因为a ₁=0,a ₂=-|a ₁+1|=-|0+1|=-1,a ₃=-|a ₂+2|=-|-1+2|=-1.a ₄=-|a ₃+3|=-|-1+3|=-2,a ₅=-|a ₄+4|=-|-2+4|=-2,……,所以,n是奇数时,,n 是偶数时,,所以,故选C .二、填空题11.答案 52;±4解析 负数的相反数是正数,所以52-的相反数是52,互为相反数的两个数的绝对值相等,所以绝对值等于4的数是±4.12.答案 53-解析35321=-,由题意可知,35的负倒数为53-.13.答案7解析 根据题意得a=1,b=0,m=6,所以a-b+m=1-0+6=7.14.答案 -2²<-|-2|<21-<(-2)²解析 因为-2²=-4,(-2)²=4,-|-2|=-2,又-4<-2<21-<4,所以-2²<-|-2|<21-<(-2)².15.答案 65解析 当输入数为3时,第一步得到的是8,第二步计算结果是65.16.答案 -2解析 因为数a 、b 在数轴上对应的点在原点两侧,并且到原点的距离相等,所以a 、b 互为相反数,所以a+b=0,数x 、y 互为倒数,所以xy=1.所以2|a+b|-2xy=-2.17.答案 -16解析 -34=(-3)×4-(-3)²+|-4|+1=-16.18.答案 ±7;±6;13或-13或1或-1解析 易知m=±7,n=±6.当m=7,n=6时,m+n=7+6=13.当m=7,n=-6时,m+n=7-6=1. 当m=-7,n=6时,m+n=-7+6=-1, 当m=-7,n=-6时,m+n=-7-6=-13. 19.答案 2019或-2021解析 数轴上点A 表示的数是-1,且点B 到点A 的距离为2020,所以点B 表示的数是-1+2020=2019或-1-2020=-2021. 20.答案解析 由题意可知分子存在的规律为2¹,2²,2³,…,,因为分母比分子大3,所以分母存在的规律为2¹+3,2²+3,2³+3,…,+3,则第n 个数是.三、解答题21.解析 整数集合:{4²,0,-3²,…};分数集合:{-3.8,-20%,4.3,…};正数集合:{4.3,4²,…};负数集合:{-3.8,-20%,,-3²,…).22.解析 -|-5|=-5,-(-3)=3,-0.4的倒数是25-,(-1)⁵=-1,0的相反数是0,比-2大27的数是23,将化简后的数在数轴上表示如下:所以-5<25-<-1<0<23<3. 23.解析 (1)原式=-8××6=-48×=8-36+4=-24. (2)原式(3)原式24.解析(1)如图所示(取1个单位长度表示1千米):(2)1+3+|-6|+|-1|+|-2|+5=18(千米).答:该货车共行驶了18千米.(3)100×5+50-15+25-10-15=535(千克). 答:该货车运送的水果总质量是535千克.25.解析(1)若点A 表示的数为0,∵0-4=-4,∴点B 表示的数为-4,∵-4+7=3,∴点C 表示的数为3.(2)若点A 、C 表示的数互为相反数,∵AC=7-4=3,∴点A 表示的数为-1.5,∵-1.5-4=-5.5,∴点B 表示的数为-5.5.(3)设小虫P 与小虫Q 的运动时间为t 秒,依题意得0.5t+0.2t=7,解得t=10,则点D表示的数是0.5×10-4=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋七年级上学期 第一章 有理数 单元测试卷数 学 试 卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃ B .﹣10℃ C .+5℃D .﹣5℃2.(4分)下列四个数中,是正整数的是( ) A .﹣1 B .0C .21D .1 3.(4分)如图所示,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c4.(4分)﹣8的相反数是( )A .﹣8B .81C .8D .﹣815.(4分)﹣2018的绝对值是( ) A .2018B .﹣2018C .20181D .﹣201816.(4分)计算:0+(﹣2)=( ) A .﹣2 B .2C .0D .﹣207.(4分)已知a=(143﹣152)﹣161,b=143﹣(152﹣161),c=143﹣152﹣161,判断下列叙述何者正确?( ) A .a=c ,b=cB .a=c ,b ≠cC .a ≠c ,b=cD .a ≠c ,b ≠c8.(4分)已知两个有理数a ,b ,如果ab <0且a +b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大9.(4分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( )A .0.827×1014B .82.7×1012C .8.27×1013D .8.27×101410.(4分)如果四个互不相同的正整数m ,n ,p ,q ,满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=4,那么m +n +p +q=( ) A .24 B .21 C .20 D .22二.填空题(共4小题,满分20分,每小题5分)11.(5分)一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点为 .12.(5分)如果|x |=6,则x= .13.(5分)某日的最高气温为5℃,最低气温为﹣5℃,则这一天的最高气温比最低气温高 ℃.14.(5分)若a ≠b ,且a 、b 互为相反数,则ba= .三.解答题(共9小题,满分90分) 15.(8分)计算:(1)(32﹣43+61)÷121(2)﹣12×4﹣(﹣2)2÷216.