§5.1 平面向量的概念及线性运算、平面向量的基本定理
高考数学一轮总复习10年高考真题分类题组5-1平面向量的概念及线性运算平面向量基本定理及坐标表示

5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则( ) A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 答案 ABB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .故选A.2.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗B.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A 设BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12b+a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12a+b,从而BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-12B +B )+(-12B +B )=12(a+b)=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故选A.3.(2015课标Ⅱ理,13,5分)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 答案 12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a+2b 平行等价于B 1=12,即λ=12.4.(2015北京理,13,5分)在△ABC 中,点M,N 满足BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x= ,y= .答案 12;-16解析 由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),所以BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-23·BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 又因为BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=-16.5.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .答案 12解析 BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , ∵BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12.6.(2013北京理,13,5分)向量a,b,c 在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则BB= .答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的坐标系,令每个小正方形的边长为1个单位,则A(1,-1),B(6,2),C(5,-1),所以a=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1),b=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(6,2),c=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-3).由c=λa+μb 可得{-1=-B +6B ,-3=B +2B ,解得{B =-2,B =-12,所以BB =4.评析 本题主要考查平面向量的基本定理和坐标运算,考查学生的运算求解能力和在向量中解析法的应用,构建关于λ和μ的方程组是求解本题的关键. 考点二 平面向量基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3),则向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A 根据题意得BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1),∴BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a=(2,4)知2a=(4,8),所以2a-b=(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b-a=(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{B 2=3,2B 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{-B 1+5B 2=3,2B 1-2B 2=2,解之得{B 1=2,B 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2019课标Ⅲ文,13,5分)已知向量a=(2,2),b=(-8,6),则cos<a,b>= . 答案 -√210解析 本题考查平面向量夹角的计算,通过向量的坐标运算考查学生的运算求解能力,体现运算法则与运算方法的素养要素. 由题意知cos<a,b>=B ·B|B |·|B |=√22+22×√(-8)2+62=-√210.6.(2019北京文,9,5分)已知向量a=(-4,3),b=(6,m),且a⊥b,则m= . 答案 8解析 本题考查两向量垂直的充要条件和向量的坐标运算,考查了方程的思想方法. ∵a⊥b,∴a·b=(-4,3)·(6,m)=-24+3m=0, ∴m=8.易错警示容易把两向量平行与垂直的条件混淆.7.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=. 答案-3解析本题考查向量平行的条件.∵a=(2,6),b=(-1,λ),a∥b,∴2λ-6×(-1)=0,∴λ=-3.8.(2016课标Ⅱ文,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= . 答案-6解析因为a∥b,所以B3=4-2,解得m=-6.易错警示容易把两个向量平行与垂直的条件混淆.评析本题考查了两个向量平行的充要条件.9.(2014陕西,13,5分)设0<θ<π2,向量a=(sin2θ,cosθ),b=(cosθ,1),若a∥b,则tanθ=.答案12解析∵a∥b,∴sin2θ×1-cos2θ=0,∴2sinθcosθ-cos2θ=0,∵0<θ<π2,∴cosθ>0,∴2sinθ=cosθ,∴tanθ=12.。
高考数学课标Ⅲ版5.1平面向量的概念及线性运算、平面向量的基本定理

2.(2017课标全国Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则 ( ) A.a⊥b B.|a|=|b| C.a∥b D.|a|>|b| 答案 A 本题考查向量的有关概念. 由|a+b|=|a-b|的几何意义知,以向量a、b为邻边的平行四边形为矩形,所以a⊥b.故选A.
一题多解 将|a+b|=|a-b|两边分别平方得|a|2+2a·b+|b|2=|a|2-2a·b+|b|2,即a·b=0,故a⊥b.故选A.
,则| BM
|2的最大值是
(
)
A. 43
4
B. 49
4
C. 37 6 3 4
D. 37 2 33 4
答案 B 以A为坐标原点,建立如图所示的平面直角坐标系,
则A(0,0),C(2 3 ,0),B( 3 ,3). 设P(x,y),∵| AP |=1,
∴x2+y2=1,
∵ PM
= MC
2
+ FC
=
1 2
b
a
+
1 2
a
b
= 12 (a+
b)= AD ,故选A.
考点二 平面向量的基本定理及向量的坐标运算
1.(2015课标Ⅰ,2,5分,0.734)已知点A(0,1),B(3,2),向量 AC =(-4,-3),则向量 BC = ( )
A.(-7,-4) B.(7,4)
1 2
AD
+μ( AD- AB
),
即 AB
平面向量知识点易错点归纳定稿版

平面向量知识点易错点归纳精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】§5.1 平面向量的概念及线性运算1.向量的有关概念2.向量的线性运算减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.方法与技巧1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.可以运用向量共线证明线段平行或三点共线.如AB→∥CD→且AB与CD不共线,则AB∥CD;若AB→∥BC→,则A、B、C三点共线.失误与防范1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.§5.2 平面向量基本定理及坐标表示1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x+x2,y1+y2),a-b=(x1-x2,y1-y2),1λa=(λx,λy1),|a|=x21+y21.1(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=x2-x12+y2-y12.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a∥b x1y2-x2y1=0.方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键.2.平面向量共线的坐标表示(1)两向量平行的充要条件若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是a=λb,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.(2)三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.失误与防范1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成x1x2=y1y2,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.§5.3 平面向量的数量积1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos θ叫做a和b的数量积(或内积),记作a·b=|a||b|cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cos θ;(2)非零向量a,b,a⊥ba·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=a·a;(4)cos θ=a·b|a||b|;(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=|AB→|=x2-x12+y2-y12.(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.失误与防范1.(1)0与实数0的区别:0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系.2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a⊥b .§5.4 平面向量的应用1.向量在平面几何中的应用平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥ba =λb (b ≠0)x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥ba·b =0x 1x 2+y 1y 2=0. (3)求夹角问题,利用夹角公式cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22 (θ为a 与b 的夹角).2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即W =F·s =|F||s |cos θ (θ为F 与s 的夹角).3.平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.方法与技巧1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3.向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.失误与防范1.注意向量夹角和三角形内角的关系,两者并不等价.2.注意向量共线和两直线平行的关系;两向量a,b夹角为锐角和a·b>0不等价.。
2020版高考数学一轮总复习专题5平面向量与解三角形5.1平面向量的概念及线性运算平面向量基本定理检测

5.1 平面向量的概念及线性运算、平面向量基本定理【真题典例】挖命题【考情探究】分析解读 1.向量的线性运算及其几何意义、向量的坐标表示是高考的重点考查对象(例:2017浙江10题).2.向量与其他知识的交汇成为高考命题的趋势,向量与平面几何、解析几何、三角函数、解三角形等的结合成为高考命题的亮点.3.预计2020年高考中平面向量的线性运算会重点考查,复习时应加以重视.破考点【考点集训】考点一平面向量的线性运算及几何意义1.(2018浙江杭州地区重点中学第一学期期中,10)在△ABC中,已知∠C=,||<||,=λ+(1-λ)(0<λ<1),则||取最小值时( )A.||>||>||B.||>||>||C.||>||>||D.||>||>||答案 B2.(2017浙江镇海中学模拟练习(二),9)在△ABC中,+=4,||=2,记h(λ)=,则{h(λ)}的最大值为( )A.1B.C.D.答案 B考点二平面向量基本定理及坐标表示1.(2018浙江“七彩阳光”联盟期中,6)已知两向量a=(cos α,sin α),b=(cos β,sin β),其中0<β<α<,则|a+b|+|a-b|的取值范围是( )A.(2,2)B.(2,2)C.(2,4)D.(2,4)答案 A2.(2017浙江金华十校调研,16)设单位向量a,b的夹角为α,且α∈,若对任意的(x,y)∈{(x,y)||xa+yb|=1,x,y≥0},都有|x+2y|≤成立,则a·b的最小值为.答案炼技法【方法集训】方法1 平面向量线性运算的解题方法1.(2018浙江高考模拟训练冲刺卷一,10)已知菱形ABCD的边长为2,∠BAD=120°.动点P在以C为圆心,1为半径的圆上,且=λ+μ,λ,μ∈R,则λ+μ的最大值是( )A. B.C.2D.3答案 D2.(2017浙江镇海中学模拟卷(六),16)已知向量a,b,|a|=2, |b|=1,向量c=xa+2(1-x)b(x∈R),若|c|取最小值时,向量m满足(a-m)·(c-m)=0,则|m|的取值范围是.答案方法2 平面向量的坐标运算的解题方法1.(2018浙江镇海中学期中,9)在平面内,·=·=·=6,动点P,M满足||=2,=,则||的最大值是( )A.3B.4C.8D.16答案 B2.(2017浙江名校(衢州二中)交流卷五,16)在平面内,已知向量a=(1,3),b=(4,-3),c=(6,5),若非负实数x,y,z满足x+y+z=1,则向量p=xa+yb+zc的模的取值范围是.答案[,]过专题【五年高考】统一命题、省(区、市)卷题组考点一平面向量的线性运算及几何意义1.(2017课标全国Ⅱ文,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案 A2.(2017北京理,6,5分)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A3.(2015课标Ⅰ,7,5分)设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-答案 A4.(2015陕西,7,5分)对任意向量a,b,下列关系式中的是( )A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案 B5.(2014福建,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案 B6.(2017天津文,14,5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为.答案考点二平面向量基本定理及坐标表示1.(2017课标全国Ⅲ理,12,5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ的最大值为( )A.3B. 2C.D.2答案 A2.(2018课标全国Ⅲ理,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案3.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=.