新疆乌鲁木齐市2008年高中招生统一考试数学试卷
2008年普通高等学校招生全国统一考试数学试卷分类汇编5.4解斜三角形
第五章 平面向量四 解斜三角形【考点阐述】正弦定理.余弦定理.斜三角形解法. 【考试要求】(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. 【考题分类】(一)选择题(共7题)1.(安徽卷文5)在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( ) A .23π B .56π C .34π D .3π 解:由余弦定理2225371cos 2532BAC +-∠==-⨯⨯,23BAC π∠=2.(北京卷文4)已知ABC △中,a =b =60B = ,那么角A 等于( )A .135B .90C .45D .30【解析】由正弦定理得:sin sin a b A B A B ==== 45a b A B A <⇒<∴=【答案】C3.(福建卷理10文8)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为 A.6π B.3π C.6π或56πD.3π或23π解: 由222(a +c -b 得222(a +c -b )cos =22sin B ac B 即cos cos = 2sin BB Bsin B ∴,又在△中所以B 为3π或23π4.(海南宁夏卷理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 A.185B.43 C.23D. 87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理222222447cos 22228a b c c c c C ab c c +-+-===⨯⨯5.(山东卷文8)已知a bc ,,为ABC △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36,C .ππ36,D .ππ33,解析:本小题主要考查解三角形问题。
2008乌鲁木齐中学高三期中数学试题
乌鲁木齐市高级中学2007-2008学年第一学期期中考试试题高三数学命题人 杨帆(满分 100分 时间100分钟 ★祝你考试顺利★,只交答题卷,试卷考生留存以备考后讲评)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的答案填在答题卷上. 1. 1.设全集{1234}{12}{24}U A B ===,,,,,,,,则()U AB =ðA .{2}B .{3}C .{124},,D .{14},2、若不等式 | a x +2 | < 6的解集为(-1,2),则实数a 等于A. 8B. 2C.-4D.-8 3.函数11y x =--的图象是4.设p 、q 为简单命题,则“p 且q”为假是“p 或q”为假的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知定义在R 上的奇函数f(x)满足f(x+2)=-f(x),则f(2008)的值是A .-1B .1C .2D .0 6、.函数sin y x =的一个单调递增区间是 A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 7、若a 、b 、c 、d 为非零实数,c 、d 是方程20x ax b ++=的根,a 、b 是方程20x cx d ++=的根,则a +b +c +d =A. 0B. —2C. 2D. 4 8.已知等比数列{}a n 的前n 项和为S x n n =⋅--3161,则x 的值为 A.12B.13C.-13D. -129.若0x 是方程ln 4x x +=的解,则0x 属于区间A .(0,1)B .(1,2)C .(2,3)D .(3,4) 10.对一切实数x ,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是A .)2,(--∞B .[)+∞-,2C .]2,2[-D .[)+∞,011. 设α是第二象限的角,tanα=43-,且sin cos 22αα<,则cos 2α=A.35-B.D.± 12(文)小区收取冬季供暖费,根据规定,住户可以从以下方案中任选其一:方案1:按使用面积缴纳,4元/米2;方案2:按建筑面积缴纳,3元/米2。
2008年乌鲁木齐中考数学试题及答案
新疆乌鲁木齐市2008年高中招生统一考试数学试卷(问卷)注意事项:1.本卷共三个大题,23个小题,总分150分,考试时间120分钟;2.本试卷共8页,由两部分组成,其中问卷4页,答卷4页.考生要先在答卷密封区内规定位置认真填写考点、考场号、学校、姓名、准考证号,并在卷头指定位置上填写座位号; 3.所有答案必须用黑色或蓝色钢笔、中性笔(画图可用铅笔)写在答卷上,写在问卷上或另加页均无效.答题时请对准题号,把答案写在答卷的规定位置上; 4.答题时允许使用科学计算器.一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 3.下列运算正确的是( ) A .33--=B .1133-⎛⎫=- ⎪⎝⎭C3=± D3=-4.一名射击运动员连续打靶8次,命中的环数如图1所示, 这组数据的众数与中位数分别为( ) A .9与8 B .8与9 C .8与8.5 D .8.5与95.某等腰三角形的两条边长分别为3cm 和6cm , 则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图2所示, 则不等式0kx b +>的解集是( ) A .2x >- B .0x > C .2x <- D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32图1图2xb +二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处. 8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 . 9.如图3,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)10.乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m . 12.如图4所示的半圆中,AD 是直径,且3AD =,2AC =, 则sin B 的值是 .13.如图5所示是一个圆锥在某平面上的正投影,则该圆锥的侧 面积是 . 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解不等式组2392593x x x x++⎧⎨+>-⎩≥15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.在一次数学课上,王老师在黑板上画出图6,并写下了四个等式: ①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:求证:AED △是等腰三角形. 证明:D图3 C B D A图4图5C17.2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?18.某公司在A B ,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A 地运一台到甲、乙两地的费用分别是500元和400元;从B 地运一台到甲、乙两地的费用分别是300元和600元.设从A 地运往甲地x 台挖掘机,运这批挖掘机的总费用为y 元.(1)请填写下表,并写出y 与x 之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.宝宝和贝贝是一对双胞胎,他们参加奥运志愿者选拔并与甲、乙、丙三人都进入了前5名.现从这5名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出: (1)宝宝和贝贝同时入选的概率;(2)宝宝和贝贝至少有一人入选的概率.20.如图7,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河岸b 上的A 处测得30DAB ∠=,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).BED CFab A图721.如图8,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形; (2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.Ⅳ(本题满分8分) 22.先阅读,再解答:我们在判断点(720)-,是否在直线26y x =+上时,常用的方法:把7x =-代入26y x =+中,由2(7)6820⨯-+=-≠,判断出点(720)-,不在直线26y x =+上.小明由此方法并根据“两点确定一条直线”,推断出点(12)(34)(16)A B C -,,,,,三点可以确定一个圆.你认为他的推断正确吗?请你利用上述方法说明理由.Ⅴ(本题满分14分)23.如图9,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB ∠的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.BG A EF HD图8新疆乌鲁木齐市2008年高中招生统一考试数学试卷参考答案及评分建议一、选择题(本大题共7小题,每小题4分,共28分)二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),9.90A ∠=或AD BC =或AB CD ∥10.25786(1)8058.9x +=11.4.812.23 13.15π4三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:由239x x ++≥,得6x ≥ ··················································································· 2分由2593x x +>-,得45x >················································································· 4分 所以,不等式组的解集是6x ≥ ············································································· 6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+ ······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.已知:①③(或①④,或②③,或②④) ····································································· 2分 证明:在ABE △和DCE △中,B C AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DCE ∴△≌△ ······································································· 6分 AE DE ∴=,即AED △是等腰三角形 ··············································································· 7分17.