《多边形的内角和与外角和》参考课件
合集下载
《多边形的内角和与外角和》课件
未知边数情况下
如果不知道多边形的边数,可以先列出多边形的一个顶点出发的对角线,这 样可以将多边形分成若干个三角形,然后利用三角形内角和求解。
例子解析
1 2 3
求四边形内角和
四边形可以分成两个三角形,每个三角形的内 角和为180°,因此四边形的内角和为2 × 180°=360°。
求五边形内角和
五边形可以分成三个三角形,每个三角形的内 角和为180°,因此五边形的内角和为3 × 180°=540°。
一个正六边形的外角和是多少度?
05
结论与总结
主要内容回顾
多边形的内角和公式:$180^{\circ} \times (n-2)$,其中n是多边形的边数
多边形的外角和恒等于360^{\circ}
外角和的推导过程:将多边形分成若干个三角形,每个三角形的外角和为 360^{\circ},因此多边形的外角和为360^{\circ}
以五边形为例,五边形有5个顶点,每个顶点对应 的外角为180度/5 = 36度,因此五边形的外角和 为36 × 5 = 180度。
以四边形为例,四边形有4个顶点,每个顶点对应 的外角为180度/4 = 45度,因此四边形的外角和 为45 × 4 = 180度。
以此类推,对于任意多边形,其外角和均为360度 。
课后作业
基础题
基础题1
求一个四边形的内角和。
基础题2
求一个五边形的内角和。
基础题3
求一个六边形的内角和。
提高题
提高题1
01
已知一个四边形其中三个角的度数之和,求第四个角的度数。
提高题2
02
已知一个五边形其中四个角的度数之和,求第五个角的度数。
提高题3
03
已知一个六边形其中五个角的度数之和,求第六个角的度数。
如果不知道多边形的边数,可以先列出多边形的一个顶点出发的对角线,这 样可以将多边形分成若干个三角形,然后利用三角形内角和求解。
例子解析
1 2 3
求四边形内角和
四边形可以分成两个三角形,每个三角形的内 角和为180°,因此四边形的内角和为2 × 180°=360°。
求五边形内角和
五边形可以分成三个三角形,每个三角形的内 角和为180°,因此五边形的内角和为3 × 180°=540°。
一个正六边形的外角和是多少度?
05
结论与总结
主要内容回顾
多边形的内角和公式:$180^{\circ} \times (n-2)$,其中n是多边形的边数
多边形的外角和恒等于360^{\circ}
外角和的推导过程:将多边形分成若干个三角形,每个三角形的外角和为 360^{\circ},因此多边形的外角和为360^{\circ}
以五边形为例,五边形有5个顶点,每个顶点对应 的外角为180度/5 = 36度,因此五边形的外角和 为36 × 5 = 180度。
以四边形为例,四边形有4个顶点,每个顶点对应 的外角为180度/4 = 45度,因此四边形的外角和 为45 × 4 = 180度。
以此类推,对于任意多边形,其外角和均为360度 。
课后作业
基础题
基础题1
求一个四边形的内角和。
基础题2
求一个五边形的内角和。
基础题3
求一个六边形的内角和。
提高题
提高题1
01
已知一个四边形其中三个角的度数之和,求第四个角的度数。
提高题2
02
已知一个五边形其中四个角的度数之和,求第五个角的度数。
提高题3
03
已知一个六边形其中五个角的度数之和,求第六个角的度数。
多边形的外角和PPT课件
2、n边形从一个顶点所画对角线的条数为:
n-3 对角线总条数为n (n-3)/2
3、n边形的内角和等于:(n-2)×180°
.
3
练习:
1、八边形的内角和等于多少度? 十边形呢?
(8-2) ×180°= 1080° (10-2) ×180°= 1440°
2、已知一个正多边形每个内角都等108° , 求这个正多边形的边数?
6.若一个多边形的内角和等于它的外角和, 则它的边数是___4______.
7.如果一个多边形的每一个外角都相等,并 且它的内角和为2880°,那么它的内角为 _______16_0_. °
.
13
随堂练习(二):
1、若一个十二边形的每个外角都相等,则它的每 个外角的度数为________ ° ,每个内角的度数为 ________.
