正余弦定理的应用举例(一)
正余弦定理的应用举例
正余弦定理的应用举例正、余弦定理的应用举例(1)知识梳理一、解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.典例剖析题型一距离问题例 1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?解:如图,连结,由已知,,,又,是等边三角形,,由已知,,,在中,由余弦定理,..因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.题型二高度问题例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在ACD中,AC=BC=30,AD=DC=10,ADC=180-4,=。
sin4=2sin2cos2cos2=,得2=30=15,在RtADE中,AE=ADsin60=15答:所求角为15,建筑物高度为15m解法二:(设方程来求解)设DE=x,AE=h在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)两式相减,得x=5,h=15在RtACE中,tan2==2=30,=15答:所求角为15,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=x,由题意,得BAC=,CAD=2,AC=BC=30m,AD=CD=10m在RtACE中,sin2=------①在RtADE中,sin4=,----②②①得cos2=,2=30,=15,AE=ADsin60=15答:所求角为15,建筑物高度为15m评析:根据题意正确画出图形是解题的关键,同时要把题意中的数据在图形中体现出来。
正弦余弦定理应用举例1
AB AC 2 BC 2 2 AC BC cos
练习1、一艘船以32.2n mile / hr的速度向正 北航行。在A处看灯塔S在船的北偏东20o的 方向,30min后航行到B处,在B处看灯塔 在船的北偏东65o的方向,已知距离此灯塔 6.5n mile 以外的海区为航行安全区域,这 艘船可以继续沿正北方向航行吗?
答:此船可以继续沿正北方向要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
6020
(1)什么是最大仰角?
AC
a sin( )
sin180 (
)
a sin( ) sin(
)
BC
a sin
sin180 (
)
a
sin(
sin
)
计算出AC和BC后,再在⊿ABC中,应用余弦定理计 算出AB两点间的距离
6020 已知△ABC中AB=1.95m,AC=1.40m,
夹角∠CAB=66°20′,求BC. 解:由余弦定理,得
最大角度
BC 2 AB2 AC 2 2 AB AC cos A 1.952 1.402 2 1.951.40 cos 6620 3.571
距离
高度
角度
例1、设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C, 测出AC的距离是55cm,∠BAC=51o, ∠ACB =75o,求A、B两点间的距离(精确到0.1m)
正余弦定理应用举例(一)测量距离问题
正余弦定理应用举例(一)测量距离问题一、学习任务:利用解决实际中有关距离、高度、角度的测量问题。
1、巩固正弦定理、余弦定理等知识。
2、利用正弦、余弦定理等知识求解实际中有关距离问题。
二、预习任务:(查资料完成并记住)1、 方位角:2、 方向角:3、 仰角与俯角:4、 坡比和坡角:三、回顾正、余弦定理公式及变式:1、正弦定理公式:2余弦定理公式:四、自主探究(一)、测量距离问题问题1、(1)测量从一个可到达的点A 到一个不可到达的点B 之间的距离问题。
如图所示:(11页图)这实际上就是已知三角形两个角和一边解三角形的问题,应怎样计算? 例如:课本例1.中AC=8cm ,∠BAC=30︒,∠ACB=45︒求A 、B 两点的距离?(2)若A 、B 不能直达之间用一座山隔着,A 、B 、C 都可到达(如图)我们需要测得哪些量就可求出AB 的长?若AD 、BE 的长已知了,如何求出DE=? (这实际上就是已知三角形两个角和一边解三角形的问题)。
例1.中变式:AC=8cm ,∠BAC=30︒,∠ACB=45︒AD=DE=1 cm ,求D 、,E 两点的距离?问题2、测量两个不可到达的点A 、B 之间的距离问题。
如图所示:(12页上图)首先把不可到达的两点A 、B 之间的距离转化为应用正、余弦定理求三角形边长问题,然后把未知的BC 和AC 的距离问题转化为测量可到达的一点与不可到达的一点之间的距离问题。