(8分)①已知x 的相反数是﹣2,且2x +3a=5,求a 的值. ②已知﹣[﹣(﹣a )]=8,求a 的相反数.17.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,求:x 3﹣x 2+(﹣cd )2017﹣(a +b )2018列的值18.(8分)已知a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1. (1)写出a ,b ,c 的值;(2)求代数式3a (b +c )﹣b (3a ﹣2b )的值.19.(10分)计算:﹣23+6÷3×32圆圆同学的计算过程如下: 原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)奥运会期间,志愿者小王在奥运村一条东西向的道路上负责接送残疾运动员,如果规定向东为正,向西为负,某天上午的行车记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+6、﹣3、﹣7、+5.(1)最后一名残疾运动员的目的在小王出车地点什么方位、距离是多少? (2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升? 21.(12分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a +b ,cd ,m 的值; (2)求m +cd +mba +的值. 22.(12分)探索规律:(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788,⎩⎨⎧=⨯=⨯6455,⎩⎨⎧=⨯=⨯13111212;(2)已知25×25=625,那么24×26= ;(3)请用代数式把你从以上的过程中发现的规律表示出来. 23.(14分)(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:1﹣21n= (3)利用上述规律计算下式的值:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-222221001199114113112112018年秋七年级上学期 第一章 有理数 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃; 故选:D .【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负. 2.【分析】正整数是指既是正数还是整数,由此即可判定求解. 【解答】解:A 、﹣1是负整数,故选项错误; B 、0是非正整数,故选项错误;C 、21是分数,不是整数,错误;D 、1是正整数,故选项正确. 故选:D .【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单. 3.【分析】直接利用数轴上A ,B ,C 对应的位置,进而比较得出答案. 【解答】解:由数轴上A ,B ,C 对应的位置可得: a <0,故选项A 错误; b <c ,故选项B 错误; b >a ,故选项C 正确;a <c ,故选项D 错误; 故选:C .【点评】此题主要考查了数轴,正确得出各项符号是解题关键. 4.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 【解答】解:﹣8的相反数是8, 故选:C .【点评】此题主要考查了相反数,关键是掌握相反数的定义. 5.【分析】根据绝对值的定义即可求得. 【解答】解:﹣2018的绝对值是2018. 故选:A .【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键. 6.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:0+(﹣2)=﹣2. 故选:A .【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键. 7.【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可. 【解答】解:∵a=(143﹣152)﹣161=143﹣152﹣161,b=143﹣(152﹣161)=143﹣152+161,c=143﹣152﹣161, ∴a=c ,b ≠c . 故选:B .【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】由题意确定出m,n,p,q的值,代入原式计算即可求出值.【解答】解:∵四个互不相同的正整数m,n,p,q,满足(5﹣m)(5﹣n)(5﹣p)(5﹣q)=4,∴满足题意可能为:5﹣m=1,5﹣n=﹣1,5﹣p=2,5﹣q=﹣2,解得:m=4,n=6,p=3,q=7,则m+n+p+q=20,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可. 【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50, 故答案是:﹣50.【点评】主要考查了数轴及图形的变化类问题,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x |=6,所以x=±6. 【解答】解:|x |=6,所以x=±6. 故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数. 13.