(8-2) ×180°= 1080° (10-2) ×180°= 1440°
2、已知一个多边形每个内角都等108° ,求 这个多边形的边数?
解:设这个多边形的边数为 n,根据题意 得:(n-2) ×180=108n
解得:n=5 形。
答:这个多边形是五边
.
10
例:已知一个多边形,它的内角和 等于 外角和的2倍,求这个多边形的边数。
解: 设多边形的边数为n ∵它的内角和等于 (n-2)•180°, 多边形外角和等于360º, ∴ (n-2)•180°=2× 360º。 解得: n=6 这个多边形的边数为6。
.
11
随堂练习(一)
1.正五边形 的每一个外角等于_7_2_°.每一个内角等于 _1__4_4_°,
2.如果一个正多边形的一个内角等于120°,则这个多 边 形的边 数是____6_
n-3 对角线总条数为n (n-3)/2
3、n边形的内角和等于:(n-2)×180°
.
3
练习:
1、八边形的内角和等于多少度? 十边形呢?
(8-2) ×180°= 1080° (10-2) ×180°= 1440°
2、已知一个正多边形每个内角都等108° , 求这个正多边形的边数?
6.若一个多边形的内角和等于它的外角和, 则它的边数是___4______.
7.如果一个多边形的每一个外角都相等,并 且它的内角和为2880°,那么它的内角为 _______16_0_. °
.
13
随堂练习(二):
1、若一个十二边形的每个外角都相等,则它的每 个外角的度数为________ ° ,每个内角的度数为 ________.
(8-2) ×180°= 1080° (10-2) ×180°= 1440°
2、已知一个多边形每个内角都等108° ,求 这个多边形的边数?
解:设这个多边形的边数为 n,根据题意 得:(n-2) ×180=108n
解得:n=5 形。
答:这个多边形是五边
.
10
例:已知一个多边形,它的内角和 等于 外角和的2倍,求这个多边形的边数。
解: 设多边形的边数为n ∵它的内角和等于 (n-2)•180°, 多边形外角和等于360º, ∴ (n-2)•180°=2× 360º。 解得: n=6 这个多边形的边数为6。
.
11
随堂练习(一)
1.正五边形 的每一个外角等于_7_2_°.每一个内角等于 _1__4_4_°,
2.如果一个正多边形的一个内角等于120°,则这个多 边 形的边 数是____6_
人教版数学八年级上册1多边形的内角和与外角和课件
(1)小明每从一条街道转到下一条街道 时,身体转过的角是哪个角?在图中 标出它们.
1A
5
B
E
2
4
C
D
3
多边形的外角和
(2)他每跑完一圈,身体转过的角度之和是多少? 360°
(3)在上图中,你能求出1+∠2+∠3+∠4+∠5的大小吗?
你是怎样得到的?
360°
B
在多边形的每个顶点处取这个多
2
边形的一个外角,它们的和叫做
11.3.2 多边形的内角和 与外角和
八年级上册
学习目标
1、了解多边形内角和与外角和的探究过程。 2、掌握多边形内角和与外角和定理。 3、提高学生运用数学的能力和了解转化的数学思想。
学习重难点
重点 理解多边形内角含义,多边形内角和公式。
难点 多边形内角和公式的探索过程;利用多边形内角和公式解决
实际问题。
2
2
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=100°.
∴∠A=180°-(∠ABC+∠ACB)=80°.
应用拓展
(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).
解:∠BDC=90°+ 1 ∠A 2
应用拓展
3.探究与发现:如图①,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE,DF恰好分别经过点B,C.请写出∠BDC与∠A+∠ABD+ ∠ACD之间的数量关系,并说明理由.
应用拓展
7.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB, AC上,将△ABC沿着DE所在直线折叠压平,使点A与点N重合. (1)若∠B=35°,∠C=60°,求∠A的度数;
1A
5
B
E
2
4
C
D
3
多边形的外角和
(2)他每跑完一圈,身体转过的角度之和是多少? 360°
(3)在上图中,你能求出1+∠2+∠3+∠4+∠5的大小吗?
你是怎样得到的?