答案-34.(2015北京,13,5分)在△ABC中,点M,N满足=2,=.若=x+y,则x=,y=.答案;-5.(2015江苏,6,5分)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为.答案-36.(2014北京,10,5分)已知向量a,b满足|a|=1,b=(2,1),且λa+b=0(λ∈R),则|λ|=. 答案教师专用题组考点一平面向量的线性运算及几何意义1.(2015四川,7,5分)设四边形ABCD为平行四边形,||=6,||=4.若点M,N满足=3,=2,则·=( )A.20B.15C.9D.6答案 C2.(2014课标Ⅰ,15,5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.答案90°考点二平面向量基本定理及坐标表示1.(2015课标Ⅱ,13,5分)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=.答案2.(2014陕西,13,5分)设0<θ<,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a∥b,则tan θ=.答案3.(2014湖南,16,5分)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值是.答案+1【三年模拟】一、选择题(每小题4分,共4分)1.(2019届浙江温州高三适应性测试,4)在△ABC中,D是线段BC上一点(不包括端点),=λ+(1-λ),则( )A.λ<-1B.-1<λ<0C.0<λ<1D.λ>1答案 C二、填空题(单空题4分,多空题6分,共36分)2.(2019届金丽衢十二校高三第一次联考,15)若等边△ABC的边长为2,平面内一点M满足:=+,则·=.答案-23.(2019届浙江嘉兴9月基础测试,14)已知向量a,b的夹角为60°,|a|=1,|b|=2,若(a+λb)∥(2a+b),则λ=.若(a+μb)⊥(2a+b),则μ=.答案;-4.(2018浙江嘉兴第一学期期末,14)在直角△ABC中,AB=AC=2,D为AB边上的点,且=2,则·=;若=x+y,则xy=.答案4;5.(2018浙江重点中学12月联考,15)已知矩形ABCD,AB=2,BC=1,点E是AB的中点,点P是对角线BD上的动点,若=x+y,则·的最小值为,x+y的最大值是.答案1;56.(2018浙江新高考调研卷三(杭州二中),12)已知平行四边形ABCD,||=2||=2,且·=1,=,=2,则·=; 若DE和AF交于点M,且=x+y,则x+y=.答案;7.(2018浙江稽阳联谊学校高三联考(4月),17)在△ABC中,AB=4,AC=3,BC=2,点H为三角形的垂心,若=x+y,则的值是.答案-8.(2018浙江湖州、衢州、丽水第一学期质检,17)设点P是△AB C所在平面内一动点,满足=λ+μ,3λ+4μ=2(λ,μ∈R,λμ≠0),||=||=||.若|AB|=3,则△ABC面积的最大值是.答案9。
2024年高考数学总复习第五章《平面向量与复数》平面向量的概念及线性运算

2024年高考数学总复习第五章《平面向量与复数》§5.1平面向量的概念及线性运算最新考纲1.通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.2.通过实例,掌握向量加法、减法的运算,并理解其几何意义.3.通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.4.了解向量线性运算的性质及其几何意义.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |=|λ||a |,当λ>0时,λa与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb3.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa .概念方法微思考1.若b 与a 共线,则存在实数λ使得b =λa ,对吗?提示不对,因为当a =0,b ≠0时,不存在λ满足b =λa .2.如何理解数乘向量?提示λa 的大小为|λa |=|λ||a |,方向要分类讨论:当λ>0时,λa 与a 同方向;当λ<0时,λa 与a 反方向;当λ=0或a 为零向量时,λa 为零向量,方向不确定.3.如何理解共线向量定理?提示如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使得a =λb .题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.(√)(2)|a |与|b |是否相等与a ,b 的方向无关.(√)(3)若a ∥b ,b ∥c ,则a ∥c .(×)(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×)(5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)(6)若两个向量共线,则其方向必定相同或相反.(×)题组二教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a-a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________.答案矩形解析如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.题组三易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案12解析DE →=DB →+BE →=12AB →+23BC→=12AB →+23(BA →+AC →)=-16AB →+23AC →,∴λ1=-16,λ2=23,即λ1+λ2=12.题型一平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同;②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线.其中真命题的序号是________.答案③解析①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.故填③.2.判断下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确的个数是()A .1B .2C .3D .4答案A解析只有④正确.思维升华向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二平面向量的线性运算命题点1向量加、减法的几何意义例1(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则()A .a ⊥bB .|a |=|b |C .a ∥bD .|a |>|b |答案A 解析方法一∵|a +b |=|a -b |,∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b .∴a·b =0.∴a ⊥b .故选A.方法二利用向量加法的平行四边形法则.在▱ABCD 中,设AB →=a ,AD →=b ,由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b .故选A.命题点2向量的线性运算例2(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →等于()A.13a +23b B .-13a -23bC .-13a +23bD.13a -23b 答案C解析BF →=23BE →=23(BC →+CE →)-12a =-13a +23b ,故选C.(2)(2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于()A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →答案A解析作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB→=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →.故选A.命题点3根据向量线性运算求参数例3在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则xy =________.答案3解析由题意得CA →+AM →=3(AB →-AM →),即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故x y=3.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →等于()A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b答案C解析DE →=DC →+CE →=13BC →+34CA→=13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512b ,故选C.(2)(2018·威海模拟)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________.答案2解析由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →→,+y2=1,y =0,=43,=-23,所以x -y =2.题型三共线定理的应用例4设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)解假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1.引申探究1.若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线?解BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →.即4a +(m -3)b =λ(a +b ).=λ,-3=λ,解得m =7.故当m =7时,A ,B ,D 三点共线.2.若将本例(2)中的“共线”改为“反向共线”,则k 为何值?解因为k a +b 与a +k b 反向共线,所以存在实数λ,使k a +b =λ(a +k b )(λ<0).=λ,=1,所以k =±1.又λ<0,k =λ,所以k =-1.故当k =-1时两向量反向共线.思维升华(1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1.证明(1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →),∴OP →-OB →=m (OA →-OB →),即BP →=mBA →,∴BP →与BA →共线.又∵BP →与BA →有公共点B ,则A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →,∴OP →-OB →=λ(OA →-OB →).又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →,即(m -λ)OA →+(n +λ-1)OB →=0.∵O ,A ,B 不共线,∴OA →,OB →不共线,-λ=0,+λ-1=0,∴m +n =1.1.对于非零向量a ,b ,“a +2b =0”是“a ∥b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a +2b =0,则a =-2b ,所以a ∥b .若a ∥b ,则a +2b =0不一定成立,故前者是后者的充分不必要条件.2.已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则()A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,C ,D 三点共线D .B ,C ,D 三点共线答案B解析∵BD →=BC →+CD →=2a +6b =2AB →,∴BD →与AB →共线,由于BD →与AB →有公共点B ,因此A ,B ,D 三点共线,故选B.3.如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于()A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD →答案D解析在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 上的一个靠近点B 的三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D.4.(2018·唐山模拟)在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n 等于()A .2B .-2C .1D .-1答案D 解析∵GA →+GB →+GC →=0,∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13(OA →+OB →+OC →)=16BC →=16(OC →-OB →),可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1,故选D.5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD→等于()A .a -12b B.12a -b C .a +12b D.12a +b 答案D 解析连接OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b ,故选D.6.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为()A.911B.511C.311D.211答案B解析注意到N ,P ,B 三点共线,因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.7.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.8.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.答案直角三角形解析因为OB →+OC →-2OA →=OB →-OA →+OC →-OA→=AB →+AC →,OB →-OC →=CB →=AB →-AC →,所以|AB →+AC →|=|AB →-AC →|,即AB →·AC →=0,故AB →⊥AC →,△ABC 为直角三角形.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案34解析由题设知CM MB=3,过M 作MN ∥AC 交AB 于N ,则MN AC =BN BA =BM BC =14,从而AN AB =34,又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →,所以λ=34.10.(2019·钦州质检)已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案-4解析因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,=kλ,3=6k ,解得λ=-4.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解方法一由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k-12a=-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a -12k 1a +k 1=-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a2-k=0.又a ,b 不共线,1+k 1-2k 2)=0,2-k 1=0,1=13,2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a -23a +13b =13(a +b ).方法二延长AO 交BC 于点E ,O 为△ABC 的重心,则E 为BC 的中点,所以AO →=23AE →=23×12(AB →+AC →)=13(a +b ).13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14C .1 D.516答案A 解析DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A.14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是()A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案B 解析设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=OA →+12OB →+12OC P 一定为△ABC 的()A .BC 边中线的中点B .BC 边中线的三等分点(非重心)C .重心D .BC 边的中点答案B 解析设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →,即3OP →=OM →+2OA →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案②③解析①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