解:设该厂原来每天生产x 顶帐篷 ················································································ 1分 据题意得:1500300120041.5x x x ⎛⎫-+= ⎪⎝⎭················································································· 5分 解这个方程得100x = ············································································································ 8分经检验100x =是原分式方程的解 ························································································· 9分 答:该厂原来每天生产100顶帐篷. ·················································································· 10分 18················································································································································· 3分500400(16)300(15)600(3)y x x x x =+-+-+-4009100x =+ ······················································································································· 6分(2)30x -≥且150x -≥即315x ≤≤,又y 随x 增大而增大································· 9分∴当3x =时,能使运这批挖掘机的总费用最省,运送方案是A 地的挖掘机运往甲地3台,运往乙地13台;B 地的挖掘机运往甲地12台,运往乙地0台 ········································ 11分 Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19.解:树形图如下:共20种情况 ···························································································································· 6分(1)宝宝和贝贝同时入选的概率为212010= ······································································· 9分 (2)宝宝和贝贝至少有一人入选的概率为1472010= ························································· 12分 20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分贝贝 甲 乙 丙 宝宝 甲 乙 丙 宝宝 贝贝 乙 丙 甲 丙 甲 宝宝 贝贝 乙 宝宝 贝贝 宝宝 贝贝 甲 丙 乙∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.证明:(1)在BEC △中,G F ,分别是BE BC ,的中点GF EC ∴∥且12GF EC =·································································································· 3分 又H 是EC 的中点,12EH EC =,GF EH ∴∥且GF EH = ···································································································· 4分∴四边形EGFH 是平行四边形 ····························································································· 6分 (2)证明:G H ,分别是BE EC ,的中点GH BC ∴∥且12GH BC = ································································································· 8分又EF BC ⊥,且12EF BC =,EF GH ∴⊥,且EF GH = ····································· 10分∴平行四边形EGFH 是正方形.Ⅳ.(本题满分8分)22.他的推断是正确的. ······································································································· 1分 因为“两点确定一条直线”,设经过A B ,两点的直线解析式为y kx b =+ ······················· 2分由(12)(34)A B ,,,,得234k b k b +=⎧⎨+=⎩解得11k b =⎧⎨=⎩ ··································································· 4分∴经过A B ,两点的直线解析式为1y x =+ ········································································· 5分 把1x =-代入1y x =+中,由116-+≠,可知点(16)C -,不在直线AB 上, 即A B C ,,三点不在同一直线上 ························································································· 7分所以A B C ,,三点可以确定一个圆. ················································································· 8分 Ⅴ.(本题满分14分) 23.解:(1)作CH x ⊥轴,H 为垂足,1CH =,半径2CB = ·························································· 1分 60BCH ∠=,120ACB ∴∠= ········································· 3分(2)1CH =,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC =,2OD ∴=,即(02)D ,.又(02)D ,满足222y x x =-++,∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
新疆2008年内地新疆中考语文试卷及答案1
2008年新疆维吾尔自治区内地新疆高中班招生统一考试语文试题卷考生须知:⒈本卷满分为150分,考试时间为120分钟。
⒉本卷由试越卷和答题卷...两部分组成.其中试愚卷共8页,答题卷共2页。
要求答题卷...上答题,在试题卷上答撮无效。
⒊答题前,请先在答题卷上认真填写座位号、姓名和准考证号,井认真核准条形码上的座位号、姓名和准考证子。
⒋答题时,选择题答案必须使用2B铅笔填潦涂;非选择答案必须使用0.5毫米黑色字迹的签字笔书写,要求字体工整、笔迹清楚。
⒌请按照题号顺序在各题目的答题区域内作答,超出答题区城书写答案无效;在草稿纸、试题卷上答意无效。
一、积累与运用(共32分)㈠选择题(请在答题卷...的相座位置填潦正确选顷)(15分)⒈请选出下列词语中加点字注音完全正确....的一项(3分)A.避讳.()匀称.()擦拭.()苦心孤诣.(y)B.狭隘.()教诲.()拆.散()锐不可当.()D.拂.晓()瞥.见()气氛.()脍.炙人口(ku)C.一抔.()嗤.笑()风靡.()锲.而不舍()⒉请选出下列词语中没有..错别字的一项(3分)A.未雨绸缪温文尔雅神采奕奕消声匿迹B.相题并论一泻千里以身殉职无所适从C.怒不可遏流连忘返趾高气扬咄咄逼人D.走头无路怡然自得受益匪浅循规蹈矩⒊请选出下列词语中,加点字解释不完全正确的一项(3分)A.潜滋.暗长(生长)触目伤怀.(心)B.义愤填膺.(胸)一丝不苟.(假如)C.笑容可掬.(双手捧着)呼朋引.伴(招引)D.变卖典质.(抵押)令人发指.(直竖)⒋请选出下列说法有误..的一项(3分)A.朱自清的《春》从视觉、触觉、嗅觉和听觉方面来描写春风,突出其和暖、轻柔和清新的特点。
B.说明事物要注意抓住事物的特征,如《苏州园林》作者就抓住了园林布局的巧妙这一特征来写。
说明事物还要注意说明顺序,常见的说明顺序有时间顺序和逻辑顺序。
C.戏剧是一种文学样式,其特点是时间、空间高度集中,有尖锐的矛盾冲突,用人物语言、阳光家教网家教学习资料动作表现人物性格。
08年招生统数学试卷2