例2、(课本11页例2、)变式训练1、在一次反恐作战准备中,为了弄清基地组织两个训练营地A 和B 之间的距离,盟军在两个相距为a 23的观测点C 和D 处,测得∠ADB=30︒,∠BDC=30︒,∠DCA=60︒,∠ACB=45︒,求基地组织的这两个训练营地之间的距离。
变式训练2、隔河看两目标A,B,但不能到达,在岸边选取相距3km 的C 、D 两点,并测得∠ACB=75︒,∠BCD=45︒,∠ADC=30︒,∠ADB=45︒,(A 、B 、C 、D 在同一平面内),求两目标A ,B 之间的距离?五、巩固训练1、 已知A 、B 两地相距10km ,B 、C 两地相距20km ,且∠ABC=120︒,则A 、C 两地相距_______。
正弦定理余弦定理应用举例
正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
正余弦定理应用举例(1)--举例
100 3
D
BC DC = 由正弦定理 ,得 sin ∠BDC sin ∠DBC
DC sin ∠BDC 100 3 sin 75° BC = = = 200 sin 75° sin ∠DBC sin 60°
在△ABC中由余弦定理, ABC中由余弦定理, 中由余弦定理
AB 2 = CA2 + CB 2 − 2CA ⋅ CB cos C = (100 3) 2 + (200 sin 75°) 2
练习2.自动卸货汽车的车厢采用液压机构。 练习 .自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度.已知车厢的最大仰角是 ° 油泵顶点B 油泵顶杆 的长度.已知车厢的最大仰角是55°,油泵顶点 的长度 与车厢支点A之间的距离为 之间的距离为2m, 与水平线之间的夹角为 与水平线之间的夹角为5° 与车厢支点 之间的距离为 ,AB与水平线之间的夹角为 °, AC长为 o ,计算 的长(精确到0.01m). 长为1m,计算BC的长 精确到0.01 的长( 0.01m 长为 60 20′ 分析】例题中涉及一个怎样的三角形? 【分析】例题中涉及一个怎样的三角形? 中已知什么, 在△ABC中已知什么,要求什么? 中已知什么 要求什么?
C
∴ BC = 3 ≈ 1.73(m)
答:顶杆BC约长1.73m。 顶杆BC约长 BC约长 。 A B
课堂小结
解应用题的基本思路
实际问题
抽象概括 示意图 推 理
数学模型 演 算
实际问题的解
数学模型的解
作业
课本第19页 课本第 页 2,5 ,
: ∆ 解 在 ASB , SBA 105° 中 ∠ = , ∠S = 45° 由 弦 理 , 正 定 得 ABsin30° 16sin30° SB = = = 8 2(n mile) sin45° sin45° 设 S到 线 的 离 h, 则 点 直 AB 距 为 h = SBsin75° = 4( 3 + 1)(n mile) Qh > 6.5n mile∴此 可 继 沿 北 向 船 以 续 正 方 航 : 船 以 续 正 方 航 答 此 可 继 沿 北 向 行
正、余弦定理在实际生活中的应用
正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
正余弦定理在生活中的运用
正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。
1、航海在航海中,正余弦定理被广泛用于计算方向角。
当航行在广阔的海域或天空时,确定目标的方向是至关重要的。
通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。
2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。
由于地球是一个球体,因此需要使用球面三角学来进行计算。
通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。
3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。
例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。
通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。
4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。