2023版高考数学一轮总复习5-1平面向量的概念及线性运算平面向量基本定理及坐标表示习题

5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇固本夯基考点一平面向量的概念及线性运算1.(2017课标Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案 A2.(2022届江西重点中学联考二,5)设e1,e2是两个不共线的平面向量,若a=3e1-2e2,b=e1+ke2,且a与b共线,则实数k的值为( )A.-12B.12C.-23D.23答案 C3.(2018课标Ⅰ,6,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A4.(2021宁夏吴忠4月模拟,5)如图所示,平行四边形ABCD的对角线相交于点O,E为AO的中点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ,μ∈R),则λ+μ等于( )A.1B.-1C.12D.-12答案 D5.(2021陕西延安重点中学模拟,6)设M是△ABC所在平面上的一点,且EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D是AC的中点,则|EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的值为( )A.13B.12C.1D.2答案 A6.(2020吉林梅河口五中4月模拟,5)在△ABC中,延长BC至点M使得BC=2CM,连接AM,点N为AM上一点且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ=()A.13B.12C.-12D.-13答案 A7.(2022届山西吕梁11月月考,9)如图,△ABC中,点M是BC的中点,点N满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AM 与CN交于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=()A.23B.34C.45D.56答案 C8.(2022届安徽淮南一中月考,9)已知点M是△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则△ABM与△BC M的面积之比为( )A.83B.52C.2D.43答案 C9.(2022届黑龙江八校期中,13)如图,在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,D是BE上的点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数x的值为.答案19考点二平面向量基本定理及坐标运算1.(2022届哈尔滨三中期中,3)已知对任意的平面向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,b),把EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕其起点A沿逆时针方向旋转角φ得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(acosφ-bsinφ,asinφ+bcosφ),叫做把点B绕点A沿逆时针方向旋转角φ得到点P.已知A(1,2),B(1-√2,2+2√2),把点B绕点A沿逆时针方向旋转π4得到点P,则点P的坐标为( )A.(-3,1)B.(-2,1)C.(2,3)D.(-2,3)答案 D2.(2021云南统一检测一,7)已知向量a=(32,1),b=(-12,4),则( )A.a∥(a-b)B.a⊥(a-b)C.(a-b)∥(a+b)D.(a-b)⊥(a+b)答案 B3.(2020陕西咸阳一模,3)在平面直角坐标系中,O为坐标原点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12),若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕点O逆时针旋转60°得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( ) A.(0,1) B.(1,0)C.(√32,-12) D.(12,-√32)答案 A4.(2022届江苏南通如皋调研,7)如图,已知OA=2,OB=2,OC=1,∠AOB=60°,∠BOC=90°,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE=( )A.√3B.12C.√33D.23答案 C5.(2022届四川绵阳中学模拟二,5)设向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-2),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,-1),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则1E +2E的最小值为( )A.4B.6C.8D.9答案 C6.(2021全国甲,14,5分)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则k= .答案-1037.(2018课标Ⅲ,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案128.(2019上海,9,5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A、B,A在B上方,M为抛物线上一点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(λ-2)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=.答案 39.(2022届云南五华模拟,15)如图,在矩形ABCD中,AB=4,AD=3,以CD为直径的半圆上有一点P,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ的最大值为.答案73综合篇知能转换考法一平面向量线性运算的解题策略1.(2021广西百色重点中学4月模拟,5)已知点P为△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,点Q是线段BP的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 D2.(20215·3原创题)△ABC中,点M为AC上的点,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则1 E -1E的值为( )A.0B.-32C.1D.-1答案 B3.(2022届福州福清西山学校10月月考,8)我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.54a+35bB.35a+45bC.1225a+925bD.1625a+1225b 答案 D4.(2022届河南段考三)已知△ABC 的三个内角分别为A,B,C,动点P 满足EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ·(EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E +EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗|EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E),λ∈(0,+∞),则动点P 的轨迹一定经过△ABC 的( )A.重心B.垂心C.内心D.外心 答案 A5.(2021赣中南五校联考二,15)已知△ABC 的重心为G,过G 点的直线与边AB 和AC 的交点分别为M 和N,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,且△AMN 与△ABC 的面积的比值为2554,则实数λ= .答案 5或546.(2017江苏,12,5分)如图,在同一个平面内,向量EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模分别为1,1,√2,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为45°.若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =m EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +n EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (m,n∈R),则m+n= .答案 3考法二 向量共线问题的求解方法1.(2021山西孝义二模,6)已知EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,cosα),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2sinα),若A,B,D 三点共线,则tanα=( )A.-2B.-12C.12D.2答案 A2.(2021太原一模,6)已知梯形ABCD 中,AB∥DC,且AB=2DC,点P 在线段BC 上,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =56EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数λ=( )A.34 B.23 C.13 D.12 答案 C3.(2021江西上饶2月联考,10)在三角形ABC中,E、F分别为AC、AB上的点,BE与CF交于点Q,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,延长AQ交BC于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ的值为( ) A.3 B.4 C.5 D.6答案 C4.(2022届河南平顶山月考,10)已知点O为正△ABC所在平面上一点,且满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(1+λ)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,若△OAC的面积与△OAB的面积比为1∶4,则λ的值为( )A.12B.13C.2D.3答案 B5.(2022届拉萨中学月考,15)在△ABC中,点D满足BD=34BC,E点在线段AD上移动,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则t=(λ-1)2+μ2的最小值是.答案9106.(2020吉林桦甸四中等4月联考,15)在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,P为线段AM上任意一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x2+2x+y2的最小值为.答案916应用篇知行合一应用向量在物理中的应用1.(2021山西长治二中月考,3探索创新情境)已知两个大小相等的共点力F1,F2,当它们的夹角为90°时,合力大小为20N,当它们的夹角为120°时,合力大小为( )A.40NB.10√2NC.20√2ND.40√2N答案 B2.(2021咸阳模拟,9生活实践情境)渭河某处南北两岸平行,如图所示.某艘游船从南岸码头A出发向北航行到北岸.假设游船在静水中航行速度大小为|v1|=10km/h,水流速度的大小为|v2|=6km/h.设速度v1与速度v2的夹角为120°,北岸的点A'在码头A的正北方向,那么该游船航行到达北岸的位置应( )A.在A'东侧B.在A'西侧C.恰好与A'重合D.无法确定答案 A。
核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算课件理

解:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵A→B=D→C,∴|A→B|=|D→C|且A→B∥D→C,又∵A,B,C,D 是不共线的四点,∴四边形 ABCD 为平行四边形;反之,若四边形 ABCD 为平行四边形,则A→B∥D→C且|A→B|=|D→C|,可得A→B=D→C.故“A→B= D→C”是“四边形 ABCD 为平行四边形”的充要条件. ③正确.∵a=b,∴a,b 的长度相等且方向相同;又 b=c,∴b, c 的长度相等且方向相同,∴a,c 的长度相等且方向相同,故 a=c. ④不正确.由 a=b 可得|a|=|b|且 a∥b;由|a|=|b|且 a∥b 可得 a =b 或 a=-b,故“|a|=|b|且 a∥b”不是“a=b”的充要条件,而是 必要不充分条件. 综上所述,正确命题的序号是②③.故填②③.
第十七页,共33页。
下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段; ②向量 a 与向量 b 平行,则 a 与 b 的方向相同或相反; ③向量A→B与向量C→D共线,则 A,B,C,D 四点共线; ④如果 a∥b,b∥c,那么 a∥c; ⑤两个向量不能比较大小,但它们的模能比较大小.
第五页,共33页。
2.向量的加法和减法
(1)向量的加法
①三角形法则:以第一个向量 a 的终点 A 为起点作第二个向量 b,
则以第一个向量 a 的起点 O 为________以第二个向量 b 的终点 B 为 ________的向量O→B就是 a 与 b 的________(如图 1).
推广:A→1A2+A→2A3+…+An→-1An=____________.
第二十二页,共33页。
(1)( 2015·福建模拟 ) 在 △ABC
2025年高考数学一轮复习5.1平面向量的概念及线性运算【课件】

两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定 有相同的起点和终点,故C错误;
A,B,C,D 是不共线的点,A→B=D→C,即模相等且方向相同,即平行四边 形 ABCD 对边平行且相等,反之也成立,故 D 正确.
角度1 平面向量的加、减运算的几何意义
例1 (1)已知两个非零向量a,b满足|a+b|=|a-b|,则下列结论正确的是( B )
=12A→B+32A→D.
因为A→E=rA→B+sA→D,所以 r=21,s=23, 则2r+3s=1+2=3. 法二 因为B→E=2E→C, 所以A→E-A→B=2(A→C-A→E), 整理,得A→E=13A→B+32A→C=31A→B+32(A→D+D→C)=12A→B+23A→D, 以下同法一.
(2)当λ>0时,λa的方向与 λ(μa)=___λ_μ_a___;
a的方向__相__同__;当λ<0 (λ+μ)a=__λ_a_+__μ_a__;
时,λa的方向与a的方向 λ(a+b)=__λ_a_+__λ_b_
_相__反___;当λ=0时,λa=
乘,记作λa __0__
3.共线向量定理
向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使____b_=__λa___.
法则(或几何意义)
运算律
加法
求两个向量和 的运算
三角形法则 平行四边形法则
(1)交换律: a+b=___b_+__a__. (2)结合律: (a+b)+c=_a_+__(_b_+__c_)
求两个向量 减法
差的运算
a-b=a+(-b)
规定实数λ与 (1)|λa|=___|λ_|_|a_|__;
向量a的积是 一个向量, 数乘 这种运算叫 做向量的数
高考数学(理科,北京市):第五章 平面向量、解三角形 §5.1 平面向量的概念及线性运算、平面向量基本定

AO ,则λ= AB +AD 2.(2013四川,12,5分)在平行四边形ABCD中,对角线AC与BD交于点O, =λ
. 答案 2
解析 由平行四边形法则,得AB +AD =AC =2AO ,故λ=2.
考点二
平面向量的基本定理及坐标表示
1.(2017课标全国Ⅲ,12,5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆
1 1 ;- 2 6
.