某某市2008年高级中等教育学校招生统一考试数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的绝对值等于( ).A .2B .-2C .±2D .212.下列轴对称图形中,对称轴条数最多的是( ).3.以下所给的数值中,为不等式-2x +3<0的解的是( ).A .-2B .-1C .23D .24.某校初三·一班6名女生的体重(单位:kg )为:353638404242则这组数据的中位数等于( ). A .38B .39C .40D .425.2008年8月8日,五环会旗将在“鸟巢”高高飘扬, 会旗上的五环(如图)间的位置关系有( ).A .相交或相切B .相交或内含C .相交或相离D .相切或相离6.“5·12”汶川大地震使某某也遭受了重大损失,社会各界踊跃捐助.据新华社讯,截止到6月22日12时,我国收到社会各界捐款、捐物共计467.4亿元.把467.4亿元用科学记数法表示为( ).A .4.674×1011 元B .4.674×1010 元C .4.674×109 元D .4.674×108 元7.已知,如图,∠1=∠2=∠3=55°,则∠4的度数等于( ). A .115°B .120° C .125°D .135°8.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ). A .-5B .5C .-1D .19.某几何体的三视图如下所示,则该几何体可以是( ).10.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为().11.二次函数y=ax2 +bx+c的部分对应值如下表:利用二次函数的图象可知,当函数值y<0时,x的取值X围是().A.x<0或x>2B.0<x<2C.x<-1或x>3D.-1<x<312.如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A1B1C1,则△A1B1C1与△ABC重叠部分(图中阴影部分)的面积为().A.33B.43C.63D.83二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上.13.3×(-31)=.14.函数xxy2+=中,自变量x的取值X围是.15.如图是由若干个边长为1的小正方形组成的网格,在图中作出将五角星ABCDE向其东北方向平移23个单位的图形.16.质地均匀的正四面体骰子的四个面上分别写有数字2,3,4,5,投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是.x-3 -2 -1 0 1 2 3 4 5y12 5 0 -3 -4 -3 0 5 1217.如图,AB 是圆O 的直径,弦AC 、BD 相交于点E ,若 ∠BEC =60°,C 是BD⌒的中点,则tan ∠ACD =. 18.△ABC 中,∠C =90°,AB =1,tan A =43,过AB 边上一点P 作PE ⊥AC 于E ,PF ⊥BC 于F ,E 、F 是垂足,则EF 的 最小值等于.三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2个小题,每小题8分,共16分)(1)计算:(-2-2 +31)×86-20080÷sin45°.(2)计算:)1111()12(22122+---+⋅-+m m m m m m m .20.(本题满分12分)某面粉批发商通过统计前48个星期的面粉销售量(单位:吨),销售量 18.5≤x <19.519.5≤x <20.520.5≤x <21.521.5≤x <22.522.5≤x <23.523.5≤x <24.5合计 划记频数67 9 12 8 6 48(1)在图1、图2中分别画出频数分布直方图和频数折线图;(2)试说明这位面粉批发商每星期进面粉多少吨比较合适(精确到0.1吨)?21.(本题满分12分)已知如图,点A (m ,3)与点B (n ,2)关于直线y =x 对称,且都在反比例函数x ky =的图象上,点D 的坐标为(0,-2).(1)求反比例函数的解析式;(2)若过B 、D 的直线与x 轴交于点C ,求sin ∠DCO 的值.60︒E OA BDC22.(本题满分12分)A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A 、B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲队共同作业,此时甲队已完成了工程量的241.(1)若滑坡受损公路长1 km ,甲队行进的速度是乙队的23倍多5 km ,求甲、乙两队赶路的速度;(2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?23.(本题满分12分)青年企业家X 敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?24.(本题满分12分)如图,⊙O 的直径AB 为10 cm , 弦AC 为6 cm ,∠ACB 的平分线交AB 于E ,交⊙O 于D . 求弦AD 、CD 的长.25.(本题满分14分)如图,矩形ABCD 中,AB = 8,BC = 10,点P 在矩形的边DC 上由D 向C 运动.沿直线AP 翻折△ADP ,形成如下四种情形.设DP =x ,△ADP 和矩形重叠部分(阴影)的面积为y .(1)如图丁,当点P 运动到与C 重合时,求重叠部分的面积y ;(2)如图乙,当点P 运动到何处时,翻折△ADP 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?(3)阅读材料:已知锐角α≠45°,tan 2α是角2α的正切值,它可以用角α的正切值tan α来表示,即2)(tan 1tan 22tan ααα-=(α≠45°).根据上述阅读材料,求出用x 表示y 的解析式,并指出x 的取值X 围.(提示:在图丙中可设∠DAP =α)一、填空题1~6.AADBCB 7~12.CDABDC 二、填空题13.-114.x ≥-2且x ≠015.图形如右 16.16517.3318.2512三、解答题19.(1)原式=221212)3141(÷-⨯+-=21212121⨯-⨯=0.(2)原式=)1)(1()1(1)1(4)1(2122+---+-+⋅-+m m m m m m m m m=)1)(1(2)1)(1(2+--+-m m m m m =)1(2)1)(1()1(2+=+--m m m m .20.(1)(2)由频数折线图,得(19×6+20×7+21×9+22×12+23×8+24×6)÷48=1035÷48=21.5625, 所以这位面粉批发商每星期进面粉21.6吨比较合适.21.(1)∵A (m ,3)与B (n ,2)关于直线y =x 对称, ∴m =2,n =3, 即 A (2,3),B (3,2).于是由 3=k ∕2,得k =6.因此反比例函数的解析式为xy 6=. (2)设过B 、D 的直线的解析式为y =kx +b .∴2=3k +b ,且 -2=0·k +b .解得k =34,b =-2.故直线BD 的解析式为y =34x -2.∴当y =0时,解得x =.即C (,0),于是OC =,DO =2. 在Rt △OCD 中,DC =5.225.122=+. ∴sin ∠DCO =545.22==DC DO . 说明:过点B 作BE ⊥y 轴于E ,则 BE = 3,DE = 4,从而 BD = 5,sin ∠DCO = sin ∠DBE =54.22.(1)甲队行进了2小时,乙队行进了2.5小时. 设乙队的速度为x ,则甲队为x +5. 由题意得方程2.5x +(x +5)×2+1=176. 整理得 5.5x =165,解得x =30. ∴x +5=×30+5=50.即甲队赶路的速度为50 km ∕h ,乙队赶路的速度为30 km ∕h . (2)设若由乙队单独施工,需x 小时才能完成.则由题意有 6×(21241÷)+5.5×x 1=1.解得x =11.即乙队单独做,需要11小时才能完成任务.23.设每天的房价为60+5x 元,则有x 个房间空闲,已住宿了30-x 个房间. 于是度假村的利润y =(30-x )(60+5x )-20(30-x ),其中0≤x ≤30. ∴y =(30-x )·5·(8+x )=5(240+22x -x 2)=-5(x -11)2 +1805.因此,当x =11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大.法二 设每天的房价为x 元,利润y 元满足)56030)(20(---=x x y =84046512-+-x x (60≤x ≤210,是5的倍数).法三 设房价定为每间增加x 元,利润y 元满足 )530)(2060(x x y --+==120022512++-x x (0≤x ≤150,是5的倍数).24.∵AB 是直径,∴∠ACB =90°.在Rt △ABC 中,BC =2222610-=-AC AB = 8(cm ). ∵CD 平分∠ACB ,∴AD⌒=BD ⌒,进而AD =BD .于是在Rt △ABD 中,得AD =BD =22AB = 52(cm ). 过E 作EF ⊥AC 于F ,EG ⊥BC 于G ,F 、G 是垂足,则四边形CFEG 是正方形.设EF =EG =x ,由三角形面积公式,得21AC ·x +21BC ·x =21AC ·BC ,即21×6·x +12×8×x =12×6×8,解得x =724. ∴CE =2x =7224. 由△ADE ∽△CBE ,得DE :BE =AE :CE =AD :BC , 即DE :BE =AE :7224=52:8, 解得AE =730,BE =AB -AE =10-730=740,∴DE =7225.因此CD =CE +DE =7224+7225= 72(cm ). 答:AD 、CD 的长依次为52cm ,72cm .说明:另法一 求CD 时还可以作CG ⊥AE ,垂足为G ,连接OD . 另法二 过A 作AF ⊥CD 于F ,则△ACF 是等腰直角三角形.25.(1)由题意可得∠DAC =∠D ′AC =∠ACE ,∴AE =CE . 设AE =CE =m ,则BE =10-m .在Rt △ABE 中,得m 2 =82 +(10-m )2,m =8.2.∴重叠部分的面积y =21·CE ·AB =21×8.2×8=32.8(平方单位).另法 过E 作EO ⊥AC 于O ,由Rt △ABC ∽Rt △EOC 可求得EO . (2)由题意可得△DAP ≌△D ′AP , ∴AD ′=AD =10,PD ′=DP =x .在Rt △ABD ′中,∵AB =8,∴BD ′=22810 = 6,于是CD ′=4. 在Rt △PCD ′中,由x 2 =42 +(8-x )2,得x =5.此时y =21·AD ·DP =21×10×5=25(平方单位).表明当DP =5时,点D 恰好落在BC 边上,这时y =25. 另法 由Rt △ABD ′∽Rt △PCD ′可求得DP .(3)由(2)知,DP =5是甲、丙两种情形的分界点.G当0≤x ≤5时,由图甲知y =S △AD ′P =S △ADP =21·AD ·DP =5x .当5<x <8时,如图丙,设∠DAP =α,则∠AEB =2α,∠FPC =2α.在Rt △ADP 中,得 tan α=10xAD DP =.根据阅读材料,得 tan2α=2210020)10(1102x x x x -=-⋅. 在Rt △ABE 中,有BE =AB ∕tan2α=2100208x x -=x x 5)100(22-.同理,在Rt △PCF 中,有CF =(8-x )tan2α=2100)8(20x x x --.∴△ABE 的面积S △ABE =21·AB ·BE =21×8×x x 5)100(22-=x x 5)100(82-.△PCF 的面积S △PCF =21·PC ·CF =21(8-x )×2100)8(20x x x --=22100)8(10x x x --. 而直角梯形ABCP 的面积为S 梯形ABCP =21(PC +AB )×BC =21(8-x +8)×10=80-5x .故重叠部分的面积y =S 梯形ABCP -S △ABE -S △PCF=80-5x -x x 5)100(82--22100)8(10xx x --. 经验证,当x =8时,y =32.8适合上式. 综上所述,当0≤x ≤5时,y =5x ;当5<x ≤8时,y =80-5x -x x 5)100(82--22100)8(10x x x --.2008年高级中等教育学校招生统一考试数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.32-的倒数等于( ).A .32B .32-C .23D .23-2.下列各式中,计算正确的是( ). A .5a 2-2a 2 =3B .2a +3b =5ab C .(2xy 2)2 =4x 2y 4D .6mn ÷3n =3m3.下列四个几何体的三视图是同一个图形的是( ).4.据报道,“5·12”汶川大地震使得李白纪念馆刹那间墙倾屋摧,满目疮痍.