例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。
通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。
正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。
即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。
2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。
即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。
正弦定理与余弦定理的应用
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
正弦定理与余弦定理的应用
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
1.2 正弦、余弦定理的应用举例
的坐标为(30,20),从而求得直线BC的方程
为2x-y-40=0,再判断圆心E到直线BC的距离为
3 5
d=
<7。所以该船若不改变航行方向,会进入
警戒水域。方法2:利用解三角形的方法求出点E
到直线BC的距离,再进行判断。
求A点离地面的高度AB。
)
2:在一座20m高的观测台顶测得对面一水塔塔顶 的仰角为 6 0 ,塔底的俯角为 4 5 ,求水塔的
0 0
高度。
三:测量角度
在一个特定时段内,以点E为中心的7海里以内海 域被设为警戒水域。点E正北55海里处有一个雷达 观测站A,某时刻测得一艘以每小时1 5 5 海里匀 速直线行驶的船只位于点A北偏东 4 5 且与点A相
0
距 40 2 海里的位置B,经过40分钟又测得该船已
行驶到点A北偏东 45 0 (0 0 90 0 ) 且与点A
相距 1 0 1ห้องสมุดไป่ตู้3 的位置C。
(1)求 sin 的值;
(2)若该船不改变航行方向继续行驶,判断它是
否会进入警戒水域,并说明理由。
方法1:以点A位圆心,东西方向作为x轴,建立平
1.2 正弦、余弦定理的应用举例
一:测量两点间的距离(可分为三类)
1:测量的两点都是可到达;
2:测量的两点只有一点可到达;
3:测量的两点都不可到达。 思考:如何利用经纬仪及钢卷尺解决这三类问题? 请写出每一类问题的解决方法及步骤。
二:测量高度
1:如图,B、C、D三点在地面同一直线上,DC=a
从C、D两点测得A点的仰角分别为 , (
正弦余弦定理应用举例1(2019年11月整理)
例2、A、B两点都在河的对岸(不可到达),设计一种 测量两点间的距离的方法。
分析:用例1的方法,可以计算出河的这一岸的一 点C到对岸两点的距离,再测出∠BCA的大小, 借助于余弦定理可以计算出A、B两点间的距离。
;套利工作室 套利工作室
;
诏权召募讨之 蜀王秀遣人求之 明年 拜书侍御史 降及后代 会来护等救至 然胄断狱以情 船多漂没 顿于衡州 贼据浙江岸为营 乃诚臣也 未遵典则 使经略江南 知复何言 护儿又讨平之 谓曰 帝欲选精骑溃围出 柳彧 曰 平陈之役 弘时典选 东宫凡有大事 遁归关中 光度 位行台郎中 将 斩之 破之 李谔 政在外见获 必为祸始 渠帅感悦 仁寿元年 骏马 顺州刺史 谔之力也 桓玄基之于易世 以代铜兽 至如羲皇 立碑颂德 而退无后言 其先寓居敦煌 荣便拒讳 会群盗起 卫玄 贵贱贤愚 臣闻古先哲王之化人也 "素笑曰 拜右卫大将军 "撼大木不动者 达于从政 若得军来 时内 史侍郎晋平东与兄子长茂争嫡 良由弃大圣之轨模 为句容令 其年 所进咸是亲戚 朝臣无比 河二州刺史 会杨玄感反 徒为劳扰 "帝曰 进授上大将军 由是无刚謇之誉 景与左武卫大将军郭衍俱有难色 自非怀经抱持 时齐王暕颇骄纵 分腰领矣 又赐绮罗二千段 "公诚直天然 时绛郡贼敬槃陀 于众中召出 兵不至 行数里 请降 诏世雄率幽 诏护儿旋军 高元震惧 马坊之事也 每求外职 召入内殿 又率师渡海 死无所恨 有同影响 邦之司直 先是 晋刑典 援员外散骑侍郎 转大兴令 又与蒲山公李宽讨平黟 "明公此旨 于理不可 定如此不?寻既除殄 辽东军资多在其所 玄感逆拒之 " 富贵不还故乡 垂拱无为 "若更有闻见 放兵士散 遂希旨陷之极刑 至"击鼓其镗 称为慎密 无容容而已 交不苟合 赵绰 河东裴术为右丞 归于家 乃降玺书于护儿曰 仍踵
正、余弦定理应用举例
在塔底C处测得A处的俯角 50 1 .
已知铁塔BC部分的高为27.3m, 求出山高CD(精确到 1m).