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:∵某日的最高气温为5℃,最低气温为﹣5℃, ∴这一天的最高气温比最低气温高:5﹣(﹣5)=10(℃). 故答案为:10.【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键. 14.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可. 【解答】解:∵a 、b 互为相反数, ∴a=﹣b . ∴1-=-=bbb a . 故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b 是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值. 【解答】解:(1)原式=(32﹣43+61)×12=8﹣9+2=1; (2)原式=﹣4﹣2=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.【分析】①直接利用相反数的定义得出x 的值,进而得出a 的值; ②直接去括号得出a 的值,进而得出答案. 【解答】解:①∵x 的相反数是﹣2,且2x +3a=5, ∴x=2, 故4+3a=5,解得:a=31;②∵﹣[﹣(﹣a )]=8, ∴a=﹣8,∴a 的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键. 17.【分析】根据题意得出a +b=0、cd=1、x=5或x=﹣5,再分情况列式计算可得. 【解答】解:根据题意知a +b=0、cd=1、x=5或﹣5, 当x=5时,原式=53﹣52+(﹣1)2017﹣02018 =125﹣25﹣1﹣1=98;当x=﹣5时,原式=(﹣5)3﹣(﹣5)2+(﹣1)2017﹣02018 =﹣125﹣25﹣1﹣1 =﹣152.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义、绝对值的性质及有理数的混合运算顺序和运算法则. 18.【分析】(1)根据a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,可以求得a 、b 、c 的值;(2)先对题目中的式子化简,然后将(1)a 、b 、c 的值代入即可解答本题. 【解答】解:(1)∵a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1, ∴a=﹣2,b=±3,c=﹣1; (2)3a (b +c )﹣b (3a ﹣2b ) =3ab +3ac ﹣3ab +2b 2 =3ac +2b 2,∵a=﹣2,b=±3,c=﹣1, ∴b 2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.【分析】圆圆的计算过程错误,写出正确的解题过程即可.【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+34=﹣320. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.【分析】(1)根据有理数的加法运算,可得答案;(2)根据单位耗油量乘以行车距离,可得共耗油量..【解答】解:(1)+8﹣9+4+7﹣2﹣10+6﹣3﹣7+5=﹣1(km ).答:最后一名残疾运动员的目的在小王出车地点的正西1km(2)8+9+4+7+2+10+6+3+7+5=61(km ).61×0.3=18.3升.答:这天下午汽车共耗油18.3升.【点评】本题考查了正数和负数,利用了有理数的加法运算.21.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a +b=0,cd=1,m=±2.(2)当m=2时,m +cd +mb a +=2+1+0=3; 当m=﹣2时,m +cd +m b a +=﹣2+1+0=﹣1. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.22.【分析】(1)利用乘法法则计算即可求出所求;(2)原式变形后,利用平方差公式计算即可求出值;(3)根据以上等式得出规律,写出即可.【解答】解:(1)⎩⎨⎧=⨯=⨯63976488,⎩⎨⎧=⨯=⨯24642555,⎩⎨⎧=⨯=⨯143131********;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n 2=(n +1)(n ﹣1)+1.故答案为:(2)624【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.23.【分析】(1)根据有理数的乘法和乘方运算分别计算结果可得;(2)根据以上表格中的计算结果可得;(3)根据以上规律,将原式裂项、约分即可得.【解答】解:(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-n n n 1111112, 故答案为:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+n n 1111; (3)原式2001011001012110010110099454334322321100111001199119911411411311311211211=⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= 【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的乘法和乘方运算法则及数字的变化规律.。