360°
B
在多边形的每个顶点处取这个多
2
边形的一个外角,它们的和叫做
11.3.2 多边形的内角和 与外角和
八年级上册
学习目标
1、了解多边形内角和与外角和的探究过程。 2、掌握多边形内角和与外角和定理。 3、提高学生运用数学的能力和了解转化的数学思想。
学习重难点
重点 理解多边形内角含义,多边形内角和公式。
难点 多边形内角和公式的探索过程;利用多边形内角和公式解决
实际问题。
2
2
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=100°.
∴∠A=180°-(∠ABC+∠ACB)=80°.
应用拓展
(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).
解:∠BDC=90°+ 1 ∠A 2
应用拓展
3.探究与发现:如图①,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE,DF恰好分别经过点B,C.请写出∠BDC与∠A+∠ABD+ ∠ACD之间的数量关系,并说明理由.
应用拓展
7.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB, AC上,将△ABC沿着DE所在直线折叠压平,使点A与点N重合. (1)若∠B=35°,∠C=60°,求∠A的度数;
多边形的外角和与内角和PPT教学课件
舟遥遥以轻扬,风飘飘而吹衣。问征夫以前路,恨晨光之熹微。
乃瞻衡宇,载欣载奔。僮仆欢迎,稚子候门。三径就荒,松菊犹 存。携幼入室,有酒盈樽。引壶觞以自酌,眄庭柯以怡颜。倚南 窗以寄傲,审容膝之易安。园日涉以成趣,门虽设而常关。策扶 老以流憩,时矫首而遐观。
云无心以出岫,鸟倦飞而知还。景翳翳以将入,抚孤松而盘桓。 归去来兮,请息交以绝游。世与我而相违,复驾言兮焉求?悦
陶渊明的诗歌,以歌咏田园生活的居多,后世称他为田园诗人。陶渊明的 田园诗主要见于他的组诗《饮酒》、《归园田居》、《拟古》、《和郭主簿》。 他的五言诗成就最高,诗歌的意境下平和、静穆、深远,在中国诗歌史上有着 重要的地位。他那种淡泊明志的人生态度,对读书人的影响很深。
通过虚构(
)一
个和平、美好、没有剥…削、没有压迫、人
文章线索 抒情
自责自悔
自安自乐
乐天安命
Hale Waihona Puke 叙事 辞官 归途 家中生活 纵情山水 抒发情怀
全文主旨
《归去来兮辞》 是陶渊明辞官归隐之际与上流社 会公开决裂的政治宣言。文章以 绝大篇幅写了他脱离官场的无限 喜悦,想家归隐田园的无限乐趣, 表现了作者对大自然和隐居生活
的向往和热爱。
少无适俗韵,性本爱丘山。误落尘网中,一去三十年。 羁鸟恋旧林,池鱼思故渊。开荒南野际,守拙归园田。 方宅十余亩,草屋八九间。榆柳荫后檐,桃李罗堂前。 暧暧远人村,依依墟里烟。狗吠深巷中,鸡鸣桑树颠。 户庭无尘杂,虚室有余闲。久在樊笼里,复得反自然。
赞曰:黔娄之妻有言:“不戚戚于贫贱, 不汲汲于富贵。”其言兹若人之俦乎?衔 觞赋诗,以乐其志。无怀氏之民欤?葛天 氏之民欤?