经过抢救,包括71件顶级国宝在内的4000余件馆藏文物(价值约2 010 000 000元)全部从危房中救出,并被安全转移.将数字2 010 000 000用科学记数法可表示为( ).A .2.01×107B .2.01×108C .2.01×109D .2×1095.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ).6.如图,△ABC 中,延长边AB 、CA 构成∠1、∠2,若∠C =55°, 则∠1+∠2=( ).A .125°B .235°C .250°D .305°7.如图,把一X 矩形纸片ABCD 沿对角线BD 折叠,BC 交AD 于O .给出下列结论:①BC 平分∠ABD ;②△ABO ≌△CDO ;③ ∠AOC =120°;④△BOD 是等腰三角形.其中正确的结论有( ).A .①③B .②④C .①②D .③④8.某某市笔试科目 语文 数学 英语 物理 化学 满分值15015015010080若把表中各笔试科目满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角为(结果保留3个有效数字)( ).A .85.7°B .86°C .42.7°D .43°9.若实数m ,n 满足2m +3n =0 且 4m +n -10=0,则过点P (m ,n )的反比例函数的解析式为( ).A .x y 61=B .x y 61-=C .x y 6=D .xy 6-=10.如图,△ABC 中 ,∠C =90°,∠A =30°,BD 是∠ABC 的平 分线,设△ABD 、△BCD 的面积分别为S 1、S 2,则S 1:S 2 =( ).A .2:1B .2:1C .3:2D .2:311.如图,正方形ABCD 中,DE =2AE ,DF =CF ,则sin ∠BEF =( ). A .410B .810C .10103D .31 12.抛物线bx x y 2322+=与x 轴的两个不同交点是O 和A ,顶点B 在直线y =kx 上,若△OAB 是等边三角形,则b =( ).A .±3B .±3C .33±D .31± 二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.︱-2︱=.14.若1)1(2-=-a a ,则实数a 的取值X 围是.15.如图,⊙O 的弦AB 、CD 互相平行,E 、F 分别是圆周上 两点,则∠BEC +∠AFD =度.16.抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字 1,2,3,4,5,6),骰子朝上的面的数字分别为a ,b ,则a +b = 6的概率为.17.“5·12”汶川大地震使不少建筑物受损.某地一 水塔地震时发生了严重沉陷(未倾斜).如图,已知地震 前,在距该水塔30米的A 处测得塔顶B 的仰角为60°; 地震后,在A 处测得塔顶B 的仰角为45°,则该水塔沉 陷了米.(,3≈1.7321,2≈1.4142)18.连接抛物线y =ax 2(a ≠0)上任意四点所组成的四边形可能是(填写所有正确选项的序号).①菱形;②有三条边相等的四边形;③梯形;④平行四边形.三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2个小题,每小题8分,共16分)(1)计算:6)273482()31()21()3(120÷-+--÷--π.(2)化简:)111()1111(22aa a a a ---÷++-.20.(本题满分12分)已知反比例函数x m y 5-=的图象有一支在第一象限.(1)求常数m 的取值X 围;(2)若它的图象与函数y =x 的图象一个交点的纵坐标为2,求当-2<x <-1时,反比例函数值y 的取值X 围.21.(本题满分12分)某图书馆为了了解读者的需求情况,某天对读者借阅的所有图书类别 少儿类 科技类 文艺类 体育类 其他 数量(本) 20 80 40 比例10%25%40%(1)补全上表,并求当天共借阅了多少本图书?(2)若用一个统计图描述当天借阅的各类图书所占比例的情况,你认为最好选用什么统计图?作出你所选用的统计图;(3)试根据调查结果,给该图书馆的采购部提一条合理化建议.22.(本题满分12分)华联商场预测某品牌衬衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.试求:(1)第一次购买这种衬衫的单价是多少? (2)在这两笔生意中,华联商场共赢利多少元?23.(本题满分12分)如图,P A 、PB 是⊙O 的切线,A 、 B 为切点,连结AO 并延长交⊙O 于C ,交PB 的延长线于D .(1)找出图中所有的相似三角形,并证明你的结论(不再添加辅助线); (2)若P A =2+2,∠P = 45︒,求图中阴影部分的面积.24.(本题满分12分)如图,在□ABDO 中,已知A 、 D 两点的坐标分别为A (3,3),D (23,0).将□ABDO 向左平移3个单位,得到四边形A ′B ′D ′O ′.抛物线C 经过点A ′、B ′、D ′.(1)在图中作出四边形A ′B ′D ′O ′,并写出它的四个顶点坐标;(2)在抛物线C 上是否存在点P ,使△ABP 的面积恰好为四边形A ′B ′D ′O ′的面积的一半?若存在,求出点P 的坐标;若不存在,说明理由.25.(本题满分14分)(1)已知△ABC 是等腰直角三角形,现分别以它的直角边BC 、斜边AB 为边向外作正方形BCEF 、ABMN ,如图甲,连接MF ,延长CB 交MF 于D .试观测DF 与DM 的长度关系,你会发现.(2)如果将(1)中的△ABC 改为非等腰的直角三角形,其余作法不变,如图乙,这时D 点还具有(1)的结论吗?请证明你的判断.(3)如果将(1)中的△ABC 改为锐角三角形,仍以其中的两边分别向外作正方形,如图丙,则应在图中过B 点作△ABC 的线,它与MF 的交点D 恰好也具有(1)的结论.请证明在你的作法下结论的正确性.一、填空题1~6.DCDCBB7~12.BADACA 二、填空题13.214.a ≥115.18016.6117.21.96 18.②③ 三、解答题19.(1)原式=6)3938(3411÷-+-÷=6334÷--=221-.(2)原式=)1()1(11122-+-÷--++a a a a a a a =)1(11222--÷-a a a a =-2a 2. 20.(1)∵反比例函数的图象有一支在第一象限,∴m -5>0,即m >5. 因此m 的取值X 围为m >5. (2)由题意可知,反比例函数xm y 5-=的图象经过点(2,2), ∴ 2×2=m -5,得 m =9,∴xy 4=. 当x =-2时,y =-2;当x =-1时,y =-4.故根据反比例函数图象知,当-2<x <-1时,y 的取值X 围是-4<x <-2. 21.(1)∵20÷10%=200,∴ 这天共借了200本.类别 少儿类 科技类 文艺类 体育类 其他 数量(本) 20 50 80 40 10 比例10%25%40%20%5%(2)最好选用扇形统计图,图如右: (3)建议:可多采购些文艺类书籍.22.(1 第一批 第二批 单价 x x +4 总价 80000176000 数量x800004176000+x 有x 80000×2 =4+x .解得x =40,此即为第一批购入衬衫的单价. (2)由(1)知,第一批购入了 80000÷40=2000件. 在这两笔生意中,华联商场共赢利为2000×(58-40)+(2000×2-150)×(58-44)+150×(58×0.8-44)=90260元. 答:第一批购入这种衬衫的单价为40元,两笔生意中华联商场共赢利90260元. 23.(1)△OBD ∽△P AD .证明∵P A 、PB 是⊙O 的切线,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP =∠OBD =90°. 又∠D =∠D ,∴△OBD ∽△P AD .(2)∵∠P =45°,∴∠DOB =45°,∴△OBD 、△P AD 均是等腰直角三角形, 从而PD =2P A ,BD =OB . 又∵P A =2+2,P A =PB ,∴BD =OB =PD -PB =2P A -P A =(2-1)P A =(2-1)(2+2)=2.故S 阴影=S △OBD -S 扇形=23604521BD BD OB ⋅-⋅⋅π=2812221⨯-⨯⋅π=41π-.24.(1)作出平移后的四边形A ′B ′D ′O ′如右.顶点坐标分别为A ′(0,3)、B ′(23,3)、D ′(3,0)、O ′(-3,0).(2)由题意可设抛物线C 的解析式为y = ax 2 + bx +3,则⎪⎩⎪⎨⎧+⋅+⋅=+⋅+⋅=,33)3(0,332)32(322b a b a 解得a =33,b =-2.∴抛物线C 的解析式为y =33x 2-2x +3. ∵四边形A ′B ′D ′O ′是平行四边形, ∴它的面积为O ′D ′×OA ′=23×3=6.假设存在点P ,则△ABP 的面积为3.设△ABP 的高为h ,则 21×AB ×h =21×23×h =3,得 h =3.即点P 到AB 的距离为3,∴P 点的纵坐标为0或23. ∴当P 的纵坐标为0时,即有 0=33x 2-2x +3,解得x 1 =x 2 =3. 当P 的纵坐标为23时,即有23=33x 2-2x +3,解得631-=x ,632+=x . 因此存在满足条件的点P ,坐标为(3,0),(63-,23),(63+,23).25.(1)DF =DM .(2)仍具有(1)的结论,即DF =DM .证明:延长CD ,过M 作MP ⊥CD ,交于P ,P 为垂足. ∵∠MBP +∠ABC =90°,∠BAC +∠ABC =90°, ∴∠MBP =∠BAC .又∠ACB =∠MPB =90°,AB =BM , ∴△ABC ≌△BMP ,从而BC =MP .∵BC=BF,∴BF=MP.又∠PDM=∠BDF,∠DPM=∠DBF,∴△DBF≌△DPM,∴DF=DM.(3)高.证明:如图,延长GD,过M、F作GD的垂线垂足为P、Q.∵∠MBP+∠BMP=90°,∠ABG+∠MBP=90°,∴∠BMP=∠ABG.又∠MPB=∠AGB=90°,AB=BM,∴△ABG≌△BMP,∴MP=BG.同理△FQB≌△BGC,∴FQ=BG,∴MP=FQ.∵∠FDQ=∠MDP,∠FQD=∠MPD=90°,∴△FDQ≌△MDP,进而DF=DM.说明过F作FH∥BM交BD的延长线于H.通过证明△ABC≌△HFB得HF=AB=BM,进而证明△BDM≌△HFD,得出D是FM的中点.。
2008年新疆乌鲁木齐市高中招生统一考试答案
