2018浙江高考数学试题及其官方答案
2018年浙江省高考数学试题及答案解析
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则 A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n −=−=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =U A ð∅221 3=x y −A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是俯视图正视图21i−||2x ⊄⊂则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018浙江数学高考试题(附含答案解析)
绝密★启用前2018 年普通高等学校招生全国统一考试(浙江卷)数 本试题卷分选择题和非选择题两部分。
全卷共 4 页。
满分 150 分。
考试用时 120 分钟。
学4 页,选择题部分 1 至 2 页;非选择题部分 3 至考生注意:1.答题前, 请务必将自己的姓名、 准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题选择题部分(共 40 分)一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
1.已知全集 U ={1,2,3,4,5},A ={1,3},则 e U A= A .B .{1,3}C .{2,4, 5}D .{1,2,3,4,5}卷上的作答一律无效。
参考公式:若事件 A ,B 互斥,则 P(A B) P(A) P(B) 若事件 A ,B 相互独立,则 P(AB) P(A)P(B) 若事件 A 在一次试验中发生的概率是 p ,则 n 次独立重复试验中事件 A 恰好发生 k 次的概率 k k n kP n (k) C k n p k (1 p)n k (k 0,1,2, ,n) 台体的体积公式 V 1(S 1 S 1S 2 S 2)h 其中 S 1, S 2分别表示台体的上、下底面积, h 表 示台体的高柱体的体积公式 V Sh其中 S 表示柱体的底面积, h 表示柱体的高1锥体的体积公式 V Sh3其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式2S 4 R2球的体积公式4322.双曲线x y2=1 的焦点坐标是3A.(- 2 ,0),( 2,0)C.(0,- 2),(0, 2 )3.某几何体的三视图如图所示(单位:B.(-2 ,0),(2 , 0)D.(0 ,-2),(0 ,2)cm ),则该几何体的体积(单位: cm3)是侧视图A.2 B.4 C.D.4 .复数2(i 为虚数单位)的共轭复数是1iA . 1+iB. 1-iC.5.函数y= 2|x| sin2 x的图象可能是6.已知平面α,直线m,n 满足mα,B.必要不充分条件n α,A .充分不必要条件C .充分必要条件D.既不充分也不必要条件7.设 0< p <1 ,随机变量ξ的分布列是则当p 在( 0,1)内增大时,A .D(ξ)减小B.D(ξ)增大C .D(ξ)先减小后增大D .D(ξ)先增大后减小8.已知四棱锥S- ABCD 的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1 ,SE与平面ABCD 所成的角为θ2,二面角S- AB- C 的平面角为θ3,则 A .θ1 ≤θ2≤ θ3 B.θ3≤θ2≤θ1 C .θ1≤θ3≤θ2D .θ2≤ θ3 ≤ θ1 π9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π,向量b满足 3 b2- 4e·b +3=0 ,则| a- b| 的最小值是A. 3-1 B. 3+1 C.2 D. 2- 310.已知 a1,a2,a3,a4成等比数列,且a1 a2 a3 a4 ln(a1 a2 a3) .若a1 1,则A.a1 a3,a2 a4 B. a1 a3,a2 a4 C . a1 a3,a2 a4 D. a1 a3,a2 a4非选择题部分(共 110 分)二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
2018高考浙江数学带答案
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷满分150分。
考试用时120分钟。
考生注意:1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2 •答题时,请按照答题纸上注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A, B互斥,则P(A B) P(A) P(B) 若事件A, B相互独立,则P(AB) P(A)P(B) 若事件A在一次试验中发生的概率是p,则n 次独立重复试验中事件A恰好发生k次的概率R(k) C:p k(1 p)n k(k 0,1,2丄,n) 台体的体积公式V】(S JSS2 3)h3其中Si, S2分别表示台体的上、下底面积,h表示台体的高柱体的体积公式V Sh其中S表示柱体的底面积,h表示柱体的高锥体的体积公式V -Sh3其中S表示锥体的底面积,h表示锥体的高球的表面积公式S 4 R2球的体积公式其中R表示球的半径选择题部分一、选择题:本大题共10小题,每小题一项是符合题目要求的。
1.已知全集A.5} (共40分)4分,共40分。
在每小题给出的四个选项中,只有U={1 , 2, 3, 4, 5}, A={1 , 3},则ejA=B • {1 , 3} C. {2 , 4, 5} D • {1 , 2 , 3 , 4 ,D .既不充分也不必要条件22•双曲线匕y 2=1的焦点坐标是3A • (- 2 , 0), ( 2 , 0) C . (0,- 2), (0,2)3.某几何体的三视图如图所示(单位:B • (-2, 0),(2,0) D • (0, -2), (0, 2)cm ),则该几何体的体积(单位:cm 3)是C .24 •复数 (i 为虚数单位)的共轭复数是1 iB . 1-iC . -1+iD .-1-iB •必要不充分条件C .充分必要条件 A . 1+i A .充分不必要条件 m a, nm 〃 n"是 m 〃 a"的7.设0<p<1,随机变量E 的分布列是则当p 在(0, 1)内增大时, A . D ( E 减小B . D ( E 增大C .D (E )先减小后增大D . D (E )先增大后减小&已知四棱锥 SABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为Q i , SE 与平面ABCD 所成的角为 缸二面角S-AB- C 的平面角 为也,则 A . QWQWQB . QWQ <0iC . QWQWQD . QWQ <0i9. 已知a , b , e 是平面向量,e 是单位向量.若非零向量b 2-4e b+3=0 ,则|a- b|的最小值是非选择题部分(共110分)、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共36分。
2018年浙江高考数学试题及答案
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,表12,S S h 示台体的高柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA . B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .0),,0)B .(−2,0),(2,0)C .(0,,(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+i B .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xt h i ng sA .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,π3向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A B .+1C .2D .10.已知成等比数列,且.若,则1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江省高考数学试卷(含详细解析)
2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4分)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣10.(4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018浙江数学高考试题(附含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn kn nP k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧视图俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1BC .2D 10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年高考浙江高考数学试题及答案(精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =UA ∅2.双曲线的焦点坐标是A .(,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件221 3=x y -俯视图正视图21i-||2x ⊄⊂7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A −1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018浙江高考数学试题及其官方答案