五柳先生传(译文)
五柳先生不知道是什么地方的人,也不知道他的姓名和表字,由 于他的住宅旁边有五棵柳树,因此用它做了自己的号。他悠闲安静, 沉默寡言,不羡慕荣华利禄。喜欢读书,只求领会要旨,不在一字 一句的理解上过分下功夫;每当对书中的意旨有独到的体会,便高 兴得忘了吃饭。(他)生性特别喜好喝酒,但却因家里贫穷,不能 常常有酒喝。亲戚朋友知道他这种境况,有时就准备好酒邀请他去 喝;他一去就要喝个尽兴, 愿望就是一定要喝醉。 醉了便离去, 并不装模作样, 说来就来, 想走就走。 简陋的居室里冷冷清清, 遮不住风和阳光;粗布短衣上打了补钉,盛饭的竹筒、水瓢经常是 空的,但他却安然自若。他经常写文章来消遣时光,也颇能表达自 己的心态。他从不把得失放在心上,他愿意这样度过自己的一生。
乃瞻衡宇,载欣载奔。僮仆欢迎,稚子候门。三径就荒,松菊犹 存。携幼入室,有酒盈樽。引壶觞以自酌,眄庭柯以怡颜。倚南 窗以寄傲,审容膝之易安。园日涉以成趣,门虽设而常关。策扶 老以流憩,时矫首而遐观。
云无心以出岫,鸟倦飞而知还。景翳翳以将入,抚孤松而盘桓。 归去来兮,请息交以绝游。世与我而相违,复驾言兮焉求?悦
陶渊明的诗歌,以歌咏田园生活的居多,后世称他为田园诗人。陶渊明的 田园诗主要见于他的组诗《饮酒》、《归园田居》、《拟古》、《和郭主簿》。 他的五言诗成就最高,诗歌的意境下平和、静穆、深远,在中国诗歌史上有着 重要的地位。他那种淡泊明志的人生态度,对读书人的影响很深。
通过虚构(
)一
个和平、美好、没有剥…削、没有压迫、人
文章线索 抒情
自责自悔
自安自乐
乐天安命
Hale Waihona Puke 叙事 辞官 归途 家中生活 纵情山水 抒发情怀
全文主旨
《归去来兮辞》 是陶渊明辞官归隐之际与上流社 会公开决裂的政治宣言。文章以 绝大篇幅写了他脱离官场的无限 喜悦,想家归隐田园的无限乐趣, 表现了作者对大自然和隐居生活
的向往和热爱。
少无适俗韵,性本爱丘山。误落尘网中,一去三十年。 羁鸟恋旧林,池鱼思故渊。开荒南野际,守拙归园田。 方宅十余亩,草屋八九间。榆柳荫后檐,桃李罗堂前。 暧暧远人村,依依墟里烟。狗吠深巷中,鸡鸣桑树颠。 户庭无尘杂,虚室有余闲。久在樊笼里,复得反自然。
赞曰:黔娄之妻有言:“不戚戚于贫贱, 不汲汲于富贵。”其言兹若人之俦乎?衔 觞赋诗,以乐其志。无怀氏之民欤?葛天 氏之民欤?
五柳先生传(译文)
五柳先生不知道是什么地方的人,也不知道他的姓名和表字,由 于他的住宅旁边有五棵柳树,因此用它做了自己的号。他悠闲安静, 沉默寡言,不羡慕荣华利禄。喜欢读书,只求领会要旨,不在一字 一句的理解上过分下功夫;每当对书中的意旨有独到的体会,便高 兴得忘了吃饭。(他)生性特别喜好喝酒,但却因家里贫穷,不能 常常有酒喝。亲戚朋友知道他这种境况,有时就准备好酒邀请他去 喝;他一去就要喝个尽兴, 愿望就是一定要喝醉。 醉了便离去, 并不装模作样, 说来就来, 想走就走。 简陋的居室里冷冷清清, 遮不住风和阳光;粗布短衣上打了补钉,盛饭的竹筒、水瓢经常是 空的,但他却安然自若。他经常写文章来消遣时光,也颇能表达自 己的心态。他从不把得失放在心上,他愿意这样度过自己的一生。
多边形的内角和与外角和PPT精品课件
成蛙
受精卵
幼蛙
胚胎
蛙的生活周期
蝌蚪
死亡
中年期 青春期
受精卵
儿童期
婴儿期
幼儿期
成蛙 幼蛙
受精卵 蝌蚪
成虫
蛹
受精卵 幼虫
死亡
成虫
受精卵
若虫
蝌蚪和成蛙的比较:
生活环境 运动器官 运动方式 呼吸器官
蝌蚪 水中
鳍
游泳
鳃
成蛙 陆上和水中
四肢
跳跃 肺和皮肤
像青蛙从幼体到成体的发育过程中, 在生活和形态结构上要发生很大的改变,
3、青蛙属于(B )
A、鱼类 C、跳跃类
B、两栖类 D、爬行类
小明学习了“动物的生命周期”后,想探究环境因素 对动物的寿命是否有较大的影响。他设计了下面的 实验:分别在甲、乙、丙三个金鱼缸中放入等量的、 未经处理过的自来水(含有漂白粉)、煮沸并冷却 的自来水和静置几天后的自来水。然后,在每个金 鱼缸中放入5条健康的、大小相近的小鱼,观察小鱼 的生活情况。一段时间后,发现只有丙缸中的小鱼 还活着,甲缸和乙缸中的小鱼都陆续死亡了。请分 析小鱼死亡的原因。
。
今天你学到了什么知识?你 能用自己的话说说吗?