2008年新疆乌鲁木齐市高中招生统一考试数学试卷参考答案及评分建议一、选择题(本大题共7小题,每小题4分,共28分)二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),9.90A ∠=或AD BC =或AB CD ∥10.25786(1)8058.9x +=11.4.812.2313.15π4三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分)14.解:由239x x ++≥,得6x ≥ ··················································································· 2分由2593x x +>-,得45x >················································································· 4分 所以,不等式组的解集是6x ≥ ············································································· 6分15.解:原式1)1()1)(1(1112+-⋅-+-+=x x x x x ··································································· 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.已知:①③(或①④,或②③,或②④) ············································································ 2分 证明:在ABE △和DCE △中,B CAEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DCE ∴△≌△ ······································································· 6分 AE DE ∴=,即AED △是等腰三角形 ··············································································· 7分17.解:设该厂原来每天生产x 顶帐篷 ················································································ 1分 据题意得:1500300120041.5x xx ⎛⎫-+= ⎪⎝⎭ ················································································· 5分 解这个方程得100x = ············································································································ 8分 经检验100x =是原分式方程的解 ························································································· 9分 答:该厂原来每天生产100顶帐篷. ·················································································· 10分 18.解:(1)················································································································································· 3分500400(16)300(15)600(3)y x x x x =+-+-+-4009100x =+ ······················································································································· 6分(2)30x - ≥且150x -≥即315x ≤≤,又y 随x 增大而增大 ································· 9分∴当3x =时,能使运这批挖掘机的总费用最省,运送方案是A 地的挖掘机运往甲地3台,运往乙地13台;B 地的挖掘机运往甲地12台,运往乙地0台 ········································ 11分 Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19.解:树形图如下:或列表如下:贝贝 甲 乙 丙 宝宝 甲 乙 丙 宝宝 贝贝 乙 丙 甲 丙 甲 宝宝 贝贝 乙宝宝 贝贝 宝宝贝贝甲丙乙共20种情况 ···························································································································· 6分(1)宝宝和贝贝同时入选的概率为212010= ······································································· 9分 (2)宝宝和贝贝至少有一人入选的概率为1472010= ························································· 12分 20.解:过点C 作CE AD ∥,交AB 于ECD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分 21.证明:(1)在BEC △中,G F ,分别是BE BC ,的中点GF EC ∴∥且12GF EC =·································································································· 3分 又H 是EC 的中点,12EH EC =,GF EH ∴∥且GF EH = ···································································································· 4分∴四边形EGFH 是平行四边形 ····························································································· 6分 (2)证明:G H ,分别是BE EC ,的中点GH BC ∴∥且12GH BC =································································································· 8分 又EF BC ⊥ ,且12EF BC =,EF GH ∴⊥,且EF GH = ····································· 10分∴平行四边形EGFH 是正方形.Ⅳ.(本题满分8分)22.他的推断是正确的. ······································································································· 1分 因为“两点确定一条直线”,设经过A B ,两点的直线解析式为y kx b =+ ······················· 2分由(12)(34)A B ,,,,得234k b k b +=⎧⎨+=⎩解得11k b =⎧⎨=⎩··································································· 4分∴经过A B ,两点的直线解析式为1y x =+ ········································································· 5分把1x =-代入1y x =+中,由116-+≠,可知点(16)C -,不在直线AB 上, 即A B C ,,三点不在同一直线上 ························································································· 7分 所以A B C ,,三点可以确定一个圆.·················································································· 8分 Ⅴ.(本题满分14分) 23.解:(1)作CH x ⊥轴,H 为垂足,1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴(1A , ················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分 又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++,点D在抛物线上 ···············································································································13分D,使线段OP与CD互相平分.··································································14分所以存在(02)。
2008年普通高等学校招生全国统一考试数学试卷分类汇编8.1椭圆
第八章 圆锥曲线方程一 椭圆【考点阐述】椭圆及其标准方程.椭圆的简单几何性质.了解椭圆的参数方程. 【考试要求】(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 【考题分类】(一)选择题(共6题)1.(湖北卷理10文10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是A. ①③B. ②③C. ①④D. ②④ 解:由焦点到顶点的距离可知②正确,由椭圆的离心率知③正确,故应选B.2.(江西卷理7文7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 解:C .由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒< 又(0,1)e ∈,所以1(0,)2e ∈3.(上海卷文12)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D【解析】 由椭圆的第一定义知12210.PF PF a +==4.(天津卷理5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 (A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒==所以2d =,选B .5.(天津卷文7)设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y +=解析:抛物线的焦点为(2,0),椭圆焦点在x 轴上,排除A 、C ,由12e =排除D ,选B . 6.(上海春卷14)已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) (A )4. (B )5. (C )7. (D )8.解析:由题意得m-2>10-m 且10-m>0,于是6<m<10,再有(m-2)-(10-m)=22,得m=8。