2018年普通高等学校招生全国统一考试浙江卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线 x 23−y 2=1的焦点坐标是( )A . (−√2,0),(√2,0)B . (−2,0),(2,0)C . (0,−√2),(0,√2)D . (0,−2),(0,2) 3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84. 复数21−i(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i5. 函数y =2|x |sin 2x 的图象可能是( )6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ则当p 在(0,1)内增大时A . D (ξ)减小 B . D (ξ)增大 C . D (ξ)先减小后增大 D . D (ξ)先增大后减小8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则() A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1俯视图正视图DC B A9. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . √3−1 B . √3+1 C . 2 D . 2−√3 10. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 4 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则{x +y +z =1005x +3y +13z =100,当z =81时,x =__________________________,y =___________________________12. 若x ,y 满足约束条件{x −y ≥02x +y ≤6x +y ≥2 ,则z =x +3y 的最小值是________________________,最大值是_____________________13. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =√7,b =2,A =60°,则sinB =_________________,c =___________________ 14. 二项式(√x 3+ 12x )8的展开式的常数项是_________________________15. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________16. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17. 已知点P (0,1),椭圆 x 24+y 2=m (m >1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =____________________时,点B 横坐标的绝对值最大三、解答题(本大题共5小题,共74分)18. (14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (− 35,− 45)(1) 求sin (α+π)的值(2) 若角β满足sin (α+β)= 513,求cosβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2(1) 证明:AB 1⊥平面A 1B 1C 1(2) 求直线AC 1与平面ABB 1所成的角的正弦值20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值(2) 求数列{b n }的通项公式C 1B 1A 1CA21.(15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上(1)设AB中点为M,证明:PM垂直于y轴(2)若P是半椭圆x2+ y 24=1(x<0)上的动点,求△P AB面积的取值范围22.(15分)已知函数f(x)=√x−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点。
2018浙江高考数学试题及其官方答案
2018年普通高等学校招生全国统一考试浙江卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线−y 2=1的焦点坐标是( )A . (− ,0),( ,0)B . (−2,0),(2,0)C . (0,− ),(0, )D . (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84. 复数-(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i5. 函数y = sin 2x 的图象可能是( )6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ则当p 在(0,1)A . D (ξ)减小 B . D (ξ)增大 C . D (ξ)先减小后增大 D . D (ξ)先增大后减小 8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ19. 已知a,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 ,向量b 满足b 2−4e •b +3=0,则|a −b|俯视图正视图DC B A的最小值是( )A. −1B. +1C. 2D. 2−10.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=__________________________,y=___________________________12.若x,y满足约束条件−≤ ,则z=x+3y的最小值是________________________,最大值是_____________________13.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,A=60°,则sinB=_________________,c=___________________14.二项式(+)8的展开式的常数项是_________________________15.已知λ∈R,函数f(x)=−,−,,当λ=2时,不等式f(x)<0的解集是_____________________,若函数f(x)恰有2个零点,则λ的取值范围是________________________16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=____________________时,点B横坐标的绝对值最大三、解答题(本大题共5小题,共74分)18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(− ,− )(1)求sin(α+π)的值(2)若角β满足sin(α+β)=,求cosβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2(1) 证明:AB 1⊥平面A 1B 1C 1(2) 求直线AC 1与平面ABB 1所成的角的正弦值20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值(2) 求数列{b n }的通项公式21. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上(1) 设AB 中点为M ,证明:PM 垂直于y 轴C 1B 1A 1CA(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围22.(15分)已知函数f(x)=−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
2018年高考数学浙江卷(含答案与解析)
【解析】由 可得 ,即 ,即 ,如图,由几何意义得,b的终点B在以F为圆心,半径为1的圆上运动,a的终点A在射线OP上,当点B为点F到OP的垂线与圆F的交点时, 最小,即
【考点】平面向量的运算及几何意义
10.【答案】B
【解析】由 结构,想到常用对数放缩公式 ,所以 ,即 .若 ,则 即 而 ,故 ,即与 矛盾,所以 ,所以选B
1.已知全集 , ,则 ()