3、生物结构和功能的基本单位是__细__胞____ 它是由_细__胞__膜___、 _细__胞_质____和细__胞__核____等 基本结构组成的。
人的生长过程的顺序排列应是:_婴_儿__期__、 _幼_儿__期__、_儿_童__期___、青__春_期_____、中年期 _老__年_期___、 _______。
植物能_利_用__太__阳_光__制_造__营_养__物__质_______,
动物___需_要__从_外__界_摄__取__营_养__物_质________。
多边形的内角和与外角和共36张课件
第二十八页,共36页。
问题4:多边形的外角和是多少呢?
多边形的边数 3 4 5 6 7 … n
多边形的内角 与外角的总和
3180 4 180 5 180 6 180 7 180 …
540 720 900 1080 1260
n 180
多边形的内角和 1 8 0 3 6 0 5 4 0 7 2 0 9 0 0 … (n2)180
第二十二页,共36页。
2. 多边形内角和为1620°则它为_____边形,
3. 多边形每个内角都 等于120°,则它为_____边 形。
4. 四边形的内角的度数之比为2∶3∶5∶8,则
各角度数为 ____
第二十三页,共36页。
5.已知过m边形的一个顶点有7条对角线,n边 形没有对角线,p边形有p条对角线,求 ( m p )n 的
(3)你能否根据这样划分多边形的方法来说明 n边形的内角和等于 (n2)180 ?
当n=6时,多边形的内角和为: 6180360 6 1802 180(62)180
第十六页,共36页。
方法三
在n边形某边上任取一点P,连结点P与多边形的每一个顶
点,可得多少个三角形?你能否根据这样划分多
边形的方法来说明n边形的内角和等于 (n2)180 ? (图中取n=5的情形)
每一条都重复计算一次,所以n边形一共有
n(n-3) 2
条对角线.
第十三页,共36页。
❖问题3. 三角形,四边形,五边形…...
❖
n边形的内角和是多少呢?
第十四页,共36页。
方 法 一
多边形的边数
3
分成的三角形个数 1
4 5 6 7… n 2 3 4 5 … n-2
多边形的内角和 1180 2 180
问题4:多边形的外角和是多少呢?
多边形的边数 3 4 5 6 7 … n
多边形的内角 与外角的总和
3180 4 180 5 180 6 180 7 180 …
540 720 900 1080 1260
n 180
多边形的内角和 1 8 0 3 6 0 5 4 0 7 2 0 9 0 0 … (n2)180
第二十二页,共36页。
2. 多边形内角和为1620°则它为_____边形,
3. 多边形每个内角都 等于120°,则它为_____边 形。
4. 四边形的内角的度数之比为2∶3∶5∶8,则
各角度数为 ____
第二十三页,共36页。
5.已知过m边形的一个顶点有7条对角线,n边 形没有对角线,p边形有p条对角线,求 ( m p )n 的
(3)你能否根据这样划分多边形的方法来说明 n边形的内角和等于 (n2)180 ?
当n=6时,多边形的内角和为: 6180360 6 1802 180(62)180
第十六页,共36页。
方法三
在n边形某边上任取一点P,连结点P与多边形的每一个顶
点,可得多少个三角形?你能否根据这样划分多
边形的方法来说明n边形的内角和等于 (n2)180 ? (图中取n=5的情形)
每一条都重复计算一次,所以n边形一共有
n(n-3) 2
条对角线.
第十三页,共36页。
❖问题3. 三角形,四边形,五边形…...
❖
n边形的内角和是多少呢?