2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .B .C .D .A .13BCD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任CDE AB取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题...卷上作答无效......) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.1216.2三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+.18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CG AD ==,3DG =,EG ==CE =则222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭.19.解:(1)122nn n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。
乌鲁木齐市2008年高中招生统一考试
乌鲁木齐市2008年高中招生统一考试语文满分150分,考试时间150分钟。
一、(本大题共7小题,共30分,第6题7分,第7题8分,其余每题3分)1.下列词语中加点的字,注音全都正确的一项是()A.塑.料(sù)允.许(yǔn)翘.首(qiáo)长吁.短叹(yū)B.按捺.(nà)刹.那(chà)忏.悔(qiān)叱咤.风云(zhà)C.拂.晓(fú)湖畔.(pàn)匀称.(chèn)锋芒毕露.(lù)D.模.样(mó)惬.意(qiè)箴.言(zhēn)擎.天撼地(qíng)2.下列词语中没有错别字的一项是()A.稀罕筹划不屈不挠中流抵柱B.松弛制裁张皇失措融会贯通C.造型苍桑获益匪浅提纲挈领D.绯红蓬蒿一泄千里断章取义3.下列句子中加点的词语使用恰当的一项是()A.北京奥运会主会场“鸟巢”和别的建筑不同,“东倒西歪”的柱子结构扑朔迷离....,对焊接的要求很高,技术难度很大。
B.近日,中国新疆国际民族舞蹈节在首府举行,来自国内外的参演艺术家们玲珑剔透....的服饰、优美动人的舞姿,赢得观众的阵阵赞叹。
C.现在,上网交流越来越成为人们较为喜欢的一种交际方式,但随之而来的不规范用字却比比皆是....,给人们的交流带来不和谐音。
D.今年起,端午节被国家确定为法定假日,一时间各种文化主题活动欣欣向荣....,人们以此来表达对我国这一传统节日的庆贺。
4.填入下面文字中横线上的句子,与上下文衔接最恰当的一项是()天地有大美,于简单处得;人生有大疲惫,在复杂处藏。
人,_______;_______。
这反映处的现实问题是:更多的人,________,__________。
①要活出简单不容易②一简单就快乐,但快乐的人寥寥无几③一复杂就痛苦,可痛苦的人却熙熙攘攘④要活出复杂来却很简单A.①②④③B.①④②③C.②③①④D.②③④①5.与下列课文有关的内容,搭配不正确的一项是()A.《小石潭记》——柳宗元——《柳河东集》——北宋B.《香菱学诗》——曹雪芹——《红楼梦》——清代C.《雷电颂》——郭沫若——《屈原》——现代D.《热爱生命》——杰克·伦敦——《热爱生命》——美国6.请根据提示写出空缺的句子。
2008年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)
3
3
C.
3
2
D.
3
1.解:C.由题意知三棱锥 A1 ABC 为正四面体,设棱长为 a ,则 AB1
3a ,棱柱的高
A1O
a2 AO2
a2 (2 3
3 a)2 2
6 3 a (即点 B1 到底面 ABC 的距离),故 AB1 与底面
ABC 所成角的正弦值为 A1O
2
.
AB1 3
M
连接 OP,过点 A 作 AQ OP 于点 Q,
∵ AP CD,OA CD,∴CD 、 、 OAP, ∵ AQ 、 、 OAP,∴ AQ CD
Q
A
D
又 ∵ AQ OP,∴ AQ 、 、 OCD ,
线段 AQ 的长就是点 A 到平面 OCD 的距离
P
B
C
∵OP OD2 DP2 OA2 AD2 DP2 4 1 1 3 2 , AP DP 2
NC
O
其补角)
作 AP CD、 P, 连接 MP
∵OA 、 、 ABCD、 ∴CD MP
∵ADP ,∴DP= 2
4
2
MD MA2 AD2 2 ,
∴cos MDP DP 1 , MDC MDP
MD 2
3
M E
A
B
N
Q
D
P C
所以 AB 与 MD 所成角的大小为
3
(3)∵ AB‖ 、 、 OCD,∴点 A 和点 B 到平面 OCD 的距离相等,连接 OP,过点 A 作
AN EM 6
C
NM
HA o
E
B
D
1 题图(1)
z
C
M
另解:以 O 为坐标原点,建立如图所示的直角坐标系, 则点 A(1, 1, 0), B(1, 1, 0), E(1,1, 0),C(0, 0, 2) , M ( 1 , 1 , 2 ), N (1 , 1 , 2 ) ,
2008年普通高等学校招生全国统一考试(全国 I卷)理数数学试题及详解
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;CDE AB(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案1、C 由x(x-1)≥0,x ≥0得x ≥1或x=0;2、A 根据汽车加速行驶S=221at ,匀速行驶s=vt ,减速行驶s=221at -结合函数图象可知。
mjt-新疆乌鲁木齐市2008年高中招生考试
新疆乌鲁木齐市2008年高中招生考试物理试卷(90分)说明:本卷中的g都取10N/Kg。
作图可用铅笔。
答题可用计算器。
一、选择题(本题有10个小题,每小题3分,共30分。
每小题4个选项,其中只有1个选项是符合题意的,请将正确选项前的字母序号填在答卷相应的表格里。
选对得3分,多选、不选、错选均不得分)1.图示是2008年北京奥运会传递圣火的手持火炬—“祥云”的照片。
关于它的质量和长度合理的是A.质量985g,长度72cm B.质量985Kg,长度72cmC.质量985g,长度72dmD.质量985kg,长度72dm2.国际单位制中,电荷量的单位是A.库仑B.伏特C.欧姆D.瓦特3.乌鲁木齐市某街道旁的电子显示屏显示的噪声等级为80 dB。
如果人处在此噪声等级的环境中A.对人的听力会产生严重危害B.对人的学习会产生影响C.对人的睡眠不会产生影响D.对人的学习、睡眠都不会产生影响4.在清澈的湖面上空,小燕子正在向下俯冲捕食。
在小燕子向下俯冲的过程中,关于它在湖水中的像的虚实、它和像之间的距离,正确的说法是A.实像,距离变大B.实像,距离变小C.虚像,距离变小D.虚像,距离变大5.下列不属于电磁波的是A.无线电波B.微波C.光波D.声波6.下列说法正确的是A.扩散现象只发生在液体之间B.物体温度越高,分子热运动越剧烈C.只有热传递才能改变物体的内能D.0℃的物体没有内能7.掉在水平地面上的弹性小球会跳起,而且弹跳的高度会越来越低。
图示是小球弹跳的频闪照片,小球在1、2位置的高度一样。
下面说法正确的是A.小球在1、2位置的动能相同,机械能也相同B.小球在1、2位置的动能相同,2位置的机械能较小C.小球在1、2位置的机械能相同,2位置的动能较小D.小球在2位置的动能较小,机械能也较小8.如图所示,均匀木棒AB长为1m,水平放置在O、O'两个支点上。
已知AO、O'B长度均为 0.25m。
若把B端竖直向上稍微抬起一点距离,至少需要用力20N;若把B端竖直向下稍微压下一点距离,则至少需要用力A.20N B.40N C.60N D.8ON9.如图所示,容积为3 dm3的圆柱形容器放在水平桌面上,容器内装有质量为1㎏的水,现将一个密度为0.6×103㎏/m3 的木块放入容器中,木块与容器壁不接触,水恰好没有溢出,则木块的质量为A.0.6㎏B.1.2㎏C.1.8㎏D.2.0㎏10.某调光灯电路如图所示,当滑动变阻器达到滑片P滑至a端时,灯泡L的功率为36W;滑片P滑至b端时,灯泡L的功率为9W,则滑片P滑至ab的中点时,灯泡L的功率为A.16W B.18WC.22.5W D.25W二、填空题(本题有4个小题,每空1分,共30分。
2008年普通高等学校招生全国统一考试数学试卷分类汇编1.1集合
第一章 集合与简易逻辑一 集合【考点阐述】集合.子集.补集.交集.并集. 【考试要求】(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 【考题分类】(一)选择题(共20题)1、(安徽卷理2)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解: }{0A y Ry =∈>,R (){|0}A y y =≤ð,又{2,1,1,2}B =--∴ }{()2,1R A B =-- ð,选D 。
2、(安徽卷文1)若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解:R A ð是全体非正数的集合即负数和0,所以}{()2,1R A B =-- ð3、(北京卷理1)已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合A ∩(C U B )等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤ 【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点4、(北京卷文1)若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x >或≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|21x x --<≤【答案】D【解析】{}|21A B x x =-≤-<5、(福建卷文1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于( )A.{x |0<x <1}B.{x |0<x <3}C.{x |1<x <3}D. Φ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} 6、(广东卷文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。
2008年新疆中考试卷