解析 由 MC 知M为AC上靠近C的三等分点,由 BN = NC 知N为BC的中点,作出草图如下: AM =2
则有 ( ( · AB + AM = AB + AB - AB +y AN = AC ),所以 MN = AN - AC )- AC = AC ,又因为 MN =x
高考理数
(北京市专用)
§5.1 平面向量的概念及线性运算、 平面向量基本定理及坐标表示
五年高考
A组
A.充分而不必要条件 C.充分必要条件 答案 D
自主命题·北京卷题组
)
1.(2016北京,4,5分)设a,b是向量.则“|a|=|b|”是“|a+b|=|a-b|”的 ( B.必要而不充分条件 D.既不充分也不必要条件
2 2 cos θ 2, sin θ 1 5 5
AB 同方向的单位向量为 ( 2.(2013辽宁,3,5分)已知点A(1,3),B(4,-1),则与向量
)
A. , 5 5
5.1 平面向量的概念及线性运算、平面向量基本定理-5年3年模拟北京高考

5.1 平面向量的概念及线性运算、平面向量基本定理五年高考考点1 向量的线性运算及几何意义1.(2013陕西.3,5分)设a ,b 为向量,则,|,|||||b a b a =⋅是”“b a //的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.(2012浙江.5,5分)设a ,b 是两个非零向量. ( ) A .若b a b a b a ⊥-=+则|,||||| B .若,b a ⊥则||||||b a b a -=+C .若|,|||||b a b a -=+则存在实数,λ使得a b λ=D .若存在实数,λ使得||||||,b a b a a b -=+=则λ3.(2012辽宁,3,5分)已知两个非零向量a ,b 满足=+||b a |,|b a -则下面结论正确的是 ( )b a A //. b a B ⊥. ||||.b a C = b a b a D -=+.4.(2011山东,12,5分)设4321,,,A A A A 是平面直角坐标系中两两不同的四点,若),(2131R A A A A ∈=λλ∈=μμ(2141A A A A ),R 且,211=+μλ则称43,A A 调和分割⋅21,A A 已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是 ( )A .C 可能是线段AB 的中点 B.D 可能是线段AB 的中点C.C ,D 可能同时在线段AB 上D.C ,D 不可能同时在线段AB 的延长线上5.(2011上海.17,5分)设54321,,,,A A A A A 是空间中给定的5个不同点,则使054321=++++MA MA MA MA MA 成立的点M 的个数为( )0.A 1.B 5.C 10.D6.(2013四川.12.5分)在平行四边形ABCD 中,对角线AC 与BD 交于点,0D ,A A AB O λ=+则=λ7.(2013江苏.10.5分)设D ,E 分别是△ABC 的边AB ,BC 上的点,.32,21AD BC BE AB ==若1λ= 212,λλλ<+AL 为实数),则21λλ+的值为 8.(2011北京.10.5分)已知向量=-==c b a ),1,0(),1,3(⋅)3,(k 若a-2b 与c 共线,则=k 考点2 平面向量的基本定理及坐标表示1.(2013辽宁.3.5分)已知点A(l ,3),B (4,-1),则与向量AB 同方向的单位向量为 ( ))5,5.(-A )5,5.(-B )5,5.(-C )5,5.(-D 2.(2013重庆.10,5分)在平面上,==⊥||||,2121OB OB AB AB .,121AB AB +=若,21||<则 ||的取值范围是( ))25,0.(A )27,25.(B )2,25.(C )2,27.(D 3.(2012大纲全国.6,5分)△ABC 中,AB 边的高为CD.若=,0,,=⋅=b a b a ===b a 则,2,1|| ( )b a A 3131.- b a B 3232.- b a C 5353.- b a D 5454.- 4.(2012广东,3,5分)若向量),7,4(),3,2(==CA BA 则=BC ( ))4,2.(--A )4,2.(B )10,6.(C )10,6.(--D5.(2012安徽.8,5分)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点0按逆时针方向旋转43π后得向量,则点Q 的坐标是 ( ) )2,27.(--A )2,27.(-B )2,64.(--C )2,64.(-D6.(2012重庆.6,5分)设,,R y x ∈向量c y b x a ),,1(),1,(==),4,2(-=且,//,c b C a ⊥则=+||b a ( )5.A 10.B 52.C 10.D7.(2010安徽.3,5分)设向量),21,21(),0,1(==b a 则下列结论中正确的是( )智力背景分粟子 三个小女孩一共采集到770颗栗子,她们打算如往常那样,根据她们年龄的大小按比例进 行分配 .以往,当玛丽拿4颗栗子时,尼莉拿3颗;而每当玛丽得到6颗时,苏茜可以拿7颗,试问:每个女孩可以分到多少颗栗子?答案是最小女孩可分到198颗,年纪稍大的分得264颗,最年长的可分得308颗.||||.b a A = 22.=⋅b a B b b a C 与-.垂直 b a D //. 8.(2013北京.13,5分)向量a ,b ,c 在正方形网格中的位置如图所示,若),,(R b a c ∈+=μλμλ则=μλ解读探究知识清单1.既有大小又有方向的量叫做向量,向量可以用有向线段来表示.2.向量B A 的大小,也就是向量B A 的长度(或称模),记作.||3.长度为O 的向量叫做零向量,记作0.长度为1个单位长度的向量叫做单位向量. 4.方向相同或相反的非零向量叫做①____,也叫做②____.规定:O 与任一向量平行.5.长度相等且③____的向量叫做相等向量.6.向量加法的法则:三角形法则和平行四边形法则. 7.向量加法的交换律:a+b=b+a , 向量加法的结合律:(a+b )+c=a+(b+c).8.与a 长度相等,④____ 的向量叫做a 的相反向量,规定:O 的相反向量是09.实数λ与向量a 的乘积||a λ是一个向量,它的长度是a 的||λ倍,即.||||||a a λλ=它的方向:当0>λ时,与a 同向;当0<λ时,与a 反向.显然,当0=λ时,.0=a λ10.设a 、b 是任意向量,μλ、是实数,则实数与向量的积适合以下运算律:a .结合律.;)()(b a a λμμλ= 第一分配律=+a )(μλ.;c a a μλ+第二分配律.)(b a b a λλλ+=+ 11.向量共线的判断:(1)若a 与b 是两个非零向量,则它们共线的充要条件是⑤(2)若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数.,λ使⑥ 12.平面向量基本定理:如果21.e e 是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数,21λλh 使,2211e e a λλ+=其中21e e 、是一组基底. 13.平面向量的坐标运算:(1)若),0)(,(),,(2211=/==b y x b y x a 则,21x x b a ±=±().21y y ± (2)若),,(),,(2211y x B y x A 则⋅--=),(1212y y x x Ak (3)若,),,(R y x a ∈=λ则).,(y x a λλλ= 14.向量平行的坐标表示:(1)如果),,(),,(2211y x b y x a ==则a∥b 的充要条件为⑦智力背景BSD 猎想 数学家总是对诸如222z y x =+这样的代数方程的所有整数解的刻画问题着迷,欧几里得 曾经对这一方程给出完全的解答,但是对于更为复杂的方程,就变得极为困难.事实上,正如马蒂雅谢维 奇指出,希尔伯特第十问题是不可解的,即不存在一般的方法来确定这样的方程是否有一个整数解.当 解是一个阿贝尔簇的点时 ,贝赫和斯维讷通一戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数 z(s)在点s=l 附近的性态.(2)三点),(),,(),,(332211y x C y x B y x A 共线的充要条件为))())((12131312y y x x y y x x -----(.0=【知识拓展】1.向量是自由向量,大小和方向是向量的两个要素,在用有向线段表示向量时,要认识到有向线段的起点的选取是任意的,不要误以为向量是由起点、大小和方向三个要素决定的.一句话,研究向量问题应具有“平移”意识——长度相等、方向相同的向量都是相等向量.2.两个向量的和仍是向量.特别注意的是:在向量加法的表达式中,零向量一定要写成O ,而不应写成O ;在△ABC 中,0=++AF (如图).3.两个向量的差也可用平行四边形法则及三角形法则求得:(如图)用平行四边形法则时,两个向量也是共起点,和向量是起点与它们的起点重合的那条对角线),(而差向量是另一条对角线),(方向是从减向量指向被减向量;用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点.·知识清单答案突破方法方法1 平面向量的线性运算用已知向量来表示另外一些向量是用向量解题的基本功,除利用向量的加、减法,数乘向量外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解,充分利用相等向量、相反向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来求解.例1 (2012山东聊城二模.10.5分)在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b a ==则等于 ( )b a A 2141.+ b a B 3132.+ b a C 4121.+ b a D 3231.+解题思路解析 如图,,DF AD AF +=由题意知,,31,:3:1:AB DF BE DE =∴== .3132)2121(312121b a b a b a +=-++=∴答案 B【方法点拨】 向量的线性运算法则:向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”,即第二个向量的起点与第一个向量的终点重合,和向量由第一个向量的起点指向第二个向量的终点;向量减法的三角形法则要素是“起点重合,指向被减向量”,即两个向量的起点重合,差向量由减向量的终点指向被减向量的终点;平行四边形法则的要素是“起点重合”,即两个向量的起点相同,和向量的起点也相同,方法2 平面向量共线问题向量共线定理的坐标表示提供了通过代数运算来解决向量共线的方法,也为点共线、线平行问题的处理提供了简单易行的方法,解题时要注意向量共线定理的坐标表示本身具有公式特征,应学会利用这一点来构造函数和方程,以便用函数与方程的思想解题.例2(2012浙江杭州二模.11,4分)已知点A (1,-2),点AB 的中点坐标为(3,1),且与向量),1(λ=a 共线,则=λ解题思路解析 由AB 的中点坐标为(3,1)可知B(5,4),=∴AB ),6,4(又⋅=∴=⨯-∴23,0614,//λλa AB 答案23 【方法点拨】 共线向量的求解方法:向量平行(共线)的充要条件的两种表达形式:b a b b a λ=⇔=/)0(//或.01221=-y x y x可以利用两个向量共线的条件列方程,求未知数的值,智力背景奔跑的狗(一) 一次在德国 苏步青与一位有名的数学家同乘电车时,这位数学象出了一道关于奔 跑的狗的题目让苏教授解答,逸道题是:甲、乙两人同时从相距100千米的两地出发,相向而行.