第十四页,共36页。
方 法 一
多边形的边数
3
分成的三角形个数 1
4 5 6 7… n 2 3 4 5 … n-2
多边形的内角和 1180 2 180
《多边形的内角和与外角和》PPT课件
180°
2、四边形的内角和是多少?
3、五边形的内角和是多少?
4、六边形的内角和是多少?
5、n边形的内角和是多少?
N边形…
n
n-3
n-2
3×1800
4×1800
(n-2)×1800
1
2
3
2
3
4
4
5
6
2×1800
3600
3600
3600
3600
答:15边形的内角和是23400
例
解:
求15边形内角和的度数。
练习四:
C
C
想一想:
1、每个内角都为144°的多边形为( )边形。2、每个内角都为140°的多边形为( )边形。3、每个外角都为30°的多边形为( )边形。4、每个外角都为36°的多边形为( )边形。5、正八边形的内角为( ),外角为( )。6、正十二边形的内角为( ),外角为( )。
2、多边形内角和为1080°则它是( )边形。
3、多边形内角和为1800°则它是( )边形。
九
八
十二
多边形的外角和
n边形的外角和为3600
例.一个多边形的内角和等于它的外角和的3倍,它是几边形?
思考:
1、一个多边形的每个外角等于与它相邻的内角,这个多边形是几边形?
练习三:
十
九
十二
十
135°
45°
150°
30°
1、一个十边形的每一个内角都相等,那么这个十边形的每一外角等于( )A、144°B、 72 ° C、 36° D 、18°2、一个多边形每一个外角都等于45°,则这个多边形的内角和等于( )A、 720° B、 675° C、 1080° D、945°
2、四边形的内角和是多少?
3、五边形的内角和是多少?
4、六边形的内角和是多少?
5、n边形的内角和是多少?
N边形…
n
n-3
n-2
3×1800
4×1800
(n-2)×1800
1
2
3
2
3
4
4
5
6
2×1800
3600
3600
3600
3600
答:15边形的内角和是23400
例
解:
求15边形内角和的度数。
练习四:
C
C
想一想:
1、每个内角都为144°的多边形为( )边形。2、每个内角都为140°的多边形为( )边形。3、每个外角都为30°的多边形为( )边形。4、每个外角都为36°的多边形为( )边形。5、正八边形的内角为( ),外角为( )。6、正十二边形的内角为( ),外角为( )。
2、多边形内角和为1080°则它是( )边形。
3、多边形内角和为1800°则它是( )边形。
九
八
十二
多边形的外角和
n边形的外角和为3600
例.一个多边形的内角和等于它的外角和的3倍,它是几边形?
思考:
1、一个多边形的每个外角等于与它相邻的内角,这个多边形是几边形?
练习三:
十
九
十二
十
135°
45°
150°
30°
1、一个十边形的每一个内角都相等,那么这个十边形的每一外角等于( )A、144°B、 72 ° C、 36° D 、18°2、一个多边形每一个外角都等于45°,则这个多边形的内角和等于( )A、 720° B、 675° C、 1080° D、945°
多边形的内角和ppt课件
6. 一个多边形的每个内角都等于144°,求这个多边 形的边数. 解:设这个多边形的边数为n, 则144°n=(n-2)×180°. 解得n=10. ∴这个多边形的边数为10.
7.一个多边形的每个内角都等于135°,求这个多边形的 边数. 解:设这个多边形的边数为n, 则135°n=(n-2)×180°. 解得n=8. ∴这个多边形的边数为8.
∴∠E=∠EDC=∠C
(5 2)180
= 5 =108°.
∴∠1=180
2
108
=36°,
180 108
∠3= 2 =36°.
∴x=108°-(∠1+∠3)=108°-72°=36°.
13.(RJ八上P29改编)如图,在四边形ABCD中,∠B= ∠D=90°,AE,CF分别是∠DAB,∠DCB的平分 线,则AE与FC有什么关系?请说明理由. 解:AE∥FC.理由如下:
∵∠B=∠D=90°, ∴∠BAD+∠BCD=360°-2×90°=180°.
∵AE,CF分别平分∠BAD和∠BCD, ∴∠BAE+∠BCF= 12∠BAD+ 12∠BCD
1
=2 (∠BAD+∠BCD)=90°. ∵∠BAE+∠BEA=90°, ∴∠BEA=∠BCF. ∴AE∥FC.