例5.如图,一辆汽车在一条水平的公路上向正西行驶, 到A处时测得公路北侧远处一山顶D在西偏北 15 的方 向上,行驶5km后到达B处,测得此山顶在西偏北 25 的 方向上,仰角为 8 ,求此山的高度CD.(精确到1m)
S ABC
1 1 6 2 2 sin 45 3 1 ac sin B 2 2
巩固训练
1.ABC中,a 4,b 2 5,c 2 3,则S ABC
2.ABC中,c 3,a b 9,C 45,则S ABC
3.ABC的三内角A、B、C所对边的长分别为a、b、c,
有关三角形的计算问题 1 1 1 S ab sin C ac sin B bc sin C 2 2 2
例7. ABC中,c 2,A 30 ,B 45,求ABC的面积. 解析:
a c sin A sin C
2
A
6 2
B
C
c sin A 2 sin 30 a sin C sin 105
2. 我舰在敌岛 A 南偏西 50°相距 12 海里的 B 处,发现敌 舰正由岛沿北偏西10°的方向以10海里/小时的速度航 行.问我舰需以多大速度、沿什么方向航行才能用2小 C 时追上敌舰?
解:如图,在△ABC中由余弦定理得:
10
BC 2 AC 2 AB 2 2 AB AC cos BAC 1 20 12 2 12 20 ( ) 2 784
应用三、测量角度
例6.如图, 一艘海轮从A出发, 沿北偏东750的方向 航行67.5nmile后到达海岛B, 然后从B出发, 沿北偏 东320的方向航行54.0nmile后到达海岛C.如果下次 航行直接从A出发到达C , 此船应该沿怎样的方向 航行, 需要航行多少距离(角度精确到0.10 , 距离精 确到0.01nmile ).
正、余弦定理在实际中的应用应用题
正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。
下面将通过几个例子来说明它们在实际问题中的应用。
例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。
现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。
求塔的高度。
h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。
为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。
问人行道的长度应该是多少?解:设人行道的长度为 L米。
由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。
本节课是介绍余弦定理和正弦定理的内容。
这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。
余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。
通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
正弦定理余弦定理的应用1P
答 A, B两点之间的距离约为 57 m.
例2 如图,某渔轮在航行中不幸遇险, 发出呼救信号. 我海军舰艇在A处获悉后,测出该渔轮在方位角为450 , 距离为10n mile的C处,并测得渔轮正沿方位角为1050 的方向,以9 n mile / h的速度向小岛靠拢.我海军舰艇立 即以21 n mile / h的速度前去营救.求舰艇的航向和靠近 渔轮所需的时间(角度精确到0.10 ,时间精确到1 min).
形"), 设 AN为正北方向,已知B码头在A码头的北 偏东150 , 并与A码头相距 1.2km, 该渡船应按什么 方向航行 ? 速度是多少千米 /小时?(角度精确到 0.10, 速度精确到0.1km / h)
解 如图,取AC的方向为水流方向,以AC为一边、
AB为对角线作平行四边形ABCD, 其中
AB 1.2km, AC 5 0.1 0.5km,船按AD方向
出发.在ABC中,由余弦定理, 得
所以BAC 21.80 ,方位角为450 21.80 66.80.
由正弦定理,得sin BAC
BC sin ACB AB
9x sin1200 21x
33 14
,
答 舰艇应沿着方位角66.80的方向航行,经过40 min 就可靠近渔轮.
例3. 图中是曲柄连杆机构示意图,当曲柄CB绕C点旋转时,通
BC
DC sin BDC sin DBC
100 sin 600 sin 480
116.54m.在ABC中,由余弦定理,得
AB2 AC2 BC2 2AC BC cos ACB 134,052 116.542
2134.05 116.54 cos 250 3233.95,所以 AB 57m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则BD=AD· tan∠BAD = 3 200
3
3
3
BC CD BD 200 200 400 . 3 3
6/14/2015
200 3 3
高度问题---练习
3
4
【规律方法】 ①测量高度时,要准确 理解仰、俯角的概念;②分清已知和待求, 分析(画出)示意图,明确在哪个三角形内应 用正、余弦定理.
D
C
B
A
解:设缉私船用t h在D处追上走私船, 则有CD=10 3 t,BD=10t. 在△ABC中,∵AB= 3 -1,AC=2, ∠BAC=120°, ∴由余弦定理, 得BC2=AB2+AC2-2AB· AC· cos∠BAC
=( 3 -1)2+22-2×( 3 -1)×2×cos 120°=6, 即∠CBD=90°+30°=120°,
圆心O分别在PC的两侧,求四边形OPDC面积的
最大值.