甲每小时走6千米,乙每小时走4千米,甲带了一只狗和他同时出发,狗以每小时10千米的速度向乙奔去,遇到乙立即回头向甲奔去;遇到甲又回头向己奔去,蛊~甲、乙两人相遇时狗才停止问这只狗共跑了多少千米路?对这个问题,苏步青教授略加思索,就算出了正确的答案.三年模拟A 组 2011-2013年模拟探究专项基础测试时间:40分钟 分值:45分一、选择题(每题5分,共20分)1.(2013北京石景山期末)AC 为平行四边形ABCD 的一条对角线,===),3,1(),4,2(A 则 ( ))4,2(⋅A )7,3(⋅B )1,1.(C )1,1.(--D2.(2013辽宁朝阳一模.5)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,,μλ+=则μλ+ 的值为 ( )21.A 31.B 41.C 1.D 3.(2012辽宁大连沙河口3月模拟.8)非零不共线向量,且,02y x P +=若),(R AB PA ∈=λλ则点Q(x ,y)的轨迹方程是( )02.=-+y x A 012.=-+y x B 022.=-+y x C 022.=-+y x D4.(2012广东佛山三模.5)设a ),1,(),2,1(0-=-=O b a b ,0,0),0,(>>-=为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是 ( )二、填空题(每题5分,共15分)5.(2013北京西城高三上学期期末)已知向量==b a ),3,1().3,2(),1,2(=-c 若向量C 与向量b ka +共线,则实数=k6.(2013宁夏吴忠3月.15)在平面直角坐标系中,已知=AB ),1,2(),3,1(-=-AC 则=||BC 7.(2013江苏苏州一模.9)如图,在△ABC 中,点0是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若,C ,B AN n A AM m A ==则n m +的值为三、解答题(共10分)8.(2013山东莱芜一模,17)如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将分成2:1的一个内分点,DC 和OA 交于点E ,设.,b a == (1)用a 和b 表示向量;、 (2)若,OA OE λ=求实数λ的值.B 组 2011-2013年模拟探究专项提升测试 时间:45分钟 分值:45分一、选择题(每题5分,共10分)1.(2013陕西黄陵一模.6)已知向量,2(),3,1(=-=),2,1(1-+=-k k 若A 、B 、C 三点不能构成三角形,则实数k 应满足的条件是( )2.-=k A 21.=k B 1.=k C 1.-=k D 2.(2013湖北襄樊=模.8)在△ABC 中,a 、b 、c 分别为B A ∠∠、.、C ∠的对边,且,a b c >>若向量)1,(b a m -=和,c b n -=()1平行,且,54sin =B 当△ABC 的面积为23时,则=b ( ) 231.+A 2.B 4.C 32.+D 二、填空题(每题5分,共10分)3.(2013福建南平一模,14)设,,R y x ∈向量,1),1,((==b x a )4,2(),-=c y 且,//,c b c a ⊥则=+||b a4.(2011陕西西安5月.14)在△ABC 中,已知D 是AB 边上一点,若,3,2λ+==C A 则=λ智力背景奔跑的狗(二) 解答:狗从甲、乙出发时起,直到两人相遇时止,一直在甲、乙之间奔跑,从未停止过.因此它奔跑的时间,就是甲、乙两人从开始行走到相遇时的时间,这就是解答本题的关键.时间知道了,狗跑的路程也就能算出来了.甲、乙两人从开始走到相遇共用100÷(6+4)=lO 小时,所以狗跑的总 路程是10×10 =100千米.三、解答题(共25分)5.(2013吉林松原5月.18)已知平行四边形ABCD ,从平面AB-CD 外一点O 引向量,0k =OD K OH ,OC K C ,B K F ===O O O 求证:(1)四点E ,F ,G ,H 共面; (2)平面ABCD//平面EFGH.6.(2012江西九江5月模拟.17)在□ABCD 中,=A ),1,1(),0,6(点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若),5,3(D =A 求点C 的坐标; (2)当|D |||A =时,求点P 的轨迹.。
皮皮高考系列----5.1平面向量的概念及线性运算、平面向量的基本定理

第一节平面向量的概念及线性运算、平面向量的基本定理一、向量的概念:既有大小又有方向的量叫向量。
有二个要素:大小、方向.二、向量的表示方法:1. 几何表示法:用有向线段表示---(有向线段:具有方向和长度的线段);2. 字母表示法:用字母、等表示;3. 坐标表示法:分别取与轴、轴方向相同的两个单位向量、作为基底。
任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作(其中叫做在轴上的坐标,叫做在轴上的坐标)特别地,,,。
;若,,则,三、向量的有关概念1.零向量:长度为0的向量叫零向量,记为;2.单位向量:长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)3.相等向量:长度相等且方向相同的向量叫相等向量.4.相反向量:长度相等且方向相反的向量叫相等向量.5.平行(共线)向量:方向相同或相反的非零向量叫平行向量;我们规定与任一向量平行.性质:是唯一)(其中)6.垂直向量:两向量的夹角为性质:(其中)向量的正交分解:把一个向量分解为两个互相垂直的向量。
四、向量的加法、减法:1. 向量的加法(1)平行四边形法则:(起点相同的两向量相加,常要构造平行四边形)(2)三角形法则(3)多边形法则(三角形法则的推广)两个以上的非零向量相加:……即个向量……首尾相连成一个封闭图形,则有……2.向量的减法向量加上的相反向量,叫做与的差。
即:-= + (-);差向量的意义:= , =, 则=3.平面向量的坐标运算:若,,则,,。
4.向量加法的运算律:交换律:+=+;结合律:(+) +=+ (+)5.常用结论:(1)若,则D是AB的中点(2)||²+||²=2(||²+||²)(3)或G是△ABC的重心,则点G其中A(x1,y1),B(x2,y2),C(x3,y3)五、向量的模:1、定义:向量的大小,记为 || 或 ||2、模的求法:若,则 ||若,则 ||3、性质:(1);(实数与向量的转化关系)(2),反之不然(3)三角不等式:(4)(当且仅当共线时取“=”)即当同向时,;当反向时,(5)平行四边形四条边的平方和等于其对角线的平方和,即六、实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)|λ|=|λ|||;(注意:实数与向量不能求和求差)(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ七、平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2。
高考数学专题复习五-5.1平面向量的概念及线性运算、平面向量基本定理及坐标表示-模拟练习题(附答案)

专题五 平面向量5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇考点一 平面向量的概念及线性运算1.(2022吉林第三次调研,5)已知向量a =(4,3),则与向量a 垂直的单位向量的坐标为 ( ) A.(45,35) B.(35,−45)C.(−45,−35)或(45,35) D.(35,−45)或(−35,45) 答案 D2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2n B.-2m +3n C.3m +2n D.2m +3n 答案 B3.(2022四川绵阳二模,6)已知平面向量a ,b 不共线,AB ⃗⃗⃗⃗⃗ =4a +6b ,BC ⃗⃗⃗⃗⃗ =-a +3b ,CD ⃗⃗⃗⃗⃗ =a +3b ,则( )A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线 答案 D4.(2022江西宜春4月联考,7)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE ⃗⃗⃗⃗⃗ =38AC ⃗⃗⃗⃗⃗ ,则BE ⃗⃗⃗⃗⃗ =( )A.58AB ⃗⃗⃗⃗⃗ −38AD ⃗⃗⃗⃗⃗ B.38AB ⃗⃗⃗⃗⃗ −58AD ⃗⃗⃗⃗⃗ C.-58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ D.58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ 答案 C5.(2023届江西宜春月考,7)已知S △ABC =3,点M 是△ABC 内一点且MA ⃗⃗⃗⃗⃗⃗ +2MB ⃗⃗⃗⃗⃗⃗ =CM ⃗⃗⃗⃗⃗⃗ ,则△MBC 的面积为( )A.14B.13C.34D.12答案 C6.(2023届哈尔滨三中月考二,5)在△ABC 中,点D 是线段BC 上任意一点,且满足AD ⃗⃗⃗⃗⃗ =3AP ⃗⃗⃗⃗⃗ ,若存在实数m 和n ,使得BP ⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ +nAC ⃗⃗⃗⃗⃗ ,则m +n = ( )A.23 B.13 C.-23 D.−13 答案 C7.(2022贵州适应性考试,14)在平行四边形ABCD 中,AE ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ .若CE ⃗⃗⃗⃗⃗ =λBA ⃗⃗⃗⃗⃗ +μBC ⃗⃗⃗⃗⃗ ,则λ+μ= . 答案 23考点二 平面向量基本定理及坐标表示考向一 平面向量基本定理1.(2022江西重点中学联考二,5)设e 1,e 2是两个不共线的平面向量,若a =3e 1-2e 2,b =e 1+ke 2,且a 与b 共线,则实数k 的值为( ) A.-12 B.12 C.−23 D.23 答案 C2.(2022甘肃顶级名校第二次联考,14)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =13NC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =13BN ⃗⃗⃗⃗⃗⃗ ,若AP ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则x +4y 的值为 .答案 13.(2022东北三省三校联考(二),14)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ +μCD ⃗⃗⃗⃗⃗ (λ,μ∈R ),则λ+μ的取值范围是 . 答案 [1,4]考向二 平面向量的坐标运算1.(2022黑龙江齐齐哈尔第一中学一模,3)已知向量a =(3,-2),b =(m ,1),若a ⊥b ,则a -3b = ( )A.(0,5)B.(5,1)C.(1,-5)D.(152,−5) 答案 C2.(2023届四川内江六中9月联考,1)已知向量a =(1,2),b =(1,1),若c =a +kb ,且b ⊥c ,则实数k =( )A.32B.−53C.53D.−32答案 D3.(2021云南统一检测一,7)已知向量a =(32,1),b =(−12,4),则 ( )A.a ∥(a -b )B.a ⊥(a -b )C.(a -b )∥(a +b )D.(a -b )⊥(a +b ) 答案 B4.(2018课标Ⅲ,13,5分)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 答案 125.