A. B.
C. D.
2.双曲线 的焦点坐标是()
A. ,
B. ,
C. ,
D. ,
3.某几何体的三视图如图所示(单位: ),则该几何体的体积(单位: )是()
A.2B.4C.6D.8
4.复数 ( 为虚数单位)的共轭复数是()
A. B. C. D.
5.函数 的图象可能是()
AB
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.(本小题满分14分)
已知角 的顶点与原点 重合,始边与 轴的非负半轴重合,它的终边过点 .
(Ⅰ)求 的值;
(Ⅱ)若角 满足 ,求 的值.
19.(本小题满分15分)
如图,已知多面体 , , , 均垂直于平面 , , , , .
柱体的体积公式: ,其中 表示柱体的底面积, 表示柱体的高.
锥体的体积公式: ,其中 表示锥体的底面积, 表示锥体的高.
球的表面积公式: ,其中 表示球的半径.
球的体积公式: ,其中 表示球的半径.
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【考点】直线与椭圆的位置关系以及平面向量等知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试浙江卷
一、选择题(本大题共10小题,每小题4分,共40分) 1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )
A . ∅
B . {1,3}
C . {2,4,5}
D . {1,2,3,4,5}
2. 双曲线 x 2
3−y 2=1的焦点坐标是( )
A . (−√2,0),(√2,0)
B . (−2,0),(2,0)
C . (0,−√2),(0,√2)
D . (0,−2),(0,2)
3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )
A . 2
B . 4
C . 6
D . 8
4. 复数
2
1−i
(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i
5. 函数y =2|x |sin 2x 的图象可能是( )
6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )
俯视图
正视图
D
C B A
A . 充分不必要条件
B . 必要不充分条件
C . 充分必要条件
D . 既不充分也不必要条件
7. 设0<p <1,随机变量ξ的分布列是
则当p 在(0,1)内增大时A . D (ξ)减小
B . D (ξ)增大
C .
D (ξ)先减小后增大
D . D (ξ)先增大后减小
8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角
为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3
B . θ3≤θ2≤θ1
C . θ1≤θ3≤θ2
D . θ2≤θ3≤θ1
9. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3
,向量b 满足b 2−4e •b +3=0,则|a −b |
的最小值是( ) A . √3−1
B . √3+1
C . 2
D . 2−√3
10. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )
A . a 1<a 3,a 2<a 4
B . a 1>a 3,a 2<a 4
C . a 1<a 3,a 2>a 4
D . a 1>a 3,a 2>a 4
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,
凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则{x +y +z =100
5x +3y +1
3
z =100
,当z =81时,x =__________________________,y =___________________________
12. 若x ,y 满足约束条件{x −y ≥0
2x +y ≤6x +y ≥2 ,则z =x +3y 的最小值是________________________,最大值是_____________________
13. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =√7,b =2,A =60°,则sinB =_________________,c =___________________ 14. 二项式(√x 3
+ 1
2x )8的展开式的常数项是_________________________
15. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2
−4x +3,x <λ
,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰
有2个零点,则λ的取值范围是________________________
16. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重
复数字的四位数(用数字作答)
17.已知点P(0,1),椭圆x2
4
+y2=m(m>1)上两点A,B满足AP
⃗⃗⃗⃗⃗ =2PB
⃗⃗⃗⃗⃗ ,则当m=____________________时,点B横坐标的
绝对值最大
三、解答题(本大题共5小题,共74分)
18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(− 3
5,−
4
5
)
(1)求sin(α+π)的值
(2)若角β满足sin(α+β)= 5
13,求cosβ的值
19.(15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,
AB=BC=B1B=2
(1) 证明:AB 1⊥平面A 1B 1C 1
(2) 求直线AC 1与平面ABB 1所成的角的正弦值
20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列
{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值
(2) 求数列{b n }的通项公式
C 1
B 1
A 1
C
A
21.(15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的
中点均在C上
(1)设AB中点为M,证明:PM垂直于y轴
(2)若P是半椭圆x2+ y 2
4
=1(x<0)上的动点,求△P AB面积的取值范围
22.(15分)已知函数f(x)=√x−lnx
(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2
(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点。