11. 如图,画出五边形ABCDE的全部对角线. (1)从一个顶点可以作_2___条对角线,五边形一共有 __5__条对角线;
(2)从n边形的一个顶点可以作__n_-_3_条对角线,n边
n(n 3)
形共有___2___条对角线.
12.如图,五边形ABCDE的内角都相等,∠1=∠2,∠3 =∠4,求x的值. 解:∵五边形ABCDE的内角都相等,
第十一章 三角形 11.3.1 多边形的内角和
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内角和 计算规律
180° (3-2) ×180° 360° (4-2) ×180° 540° (5-2) ×180° 720° (6-2)×180° 900° (7-2) ×180°
…
… … … … …
n边形 n n-2
(n-2) ·180°(n-2) ·180°
总结:n边形内角和公式 n边形内角和=(n-2)·180°
A
E
O
B
D C
180°× 5 – 360°= 540°
1. 十二边形的内角和是( 1800º )。
2. 一个多边形当边数增加1时,它的内角和增加
(180º),它的外角和增加( 0º)
3. 一个多边形的内角和是720º,则此多边形共有
(6 )个内角。
4. 如果一个多边形的内角和是1440度,那么这
是( 十 )边形。
教学目标:
1、了解多边形的内角、外角 2、能通过不同方法探索多边形的内角和与 外角和公式,并会应用它们进行有关计算。
探究1 五边形的内角和等于多少度?
A E
B
D C
5边形内角和=3×180°=540°
多边形
边 数
分成三 角形的
个数
图形
三角形 3
1
四边形 4
2
五边形 5
3
六边形 6
4
七边形 7
5
5、如图: 求∠A+ ∠B+ ∠C+ ∠D+ ∠E+ ∠F=?
D F
AE C
B
6、如图: 求∠A+ ∠B+ ∠C+ ∠D+ ∠E+ ∠F+ ∠G=?
G
A
E
F
B D
C
例1:
如果一个四边形的一组对角互补,那么 另一组对角有什么关系?
C
D
B
A 如果四边形的一组对角互补, 那么另一组对角也互补。
从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回 到点A.最后再转回出发时的方向。在行程中所转的各个角的和, 就是多边形的外角和。
1
B
=360 °
2
结论: n边形的外角和等于360°
C 3D
A
n F
45 E
拓广练习:
1、在多边形的所有外角中最多有几个钝角?在多边 形的所有内角中最多有几个锐角?
2、小军在进行多边形内角和计算时,求得的内角和 为1125 °,当发现错了之后,重新检查,发现是少 加了一个内角,求:
(1)这个多边形是几边形?
例2 如图,在五边形的每个顶点处各取一个外角,这 些外角的和叫做五边形的外角和.试问:五边形的外 角和等于多少?
1.任意一个外角和它相邻的内
角有什么关系?
2.五个外角加上它们分别相邻 的五个内角和是多少?
B
3.这五个平角和与五边形的内
1A 6
5
角和、外角和有什么关系? 2
E
C
4
3D
例2 如图,在五边形的每个顶点处各取一个外角, 这些外角的和叫做五边形的外角和.五边形的外角和 等于多少?
口答:
三角形、四边形、五边形、六边形的 内角和分别是多少度?
反思:我们是怎样求多边形内 角和的?
就是从多边形的一个 A
顶点出发,把一个多边形 分成几个三角形。
G F
B
E
D C
探究2 把一个五边形分成几个三角形,还有其
他的分法吗?
180°× 4 – 180°= 540°A
E B
D
CF
探究3 180°× 5=900°?
5边形外角和 =5个平角 -5边形内角和
Hale Waihona Puke =5×180°-(5-2) × 180°
1A
=360 °
B
6
5
2
E
C 3
结论:五边形的外角和等于360°
4 D
探究在n边形的每个顶点处各取一个外角,这些外角 的和叫做n边形的外角和.
n边形外角和= n个平角-n边形内角和
=n×180 °-(n-2) × 180°
(2)这个内角是多少度?
通过这节课的学习你有哪些收获?
作业
P84:习题7.3 的5、6题