(2022合肥二模,13)已知向量AB ⃗⃗⃗⃗⃗ =(-1,2),BC ⃗⃗⃗⃗⃗ =(2t ,t +5),若A ,B ,C 三点共线,则t = . 答案 -16.(2021全国甲,14,5分)已知向量a =(3,1),b =(1,0),c =a +kb.若a ⊥c ,则k = . 答案 -1037.(2022河南中原名校4月联考,13)已知向量a =(-1,1),b =(-2,4),若a ∥c ,a ⊥(b +c ),则|c |= . 答案 3√28.(2023届河南安阳调研测试,13)设向量a =(m ,1),b =(1,2),且|a -b |2=|a |2-|b |2,则实数m = . 答案 39.(2019上海,9,5分)过曲线y 2=4x 的焦点F 并垂直于x 轴的直线分别与曲线y 2=4x 交于A 、B ,A 在B 上方,M 为抛物线上一点,OM ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +(λ-2)OB ⃗⃗⃗⃗⃗ ,则λ= . 答案 310.(2022湘豫名校4月联考,13)已知向量a =(-1,3),b =(2x ,-x ),其中x ∈R ,则|a -b |的最小值为 . 答案 √5综合篇考法一 平面向量的线性运算1.(2021贵州安顺模拟,5)如图,在正六边形ABCDEF 中,M 为DE 的中点,设AC ⃗⃗⃗⃗⃗ =a ,AF ⃗⃗⃗⃗⃗ =b ,则AM ⃗⃗⃗⃗⃗⃗ =( )A.54a -34b B.-34a +54b C.54a +34b D.34a +54b 答案 D2.(2022届江苏南通如皋调研,7)如图,已知OA =2,OB =2,OC =1,∠AOB =60°,∠BOC =90°,若OB ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOC ⃗⃗⃗⃗⃗ ,则x y= ( )A.√3B.12 C.√33D.23答案 C3.(2021皖江名校4月联考,10)在△ABC 中,AC ⊥AB ,AB =2,AC =1,点P ,M 是△ABC 所在平面内一点,AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |+2AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |,且满足|PM ⃗⃗⃗⃗⃗⃗ |=1,若AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则2λ+μ的最小值是 ( )A.3+√2B.5C.1D.3−√2 答案 D4.(2023届河南名校诊断测试一,10)已知△ABC 中,BO ⃗⃗⃗⃗⃗ =2OC ⃗⃗⃗⃗⃗ ,过点O 的直线分别交射线AB ,AC 于不同的两点M ,N ,则△AMN 与△ABC 的面积之比的最小值为 ( )A.2√23B.49C.89 D.2答案 C5.(2022山西大同重点中学4月联考,14)在△ABC 中,若AD 是∠BAC 的平分线,且D 在边BC 上,则有ABAC =BDDC ,称之为三角形的内角平分线定理.已知在△ABC 中,AC =4,BC =6,AB =8,P 是△ABC 的内心,且AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则xy = . 答案8816.(2022昆明五华模拟,15)如图,在矩形ABCD 中,AB =4,AD =3,以CD 为直径的半圆上有一点P ,若AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为 .答案 737.(2017江苏,12,5分)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =mOA ⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m +n = .答案 3考法二 向量共线问题1.(2021山西孝义二模,6)已知AB ⃗⃗⃗⃗⃗ =(-1,cos α),BC ⃗⃗⃗⃗⃗ =(2,0),CD ⃗⃗⃗⃗⃗ =(2,2sin α),若A ,B ,D 三点共线,则tan α=( )A.-2B.-12 C.12 D.2 答案 A2.(2022安徽蚌埠三模,11)如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A.1B.57C.1417D.56答案 C3.(2022江西九大名校3月联考,9)在△ABC 中,点D 在线段AC 上,且满足|AD |=13|AC |,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则1x+1y的最小值为 ( )A.4B.4√3C.8D.4+2√3 答案 D4.(2021江西上饶2月联考,10)在三角形ABC 中,E 、F 分别为AC 、AB 上的点,BE 与CF 交于点Q ,且AE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,延长AQ 交BC 于点D ,AQ ⃗⃗⃗⃗⃗ =λQD ⃗⃗⃗⃗⃗⃗ ,则λ的值为 ( ) A.3 B.4 C.5 D.6 答案 C5.(2022豫北名校联盟4月联考,14)如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC ⃗⃗⃗⃗⃗ =mOA⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ ,则m +n 的取值范围为 .答案 (-1,0)。
2020年高考山东版高考理科数学 5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

专题五平面向量【真题典例】5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示挖命题【考情探究】分析解读 1.从“方向”与“大小”两个方面理解平面向量的概念.2.结合图形理解向量的线性运算,熟练掌握平行四边形法则与三角形法则.3.掌握求向量坐标的方法,掌握平面向量的坐标运算,并能够根据平面向量的坐标运算解决向量的共线、解三角形等有关问题.4.用坐标表示的平面向量共线的条件是高考考查的重点,分值约为5分,属中低档题.破考点【考点集训】考点一平面向量的概念及线性运算1.(2018陕西西安中学11月月考,5)给出下列四个命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则=是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b.其中正确命题的序号是( )A.①②B.②③C.③④D.②④答案B2.(2018辽宁六校协作体期中联考,4)设非零向量a,b,下列四个条件中,使=成立的充分条件是( )A.a∥bB.a=2bC.a∥b且|a|=|b|D.a=-b答案B3.(2017河南中原名校4月联考,7)如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若=λ+μ(λ,μ为实数),则λ2+μ2=( )A. B. C.1 D.答案A考点二平面向量基本定理及坐标运算1.(2017河北衡水中学三调考试,6)在△ABC中,=,若P是直线BN上的一点,且满足=m+,则实数m的值为( )A.-4B.-1C.1D.4答案B2.(2018湖南湘东五校4月联考,15)在正方形ABCD中,M,N分别是BC,CD的中点,若=λ+μ,则实数λ+μ=.答案3.(2018吉林长春期中,15)向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则= .答案 2炼技法【方法集训】方法1 平面向量的线性运算技巧和数形结合的方法1.(2018河北唐山二模,4)已知O是正方形ABCD的中心.若=λ+μ,其中λ,μ∈R,则=( )A.-2B.-C.-D.答案A2.(2018辽宁葫芦岛期中,3)在△ABC中,G为重心,记=a,=b,则=( )A.a-bB.a+bC.a-bD.a+b答案A方法2 向量共线问题的解决方法1.(2018陕西部分名校摸底考试,7)如图,在△ABC中,=,P是BN上一点,若=m+,则实数m 的值为( )A. B. C. D.答案D2.(2017福建福州3月质检,6)设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C 三点共线,则+的最小值为( )A.4B.6C.8D.9答案C3.(2018四川德阳三校联考,11)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m+n(m,n∈R),则=( )A. B. C.2 D.答案B4.(2018中原名校联考,15)如图,在△ABC中,点M是BC的中点,N在边AC上,且AN=2NC,AM与BN相交于点P,则= .答案 4方法3 平面向量的坐标运算技巧1.(2018辽宁丹东五校协作体联考,4)向量a=,b=(cos α,1),且a∥b,则cos 2α=()A. B.- C. D.-答案C2.(2018重庆一中月考,10)给定两个单位向量,,且·=-,点C在以O点为圆心的圆弧AB上运动,=x+y,则x-y的最小值为( )A.-B.-1C.-2D.0答案B3.(2017福建四地六校4月联考,13)已知A(1,0),B(4,0),C(3,4),O为坐标原点,且=(+-),则||等于.答案2过专题【五年高考】A组山东省卷、课标卷题组考点一平面向量的概念及线性运算1.(2018课标Ⅰ,6,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A.-B.-C.+D.+答案A2.(2015课标Ⅰ,7,5分)设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-答案A3.(2014课标Ⅰ,15,5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为. 答案90°考点二平面向量基本定理及坐标运算1.(2016课标Ⅱ,3,5分)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=( )A.-8B.-6C.6D.8答案D2.(2018课标Ⅲ,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案3.(2015课标Ⅱ,13,5分)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=.答案B组其他自主命题省(区、市)卷题组考点一平面向量的概念及线性运算(2015北京,13,5分)在△ABC中,点M,N满足=2,=.若=x+y,则x= ,y= .答案;-考点二平面向量基本定理及坐标运算1.(2015湖南,8,5分)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为( )A.6B.7C.8D.9答案B2.(2014福建,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案B3.(2015江苏,6,5分)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为.答案-34.(2014北京,10,5分)已知向量a,b满足|a|=1,b=(2,1),且λa+b=0(λ∈R),则|λ|=.答案5.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值. 