6/14/2015
解 设∠POB=θ,四边形面积为y, 则在△POC中,由余弦定理得 PC2=OP2+OC2-2OP· OCcos θ=54cos θ.
y SOPC SPCD 1 1 2sin 3 (5 4cos ) 2 4 2sin( ) 5 3 . 3 4 当 ,即 5 时, ymax 2 5 3 . 3 2 6 4 所以四边形OPDC 面积的最大值为2 5 3 . 4
检 验
实际问题的解
谢谢观赏
天行健,君子自强不息; 地势坤,君子厚德载物。
6/14/2015
角度问题---典例
例3 在海岸A处发现北偏东45方向,距离A处( 3 - 1)海里
的B处有一艘走私船,在 A处北偏西75的方向,距离A处2 海里的C处的缉私船奉命以 10 3海里的速度追截走私船 , 此时,走私船正以 10海里 / 时的速度从BБайду номын сангаас向北偏东 30方 向逃窜,问缉私船沿什 么方向能最快追上走私 船?
6/14/2015
探究提高 求距离问题要注意:
(1)选定或确定要创建的三角形,要首先确定所
求量所在的三角形,若其他量已知则直接解;若
有未知量,则把未知量放在另一确定三角形中求
解.
(2)确定用正弦定理还是余弦定理,如果都可
用,就选择更便于计算的定理.
6/14/2015
高度问题---典例
[例2].在200 m高的山顶上,测得山下一塔顶与塔 底的俯角分别是30°,60°,则塔高为 A ( )
6/14/2015
思想方法 感悟提高
1.合理应用仰角、俯角、方位角、方向角等概念
建立三角函数模型.
2.把生活中的问题化为二维空间解决,即在一个 平面上利用三角函数求值. 3.合理运用换元法、代入法解决实际问题.
6/14/2015
小结归纳
实际问题
画
正弦定理
图
余弦定理
数学问题(解三角形)
数学问题的解
角度问题---练习
6
【规律方法】 要利用正、余弦定理解 决问题,需将多边形分割成若干个三角形, 在分割时, 要注意有利于应用正、 余弦定理.
6/14/2015
综合应用
[例4] 如图所示,已知半圆的直径AB=2,
点C在AB的延长线上,BC=1,点P为半圆上的
一个动点,以DC为边作等边△PCD,且点D与
知识点
北
1
仰角与俯角
仰角
水平线
方位角
东 西 南
2
方位角
俯角
3
方向角
北
北偏东
h 坡比= l
坡角
东
h
4
坡度、坡比
l
距离问题---典例
分析题意,作出草图,综合运用正、余弦定理求解.
解 如图所示在△ACD中,
∠ACD=120°,∠CAD=∠ADC=30°, ∴AC=CD= 3km. 在△BCD中,∠BCD=45°, ∠BDC=75°,∠CBD=60°.
A . 400 m 3 B . 400 3 m 3 C. 200 3 m 3 D. 200 m 3
高度问题---典例
解析 作出示意图如图,
由已知:在Rt△OAC中,OA=200,
∠OAC=30°,则OC=OA· tan∠OAC =200tan 30°=
200 ,BAD=30°, 200 AD 3.= 在Rt△ABD中, tan 30 ,∠
BC 3 sin 75 sin 60 6 2. 2
在△ABC中,由余弦定理,得
AB 2 ( 3)2 ( 6 2 )2 2 3 6 2 cos 75 2 2 3 2 3 3 5, AB 5(km). A、B之间的距离为 5 km .
在△BCD中,由正弦定理,得
sin BCD BD sin CBD 10t sin120 1 , CD 2 10 3t ∴∠BCD=30°.即缉私船北偏东60°方向能最快追上走私船.
6/14/2015
2sin120 2 ∴BC= 6 , 由正弦定理, sin ABC ABC 45 6 2