新疆维吾尔自治区 新疆生产建设兵团2008年初中毕业生学业考试数 学 试 题 卷考生须知:1.本试卷分为试题卷和答题卷两部分.2.试题卷共4页,满分150分.考试时间120分钟. 3.答题卷共4页,所有答案均写在答题卷上...........,写在试题卷上的无效.......... 4.答题前,考生应先在答题卷密封区内认真填写准考证号、姓名、考场号、座位号、地(州、市、师)、县(市、区、团场)和学校.5.答题时可以使用科学计算器..........一、精心选择(本大题共10题,每题所给四个选项中,只有一个是正确的.每题5分,共50分.) 1.||等于( ) A . B .2 C . D .4 2.2008年5月12日,四川省汶川县发生了里氏8.0级大地震.新疆各族群众积极捐款捐物,还紧急烤制了2×104个饱含新疆各族人民深情的特色食品——馕(n áng ),运往灾区.每个馕厚度约为2cm ,若将这批馕摞成一摞,其高度大约相当于( ) A .160层楼房的高度(每层高约2.5m ) B .一棵大树的高度 C .一个足球场的长度 D .2000m 的高度3.如图,下列推理不正确...的是( ) A .∵AB ∥CD ∴∠ABC +∠C =180° B .∵∠1=∠2 ∴AD ∥BC C .∵AD ∥BC ∴∠3=∠4D .∵∠A +∠ADC =180° ∴AB ∥CD 4.下列事件属于必然事件的是( ) A .打开电视,正在播放新闻 B .我们班的同学将会有人成为航天员 C .实数a <0,则2a <0 D .新疆的冬天不下雪 5.下列调查方式中,合适的是( )A .要了解约90万顶救灾帐蓬的质量,采用普查的方式B .要了解外地游客对旅游景点“新疆民街”的满意程度,采用抽样调查的方式C .要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D .要了解全疆初中学生的业余爱好,采用普查的方式 6.在函数的图象上有三个点的坐标分别为(1,)、(,)、(,),函数值y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 27.如图,中边上的高为,中边上的高为,下列结论正确的是( ) A . B .C .D .无法确定8.傍晚,小明陪妈妈在路灯下散步,当他们经过路灯时,身体的影长( ) A .先由长变短,再由短变长 B .先由短变长,再由长变短 C .保持不变 D .无法确定9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15° B .30° C .45° D .60°10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A .B .C .D .二、合理填空(本大题共4题,每题5分,共20分)11.根据下列图形的排列规律,第2008个图形是福娃 (填写福娃名称即可).12.如图,在平面直角坐标系中,线段是由线段平移得到的,已知两点的坐标分别为,,若的坐标为,则的坐标为 .13.已知一元二次方程有一个根是2,那么这个方程可以是 (填上一个符合条件的方程即可). 14.如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为 .(精确到0.01)三、准确解答(本大题共10题,共80分) 15.(6分)计算:. 16(6分)化简分式,并从、、0、1、2中选一个能使分式有意义的数代入求值.17.(6分)城区某中学要从自愿报名的张、王、李、赵4名老师中选派2人下乡支教,请用画树状图(或列表)的方法求出张、王两位老师同时被选中的概率.4-2-4-1y x =1y 122y 3-3y ABC △BC 1h DEF △DE 2h 12h h >12h h <12h h =2π(6010)2π(6010)68x +++=2π(60)2π6086x +⨯=2π(6010)62π(60)8x +⨯=+⨯2π(60)82π(60)6x x -⨯=+⨯11A B AB A B ,(23)A -,(31)B -,1A (34),1B 201218(π6)4-÷-+--2211211x x x x x -+-++-2-1-18.(8分)如图,⊙O的半径,直线l⊥CO,垂足为H,交⊙O于A、B两点,,直线l平移多少厘米时能与⊙O相切?3月4月5月6月7月8月吐鲁番葡萄(吨) 4 8 5 8 10 13哈密大枣(吨)8 7 9 7 10 7(1)请你根据以上数据填写下表:平均数方差吐鲁番葡萄8 9哈密大枣(2)补全折线统计图.(3)请你从以下两个不同的方面对这两种水果在去年3月份至8月份的销售情况进行分析:①根据平均数和方差分析;②根据折线图上两种水果销售量的趋势分析.20.(8分)如图,某市区南北走向的北京路与东西走向的喀什路相交于点O处.甲沿着喀什路以4m/s的速度由西向东走,乙沿着北京路以3m/s的速度由南向北走.当乙走到O点以北50m处时,甲恰好到点O处.若两人继续向前行走,求两个人相距85m时各自的位置.21.(8分)如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.求证:AB=AC+CD.22.(9种类单价(元)成活率甲60 88%乙80 96%(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?23.(10分)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.24.(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.(1)在如图所示的平面直角坐标系中,求抛物线的表达式.(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?10cmOC=16cmAB=。
2008年高考新课标全国卷-文科数学(含答案)
2008年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1) B. (-2,1)C. (-2,-1)D. (1,2)2、双曲线221102x y -=的焦距为( )3、已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 25、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r垂直,则λ是( )A. -1B. 1C. -2D. 26、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数, 那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.1729、平面向量a r ,b r共线的充要条件是( )A. a r ,b r 方向相同B. a r ,b r 两向量中至少有一个为零向量C. R λ∃∈, b a λ=r rD. 存在不全为零的实数1λ,2λ,120a b λλ+=r r r10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5]B. [0,10]C. [5,10]D. [5,15]11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,3212、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β二、填空题:本大题共4小题,每小题5分,满分20分。
2008年普通高等学校招生全国统一考试数学卷(全国Ⅰ
)()()A B P A P B =A 在一次试验中发生的概率是次独立重复试验中恰好发生k 次的概率(1)x x x -+的定义域为(}{}0.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶看作时间t 的函数,其图像可能是(中,AB =c ,AC =b .若点满足2BD DC =,则AD =( B .5233-c b 13-b cD .1233+b 2)a i i +为正实数,则)C .0sO0)(1)+∞, 1)(01),1)(1)-+∞,,0)(01),,.若直线1x ya b+=通过点)α,则( 21≤ B C .211a b+.已知三棱柱ABC -的侧棱与底面边长都相等,45,求二面角1OA AB OB 、、成等差数列,且BF 与FA 同向.被双曲线所截得的线段的长为4,求双曲线的方程.满足01a <<,a f =像可知;由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 由()()()()21212ln 1,1,y x x y x x ef x ef x e --=+⇒=-==;另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为的法向量为111133OA AA AB AC =--,11AB AB AA =+ 所成角的正弦值为111123OA AB AO AB ⋅=. 种种法;种四种花有44A 种种法.共有234444284A A A ++=.顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯=ABDE 11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM AN EM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),(0,0,2)A B E C ----,2)2,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===, 16题图(16题图(16AN EM AN EM⋅=. 中,由正弦定理及a 33sin sin(55C ==,则tan cot A B AB 90,90∴∠,即CE CE AD ⊥点作AD 的垂线,垂足为G CG AD ,∴CEG ,∴∠233AC CD AD =,则cos GE CE CGE CG GE -∠=πarccos =-,即二面角C AD -求导:()f x '()f x 在R4 31 533,( 5CP C=13 ),(5B P=21255⨯== m d=-,AB22)d m-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆乌鲁木齐市2008年高中招生统一考试数学试卷一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.2-D.22.反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 3.下列运算正确的是( ) A .33--=B .1133-⎛⎫=- ⎪⎝⎭C3=± D3=-4.一名射击运动员连续打靶8次,命中的环数如图1所示, 这组数据的众数与中位数分别为( ) A .9与8 B .8与9 C .8与8.5 D .8.5与95.某等腰三角形的两条边长分别为3cm 和6cm , 则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图2所示, 则不等式0kx b +>的解集是( ) A .2x >- B .0x > C .2x <- D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 . 9.如图3,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)10.乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786图1图2xb +D图3万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6mm .12.如图4所示的半圆中,AD 是直径,且3AD =,2AC =, 则sin B 的值是 .13.如图5所示是一个圆锥在某平面上的正投影,则该圆锥的侧 面积是 . 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.解不等式组2392593x x x x ++⎧⎨+>-⎩≥15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.在一次数学课上,王老师在黑板上画出图6,并写下了四个等式: ①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:求证:AED △是等腰三角形. 