解析(1)解法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴--解得x=2,y=2,即=(2,2),故||=2.解法二:∵++=0,则(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)∵=m+n,∴(x,y)=(m+2n,2m+n),∴两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.评析本题考查了向量线性坐标运算,简单的线性规划等知识;考查运算求解,数形结合、转化与化归的思想.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届山东淄博实验中学第一次诊断,9)已知△ABC和点M满足++=0,若存在实数m,使得+=m成立,则m=( )A.2B.3C.4D.5答案B2.(2019届山东青岛高三初期调研,6)已知向量a=(-1,1),b=(3,m),若a∥(a+b),则m=( )A.-2B.2C.-3D.3答案C3.(2019届山东博兴一中10月质检,9)如图,在△ABC中,点D在BC边上,且CD=2DB,点E在AD边上,且AD=3AE,则用向量,表示为( )A.+B.-C.+D.-答案B4.(2018江西师大附中12月模拟,10)设D,E,F分别为△ABC三边BC,CA,AB的中点,则+2+3=( )A. B. C. D.答案D5.(2018河北衡水中学2月调研,5)直线l与平行四边形ABCD的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若=2,=3,=λ-μ(λ,μ∈R),则μ-λ=()A.-B.1C.D.-3答案A6.(2017河北冀州模拟,7)已知向量a=,b=(4,4cos α-),若a⊥b,则sin=( )A.-B.-C.D.答案B二、填空题(每小题5分,共15分)7.(2018河北衡水中学9月大联考,13)已知向量a=,b=(k,1),若a∥b,则k= .答案 18.(2018河北石家庄重点中学12月联考,14)在平行四边形ABCD中,M为BC的中点,若=λ+μ,则λμ=.答案9.(2017山西大学附中模拟,15)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC 的中点,点P在以A为圆心,AD长为半径的圆弧DE上运动(如图所示).若=λ+μ,其中λ,μ∈R,则2λ-μ的取值范围是.答案[-1,1]三、解答题(共10分)10.(2018河南许昌、平顶山两市联考,21)在平面直角坐标系中,O为坐标原点,M为平面上任意一点,A,B,C 三点满足=+.(1)求证:A,B,C三点共线,并求的值;(2)已知A(1,sin x),B(1+sin x,sin x),M,x∈(0,π),且函数f(x)=·+-·||的最小值为,求实数m的值.解析(1)证明:∵=+,备战2020高考∴-=(-),∴=,又∵,有公共点B,∴A,B,C三点共线.∵=,∴=3.(2)∵A(1,sin x),B(1+sin x,sin x),M,O(0,0),∴·=1+sin x+sin2x,=(sin x,0).又x∈(0,π),∴||=sin x,∴f(x)=·+-·||=sin2x+2msin x+1.设t=sin x,∵x∈(0,π),∴t∈(0,1],∴y=t2+2mt+1=(t+m)2+1-m2.①当-m≤0,即m≥0时,y=t2+2mt+1无最小值,不符合题意;②当0<-m≤1,即-1≤m<0时,当t=-m时,y min=1-m2=,∴m=-舍去;③当-m>1,即m<-1时,当t=1时,y min=2+2m=,∴m=-,此时m>-1,不符合题意.综上可知,m=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.1平面向量的概念及线性运算、平面向量的基本定理考纲解读考点内容解读要求高考示例常考题型预测热度1.向量的线性运算及几何意义1.理解平面向量的有关概念及向量的表示方法2.掌握向量加法、减法、数乘的运算,理解其几何意义3.理解两个向量共线的含义4.了解向量线性运算的性质及其几何意义Ⅱ2019课标全国Ⅱ,4;2019福建,10;2019四川,12选择题填空题★★☆2.平面向量基本定理及向量的坐标运算1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及其坐标表示3.会用坐标对向量进行线性运算4.理解用坐标表示的平面向量共线的条件Ⅲ2019山东,11;2019课标全国Ⅱ,13;2019四川,9;2019课标Ⅰ,2★★★分析解读高考对本节内容的考查以选择题和填空题为主,重点考查向量的概念、几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件和向量的坐标运算,此类问题一般难度不大.向量的有关概念、向量的线性运算、平面向量基本定理、向量的坐标运算等知识是平面向量的基础,高考主要考查基础运用,其中线性运算、坐标运算、平面向量基本定理是高考的重点与热点,要熟练掌握.五年高考考点一向量的线性运算及几何意义1.(2019课标全国Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则()A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案A2.(2019陕西,8,5分)对任意平面向量a,b,下列关系式中不恒成立····的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案 B3.(2019课标Ⅰ,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC⃗⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗⃗ D.12BC ⃗⃗⃗⃗⃗ 答案 A4.(2019福建,10,5分)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ 等于( )A.OM ⃗⃗⃗⃗⃗⃗B.2OM ⃗⃗⃗⃗⃗⃗C.3OM ⃗⃗⃗⃗⃗⃗D.4OM ⃗⃗⃗⃗⃗⃗ 答案 D5.(2019四川,12,5分)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =λAO ⃗⃗⃗⃗⃗ ,则λ= .答案 2考点二 平面向量基本定理及向量的坐标运算1.(2019课标Ⅰ,2,5分)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A2.(2019四川,2,5分)设向量a=(2,4)与向量b=(x,6)共线,则实数x=( ) A.2B.3C.4D.6答案 B3.(2019福建,7,5分)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c,则实数k 的值等于( )A.-32B.-53C.53D.32答案 A4.(2019广东,9,5分)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2答案 A5.(2019广东,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1)C.(2,0)D.(4,3)答案 B6.(2019辽宁,3,5分)已知点A(1,3),B(4,-1),则与向量AB ⃗⃗⃗⃗⃗ 同方向的单位向量为( )A.(35,-45)B.(45,-35)C.(-35,45)D.(-45,35)答案 A7.(2019课标全国Ⅱ,13,5分)已知向量a=(m,4),b=(3,-2),且a ∥b,则m= . 答案 -6教师用书专用(8—10)8.(2019北京,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A9.(2019陕西,2,5分)已知向量a=(1,m),b=(m,2),若a ∥b,则实数m 等于( )A.-√2B.√2C.-√2或√2D.0答案 C10.(2019广东,10,5分)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题: ①给定向量b,总存在向量c,使a=b+c;②给定向量b 和c,总存在实数λ和μ,使a =λb +μc;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc; ④给定正数λ和μ,总存在单位向量b 和单位向量c,使a =λb +μc.上述命题中的向量b,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A.1B.2C.3D.4答案 B三年模拟A 组 2019—2019年模拟·基础题组考点一 向量的线性运算及几何意义1.(2019陕西西安中学11月月考,5)给出下列四个命题: ①若|a|=|b|,则a=b;②若A,B,C,D 是不共线的四点,则AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ 是四边形ABCD 为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b 的充要条件是|a|=|b|且a ∥b. 其中正确命题的序号是( ) A.①② B.②③ C.③④ D.②④ 答案 B2.(2019辽宁六校协作体期中联考,4)设非零向量a,b,下列四个条件中,使a |a|=b |b|成立的充分条件是( )A.a ∥bB.a=2bC.a ∥b 且|a|=|b|D.a=-b答案 B3.(2019河北石家庄二中月考,7)M 是△ABC 所在平面内一点,23MB ⃗⃗⃗⃗⃗⃗ +MA ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0,D 为AC 的中点,则|MD ⃗⃗⃗⃗⃗⃗⃗||BM ⃗⃗⃗⃗⃗⃗⃗ |的值为( )A.12B.13C.1D.2答案 B4.(2019广东惠州二调,4)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF⃗⃗⃗⃗⃗ =( ) A.12AB ⃗⃗⃗⃗⃗ -13AD ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ C.13AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗D.12AB ⃗⃗⃗⃗⃗ -23AD ⃗⃗⃗⃗⃗答案 D5.(2019山西四校联考,9)O 是平面内的一个定点,A 、B 、C 是平面内不共线的三个点,动点P 满足OP ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ +OC⃗⃗⃗⃗⃗⃗2+λAP ⃗⃗⃗⃗⃗ ,λ∈(0,+∞),则P 点的轨迹所在直线一定通过△ABC 的 ( )A.外心B.内心C.重心D.垂心 答案 C考点二 平面向量基本定理及向量的坐标运算6.(2019吉林调研,4)如果平面向量a=(2,0),b=(1,1),那么下列结论中正确的是( ) A.|a|=|b| B.a ·b=2√2 C.(a-b)⊥b D.a ∥b答案 C7.(2019河北衡水中学五调,8)已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞,+∞)D.(-∞,2)∪(2,+∞)答案 D8.(2019辽宁六校联考,4)已知△ABC 和点M 满足MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0,若存在实数m,使得AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =m AM ⃗⃗⃗⃗⃗⃗ 成立,则m=( )A.2B.4C.3D.5答案 C9.(2019豫北名校12月联考,7)如图,将45°角直角三角板和30°角直角三角板拼在一起,其中45°角直角三角板的斜边与30°角直角三角板的30°角所对的直角边重合,若DB ⃗⃗⃗⃗⃗⃗ =x ·DC ⃗⃗⃗⃗⃗ +y ·DA ⃗⃗⃗⃗⃗ ,则x+y=( )A.√3+1B.2√3+1C.2+√3D.2√3-1 答案 B10.(2019安徽蚌埠二模,6)已知AC ⊥BC,AC=BC,D 满足CD⃗⃗⃗⃗⃗ =t CA ⃗⃗⃗⃗⃗ +(1-t)CB ⃗⃗⃗⃗⃗ ,若∠ACD=60°,则t 的值为( ) A.√3-12B.√3-√2C.√2-1D.√3+12答案 A11.(2019湖北重点高中协作体联考,18)在边长为1的正三角形ABC 中,设e 1=AB ⃗⃗⃗⃗⃗ ,e 2=AC ⃗⃗⃗⃗⃗ ,点D 满足BD ⃗⃗⃗⃗⃗⃗ =12DC ⃗⃗⃗⃗⃗ .(1)试用e 1,e 2表示AD ⃗⃗⃗⃗⃗ ;(2)若a=xe 1+ye 2(x,y ∈R,且x ≠0),求|x||a|的最大值.解析 (1)由题知BD ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,∴AD⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ =23e 1+13e 2. (2)∵x,y∈R,且x ≠0,∴|x||a|=√(xe 1+ye 2)=√x +y +xy=1√1+(y x )2+yx =1√(yx +12)+34,故当yx =-12时,|x||a|取最大值2√33. B 组 2019—2019年模拟·提升题组(满分:45分 时间:30分钟)一、选择题(每小题5分,共25分)1.(2019河北五校联考,4)已知向量m =(λ+1,1),n =(λ+2,2),若(m+n)⊥(m-n),则λ=( ) A.-4B.-3C.-2D.-1答案 B2.(2019江西宜春联考,11)设O 是平面上一定点,A,B,C 是平面上不共线的三点,动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λAB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |cosB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗|cosC ,λ∈[0,+∞),则点P 的轨迹经过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 答案 D3.(2019江西南昌十校二模,5)已知向量a=(1,-2),b=(x,3y-5),且a ∥b,若x,y 均为正数,则xy 的最大值是( )A.2√6B.2512C.2524D.256答案 C4.(2019河北衡水中学周测(八),9)如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB,AC 两边分别交于M,N 两点,且AM ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =y AC⃗⃗⃗⃗⃗ ,则x+y 的最小值为( ) A.2 B.13C.43D.34答案 C5.(2019河北石家庄一模,11)A,B,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D(点O 与点D 不重合),若OC⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ (λ,μ∈R),则λ+μ的取值范围是( ) A.(0,1) B.(1,+∞) C.(1,√2] D.(-1,0)答案 B二、填空题(共5分)6.(2019河南三市联考,14)在锐角△ABC 中,CM⃗⃗⃗⃗⃗⃗ =3MB ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则xy= . 答案 3三、解答题(共15分)7.(2019河南许昌、平顶山两市联考,21)在平面直角坐标系中,O 为坐标原点,M 为平面上任意一点,A,B,C 三点满足MC ⃗⃗⃗⃗⃗⃗ =13MA ⃗⃗⃗⃗⃗⃗ +23MB ⃗⃗⃗⃗⃗⃗ .(1)求证:A,B,C 三点共线,并求|BA⃗⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗⃗ |的值;(2)已知A(1,sin x),B(1+sin x,sin x),M (1+23sinx,sinx),x ∈(0,π),且函数f(x)=OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +(2m -23)·|AB ⃗⃗⃗⃗⃗ |的最小值为12,求实数m 的值.解析 (1)∵MC ⃗⃗⃗⃗⃗⃗ =13MA ⃗⃗⃗⃗⃗⃗ +23MB ⃗⃗⃗⃗⃗⃗ ,∴MC⃗⃗⃗⃗⃗⃗ -MB ⃗⃗⃗⃗⃗⃗ =13(MA ⃗⃗⃗⃗⃗⃗ -MB ⃗⃗⃗⃗⃗⃗ ), ∴BC ⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ ,又因为BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ 有公共点B,∴A,B,C 三点共线.∵BC ⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ ,∴|BA ⃗⃗⃗⃗⃗⃗||BC ⃗⃗⃗⃗⃗⃗ |=3.(2)∵A(1,sin x),B(1+sin x,sin x),M (1+23sinx,sinx),O(0,0),∴OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =1+23sin x+sin 2x,AB ⃗⃗⃗⃗⃗ =(sin x,0),又x ∈(0,π),∴|AB⃗⃗⃗⃗⃗ |=sin x, ∴f(x)=OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +(2m -23)·|AB ⃗⃗⃗⃗⃗ |=sin 2x+2msin x+1.设t=sin x.∵x∈(0,π),∴t∈(0,1], ∴y=t 2+2mt+1=(t+m)2+1-m 2.①当-m ≤0,即m ≥0时,y=t 2+2mt+1无最小值,不合题意;②当0<-m ≤1,即-1≤m<0时,当t=-m 时,y min =1-m 2=12,∴m=-√22(m =√22舍去);③当-m>1,即m<-1时,当t=1时,y min =2+2m=12,∴m=-34,此时m>-1,不合题意.综上可知,m=-√22.C 组 2019—2019年模拟·方法题组方法1 平面向量线性运算的解题策略1.(2019江西师大附中12月模拟,10)设D,E,F 分别为△ABC 三边BC,CA,AB 的中点,则DA ⃗⃗⃗⃗⃗ +2EB ⃗⃗⃗⃗⃗ +3FC⃗⃗⃗⃗⃗ =( ) A.12AD ⃗⃗⃗⃗⃗ B.32AD ⃗⃗⃗⃗⃗ C.12AC ⃗⃗⃗⃗⃗ D.32AC ⃗⃗⃗⃗⃗答案 D2.(2019宁夏银川一中11月模拟,4)设D 为△ABC 所在平面内一点,若BC⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =-43AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D.AD⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗⃗ 答案 A3.(2019河南中原名校3月联考,8)如图,在直角梯形ABCD 中,AB=2AD=2DC,E 为BC 边上一点,BC ⃗⃗⃗⃗⃗ =3EC ⃗⃗⃗⃗⃗ ,F 为AE 的中点,则BF⃗⃗⃗⃗⃗ =( ) A.23AB ⃗⃗⃗⃗⃗ -13AD ⃗⃗⃗⃗⃗ B.13AB ⃗⃗⃗⃗⃗ -23AD ⃗⃗⃗⃗⃗ C.-23AB ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗D.-13AB ⃗⃗⃗⃗⃗ +23AD ⃗⃗⃗⃗⃗答案 C方法2 向量共线定理的应用方法4.(2019吉林调研,8)已知a,b 是不共线的向量,AB ⃗⃗⃗⃗⃗ =λa+b,AC ⃗⃗⃗⃗⃗ =a +μb (λ,μ∈R),若A,B,C 三点共线,则λ,μ的关系一定成立的是( )A.λμ=1B.λμ=-1C.λ-μ=1D.λ+μ=2答案 A5.(2019福建福州3月质检,6)设向量OA ⃗⃗⃗⃗⃗ =(1,-2),OB ⃗⃗⃗⃗⃗ =(a,-1),OC ⃗⃗⃗⃗⃗ =(-b,0),其中O 为坐标原点,a>0,b>0,若A,B,C 三点共线,则1a +2b的最小值为( )A.4B.6C.8D.9答案 C6.(2019河北衡水中学9月大联考,13)已知向量a=(sin π3,cos π6),b=(k,1),若a ∥b,则k= .答案 17.(2019河北石家庄重点中学12月联考,14)平行四边形ABCD 中,M 为BC 的中点,若AB⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +μDB ⃗⃗⃗⃗⃗⃗ ,则λμ= . 答案298.(2019辽宁沈阳二中期中,15)已知平行四边形ABCD 中,点Q 是CD 的中点,AM⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =y AD ⃗⃗⃗⃗⃗ (xy ≠0),若MN ⃗⃗⃗⃗⃗⃗⃗ ∥BQ ⃗⃗⃗⃗⃗ ,则yx= .答案 2方法3 平面向量坐标运算的解题策略9.(2019广东茂名二模,6)已知向量a=(3,-2),b=(x,y-1),且a ∥b,若x,y 均为正数,则3x +2y的最小值是( )A.24B.8C.83D.53答案 B10.(2019广东七校第一次联考,14)设x,y ∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a ⊥c,b ∥c,则|a+b|= .答案 √1011.(2019辽宁五校协作体联合模拟,14)已知平面向量a=(x 1,y 1),b=(x 2,y 2),若|a|=3,|b|=4,a ·b=-12,则x 1+y 1x 2+y 2= .答案 -3412.(2019河北“五个一联盟”第一次模拟,15)如图,在直角梯形ABCD 中,AB ∥CD,AB=2,AD=DC=1,P 是线段BC 上一动点,Q 是线段DC 上一动点,DQ ⃗⃗⃗⃗⃗⃗ =λDC ⃗⃗⃗⃗⃗ ,CP ⃗⃗⃗⃗⃗ =(1-λ)CB ⃗⃗⃗⃗⃗ ,则AP ⃗⃗⃗⃗⃗ ·AQ ⃗⃗⃗⃗⃗ 的取值范围是 .答案 [0,2]方法4 平面向量基本定理的应用策略13.(2019陕西部分名校摸底考试,7)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =14NC ⃗⃗⃗⃗⃗ ,P 是BN 上一点,若AP ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +211AC⃗⃗⃗⃗⃗ ,则实数m 的值为( ) A.911B.211C.311D.111答案 D14.(2019豫晋冀三省12月联考,16)如图,已知在直角梯形ABCO 中,∠ABC=∠BCO=90°,AB=1,BC=√3,OC=2.设OM ⃗⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ ,ON ⃗⃗⃗⃗⃗⃗ =n OC ⃗⃗⃗⃗⃗ ,其中m,n ∈(0,1),mn=14,G 为线段MN 的中点,则|OG ⃗⃗⃗⃗⃗ |的最小值为 .答案√32。