证明:17.2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?18.某公司在A B ,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A 地运一台到甲、乙两地的费用分别是500元和400图5C元;从B 地运一台到甲、乙两地的费用分别是300元和600元.设从A 地运往甲地x 台挖掘机,运这批挖掘机的总费用为y 元.(1)请填写下表,并写出y 与x 之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.宝宝和贝贝是一对双胞胎,他们参加奥运志愿者选拔并与甲、乙、丙三人都进入了前5名.现从这5名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出: (1)宝宝和贝贝同时入选的概率;(2)宝宝和贝贝至少有一人入选的概率.20.如图7,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河岸b 上的A 处测得30DAB ∠=,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.如图8,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形; (2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.BED CFab A图7 BG A EF H D 图8Ⅳ(本题满分8分) 22.先阅读,再解答:我们在判断点(720)-,是否在直线26y x =+上时,常用的方法:把7x =-代入26y x =+中,由2(7)6820⨯-+=-≠,判断出点(720)-,不在直线26y x =+上.小明由此方法并根据“两点确定一条直线”,推断出点(12)(34)(16)A B C -,,,,,三点可以确定一个圆.你认为他的推断正确吗?请你利用上述方法说明理由.Ⅴ(本题满分14分)23.如图9,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB ∠的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.新疆乌鲁木齐市2008年高中招生统一考试数学试卷参考答案及评分建议8.(00),9.90A ∠=或AD BC =或AB CD ∥10.25786(1)8058.9x +=11.4.812.23 13.15π4三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:由239x x ++≥,得6x ≥ ··················································································· 2分由2593x x +>-,得45x >················································································· 4分 所以,不等式组的解集是6x ≥ ············································································· 6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.已知:①③(或①④,或②③,或②④) ····································································· 2分 证明:在ABE △和DCE △中,B C AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DCE ∴△≌△ ······································································· 6分 AE DE ∴=,即AED △是等腰三角形 ··············································································· 7分17.解:设该厂原来每天生产x 顶帐篷 ················································································ 1分 据题意得:1500300120041.5x x x ⎛⎫-+= ⎪⎝⎭················································································· 5分 解这个方程得100x = ············································································································ 8分经检验100x =是原分式方程的解 ························································································· 9分 答:该厂原来每天生产100顶帐篷. ·················································································· 10分 18················································································································································· 3分500400(16)300(15)600(3)y x x x x =+-+-+-4009100x =+ ······················································································································· 6分(2)30x - ≥且150x -≥即315x ≤≤,又y 随x 增大而增大································· 9分∴当3x =时,能使运这批挖掘机的总费用最省,运送方案是A 地的挖掘机运往甲地3台,运往乙地13台;B 地的挖掘机运往甲地12台,运往乙地0台 ········································ 11分 Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19.解:树形图如下:或列表如下:共20种情况 ···························································································································· 6分(1)宝宝和贝贝同时入选的概率为212010= ······································································· 9分 (2)宝宝和贝贝至少有一人入选的概率为1472010= ························································· 12分 20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.证明:(1)在BEC △中,G F ,分别是BE BC ,的中点GF EC ∴∥且12GF EC =·································································································· 3分 贝贝 甲 乙 丙 宝宝 甲 乙 丙 宝宝 贝贝 乙 丙 甲 丙 甲 宝宝 贝贝 乙 宝宝 贝贝 宝宝 贝贝 甲 丙 乙又H 是EC 的中点,12EH EC =, GF EH ∴∥且GF EH = ···································································································· 4分∴四边形EGFH 是平行四边形 ····························································································· 6分 (2)证明:G H ,分别是BE EC ,的中点GH BC ∴∥且12GH BC = ································································································· 8分又EF BC ⊥ ,且12EF BC =,EF GH ∴⊥,且EF GH = ····································· 10分∴平行四边形EGFH 是正方形.Ⅳ.(本题满分8分)22.他的推断是正确的. ······································································································· 1分 因为“两点确定一条直线”,设经过A B ,两点的直线解析式为y kx b =+ ······················· 2分由(12)(34)A B ,,,,得234k b k b +=⎧⎨+=⎩解得11k b =⎧⎨=⎩ ··································································· 4分∴经过A B ,两点的直线解析式为1y x =+ ········································································· 5分 把1x =-代入1y x =+中,由116-+≠,可知点(16)C -,不在直线AB 上, 即A B C ,,三点不在同一直线上 ························································································· 7分所以A B C ,,三点可以确定一个圆. ················································································· 8分 Ⅴ.(本题满分14分) 23.解:(1)作CH x ⊥轴,H 为垂足,1CH = ,半径2CB = ·························································· 1分 60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++,∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。